Please use this identifier to cite or link to this item:
https://idr.l2.nitk.ac.in/jspui/handle/123456789/16116
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sushama S. | |
dc.contributor.author | Murkute P. | |
dc.contributor.author | Ghadi H. | |
dc.contributor.author | Pandey S.K. | |
dc.contributor.author | Chakrabarti S. | |
dc.date.accessioned | 2021-05-05T10:29:49Z | - |
dc.date.available | 2021-05-05T10:29:49Z | - |
dc.date.issued | 2021 | |
dc.identifier.citation | Optical Materials , Vol. 111 , , p. - | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.optmat.2020.110591 | |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/16116 | - |
dc.description.abstract | It is well-known that the ZnMgO thin-film faces a roadblock in its potential applications for various optoelectronic devices due to the limitation imposed on achieving p-type conduction. The mono-acceptor doping of ZnMgO endures from the stern self-compensation by native donor defects and deep acceptor level formation advocating the need for alternate doping techniques like co-doping. In this paper, we report a detailed study on the improvement in structural, elemental, and optical properties of phosphorus-doped Zn0.85Mg0.15O thin films, with an aim to obtain enhancement in the signatures of acceptor-doped behavior, under the influence of boron implantation time. In addition, the paper also captures the behavior exhibited by the co-doped samples as a result of the variation in the annealing temperature. The solubility of the phosphorus atom (acceptor dopant) was observed to improve with boron (donor co-dopant) implantation as confirmed by the structural, elemental, and optical properties of co-doped ZnMgO thin films. It was also found that the acceptor level emissions got improved after boron implantation in phosphorus-doped ZnMgO thin films. Additionally, with co-doping, the sample showed the signature of acceptor-bound exciton peak till 300 K, evidencing the room-temperature operability of the films. Moreover, the fabricated film had a shallow acceptor energy level located at around 74 ± 0.45 meV above the valence band. Co-doped samples also showed stable acceptor based optical emission for more than a year. © 2020 Elsevier B.V. | en_US |
dc.title | Detection of acceptor-bound exciton peak at 300 K in boron–phosphorus co-doped ZnMgO thin films for room-temperature optoelectronics applications | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.