Please use this identifier to cite or link to this item: https://idr.l2.nitk.ac.in/jspui/handle/123456789/11878
Title: Leveraging virtual machine introspection with memory forensics to detect and characterize unknown malware using machine learning techniques at hypervisor
Authors: Ajay, Kumara, M.A.
Jaidhar, C.D.
Issue Date: 2017
Citation: Digital Investigation, 2017, Vol.23, , pp.99-123
Abstract: The Virtual Machine Introspection (VMI) has emerged as a fine-grained, out-of-VM security solution that detects malware by introspecting and reconstructing the volatile memory state of the live guest Operating System (OS). Specifically, it functions by the Virtual Machine Monitor (VMM), or hypervisor. The reconstructed semantic details obtained by the VMI are available in a combination of benign and malicious states at the hypervisor. In order to distinguish between these two states, the existing out-of-VM security solutions require extensive manual analysis. In this paper, we propose an advanced VMM-based, guest-assisted Automated Internal-and-External (A-IntExt) introspection system by leveraging VMI, Memory Forensics Analysis (MFA), and machine learning techniques at the hypervisor. Further, we use the VMI-based technique to introspect digital artifacts of the live guest OS to obtain a semantic view of the processes details. We implemented an Intelligent Cross View Analyzer (ICVA) and implanted it into our proposed A-IntExt system, which examines the data supplied by the VMI to detect hidden, dead, and dubious processes, while also predicting early symptoms of malware execution on the introspected guest OS in a timely manner. Machine learning techniques are used to analyze the executables that are mined and extracted using MFA-based techniques and ascertain the malicious executables. The practicality of the A-IntExt system is evaluated by executing large real-world malware and benign executables onto the live guest OSs. The evaluation results achieved 99.55% accuracy and 0.004 False Positive Rate (FPR) on the 10-fold cross-validation to detect unknown malware on the generated dataset. Additionally, the proposed system was validated against other benchmarked malware datasets and the A-IntExt system outperforms the detection of real-world malware at the VMM with performance exceeding 6.3%. 2017 Elsevier Ltd
URI: http://idr.nitk.ac.in/jspui/handle/123456789/11878
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.