Please use this identifier to cite or link to this item: https://idr.l2.nitk.ac.in/jspui/handle/123456789/9688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHegde, S.M.
dc.contributor.authorMurthy, T.S.
dc.date.accessioned2020-03-31T06:51:18Z-
dc.date.available2020-03-31T06:51:18Z-
dc.date.issued2016
dc.identifier.citationNational Academy Science Letters, 2016, Vol.39, 6, pp.451-453en_US
dc.identifier.uri10.1007/s40009-016-0504-7
dc.identifier.urihttp://idr.nitk.ac.in/jspui/handle/123456789/9688-
dc.description.abstractAdams and Ponomarenko (Involv J Math 3(3):341 344, 2010) conjectured that when n is composite, k<n and gcd(a1,a2,..,ak)?Zn , then there exist distinct xi? Zn satisfying (Formula Presented). In this paper, distinct solution has been constructed to the linear congruence when ?i=1kai=n-1, using super edge-magic labeling of trees. 2016, The National Academy of Sciences, India.en_US
dc.titleA Partial Solution to Linear Congruence Conjectureen_US
dc.typeArticleen_US
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.