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Absrruci- Contourlets have emerged as a new mathematical 
toot for image processing and provide compact and decorrelated 
image representations. Hidden Markov modeling (HMM) of 
contourlet coefficients is a powerful approach for statistical 
processing of natural images. I n  this paper, we extended the 
hidden Markov modeling framework to contourlets and 
combined hidden Markov trees (HMT) with hidden Markov 
model to form HMM-Contourlet HMT model. The model is used 
for block based multiresolution texture segmentation. The 
performance of the HMM-Contourlet HMT texture segmentation 
method is compared with that of HMM-Real HMT and HMM- 
Complex HMT methods. The HMM-Contourlet HMT method 
provides superior texture segmentation results and exceIlent 
visual performance at small block sizes. 

1. INTRODUtsrlON 

In statistical image segmentation, it is necessary to capture 
both global and local statistical structure of textures. Such 
block-based modeling considering statistical dependencies 
between blocks can result in a better segmentation. The 
contourIet transform is better suited for reprcsenting 
singularities such as edges and ridges in an image that 
characterize textures. The multiscale-multiresolution propcrty 
of contourlets makes HMM based texture segmentation 
possi bic. 

The HMM framework for real discrete wavelet transform 
suffers from shift variance that degradcs the accuracy of the 
segmentation results. The real wavelet gives only three 
directional features and fails to give information at diagonal 
orientations. The authors in [ I ,  21 described HMT modeling 
for wavelet coefficients of natural image. The model is used 
for imagc segmentation in [3]. In [4] HMM-Real HMT 
modeling is presented for texture segmentation achieving 
improved segmentation performance. 

In [5] dual tree complex wavelet transform is developed 
which is approximately shift invariant and has improved 
directional selectivity compared to the real wavelet 
transforms. The segmentation performance bascd on this 
complex wavelets in [6 ,  71 is still improved. But this complex 
wavelet is having fixed six directional subbands and 
processing of coefficients is computationally intensive even 
though only magnitude is considered. 

Apart forms this, the contourlets provide image 
representations at varying dircctions in multiple scales. One 
can select the number of directional orientations and scales for 
image decomposition. In this paper, we combined hidden 
Markov trees and hidden Markov model to form HMM- 

Contourlet HMT model for contourlet baesd multiscale texture 
segmentation. 

11. RELATED WORK 

A. Contowlet Transform 
The contourlet transform is a new extension to the wavelet 

transform in two dimensions [XI. This uses non-separable and 
directional filter banks. The basis images are oriented at 
varying directions. With this rich set of basis images, the 
contourlet transform can efficiently capture the smooth 
contours in the natural texture images. The geometrical 
structures are well captured by the contourlets. The contourlets 
possess multiresolution, time-frequency localization and high 
degrec of directionality. 

The contourlets are implemented using pyramidal 
dircctional filter banks (PDFB) [X, 91. This PDFB is a cascade 
of Laplacian pyramid and a dircctional filter bank. The 
directionai filter bank can decompose an image into any power 
of two's number of directions. The muitiscafe and directional 
decompositions are independent of each other. Fig. 1 shows 
two-scale, four directional contourlet decomposition of 
Peppcrs imctge. 

The contourlet basis functions have rectangular support 
regions. Edges in this region affect the magnitude of 
coeffficients. The edges that are picked out by the contourIets 
contribute energy to a small number of coefficients. The 
coefficients for natural images exhibit residual dependency 
structure both across and within scale. Imagcs have been 
modeled based on these dependencies. 

The contourlet coefficients of 2-D images are arranged in 
the form of quad-trees [9] .  A coefficient in a low subband 
(parent) can be thought of as having four descendants 
(children) in the next higher subband. The four descendants 

Fig. 1. Contourlet decomposition of Peppers image 
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each aIso have four descendants in the next higher subband 
and a quad tree will emerge. Thus, the coefficients are 
represented in quad trees and inter scale dependencies are 
captured using HMM. 

Fig. 2 shows the histogram of the finest subband of 
contourlet coefficients of an image, The distribution is 
characterized by a sharp peak at zero amplitude and extended 
tails on either side of the peak. This implies that the contourlet 
transform is very sparse. Thus the marginal distributions of 
natural images in the contourlet domain are highly non- 
Gaussian. The largeismall values of the coefficients tend to 
propagate across scale that shows coefficients persistence 
property. 

B. Contairrlet HMT model 
The HMT model is used to model the joint pdf o f  contourlet 

coefficients of an image. The marginal pdfof each coefficient 
is modeled as a Gaussian mixture density with unobserved 
hidden states. Modeling includes two stages: modeling the 
marginal density of each wavelet coefficient and modeling the 
dependencies between the coefficients. 

Each coefficient ci is associated with a set of discrete 
hidden states S, =O,l ,  ..., M - i  (for M state model) which 
have probability mass function (pmt) ps, (m) . Given Si = m , 
the pdf of the coefficient c is Gaussian with mean p m  and 

variance 0;. The Gaussian distribution with mean p , 

variance cr', can be written as: 

The parameter vector of a M state Gaussian Mixture Model 
(GMM) is 

r = {  Ps, (m)  , ~ L , , u ~ l m = O , l , . . . , M - I  1 (2) 

fc ( e )  = Ys, (">fqs, (CIS, = m) (3) 

fcl .$, (CIS, = m) = g(c;  P m  , g , n  1 

and the over all pdf of c is determined by the sum 
M- I 

m=Q 

(4) 

associated with a hidden state S, taking value 0 and I ,  

2 

Consider a two state GMM, where each coefficient c, is 

140 I 1 

depending on ci is small or large respectively. The state 
variable Si tells that, from which of the two components in 
the mixture model ci is drawn. Each coeficient ci is 
conditionally Gaussian given its state variable Si .  

The state 0 corresponds to a low variance Gaussian with pdf 

f(c,lS, = 0)  = g(cj; ,ui,a&) and the state 1 corresponds to a 

high variance Gaussian with pdf f (c i ]S i  = 1) = g(c,; pi, a&) - 

Note that a: > U: .  The marginal pdf is obtained by taking 
sum of the conditional densities as; 

( 5 )  
2 1  2 

~ ( c i )  7 p i s g ( c i ; ~ i ~  osi;> + Pi g(ci; PS a,!,$;) 
p f  + ,p;  = I  (6) 

where, p,! and p t  are state vaIue pmfs for S,={O,l> 
respectively and can be interpreted as the probability that ci is 
small or large respectively. A smooth region of the image is 
captured by. Si =O and edge region is captured by Si = 1. Even 
though the contourlet transform gives uncorrelated 
coefficients, there exists considerable amount of high-order 
dependencies. Hence coefficients are statistically dependent 
along the branches of the tree. 

The expected magnitude of a contourlet coefficient is 
closely related to the size of its parent. This implies a type of 
Markovian relationship betwcen the contourlet states, with the 
probability of a contourlet coefficient being large affectcd by 
the size of its parent. This makes the state of the children 
coeficicnts depend on the state of the parent. The dependence 
is modeled as Markov-I. In the HMM, these dependencies 
across the scale are captured using a probabilistic tree that 
connects the hidden state variable of each coefficicnt with the 
state variable of each of its children. 

Each subband is represented with its awn quad-tree; thus 
quad trees are assumed indepcndent. The dependencies across 
the scale (between each parent and its children) form the 
transition probabilities between the hidden states. The 
transitions among the states are govemed by a set of transition 
probabilities. The . 0 to 0 and 1 to 1 transitions have higher 
probabilities due to the persistence of contourlet coefficients. 

The parameter = p ( S ,  = n]S,(,) = m) givcs the 

probability that it child coefficient is in a hidden state n ,  
when its parent cp(ii is in state M ,  where p( i )  is the parent 

of node i and scale j = 1, ..., J-1 ( J  is the coarsest scale), 
m, n = 0,l. Each parent to child state-to-state link (transition 
probabilities) has a corresponding state transition matrix 

p p  pg31 
p f 3 1  1 (7) 

with p:"' = 1- p9-O and pf+' = l-p;+' . The matrix has 

the row sums equal to unity. The parameters p:*' / p:-" are 
Fig. 2. Histogram of contourlet coefficients 
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the probability that contourlet coefficient C; is smallilarge 
given that its parent is smallilarge. These are the persistency 
probabilities. The parameters p/+* and ppJ1 are the 
probabilities that the state values will change from one scale to 
the ncxt. To propagate the large and small coefficient values 
down the quad-tree it is required that, p ~ ~ o > p , o - ' '  and 
pf" > pi"a I 

Contourlet HMT Parameters are 
2 1) Gaussian mixture means pi, , ,  and variances r~ i,m . 

2 )  The transition probabilities p(S,IS,,) = E:'-, . 
3) The pmf of the root node p o  (m) in the coarsest scale. 

The parameters vector is represented as; 
8 =(P~~(m).~~~-l,~i,m,bi,m~m,n=O,l]. 2 The HMM is 

trained to capture the contourlet domain features of the image 
of interest using the iterative expectation maximization (EM) 
algorithm. 

111. HMM-CONTOURLET HMT MODEL 

Consider a texture image and divide the image into blocks 
of size 2 M  ~2~ where, M is the level of decomposition. 
Consider the nine contiguous blocks of the texture image. It is 
assumed that all such btocks are associated with the same 
texture. Each block is associated with a hidden state and may 
occupy a diffcrent texture dependent state. The state of a given 
block is linkcd to the state of the eight surrounding contiguous 
blocks. The dependency between the blocks shown in Fig. 3 is 
Markov-I. A given 2 x 2 block is assumed to reside in a 
particular state of a certain texture. The statistical likelihood o f  
such a state is dictated by the states occupied by the adjoining 
blocks[lO]. Inter block statistics are modeled by BMM and 
intra-block state-dependent contourlet statistics are modeled 
using HMT. We denote this as HMM-Contourlet HMT model. 

For a given texture typeT, , a set of textural states S ,  i s  

defined. The set S,  represents the I" state of the texture. Let 
cg represent the contourlet coefficients associated with the 

four quad trees wherc, q = {I, 2, 3, 4} .  The corresponding 

Fig. 3. Eight neighborhood system of blocks 

HMTs are p(c ,  ISi ) . 
For modeling we have considered four directional subbands 

of contourlet coefficients. Let c' represent the contourlet 
coefficients associated with block j , 1 5: j I 9  

and c' = &{, ci, c{ ,  ci} .  The conditional likelihood of ci from 

the parameters of the corresponding HMT is p(c'IS,). 

The likelihood that the coefficients ci are associated with 
texture TI is given by 

K K  
P ( c J . p z )  = x-.. IC. P(S:I...S&I JP(+:I ) . . . p ( c 9 [ ~ ; d  (8) 

~ ( s ~ ~ . . . s ~ ~ )  = p ( s S l ~ j ) p ( s i )  vj f 5 (9) 

= p(S5lS')p(S', SZ,S3,S4)p(S6, s7, s" S ~ S ' ,  S I ,  S3, S4) 

P($, . . $9 1 = P ( S 5  1 [ P ( s ' ~ s ' ) P ( s 2 ~ s 5 ) P ( s 3 ~ ~ 5 ) P ( s 4 ~ s ~ ) l  x 

k M  k9=I 
The texture is characterized by K states. The likelihood of the 
states is calculated as folIows. 

It is assumed that the statistical dependence between 
adjacent blocks will be strong for those blocks sharing a 
common edge and blocks not sharing a common edge are 
approximately independent. Then the likelihood of state is 

[ p ( s 6  9, S')P(S' s ' , s ~ ) ~ ( s  s', s4)p(s91s3, s4>1 (10) 

Consider the training of texture images. Assume that the 
texture is characterized by k states bk, 1 I k I K}.  A distinct 
set of training blocks is assigned to each of the K states. EM 
algorithm is used for training HMTs associated with quad tree 
contourlet coefficients. Inter block HMM is trained as follows. 
For the texture, let xL. represent the probability that the block 

5 is i n s k .  C k n k  = 1 .  These form the initial state 

probabilities. 
( 1  1) 

I I 8 1 '  

5 dk = p ( S  = k )  k = l,...,K 
The probability of transitioning from statc S, in block 5 to 

S, i n b l o c k l i s  ak, for 15k5,K a n d 1 5 I S K .  z: I~kl=I .  

State transitions from block 5 to blocks 1 through 4 are 
approximated as independent and identical. So the probability 
of transitioning from S, in block 5 to S,  in block 2 is also 
akl . The probability that block 6 is in S, given that block 1 

and 2 are in Sk and S, respectively is pk; . xm p; = 1. The 
same transition probabilities are also used to model transitions 
to blocks 7 through 9. Let bk(c')  represent the likelihood 

that the contourlet quad tree coefficients e' is from block j . 
b, (c') = p ( C j l S j  = k )  (12) 

The Markov model for the sequence of states of nine 
contiguous blocks is shown in Fig. 4. Parameters for this 
model are estimated by the combination of a modified Viterbi 
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Fig. 4. Hidden Markov model for nine blocks 

algorithm for the global HMM part and an EM algorithm for 
the local HMT part. 

1v. TEXTURE SEGMENTATtON 

In supervised texture segmentation, before training it is 
necessary to acquire training data representative of each 
texture for the models. Training images are obtained either by 
taking homogeneous regions of the given image or from 
completely different images having homogeneous regions 
representative of the candidate textures. From each class 
cl = {l, ..., N c } ,  it is necessary to train the model. 

HMM-Contourlet HMT mode1 is developed for each texture 
of interest based on training data. The middle block (block 5) 
is assigned to that texture for which the associated HMM- 
Contourlet HMT model yields a maximum likelihood. Rather 
than segmenting all nine blocks to a given texture, only middlc 
block is so segmented. Each .of the blocks in the image 
sequcntially plays the role of block 5 ,  there by yielding 
segmcntation. Those eight blocks with which it has direct 
contact influencc the texture assigned to a given block. 
According to the HMM assumption, each image block is 
independent of the rest of the image given eight surrounding 
blocks. 

Having trained the model for each class i of textures, Ict 
the resulting set of model parameters be 8, . The likelihood of 
the block 5 to be a class i is 

In maximum likelihood segmentation, the class label that 
maximizes this likelihood is assigned to the biock. 

i, = arg m a  p(b/ock 5 1 ~ ~ )  (14) 

Let Li = p(Ci(T,) be the likelihood. Block 5 is assigned to 
that texture Tk for which L ,  > Li for all texturesT, # Tk . In 
testing phase, consider the contourlet coeficients ’? of an 
image containing montage of these textures. The likelihood is 
calculated for each block. The block to be assigned to a 
particular texture plays the role of block 5. For each cIass i of 

I 

textures, from the set of parameters Bi trained, compute the 
Iikel ihood 

X ;  = p ( s s  =+,) k = i ,  ..., K (16) 

$(Y) = p ( P q s i  = k , @ )  (17) 

where, Ziis for the test image. Assign the class label that 
maximizes at each scale. 

In the training phase, first the number of states is seIected. 
HMM and associated HMTs are initialized. Hidden states of 
HMM are evaluated. HMTs are reestimated based on the 
states of HMM. State transition probability of HMM is 
reestimated. This reestimation procedure is carried out to get 
the maximum likelihood (ML) model parameters. 

V. TEST RESULTS 

We used Haar filter for both directional and multiscale 
decompositions and the HMM-Contourlet HMT model is 
trained for cach training texture image using only two-state 
model(K = 2). Three level contourlet decomposition of image 
is uscd. The maximum block size is set to 4 x 4 .  The blocks 
are divided into two groups according to their estimated states. 

The block states are initialized as follows. The median pixel 
value md is obtained from the training texture. For each 
block, if the block mean is greater than md , the block is set to 
state 1; otherwise the block is set to state 2. The block states 
are reestimated iteratively and hence the group of HMTs 
associated with a state varies per iteration. 

Experiments are done for synthetic two-texture images, in 
which ground truth is clear. The image shown in Fig. 5 (a) is a 
montagc of Grass Texture and Water Texture from the USC 
SIP1 image database [ 111. From the 5 12x5 12 original image, 
we used a one-forth for training jmage and another one-forth 
to make a test image. Results are shown for the block sizes of 
2 x 2 a n d 4 x 4 .  The segmented images of different block 
sizes are obtained simultaneously, realizing multiresolution 
segmentation. 

The models taking global dependency into account shows 
better performance. The HMM-Contourlet HMT shows a 
much homogeneous segmentation result than the HMM-Real 
HMT. The quality of segmentation is compared by calculating 
average percentagc segmentation error obtained from the pixel 
by pixel comparison with the ground truth. The Table I shows 
the performance of different Segmentation methods. The 
texture segmentation results for different methods are depicted 
in Fig. 6, Fig. 7, and Fig. 8. 

VI. CONCLUSlON 

In this paper we presented a multiscale-multiresolution 
block based texture segmentation algorithm by modeling 
contourlet coefficients using HMM-Contourlet HMT model. 
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(a) (b) 
fig. 5. (a) Test image (b) Ground tmth 

Texture Segmentation 
Method 

(3) (b) 
Fig. 6. Texture segmcntation using HMM-Real HMT method 

(a) 2x2 block (b) 4x4 block. 

Block Size 

2x2 I 4x4 1 

(4 (b) 
Fig. 7. Texture segmentation using HMM-Complex HMT methad 

(a) 2x2 block (b) 4x4.block. 

HMM-Real HMT 

HMM-Contourlet HMT ' 

HMM-Complex HMT 

Fig, 8. Texture segmentation using HMM-Contourlet HMT method 
(a) 2x2 black (b) 4x4 block. 

2.69 3.20 
2.55 3.59 
1.93 4.16 

The HMM-Contourlet HMT model takes care of both the 
global and local statistics in block based segmentation. It can 
segment contourlet-transformed data directly without re- 
transforming to the space domain. 

The performance of the HMM-Contourlet HMT method is 
compared with that of HMM-Real HMT and HMM-Complex 
HMT methods. The average error in the contourlet based 
segmentation is less for small block sizes when compared with 
that of the other two methods. The experimental performance 
comparison shows that HMM-Contourlet HMT segmentation 
algorithm is superior for small block sizes and gives excellent 
visual segmentation results. 

The algorithm based on the contourlets provides raw 
segmentation results that can be used as a front end in a more 
sophisticated multiscale segmentation algorithms based on 
inter scale fusion. The performance evaluation of HMM- 
Contourlet HMT algorithm for segmenting synthetic images, 
aerial photos, document images radarhonar images, medical 
images and multidimensional data in geophysical surveys is an 
interesting future work. 
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