Please use this identifier to cite or link to this item: https://idr.l2.nitk.ac.in/jspui/handle/123456789/11222
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArgyros, I.K.-
dc.contributor.authorGeorge, S.-
dc.date.accessioned2020-03-31T08:30:56Z-
dc.date.available2020-03-31T08:30:56Z-
dc.date.issued2017-
dc.identifier.citationWSEAS Transactions on Mathematics, 2017, Vol.16, , pp.248-256en_US
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/11222-
dc.description.abstractThe goal of this paper is to present a local convergence analysis of Newton's method for approximating a locally unique solution of an equation in a Banach space setting. Using the gauge function theory and our new idea of restricted convergence regions we present an extended and unified convergence theory.en_US
dc.titleExtended and unified local convergence for Newton-Kantorovich method under w- conditions with applicationsen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
File Description SizeFormat 
46.Extended And Unified.pdf402.73 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.