Please use this identifier to cite or link to this item:
https://idr.l2.nitk.ac.in/jspui/handle/123456789/16752
Title: | A comparative study on enhancer and inhibitor of glycine–nitrate combustion ZnO screen-printed sensor: detection of low concentration ammonia at room temperature |
Authors: | Manjunath G. Nagaraju P. Mandal S. |
Issue Date: | 2020 |
Citation: | Journal of Materials Science: Materials in Electronics , Vol. 31 , 13 , p. 10366 - 10380 |
Abstract: | We report a comparative study on enhancing and inhibiting the sensing performance of Sr-doped ZnO (Sr0.01 Zn0.99O) and RuO2-activated Sr-doped ZnO heterostructured sensors towards the low concentration (≤ 50 ppm) of ammonia gas at ambient. Sub-microns sized with high specific surface area, high reactive, oxygen-deficient Sr-doped ZnO particles were synthesized at low temperature (196 °C) through facile glycine–nitrate solution combustion synthesis (SCS) method. Porous, adhered screen-printed film of Sr-doped ZnO with optical bandgap (3.22 eV) was dip-coated using 0.02 M RuCl3 aqueous solution to obtain RuO2 activation. Smaller crystallite size and lesser lattice distortion obtained with Sr-doping in ZnO enhance the gas response (S = 71) towards the 50 ppm of ammonia gas at room temperature. RuO2-activated Sr-doped ZnO sensor associated with lesser oxygen vacancies and a lower concentration of chemisorbed oxygen species due to passivation layer and no-spill-over activity of RuO2, which inhibits the gas response from 71 to 3. Sr-doped ZnO-based sensor shows high selectivity towards ammonia against 50 ppm of volatile organic compound (VOCs) vapor. Expeditious sensor kinetics (response time and recovery time) in the Sr-doped ZnO sensor was observed, in which smaller crystallite size offers a shorter distance for the diffusion of oxygen vacancies (Vo). Ultra-high-sensitive and selective sensors with ease and economical fabrication offer feasibility in industries and domestic applications where detection of the less concentration ammonia vapor is crucial. © 2020, Springer Science+Business Media, LLC, part of Springer Nature. |
URI: | https://doi.org/10.1007/s10854-020-03584-4 http://idr.nitk.ac.in/jspui/handle/123456789/16752 |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.