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Abstract— In this paper we present a protocol for group key 

management in mobile ad hoc networks based on K-dimensional 

trees, a space partitioning data structure. We use a 2- 

dimensional tree for a 2 dimensional space. The 2 dimensional 

tree resembles a binary tree. The protocol reduces the memory 

requirements for storing the tree by nearly 50% compared to the 

existing methods and also reduces the number of key changes 

required whenever membership changes occur.   

I. INTRODUCTION 

An ad hoc network is a collection of autonomous nodes that 

communicate with each other, most frequently using a multi-

hop wireless network. Nodes do not necessarily know each 

other and come together to form an ad hoc group for some 

specific purpose. Key distribution systems usually require a 

trusted third party that acts as a mediator between nodes of the 

network. In key agreement protocols [1] nodes interact with 

each other to compute a common key. Key agreement 

protocols do not usually require a trusted authority. A number 

of such protocols [2], [3], [4] use Diffie-Hellman style key 

agreement approach for groups. A shortcoming of these 

protocols for ad hoc networks is that they usually require a 

broadcast channel and hence routing infrastructure. Ad hoc 

networks typically do not have an online trusted authority but 

there may be an off line one that is used during system 

initialization. A node in an ad hoc network has direct 

connection with a set of nodes, called neighbouring nodes, 

which are in its communication range. The number of nodes 

in the network is not necessarily fixed. New nodes may join 

the network while existing ones may be compromised or 

become un-functional.  Moreover, a leave or join would 

normally require the whole protocol of key management to 

start over again.  

Many secure group communication systems rely on a group 

key, which is a secret shared among the members of the group. 

Secure messages are sent to the group by encrypting them 

with the group key. Because group membership is dynamic, it 

becomes necessary to change the group key in an efficient and 

secure fashion when members join or leave the group. The 

group may require that membership changes cause the group 

key to be refreshed. Changing the group key prevents a new 

member from decoding messages exchanged before it joined 

the group. If a new key is distributed to the group when a new 

member joins, the new member cannot decipher previous 

messages even if it has recorded earlier messages encrypted 

with the old key. Additionally, changing the group key 

prevents a leaving or expelled group member from accessing 

the group communication (if it keeps receiving the messages). 

If the key is changed as soon as a member leaves, that 

member will not be able to decipher group messages 

encrypted with the new key. However, distributing the group 

key to valid members is a complex problem. Although 

rekeying a group before the join of a new member is trivial 

(send the new group key to the old group members encrypted 

with the old group key), rekeying the group after a member 

leaves is far more complicated. The old key cannot be used to 

distribute a new one, because the leaving member knows the 

old key. Therefore, a group key distributor must provide 

another scalable mechanism to rekey the group. We present a 

protocol for solving this problem.  The protocol attempts to 

minimize the worst case communication cost of updating the 

group key. We focus on the trade-off between the 

communication cost of updating the key and the number of 

hops in communication. 

 The rest of the paper is organized as follows. Section II 

focuses on the related work in this field. The proposed scheme 

is presented in Section III. Performance analysis of protocol 

and conclusion are given in Section IV and Section V 

respectively.   

II. RELATED WORK 

Securing communication in ad hoc networks requires key 

management systems that provide support for dynamic 

properties. The different approaches to group key 

management are divided into three main classes: 

—Centralized group key management protocols. 

A single entity is employed for controlling the whole group, 

hence a group key management protocol seeks to minimize 

storage requirements, computational power on both client and 

server sides, and bandwidth utilization. 

—Decentralized architectures. The management of a large 

group is divided among subgroup managers, trying to 

minimize the problem of concentrating the work in a single 

place. 

—Distributed key management protocols. 

There is no explicit Key Distribution Controller (KDC), and 

the members themselves do the key generation. All members 

can perform access control and the generation of the key can 

be either contributory, meaning that all members contribute 

some information to generate the group key, or done by one of 

the members. 
There are four important security properties of group key 

agreement that need to be satisfied. 

(1) Group Key Secrecy guarantees that it is computationally 

infeasible for a passive adversary to discover any group key.   
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(2) Forward Secrecy guarantees that a passive adversary who 

knows a contiguous subset of old group keys cannot discover 

any subsequent group key.   

(3) Backward Secrecy guarantees that a passive adversary who 

knows a contiguous subset of new group keys cannot discover 

preceding group key. 
(4) Key Independence guarantees that a passive adversary who 

knows a proper subset of group keys cannot discover any 

other group key.   

A. Logical Key hierarchy 

Wong et al. [5] proposed the use of a Logical Key 

Hierarchy (LKH). In this approach, a Key Distribution 

Controller (KDC) maintains a tree of keys. The nodes of the 

tree hold key encryption keys. The leaves of the tree 

correspond to group members and each leaf holds a key 

encryption key (KEK) associated with that one member. Each 

member receives from the KDC, a copy of the KEK 

associated with its leaf and the KEK's corresponding to each 

node in the path from its parent leaf to the root. The key held 

by the root of the tree is the group key. For a balanced tree, 

each member stores at most log2n+ 1 keys, where log2n  is the 

height of the tree. 

 The algorithm proposed by Waldvogel et al. [6] is 

different for joining operations. Instead of generating fresh 

keys and sending them to members already present in the 

group, all keys affected by the membership change are passed 

through a one way function. Every member that already knew 

the old key can calculate the new one. Hence, the new keys do 

not need to be sent and every member can calculate them 

locally. However, this information has to be sent to the 

members by the KDC. This algorithm is known as LKH+. 

B. One-way Function Tree 

An improvement in the hierarchical binary tree approach is 

a one-way function tree (OFT) and was proposed by McGrew 

and Sherman [7]. Their scheme reduces the size of the 

rekeying message from 2(log2n) to only log2n. Here a node’s 

Key Encryption Key (KEK) is generated rather than just 

attributed. The KEK’s held by a node’s children are blinded   

using a one-way function and then mixed together using a 

mixing function. The result of this mixing function is the KEK 

held by the node 

C. Distributed Logical Key Hierarchy   

A distributed approach based on the logical key hierarchy is 

suggested by Rodeh et al. [8]. In this approach, the Key 

Distribution Controller or the Group Controller (GC) is 

completely abolished and the logical key hierarchy is 

generated among the members, therefore there is no entity that 

knows all the keys at the same time. This protocol uses the 

notion of sub trees agreeing on a mutual key. This means that 

two groups of members, namely sub tree L and sub tree R, 

agree on a mutual encryption key. This algorithm takes log 2n 

rounds to complete, with each member storing log2n  keys. 

In a large and highly dynamic group, to reduce the rekeying 

overhead, the GKC may choose to rekey in batches as in [9]. 

In batch rekeying the departing members continue to get 

access to the group data for a brief period after they leave so 

that forward secrecy fails. The joining members are put on 

hold until the next rekeying instance.   

In Enhanced One Way Function Tree (EOFT) [10],[11], the 

Group Key Controller (GKC) constructs a rooted balanced 

tree.   Every group member is associated with a unique leaf 

node. The root represents the group key. Each internal node 

represents a logical subgroup. Each member shares a secret 

key with the GKC through the registration protocol in a 

secured way by unicast. Each member needs the secret keys of 

the internal nodes in its path to root for computing the group 

key. But the GKC does not send all these internal node keys to 

the members directly. Instead it sends only log2n pseudo key 

tuples of the siblings of those internal nodes that are needed to 

compute their ancestors’ keys. 

III. PROPOSED SCHEME 

A. K- DIMENSIONAL TREE 

A K-Dimensional tree (KD tree) [12] is a space-partitioning 

data structure for organizing points in a K-Dimensional space. 

A KD tree uses only splitting planes that are perpendicular to 

one of the coordinate system axes. Since there are many 

possible ways to choose axis-aligned splitting planes, there are 

many different ways to construct KD trees. The canonical 

method of KD tree construction has the following constraints: 

As one moves down the tree, one cycles through the axes used 

to select the splitting planes. (For example, the root would 

have an x-aligned plane, the root's children would both have 

y-aligned planes and the root's grandchildren would all have 

z-aligned planes, and so on.) At each step, the point selected 

to create the splitting plane is the median of the points being 

put into the KD tree, with respect to their coordinates in the 

axis being used. (Note the assumption that we feed the entire 

set of points into the algorithm.) This method leads to a 

balanced KD tree, in which each leaf node is about the same 

distance from the root. For the location of the points 

(indicated by dots) in Fig.1 (a) the KD tree obtained is as 

shown in Fig. 1(b) 

 

Fig. 1(a).  2-D grid 
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Fig. 1(b).  2-D tree for the grid shown in Fig.1 (a) 

 

 

The KD tree model consists of the root node and child 

nodes as shown in Fig.2. It resembles a binary tree. 

 

 

 
 

 
Fig. 2.  A sample 2-D tree 

 

 

B. KD Tree Model 

In this paper, we propose a practically secure protocol to 

build efficient K Dimensional tree model for mobile ad hoc 

networks which have no trusted third party to maintain the 

keys and uses the deployment knowledge such as location of 

the sensors for the construction of the trees. We assume that 

the approximate location of the sensor nodes is known and is 

loaded into the sensor nodes before deployment. Our proposal 

employs a secure distributed model based on secret-key 

encryption algorithm and one-way hash function. The protocol 

also includes group keying and group membership change 

operations (single join and leave). In this protocol, each 

member holds 3 keys when the tree is balanced. Group 

multicast message size for each addition and leave operation 

depends on the size of the subgroup and is independent of the 

number of members. Every node of a KD tree, from the root 

to the leaves, stores 3 keys. We assume that authentication and 

individual key exchange are provided, and focus on the secure 

management and distribution of the group and auxiliary keys 

to provide continued security in the face of membership 

change or group change. There are two types of security that a 

key distribution algorithm can provide: backward security, 

meaning that a new member is not able to decrypt past group 

communications, and forward security, meaning that a 

departing member is not able to decrypt future group 

communications. We define a key distribution algorithm to be 

secure if for any set of adversaries, after any sequence of 

update operations, the adversaries cannot obtain the group key, 

This definition provides both backward and forward security 

and is met if all keys are pseudo-random, all keys that member 

u receives as a result of an ADD (u) operation are new, and all 

keys that member u held before a DELETE (u) operation are 

removed. 

 A KD tree is a tree where each node is labelled with 

a key. If i is a node in a KD tree then the label of i is a group 

key for the subgroup Gi consisting of all the nodes of the sub 

tree rooted at i. The root label is the group key for the entire 

multicast group. The root is located at level 0 and the lowest 

leaves are at level h. Since a KD tree resembles a binary tree, 

every node is either a leaf or a parent of two nodes. The nodes 

are denoted by letters A, B, …..   Each node is associated with 

its private key Ki. Generally, a new key k is distributed to 

subgroup Gi using the key Ki (the label of node i) using the 

encrypted message E (k, Ki), where the key k is encrypted 

with the key Ki . Define communication cost as the number of 

encrypted messages required to update the keys due to group 

membership change. This is the metric we are interested in 

minimizing.    

C.  Subgroup formation and subgroup key agreement  

 Consider the KD tree shown in Fig.2 which 

represents an ad hoc group. It is a balanced tree consisting of 

15 nodes and is of height 3.  All members carry a preassigned 

session key which is used to encrypt the group keys generated. 

(How this is done is out of the scope of this paper). These 15 

nodes are divided into 7 subgroups labelled G1, G2, 

G3,……G7 where each subgroup consists of 3 members as 

shown in Fig. 3. These 15 members can also be divided into 3 

subgroups, each subgroup consisting of 7 members each, as 

shown in Fig.4. In all our discussions, we will consider 7 

subgroups, each of 3 members. Each subgroup communicates 

with its members using the subgroup key generated. Each 

member contributes its share to the generation of a subgroup 

key. The keys held by a node’s siblings are blinded using a 

one way function and then transmitted to the node. The node’s 

key in turn is mixed using a mixing function. The result of this 

mixing function is the subgroup key for the subgroup headed 

by the node.  

i.e. KG4 =f (g(KD ), g(KH ),g(KI )) 

where g ( ) is a one way function and f ( ) is a mixing 

function 

Thus, in Fig 2, the subgroup key KG4 for the subgroup G4 is 

generated from KH, KI and KD. 

  KG2 is generated by the knowledge of KD KB, and KE. This 

key is the subgroup key for the subgroup KG2 and so on.  

Since location information is used in the construction of the 

tree, these members are also physical neighbours. If the node 

54

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 25,2021 at 03:39:39 UTC from IEEE Xplore.  Restrictions apply. 



H has to communicate to node O then, the messages have to 

be routed through D and then B which is received by C and 

then broadcasted in its subgroup which is then received by 

member G and retransmitted to O. Thus communication takes 

place in five hops. 

 

 

 

 
 

Fig. 3.  2-D Tree with 7 subgroups 

 

 

 

 

 
Fig. 4.  2-D Tree with 3 subgroups 

 

 

D. Membership Changes 

In this section, we will discuss the key agreement protocol 

when a new member joins or existing member leaves. 

1)   Member joins 

When a new member joins, the group key has to be updated in 

the subgroup to which the new member joined, in order to 

prevent the new user from accessing the information 

previously exchanged. This is called rekeying. Suppose a new 

member joins, the insertion point in the tree is found by 

traversing the tree starting from the root and moving to either 

the left or the right child, depending on whether the point to 

be inserted is on the "left" or "right" side of the splitting plane. 

Once a leaf node is reached, the new point is added as either 

the left or right child of the leaf node, again depending on 

which side of the node's splitting plane contains the new point. 

This new node initiates communication with the parent node 

to which it is attached and sends the blinded version of its key. 

Suppose a new member P, gets attached to the node H, in 

Fig.3. Node H receives the blinded version KP of node P and 

mixes with its own blinded KH to get the new subgroup key. 

This new subgroup key is encrypted using the old subgroup 

key and multicast to all nodes except the new one. The same 

is unicast to the new member by its parent. Thus, only the 

members in the subgroup are involved in the generation of the 

new subgroup key. As the number of nodes increases beyond 

a threshold (3 in this case), the groups can be split and new 

group keys can be generated using the same technique   

2)  Member leaves 

 There are three cases. 

Case (i): member at a leaf node leaves 

Case (ii): member at an intermediate level leaves 

Case (iii): member at the root node leaves 

 

Case (i): When a member at a leaf node leaves, the members 

belonging to the subgroup to which the leaving member is 

attached, has to change the sub group key which is known to 

the leaving member. After member H leaves the updated tree 

appears as shown in Fig.5. Only the subgroup key KG4 needs 

to be changed. This is done by changing the mixing function 

used to get the subgroup key and is sent to the other siblings 

in a secure manner. 

 

 

 

 
Fig. 5. Member at leaf node leaves 

 

 

Case (ii): If a member is at the intermediate level (other than 

the root or the leaf), then the subgroup key belonging to two 

subgroups have to be changed. These subgroups are: 

(i) The subgroup headed by the leaving node and 

(ii) The subgroup in which the leaving node was the sibling 

For example in Fig.3 let us consider that node B is leaving 

The subgroup keys KG1, KG2 used by the subgroup G1 and G2 

have to be changed. This is done by promoting the node D to 

the place of B, restructuring the tree and then generating the 

subgroup key in the similar manner as described above. The 

tree after the member leaves is as shown in Fig.6. This 

involves changing two subgroup keys and includes the 

contribution of 6 nodes.  
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Fig. 6. Member at intermediate node leaves 

 

 

Case (iii): When the member present at the root leaves, this 

case is similar to the previous case. Here, the node B gets 

promoted to the root position and requires the subgroup keys 

KG1 and KG2  of the subgroups G1 and G2  to be changed. The 

other subgroup keys remain the same.The updated tree 

appears as shown in Fig.7. 

 

 

Fig. 7.  Member at root node leaves 

 

IV. PROTOCOL ANALYSIS 

In our protocol, considering a subgroup of 3 members, each 

member needs to store 3 keys: its own secret key and 2 

subgroup keys to which it is attached. Comparing this with the 

hierarchical binary tree (HBT) model, used in centralized 

Logical Key Hierarchy (LKH) and distributed Logical Key 

Hierarchy  protocols of key management, each member needs 

to store all the keys on the path to the root which means log2n 

+ 1 keys. If we consider a tree of height 3, HBT model 

represents 8 members since only leaf nodes represent 

members and each member stores 3 keys. In our protocol, the 

same tree represents 15 members, each member storing 3 keys. 

The complexity of the tree structure is greatly reduced which 

in turn reduces the amount of memory required to store the 

tree by nearly 50%. 

Whenever a new member joins or leaves the group, the tree 

has to be restructured and the corresponding subgroup keys 

have to be changed. The siblings communicate the blinded 

version of their key to the parent and the parent computes the 

subgroup key which is then communicated in a secure manner 

to the siblings. This requires one round of message 

transmission whereas in distributed LKH, it requires 3 rounds. 

Also the number of key changes in our protocol is at most 2 

whereas in both centralized and distributed LKH. It needs 

log2n key changes whenever membership changes occur; 

where n is the total members in the group. This remains 

constant; irrespective of the number of members in the 

network as long as we consider that the subgroup consists of 3 

members. In our model, it requires the transmission of 

rekeying messages to 4 members, when a subgroup of 3 

members is considered. The graph of number of rekeying 

messages versus the total number of members for different 

number of subgroup members is shown in Fig.8. Here m 

denotes the subgroup size. The graph depicting the number of 

key changes for our protocol and HBT model is shown in 

Fig.9. 

 

 
 

 

Fig. 8. Graph showing the variation of rekeying messages with respect to the 

total members for various subgroup sizes 

 

      

 

 
 

Fig. 9. Graph of number of key changes vs. number of members 
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V. CONCLUSION 

We proposed a protocol for group key agreement that uses 

the location information. We have compared the performance 

of this protocol with the most commonly used hierarchical 

binary tree (HBT) model.  

Suppose, we consider a system with 8 members, HBT 

model requires 3 group key changes and transmission of 

rekeying messages to 7 members. In our protocol, it requires 2 

group key changes and transmission of rekeying messages to 

4 members when a subgroup of 3 members is considered. This 

remains constant, irrespective of the number of members in 

the network; as long as we consider that the subgroup consists 

of 3 members. These values increase in HBT, as the number 

of members increases. In a network consisting of large 

number of nodes the subgroup can be comprised of seven 

members, 15 members and so on. As the number of members 

in the subgroup increases, the number of subgroups for a 

given network decreases, which in turn reduces the number of 

hops in communication. A trade off between the number of 

members in the subgroup and the hops in communication have 

to be done so that an optimal value for the subgroup chosen 

based on the requirements.     
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