Please use this identifier to cite or link to this item:
https://idr.l2.nitk.ac.in/jspui/handle/123456789/8983
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prusty, B.R. | |
dc.contributor.author | Jena, D. | |
dc.date.accessioned | 2020-03-30T10:23:12Z | - |
dc.date.available | 2020-03-30T10:23:12Z | - |
dc.date.issued | 2016 | |
dc.identifier.citation | 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 2016, Vol., , pp.- | en_US |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/8983 | - |
dc.description.abstract | This paper performs probabilistic load flow under the consideration of uncertainty pertaining to conventional generation, photovoltaic (PV) generation and aggregate load demand in power systems. Effect of PV penetration and bus power correlations on distribution of desired random variables (bus voltages and line power flows) is analyzed with the help of an efficient analytical method named modified cumulant method. Generation-generation and load-load correlation cases are considered. Effectiveness of the proposed method has been tested on three test systems such as Ward-Hale 6 bus, IEEE 14 bus and IEEE 30 bus. Results are compared with Monte-Carlo simulation. The effectiveness of the proposed method is justified in terms of accuracy as well as execution time. � 2015 IEEE. | en_US |
dc.title | Modeling of correlated photovoltaic generations and load demands in probabilistic load flow | en_US |
dc.type | Book chapter | en_US |
Appears in Collections: | 2. Conference Papers |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.