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Abstract

In this paper numerical methods for the initial value problems of general second order differential equations are
derived. The methods depend upon the parameters p and ¢ which are the new additional values of the coefficients of y’
and y in the given differential equation. Here, we report a new two step fourth order method. As p tends to zero and
q = (2m/h)* the method is absolutely stable. Numerical results are presented for Bessel’s, Legendre’s and general second
order differential equations.

Keywords: General second order initial value problems; Additive parameters; Absolutely stable

AMS classification: 651.05

1. Introduction

We consider the general second order differential equation

' =ftyy) (LD
subject to the initial conditions
y(o) =yo,  ¥'(to) = Yo (1.2)

For finding the numerical solution of (1.1) by finite differences, we can either reduce (1.1) to
a system of two first order differential equations and then apply the standard methods for first
order equations or alternatively, have direct methods without reducing (1.1) into a system. Various
single step direct methods have been proposed in the literature, the most notable among them being
the classical Runge—Kutta—Nystrém method, the Hubolt method, the Wilson #-method and the
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Newmark average acceleration method which are a few linear multistep methods used by struc-
tural engineers in the analysis of structure (see [3]).

The additive parameters methods are the numerical methods which contain arbitrary para-
meters p and gq. The methods depend upon the parameters p and g which are the new additional
values of the coefficients of y’ and y. As p tends to zero and g > (2rn/h)?, the method is absolutely
stable when applied to the test equation

V'+py +qy=0. (1.3)

The method has been applied to solve Bessels, Legendre’s and general second order differential
equations. The coefficients of @, ,®, and &,_; are in terms of the parameters p and q.

2. Derivation of the methods

We write (1.1) in the form

Y'+py' +qy=2@yy), (2.1)
where
o(t,y,y)=ft,y,y)+py +qy (2.2)

with p >0, ¢ > 0 and p? — 49 < 0.
Eq. (2.1) can be written as

V' +py +qy =90, (2.3)

where g(t) is an approximation to ®(t,y,y’).
The general solution of (2.3) is

y(t) = Ae”* + Be™ +

t
J (€~ — emt=2)g(z)dz, (24
t

02 — 04
where ¢, =u +iv and o, =u —iv are the complex roots of the characteristic equation

m? + pm + g = 0; where u = — p/2 and v = . /(4q — p*)/2; A and B are the arbitrary constants.
Differentiating (2.4) with respect to ¢, we have

t
(6,772 — g™ D) g(z)dz. (2.5)
Gy — 0 ),

Eliminating 4 and B by substituting t = t,.,, t, and t,— in (2.4) and (2.5) we obtain
Y(tnr1) — (€ + €M) y(t,) + e Py(t,-1)

y'(t) = 6,A4e°" + 6, Be’ +

1 lh+1
= pra— (edz(trﬂ-l'—z) _ eal(t..n"z))(g(z) + eﬂphg(ztn _ z))dz, (26)
Jit,
Y (tas 1) — €7 + 7)Y (ta) + €77V (ta-1)
1 Plns1
= P (o-zedz(tn+1_z) — o-ledl(t.wl—z))(g(z) + e—phg(zt" . Z)) dz. (2.7)
Ji,
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Implicit Multistep Method
We replace @(t, y, y') with the Newton Backward difference interpolation polynomial of degree
k at the points t, 1, by, bty 1y ey bng+1

g(t) = Pn+1 +(t—_£"—“1) Vst + (t= t";;;l? —tn) V2psr + -
i (t—tar )t _Izr;;lk(t — th—g+2) Ve
(t~tas )t —ta) -t —thks1) ,ge .
(k + 1)' ¢(k 1)(6)’ tn < 6 < tn+ 1- (28)

Neglecting the error term in (2.8) and substituting g(t) in (2.6) we obtain
Yn+1 — (ealh + ealh)yn + eﬂphyn-—l
h ! (1 -s)h 1 — )i u —S S\ o
= [e2t =9 —en(1 =9k §* (—_1ym m + m) € Pl pmp,, qds, (2.9)

01— 03 Jo m=0

where (t — t,)/h =s.
When m = 2 this can be written in the form

Vur1 — (@7 + €M)y, + e Py, = aoPns1 + a1, + a20,-1, (2.10)

where @, = pyn + qyn + f(ta, Yns Vn)-
The coefficients a4, a, and a, can be determined using the undetermined coefficients method.
Putting y, =1, y,=t,, y,=tZ and t, = 0, t2 = 0, we get

1
o +a, +a;, = p [1 —(e“t* + e%2*) 4 e 7], (2.11a)
(p + qh)ao + pa; + (p — qh)a, = h(1 — ™), (2.11b)
(2hp + 2 + gh®)ao + 2a; + (—2hp + 2 + gh*)a, = h*(1 + e~ 7). (2.11c)

Solving aq, a, and a, we obtain

1 (3 (/8 -

G0 =3z 20 —( e + e (p? — )
— pgh(3 — (" + e”*) — e™P") + 2¢°H?],
1 —_—
ar = =5 40— " + e + e =g
— 4pgh(1 — e~ P") + 2¢%h%(e”* + e™")],

1 a a hd

@2 = 53 20 = € + &) + &™) — )

— pgh(1 + (€7 + %) — 3e™P") + 2¢%h%e~P*].
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Similarly, replace g(t) using Newton Backward difference polynomial (2.8) in (2.7) and neglecting
the error term we get

Vor1 — @+ €M)y, +e Py,

h 1 _ _ k —s s\ _
b [ g § () (e e
(2.12)
When m = 2 using multistep implicit form this can be written as
Ve — (€ 4+ "My, + e Py =botpi1 + b1y + bydn-1. (2.13)
The coefficients by, by and b, can be found out using the undetermined coefficients method
bo+by+b,=0, (2.14a)
(p + gh)bo + pby + (p — gh)b, = (1 — (6" + €72") + e~ ?4), (2.14b)
(2hp + gh* + 2)bo + 2by + (—2hp + qh® + 2)b, = 2h(1 — e~ P"), (2.14¢)

Solving by, b, and b, we get

1
by = yeE: [(1 — (" + e”") + e ""}(gh — 2p) + 2hq(1 — e™?")],

1

b, = W [(1 — (e + e%**) + e ?*)4p — 4hg(1 — e~ 7")],
1
b, = — W [(1 — (e™* + e”**) + e~ P")(gh + 2p) — 2hg(1 — e~ ")].

3. Truncation error and order of the methods

The linear difference operator L is defined by
LLy(ta),h] = Coy(ts) + C1hy'(ts) + C2h%y"(t,) + -+
Weget Co=C,=C,=C3=C,=Cs=0and Cs =(49/23232) when p =0 and g = (2r/h)?;

: _ 49 6,,6 8
truncation error = 33733 h®y°(t,) + O(K®). 3.1

4. Stability

Applying the method to the test equation (1.3), we obtain
Ynr1 — (€7 + €7 M)y, + ety =0. 4.1)
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Definition. The linear multistep method is said to be absolutely stable if the roots of the character-
istic equation is of modulus less than one for all values of the step length h.

The characteristic root £ of the test equation (1.3) is given by

62 _ (e"*" + Cazh)i + elertodh — (42)
Since ¢, and o, are complex roots (i€, 6, , = u + iv) we obtain
E% — 2e*"(cosvh)¢ + e**" = 0. (4.3)

From this, we find the roots &, , = e**(cosvh + isinvh) are of modulus less than one since
euh — e—ph/2 < 1

5. Numerical results

Numerical results are presented for the following initial value problems to illustrate the order,
accuracy and implementational aspects of the methods (2.10) and (2.13).

Problem 1. Consider Legendre’s equation
(1—22)y" =2ty +nn+ 1)y =0, (5.1)
when n = 4, y(t) = pa(t) = (35t* — 30¢% + 3)/8.

The problem is solved using the methods (2.10) and (2.13). The absolute errors in the numerical
solution for the problem (5.1) are tabulated in Table 1.

Problem 2. Consider Bessel’s differential equation
t2y" +ty' + (2 ~ 025y =0, (5.2)
with y(t) = j;,2(t) = /(2/rt)sint as the exact solution.

The problem is solved using the methods (2.10) and (2.13). The absolute errors in y(t) are
presented in Table 1.

Table 1

h Error at t = 8.0 when p = 0.1 and ¢ = (100%/h)?
Problem 1 Problem 2 Problem 3
Oo(h*) O(h*) O(r*)

0.66865323( —06)
0.42011379( —07)
0.26266207( —08)
0.16370905( — 09)
0.18189894( — 10)

0.69488559( —09)
0.43222648( — 10)
0.26905145( — 11)
0.16792123( — 12)
0.10491608( — 13)

0.63807596( —06)
0.42313559(—07)
0.27246756( —08)
0.17303137(—09)
0.10857093( —10)
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Problem 3. We consider the general second order differential equation
A+0y"+2y —(1+ty=0 (5.3)

with exact solution y(t) = ¢‘/(1 + ¢).

The problem is solved using the methods (2.10) and (2.13). The absolute errors in the solution for
the problem (5.3) are given in Table 1, which shows that they are of order four.

6. Conclusion

The numerical results presented for linear problems show that the methods are of order four and
absolutely stable when the parameters p and q are chosen as the coefficients of y’ and y in the given
differential equation.
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