
Key Management Using K-Dimensional Trees
Renuka A

 #1
, K.C. Shet

 *2

#
Department of Computer Science And Engg. MIT, Manipal,Karnataka-576104, India

1
renuka.prabhu@manipal.edu

* Department of Computer Engg., NITK, Surathkal, Karnataka-575025, India
2
kcshet@rediffmail.com

Abstract— In this paper we present a protocol for group key

management in mobile ad hoc networks based on K-dimensional

trees, a space partitioning data structure. We use a 2-

dimensional tree for a 2 dimensional space. The 2 dimensional

tree resembles a binary tree. The protocol reduces the memory

requirements for storing the tree by nearly 50% compared to the

existing methods and also reduces the number of key changes

required whenever membership changes occur.

I. INTRODUCTION

An ad hoc network is a collection of autonomous nodes that

communicate with each other, most frequently using a multi-

hop wireless network. Nodes do not necessarily know each

other and come together to form an ad hoc group for some

specific purpose. Key distribution systems usually require a

trusted third party that acts as a mediator between nodes of the

network. In key agreement protocols [1] nodes interact with

each other to compute a common key. Key agreement

protocols do not usually require a trusted authority. A number

of such protocols [2], [3], [4] use Diffie-Hellman style key

agreement approach for groups. A shortcoming of these

protocols for ad hoc networks is that they usually require a

broadcast channel and hence routing infrastructure. Ad hoc

networks typically do not have an online trusted authority but

there may be an off line one that is used during system

initialization. A node in an ad hoc network has direct

connection with a set of nodes, called neighbouring nodes,

which are in its communication range. The number of nodes

in the network is not necessarily fixed. New nodes may join

the network while existing ones may be compromised or

become un-functional. Moreover, a leave or join would

normally require the whole protocol of key management to

start over again.

Many secure group communication systems rely on a group

key, which is a secret shared among the members of the group.

Secure messages are sent to the group by encrypting them

with the group key. Because group membership is dynamic, it

becomes necessary to change the group key in an efficient and

secure fashion when members join or leave the group. The

group may require that membership changes cause the group

key to be refreshed. Changing the group key prevents a new

member from decoding messages exchanged before it joined

the group. If a new key is distributed to the group when a new

member joins, the new member cannot decipher previous

messages even if it has recorded earlier messages encrypted

with the old key. Additionally, changing the group key

prevents a leaving or expelled group member from accessing

the group communication (if it keeps receiving the messages).

If the key is changed as soon as a member leaves, that

member will not be able to decipher group messages

encrypted with the new key. However, distributing the group

key to valid members is a complex problem. Although

rekeying a group before the join of a new member is trivial

(send the new group key to the old group members encrypted

with the old group key), rekeying the group after a member

leaves is far more complicated. The old key cannot be used to

distribute a new one, because the leaving member knows the

old key. Therefore, a group key distributor must provide

another scalable mechanism to rekey the group. We present a

protocol for solving this problem. The protocol attempts to

minimize the worst case communication cost of updating the

group key. We focus on the trade-off between the

communication cost of updating the key and the number of

hops in communication.

 The rest of the paper is organized as follows. Section II

focuses on the related work in this field. The proposed scheme

is presented in Section III. Performance analysis of protocol

and conclusion are given in Section IV and Section V

respectively.

II. RELATED WORK

Securing communication in ad hoc networks requires key

management systems that provide support for dynamic

properties. The different approaches to group key

management are divided into three main classes:

—Centralized group key management protocols.

A single entity is employed for controlling the whole group,

hence a group key management protocol seeks to minimize

storage requirements, computational power on both client and

server sides, and bandwidth utilization.

—Decentralized architectures. The management of a large

group is divided among subgroup managers, trying to

minimize the problem of concentrating the work in a single

place.

—Distributed key management protocols.

There is no explicit Key Distribution Controller (KDC), and

the members themselves do the key generation. All members

can perform access control and the generation of the key can

be either contributory, meaning that all members contribute

some information to generate the group key, or done by one of

the members.
There are four important security properties of group key

agreement that need to be satisfied.

(1) Group Key Secrecy guarantees that it is computationally

infeasible for a passive adversary to discover any group key.

978-1-4244-2963-9/08/$25.00 © 2008 IEEE ADCOM 200852

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

(2) Forward Secrecy guarantees that a passive adversary who

knows a contiguous subset of old group keys cannot discover

any subsequent group key.

(3) Backward Secrecy guarantees that a passive adversary who

knows a contiguous subset of new group keys cannot discover

preceding group key.
(4) Key Independence guarantees that a passive adversary who

knows a proper subset of group keys cannot discover any

other group key.

A. Logical Key hierarchy

Wong et al. [5] proposed the use of a Logical Key

Hierarchy (LKH). In this approach, a Key Distribution

Controller (KDC) maintains a tree of keys. The nodes of the

tree hold key encryption keys. The leaves of the tree

correspond to group members and each leaf holds a key

encryption key (KEK) associated with that one member. Each

member receives from the KDC, a copy of the KEK

associated with its leaf and the KEK's corresponding to each

node in the path from its parent leaf to the root. The key held

by the root of the tree is the group key. For a balanced tree,

each member stores at most log2n+ 1 keys, where log2n is the

height of the tree.

 The algorithm proposed by Waldvogel et al. [6] is

different for joining operations. Instead of generating fresh

keys and sending them to members already present in the

group, all keys affected by the membership change are passed

through a one way function. Every member that already knew

the old key can calculate the new one. Hence, the new keys do

not need to be sent and every member can calculate them

locally. However, this information has to be sent to the

members by the KDC. This algorithm is known as LKH+.

B. One-way Function Tree

An improvement in the hierarchical binary tree approach is

a one-way function tree (OFT) and was proposed by McGrew

and Sherman [7]. Their scheme reduces the size of the

rekeying message from 2(log2n) to only log2n. Here a node’s

Key Encryption Key (KEK) is generated rather than just

attributed. The KEK’s held by a node’s children are blinded

using a one-way function and then mixed together using a

mixing function. The result of this mixing function is the KEK

held by the node

C. Distributed Logical Key Hierarchy

A distributed approach based on the logical key hierarchy is

suggested by Rodeh et al. [8]. In this approach, the Key

Distribution Controller or the Group Controller (GC) is

completely abolished and the logical key hierarchy is

generated among the members, therefore there is no entity that

knows all the keys at the same time. This protocol uses the

notion of sub trees agreeing on a mutual key. This means that

two groups of members, namely sub tree L and sub tree R,

agree on a mutual encryption key. This algorithm takes log 2n

rounds to complete, with each member storing log2n keys.

In a large and highly dynamic group, to reduce the rekeying

overhead, the GKC may choose to rekey in batches as in [9].

In batch rekeying the departing members continue to get

access to the group data for a brief period after they leave so

that forward secrecy fails. The joining members are put on

hold until the next rekeying instance.

In Enhanced One Way Function Tree (EOFT) [10],[11], the

Group Key Controller (GKC) constructs a rooted balanced

tree. Every group member is associated with a unique leaf

node. The root represents the group key. Each internal node

represents a logical subgroup. Each member shares a secret

key with the GKC through the registration protocol in a

secured way by unicast. Each member needs the secret keys of

the internal nodes in its path to root for computing the group

key. But the GKC does not send all these internal node keys to

the members directly. Instead it sends only log2n pseudo key

tuples of the siblings of those internal nodes that are needed to

compute their ancestors’ keys.

III. PROPOSED SCHEME

A. K- DIMENSIONAL TREE

A K-Dimensional tree (KD tree) [12] is a space-partitioning

data structure for organizing points in a K-Dimensional space.

A KD tree uses only splitting planes that are perpendicular to

one of the coordinate system axes. Since there are many

possible ways to choose axis-aligned splitting planes, there are

many different ways to construct KD trees. The canonical

method of KD tree construction has the following constraints:

As one moves down the tree, one cycles through the axes used

to select the splitting planes. (For example, the root would

have an x-aligned plane, the root's children would both have

y-aligned planes and the root's grandchildren would all have

z-aligned planes, and so on.) At each step, the point selected

to create the splitting plane is the median of the points being

put into the KD tree, with respect to their coordinates in the

axis being used. (Note the assumption that we feed the entire

set of points into the algorithm.) This method leads to a

balanced KD tree, in which each leaf node is about the same

distance from the root. For the location of the points

(indicated by dots) in Fig.1 (a) the KD tree obtained is as

shown in Fig. 1(b)

Fig. 1(a). 2-D grid

53

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1(b). 2-D tree for the grid shown in Fig.1 (a)

The KD tree model consists of the root node and child

nodes as shown in Fig.2. It resembles a binary tree.

Fig. 2. A sample 2-D tree

B. KD Tree Model

In this paper, we propose a practically secure protocol to

build efficient K Dimensional tree model for mobile ad hoc

networks which have no trusted third party to maintain the

keys and uses the deployment knowledge such as location of

the sensors for the construction of the trees. We assume that

the approximate location of the sensor nodes is known and is

loaded into the sensor nodes before deployment. Our proposal

employs a secure distributed model based on secret-key

encryption algorithm and one-way hash function. The protocol

also includes group keying and group membership change

operations (single join and leave). In this protocol, each

member holds 3 keys when the tree is balanced. Group

multicast message size for each addition and leave operation

depends on the size of the subgroup and is independent of the

number of members. Every node of a KD tree, from the root

to the leaves, stores 3 keys. We assume that authentication and

individual key exchange are provided, and focus on the secure

management and distribution of the group and auxiliary keys

to provide continued security in the face of membership

change or group change. There are two types of security that a

key distribution algorithm can provide: backward security,

meaning that a new member is not able to decrypt past group

communications, and forward security, meaning that a

departing member is not able to decrypt future group

communications. We define a key distribution algorithm to be

secure if for any set of adversaries, after any sequence of

update operations, the adversaries cannot obtain the group key,

This definition provides both backward and forward security

and is met if all keys are pseudo-random, all keys that member

u receives as a result of an ADD (u) operation are new, and all

keys that member u held before a DELETE (u) operation are

removed.

 A KD tree is a tree where each node is labelled with

a key. If i is a node in a KD tree then the label of i is a group

key for the subgroup Gi consisting of all the nodes of the sub

tree rooted at i. The root label is the group key for the entire

multicast group. The root is located at level 0 and the lowest

leaves are at level h. Since a KD tree resembles a binary tree,

every node is either a leaf or a parent of two nodes. The nodes

are denoted by letters A, B, ….. Each node is associated with

its private key Ki. Generally, a new key k is distributed to

subgroup Gi using the key Ki (the label of node i) using the

encrypted message E (k, Ki), where the key k is encrypted

with the key Ki . Define communication cost as the number of

encrypted messages required to update the keys due to group

membership change. This is the metric we are interested in

minimizing.

C. Subgroup formation and subgroup key agreement

 Consider the KD tree shown in Fig.2 which

represents an ad hoc group. It is a balanced tree consisting of

15 nodes and is of height 3. All members carry a preassigned

session key which is used to encrypt the group keys generated.

(How this is done is out of the scope of this paper). These 15

nodes are divided into 7 subgroups labelled G1, G2,

G3,……G7 where each subgroup consists of 3 members as

shown in Fig. 3. These 15 members can also be divided into 3

subgroups, each subgroup consisting of 7 members each, as

shown in Fig.4. In all our discussions, we will consider 7

subgroups, each of 3 members. Each subgroup communicates

with its members using the subgroup key generated. Each

member contributes its share to the generation of a subgroup

key. The keys held by a node’s siblings are blinded using a

one way function and then transmitted to the node. The node’s

key in turn is mixed using a mixing function. The result of this

mixing function is the subgroup key for the subgroup headed

by the node.

i.e. KG4 =f (g(KD), g(KH),g(KI))

where g () is a one way function and f () is a mixing

function

Thus, in Fig 2, the subgroup key KG4 for the subgroup G4 is

generated from KH, KI and KD.

 KG2 is generated by the knowledge of KD KB, and KE. This

key is the subgroup key for the subgroup KG2 and so on.

Since location information is used in the construction of the

tree, these members are also physical neighbours. If the node

54

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

H has to communicate to node O then, the messages have to

be routed through D and then B which is received by C and

then broadcasted in its subgroup which is then received by

member G and retransmitted to O. Thus communication takes

place in five hops.

Fig. 3. 2-D Tree with 7 subgroups

Fig. 4. 2-D Tree with 3 subgroups

D. Membership Changes

In this section, we will discuss the key agreement protocol

when a new member joins or existing member leaves.

1) Member joins

When a new member joins, the group key has to be updated in

the subgroup to which the new member joined, in order to

prevent the new user from accessing the information

previously exchanged. This is called rekeying. Suppose a new

member joins, the insertion point in the tree is found by

traversing the tree starting from the root and moving to either

the left or the right child, depending on whether the point to

be inserted is on the "left" or "right" side of the splitting plane.

Once a leaf node is reached, the new point is added as either

the left or right child of the leaf node, again depending on

which side of the node's splitting plane contains the new point.

This new node initiates communication with the parent node

to which it is attached and sends the blinded version of its key.

Suppose a new member P, gets attached to the node H, in

Fig.3. Node H receives the blinded version KP of node P and

mixes with its own blinded KH to get the new subgroup key.

This new subgroup key is encrypted using the old subgroup

key and multicast to all nodes except the new one. The same

is unicast to the new member by its parent. Thus, only the

members in the subgroup are involved in the generation of the

new subgroup key. As the number of nodes increases beyond

a threshold (3 in this case), the groups can be split and new

group keys can be generated using the same technique

2) Member leaves

 There are three cases.

Case (i): member at a leaf node leaves

Case (ii): member at an intermediate level leaves

Case (iii): member at the root node leaves

Case (i): When a member at a leaf node leaves, the members

belonging to the subgroup to which the leaving member is

attached, has to change the sub group key which is known to

the leaving member. After member H leaves the updated tree

appears as shown in Fig.5. Only the subgroup key KG4 needs

to be changed. This is done by changing the mixing function

used to get the subgroup key and is sent to the other siblings

in a secure manner.

Fig. 5. Member at leaf node leaves

Case (ii): If a member is at the intermediate level (other than

the root or the leaf), then the subgroup key belonging to two

subgroups have to be changed. These subgroups are:

(i) The subgroup headed by the leaving node and

(ii) The subgroup in which the leaving node was the sibling

For example in Fig.3 let us consider that node B is leaving

The subgroup keys KG1, KG2 used by the subgroup G1 and G2

have to be changed. This is done by promoting the node D to

the place of B, restructuring the tree and then generating the

subgroup key in the similar manner as described above. The

tree after the member leaves is as shown in Fig.6. This

involves changing two subgroup keys and includes the

contribution of 6 nodes.

55

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Member at intermediate node leaves

Case (iii): When the member present at the root leaves, this

case is similar to the previous case. Here, the node B gets

promoted to the root position and requires the subgroup keys

KG1 and KG2 of the subgroups G1 and G2 to be changed. The

other subgroup keys remain the same.The updated tree

appears as shown in Fig.7.

Fig. 7. Member at root node leaves

IV. PROTOCOL ANALYSIS

In our protocol, considering a subgroup of 3 members, each

member needs to store 3 keys: its own secret key and 2

subgroup keys to which it is attached. Comparing this with the

hierarchical binary tree (HBT) model, used in centralized

Logical Key Hierarchy (LKH) and distributed Logical Key

Hierarchy protocols of key management, each member needs

to store all the keys on the path to the root which means log2n

+ 1 keys. If we consider a tree of height 3, HBT model

represents 8 members since only leaf nodes represent

members and each member stores 3 keys. In our protocol, the

same tree represents 15 members, each member storing 3 keys.

The complexity of the tree structure is greatly reduced which

in turn reduces the amount of memory required to store the

tree by nearly 50%.

Whenever a new member joins or leaves the group, the tree

has to be restructured and the corresponding subgroup keys

have to be changed. The siblings communicate the blinded

version of their key to the parent and the parent computes the

subgroup key which is then communicated in a secure manner

to the siblings. This requires one round of message

transmission whereas in distributed LKH, it requires 3 rounds.

Also the number of key changes in our protocol is at most 2

whereas in both centralized and distributed LKH. It needs

log2n key changes whenever membership changes occur;

where n is the total members in the group. This remains

constant; irrespective of the number of members in the

network as long as we consider that the subgroup consists of 3

members. In our model, it requires the transmission of

rekeying messages to 4 members, when a subgroup of 3

members is considered. The graph of number of rekeying

messages versus the total number of members for different

number of subgroup members is shown in Fig.8. Here m

denotes the subgroup size. The graph depicting the number of

key changes for our protocol and HBT model is shown in

Fig.9.

Fig. 8. Graph showing the variation of rekeying messages with respect to the

total members for various subgroup sizes

Fig. 9. Graph of number of key changes vs. number of members

56

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

We proposed a protocol for group key agreement that uses

the location information. We have compared the performance

of this protocol with the most commonly used hierarchical

binary tree (HBT) model.

Suppose, we consider a system with 8 members, HBT

model requires 3 group key changes and transmission of

rekeying messages to 7 members. In our protocol, it requires 2

group key changes and transmission of rekeying messages to

4 members when a subgroup of 3 members is considered. This

remains constant, irrespective of the number of members in

the network; as long as we consider that the subgroup consists

of 3 members. These values increase in HBT, as the number

of members increases. In a network consisting of large

number of nodes the subgroup can be comprised of seven

members, 15 members and so on. As the number of members

in the subgroup increases, the number of subgroups for a

given network decreases, which in turn reduces the number of

hops in communication. A trade off between the number of

members in the subgroup and the hops in communication have

to be done so that an optimal value for the subgroup chosen

based on the requirements.

REFERENCES

[1] W. Diffie and M. E. Hellman. “New directions in cryptography”, IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[2] M. Burmester and Y. Desmedt. “Efficient and secure conference-key

distribution”, In Proceedings of the International Workshop on

Security Protocols, pages 119–129, London, UK, 1997. Springer-

Verlag.

[3] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater.

“Provably authenticated group Diffie-Hellman key exchange”, In Proc.

of ACM-CCS 01, page 255C264, Philadelphia, Pennsylvania, USA,

November 2001. ACM, ACM Press.

[4] H.-J. Kim, S.-M. Lee, and D. H. Lee. “Constant-round authenticated

group key exchange for dynamic groups.” In Asiacrypt 2004, 2004.

[5] Wong, C. K., Gouda, M. G., and Lam, S. S. 2000. “Secure group

communications using key graphs” IEEE/ACM Trans. Netw. 8, 1

(Feb.), 16–30.

[6] Waldvogel, M., Caronni, G., Sun, D., Weiler, N.,Aand Plattner, B.

1999. “The VersaKey framework: Versatile group key management.”

IEEE J. Sel. Areas Commun. (Special Issue on Middleware) 17, 9

(Aug.), 1614–1631.

[7] A.T. Sherman and D.A. McGrew, “Key Establishment in Large

Dynamic Groups Using One Way Function Trees,” IEEE Software

Trans Engg., vol. 29, no. 5, pp. 444-458, May 2003

[8] Rodeh O., Birman, K.,and Dolev, D. 2000, ”Optimized group rekey

for group communication systems”, In Network and Distributed

System Security.(San Diego, Calif., Feb.).

[9] Heydari M. H, Morales L. And Sudborough I. H, “Efficient Algorithms

for Batch Re-keying Operations in Secure Multicast”, HICSS 2006,

39th Annual Hawaii International Conference on System Sciences,

January 2006, pp. 218.

[10] Parvatha Varthini, S. Valli, “Generation of Group key Using

Enhanced One Way Function Tree Group Rekey Protocol”

Proceedings of the International Conference on Computing: Theory

and Applications (ICCTA'07)

[11] Parvatha Varthini. B., Valli. S, “EOFT: An Enhanced one way

Function Tree rekey Protocol based on Chinese Remainder Theorem”,

ISCIS05, Lecture Notes on Computer Science, Vol. 3733, pp 33-44.

[12] http://en.wikipedia.org/wiki/Kd-tree

57

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore. Restrictions apply.

