Please use this identifier to cite or link to this item:
https://idr.l2.nitk.ac.in/jspui/handle/123456789/15339
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Das A. | |
dc.contributor.author | Lakhanlal | |
dc.contributor.author | Shajahan I. | |
dc.contributor.author | Dasari H.P. | |
dc.contributor.author | Saidutta M.B. | |
dc.contributor.author | Dasari H. | |
dc.date.accessioned | 2021-05-05T10:26:55Z | - |
dc.date.available | 2021-05-05T10:26:55Z | - |
dc.date.issued | 2021 | |
dc.identifier.citation | Materials Chemistry and Physics , Vol. 258 , , p. - | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.matchemphys.2020.123958 | |
dc.identifier.uri | http://idr.nitk.ac.in/jspui/handle/123456789/15339 | - |
dc.description.abstract | The present study deals with the citrate complexion synthesis of LAMOX-based Solid Oxide Fuel Cell (SOFC) electrolyte materials (La1.8Dy0.2Mo2-xWxO9 (x = 0, 0.1, 0.2, 0.5, and 1), La1.8Dy0.2Mo2-xGaxO9 (x = 0.1 and 0.2), and La1.8Dy0.2Mo2-xVxO9 (x = 0.025, 0.05, 0.1, and 0.2)) and their characterization to understand the sintering behaviour and phase stability. From the dilatometer studies, the linear shrinkage and shrinkage rate of the LDMW (x = 0, and 0.1) showed better shrinkage than LM and LDM. Gallium addition (LDMG) and Vanadium addition (LDMV) showed a negative impact on shrinkage behaviour. In the temperature range of 500–580 °C, the abrupt change in shrinkage rate showed the transition of phase from α to β for the LM. The modification of LM to LDM, LDMW, and LDMV suppressed the formation of the α phase. During thermal expansion behaviour study in the temperature range of 100–500 °C and 550–800 °C, the LM sintered pellet showed the coefficient of thermal expansion (CTE) values of 13.3 х 10−6/°C and 21.6 х 10−6/°C respectively. The LDM and LDMW sintered pellets showed the CTE values in the range of 14–15 х 10−6/°C and 16–19 х 10−6/°C, respectively. The relative density of the sintered pellets (1100 °C/5 h in air) (LM, LDM, LDMW, and LDMG (x = 0.1)) is found to be >90%. It provides the suitability of these materials for further investigation as electrolytes of SOFCs/SOECs. © 2020 Elsevier B.V. | en_US |
dc.title | Dilatometer studies on LAMOX based electrolyte materials for solid oxide fuel cells | en_US |
dc.type | Article | en_US |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.