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Abstract: The horizontal sphere gap is modeled using 
six point charges per electrode as a test case. Two 
intuitively felt Optimized Charge Simulation Method 
(OCSM) models of horizontal sphere gap arrangement 
are set up by selectively changing degree of freedom to 
understand its effect on the simulation errors. The 
optimal location of charges is obtained using Genetic 
Algorithm (GA). A large number of numerical 
experiments are conducted by varying potential 
assigned to the low potential sphere, height of the 
spheres above the ground plane and gap separation. 
Lower potential sphere always shows higher error. For a 
typical case, the maximum surface potential error with 
increased freedom in locating charges reduced to 4% 
from its earlier value of 9.5%. The simulations with 
symmetrical supply show maximum surface potential 
error of 1.0% on both the spheres. On the other hand 
simulating a ground potential electrode near a high 
voltage electrode involves more errors and hence more 
effort. The Charge Simulation Method being semi 
analytical technique, the shape of the geometry and 
symmetry (if any) plays a major role and setting up 
accurate OCSM model still requires user experience. 

Introduction 
The charge Simulation method is a well known one of 
the boundary based methods commonly used in electric 
field analysis in high voltage engineering [1]. It is an 
appropriate method for open boundary problems and is 
a widely used technique [2]. The method in its simplest 
form computes the charge magnitudes by satisfying the 
boundary conditions at the selected number of contour 
points. The locations of the charges and the boundary 
conditions are predetermined and supplied based on the 
experience [1-2] of the researcher.  The unknown 
charges are computed from the relation 
 
 [P] [Q]=[V]   (1) 
Where  
 [P] is the potential coefficient matrix 
 [Q] is the column vector of unknown charges. 

[V] is the column vector of known potentials at 
the contour points. 

Resulting simulation accuracy strongly depends on the 
type and number of charges, locations of contour points 
and complexity of electrode geometry [1-2]. Hence 

optimization techniques have been suggested and 
applied to reduce the individual experience and 
judgment [3-6]. The OCSM methods described in [3-5] 
though improve accuracy, still the basic structure of the 
model (guidelines on charge and contour point 
arrangement) relies on user experience;  generally 
guided by symmetry of the problem. These efforts can 
be termed as guided OCSM. In contrast to this, efforts 
in [6] evolve the optimal charge and contour point 
arrangement without relying on user experience with 
CSM, using GA at the expense of highly increased 
computational burdens. Symmetry considerations 
reduce the degree of freedom in optimization and hence 
the search space is reduced. Hence, here computational 
efforts drastically reduce. The CSM being semi 
analytical technique the shape of the geometry and 
symmetry (if any) play a major role [7]. Genetic 
algorithms use random choice to guide a highly 
exploitative search and hence perform better compared 
to purely random search [8]. Similarly, guided 
optimized CSM is bound to perform better is obvious. 
Hence, the effort here is, to carryout a systematic study 
and evolve general guidelines to help set up accurate 
models. 

The paper discusses some of the numerical 
experimental results of optimized CSM models of 
horizontal sphere gap arrangement. GA has been used 
as the optimization tool. The search space is restricted 
by user planned models and the effort here is to see the 
effect of increased degrees of freedom on simulation 
accuracy of the models.     

Details of the geometry simulated   
The geometry chosen as a test case is a horizontal 
sphere gap arrangement. The schematic representation 
of the same is as shown in the figure 1. The parameters 
associated with the geometry, namely, sphere diameter 
is chosen as 0.125 m, being one of the standard sphere 
sizes [9]. Numerical experimental results reported are 
for equal diameter spheres with the gap spacing ‘g’ 
varied as 0.0625m, 0.075m and 0.125m with height of 
the spheres above the ground plane, ‘h’, as 7 times the 
diameter of the sphere. The results of effect of height of 
the sphere above the ground plane on simulation model 
accuracy are also reported for a fixed gap spacing of 
0.0625 m.  
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Figure 1:  The schematic representation of the horizontal sphere gap 

simulated. The diameter of spheres is 0.125m. The simulation 
parameters are: potential assigned to the ground sphere ‘Ø’, height of 

spheres above the ground plane ‘h’ and the gap spacing ‘g’. 

CSM Model details    
Two CSM models of the geometry described are studied 
and reported. Both the CSM models use six point 
charges per sphere to simulate. The charges inside each 
sphere are placed along the co-ordinate axes as shown 
in the figure 2. For a given geometry, based on intuition 
a number of Optimized Charge Simulation Method 
(OCSM) models are possible, even for a fixed number 
of charges. In model-I all the six charges for both 
spheres are tied together, independently and their 
optimal location from the center of the spheres is 
determined by GA-CSM routine. The potential error 
associated with sphere with lower potential is always 
higher. Hence, in model-II freedom to charges is 
increased in the low potential sphere. Here, inside the 
low potential sphere, the distances of the charges placed 
along the gap axis (those of q3 and q4) and those placed 
parallel to ‘h’ axis (those of q5 and q6) formed four  
additional variables and are determined independently.  
The program makes use of six contour points per sphere 
whose locations are fixed and are pre-decided. The 
infinite ground plane is simulated using image spheres.  

. 

 
Figure 2:  General charge arrangement within the spherical 

electrodes.  (O’ is the center of the sphere. Charges q1, q2, q3, q4, q5 
and q6 are the six charges placed on the axis within the sphere.) 

GA-CSM details    
The MATLAB tool box of GA [10] is used along with 
CSM models for the study. The locations of charges are 
treated as variables with freedom for the charges to 
move along the Cartesian co-ordinate axes within the 
spherical electrode surface. The program flow chart for 
the application program is as given in the figure 3.  

The fitness function ‘f’ used to maximize the 
accuracy is of the type:  

 
  f =1/(1+U)  (2) 
 
Where U is the maximum surface potential error 

and its value is determined by CSM routine. The float 
genetic algorithm is adopted in the present work with 
number of generations as 50 and the population size of 
40 using the tool box [10]. A number of test runs for 
each case are carried out as the results differ slightly, 
due to initial random seed not being identical. The best 
case optimal results for both the models are reported 
and discussed. 

 

 
Figure 3:  General flow of the application program for GA-CSM 

routine. 
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Results and discussion    
Some of the typical results related to surface error plots, 
effect of variation in potential ‘φ’ assigned to the low 
voltage electrode on simulation accuracy, error variation 
with geometric parameters like gap separation ‘g’ and 
height of the spheres above the ground plane ‘h’ are 
discussed below. 
 
Surface error plots:  The typical surface error plots for 
Model-I (with 2 variables) and Model-II (with 6 
variables) are shown in figures 4, 5 and figures 6, 7 
respectively, under identical conditions except for the 
charge locations. Figures 4 and 6 are for the high 
voltage (HV) sphere (5kV) and figures 5 and 7 are for 
the low voltage (LV) sphere with an assigned potential 
of -100V. The x & y axes in these figures (angle “phi” 
and angle “theta”) correspond to spherical co-ordinates.  

 

 
Figure 4:  Typical error surface plot of the HV sphere for model-I.     

(d=0.125 m; g=d/2=0.0625 m; h=7d) 

 

Figure 5:  Typical error surface plot of the LV sphere for model-I.     
(d=0.125 m; g=d/2=0.0625 m; h=7d) 

 
Figure 6:  Typical error surface plot of the HV sphere for model-II.     

(d=0.125 m; g=d/2=0.0625 m; h=7d) 

 
Figure 7:  Typical error surface plot of the LV sphere for model-II.     

(d=0.125 m; g=d/2=0.0625 m; h=7d) 

It is to be noted that error on the HV sphere is less 
than that of LV sphere. Also, due to increase in the 
freedom of locating charges, the maximum surface 
potential error for LV sphere for model-II is less than 
±4%, where as under identical conditions this error for 
model-I is 9.5%. The interesting thing to be observed by 
comparing Figures 5 and 7 is that the surface error   
profile has lost the irregularities and has become more 
systematic; having allowed the charges to locate 
independently, probably exploiting up to its limit of 
accuracy for model-II. Also, LV electrode error profile 
has assumed the shape similar to that of HV electrode, 
which dominates the simulation process. 

 
Effect of potential assigned to LV electrode: The 
ground electrode in the vicinity of HV electrode is 
assigned different potential systematically and its effect 
on error variation of OCSM models is reported. The 
potential assigned is of both polarities and it is varied   
in steps starting form ±1 V to ±5kV. Figure 8 
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 Figure 8:  Maximum surface potential error as a function of potential 
‘φ’ for Model-II.  (Potential of HV sphere held at 5 kV; g=d/2; h=7d). 

compares the variation of errors for model-II with 
polarity as the parameter. Polarity seems to have less 
effect. But simulating a sphere of low potential 
(implying near-ground potential) sphere in the vicinity 
of a HV sphere encounters more simulation error. 
Figure 9 compares the performance of two models 
studied and model-II in general, is seen to perform 
better.  

Figure 8:  Maximum surface potential error as a function of potential 
‘φ’ of LV sphere (Potential of HV sphere held at 5 kV; g=d/2; h=7d). 

Effect of variation in ‘h’ and ‘g’: In general as height 
of the spheres above the ground ‘h’ and gap separation 
‘g’ increase, the simulation errors for both the models 
studied decrease. But in all the cases the model-II shows 
better accuracy than model-I. 

Conclusions   
A number of optimized CSM models can be designed 
for a given problem and hence setting up of the OCSM 
models also relies on the personal experience of the 

user. Based on symmetry, selectively freeing the 
charges in optimization, one can expect better results. 
This has been shown with a specific example in which 
error got halved just by changing OCSM model by 
selectively freeing charges, keeping number of charges 
same. Simulating an electrode which is near-ground 
potential involves more error. A ten times increase in 
potential (near around ground potential; 1V to 10V) 
resulted in more than ten fold increase in simulation 
error. The surface error plots can be more educative and 
help understand OCSM errors better. 
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