Please use this identifier to cite or link to this item:
https://idr.l2.nitk.ac.in/jspui/handle/123456789/7018
Title: | A morphological approach for measuring pair-wise semantic similarity of sanskrit sentences |
Authors: | Keshava, V. Sanapala, M. Dinesh, A.C. Shevgoor, S.K. |
Issue Date: | 2017 |
Citation: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, Vol.10260 LNCS, , pp.162-169 |
Abstract: | Capturing explicit and implicit similarity between texts in natural language is a critical task in Computational Linguistics applications. Similarity can be multi-level (word, sentence, paragraph or document level), each of which can affect the similarity computation differently. Most existing techniques are ill-suited for classical languages like Sanskrit as it is significantly richer in morphology than English. In this paper, we present a morphological analysis based approach for computing semantic similarity between short Sanskrit texts. Our technique considers the constituent words� semantic properties and their role in individual sentences within the text, to compute similarity. As all words do not contribute equally to the semantics of a sentence, an adaptive scoring algorithm is used for ranking, which performed very well for Sanskrit sentence pairs of varied complexities. � Springer International Publishing AG 2017. |
URI: | http://idr.nitk.ac.in/jspui/handle/123456789/7018 |
Appears in Collections: | 2. Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
8 A Morphological Approach.pdf | 315.36 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.