

Development of Scheduler for Real Time and Embedded System
Domain

M.V. Panduranga Rao K.C. Shet R.Balakrishna K. Roopa
 NITK, Surathkal NITK, Surathkal SKU, Anantapur Mphasis Limited
 Mangalore, India Mangalore, India Andhra Pradesh, India Bangalore, India.

 raomvp@yahoo.com kcshet@yahoo.co.uk rayankibala@yahoo.com roopa.sindhe@gmail.com

Abstract

 We discuss scheduling techniques to be used for real-
time, embedded systems. Though there are several
scheduling policies, the preemptive scheduling policy
holds promising results. In this research paper, the
different approaches to design of a scheduler for real-
time Linux kernel are discussed in detail. The
comparison of different preemptive scheduling
algorithms is performed. Hence, by extracting the
positive characteristics of each of these preemptive
scheduling policies, a new hierarchical scheduling policy
is developed.
 The proposed hierarchical scheduling for real time
and embedded system will be implemented for a
prototype system, using C or C++ language. It is expected
that the new scheduling algorithm will give better
performance with respect to satisfy the needs, such as
time, capturing and usage of resources of different
applications.

Key words: Linux, RTOS, round robin, fcfs, sjn, deadline,
hrrn, rms, edf, preemption.

1. Introduction.

 A real-time operating system (RTOS) is capable of
handling multiple events simultaneously and within fixed-
time frame. Computers running mission critical embedded

applications need an operating system that responds quickly
or within "real time" to requests.
 Two essential features make an operating system "real
time". The operating system must support multi-tasking with
pre-emptive, priority-driven context switching with
guaranteed interrupt handling [17]. What it means is that if
the operating system receives an outside event, it should be
able to switch between the running process and the event
handler process immediately. The OS must also have a very
efficient inter-process communication (IPC) subsystem. If a
process wishes to talk to another, it should be able to do so
immediately and without fail [5]].

Typical RTOS Task Model
 Each task a triplet: (execution time, period, deadline)
 Usually, deadline = period

Fig. 1. Typical RTOS Task.

2. Definition Real-Time Systems
 Any intelligent device that is embedded with in another
system or device is called embedded

system. A Real Time computer system is a computer system
in which the correctness of the system behavior not only
depends on the logical results of computation but also on the
physical instant at which the results are produced [1].
 Real-Time Operating Systems are systems in which
certain processes or operations have guaranteed minimum
and or maximum response times [10]. That is to say, the
system ensures that it will complete operation x after time t
but before time t', whatever t and t' are, without fail, even at
the expense of other lower priority operations [7].
 Speed, in and of itself, is not critical; the primary goal is
predictability. A response time less than t may be just as bad
as, or worse than, one greater than t'. One of the best-known

Real Time OS for the x86 platform is QnX. Each system call
of QnX is documented with a 'worst case completion time'
[2].

3. Related Work by others

3.1 Different available Scheduling Algorithms and their
characteristics
 Known scheduling algorithms include Round Robin
Scheduling, Priority-Based Scheduling, Earliest Deadline
First Scheduling, Rate Monotonic Scheduling, Feedback
Scheduling, ...here is a simple classification:

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.33

1

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.33

1

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

• #Real-Time Scheduling Algorithms
 #Earliest Deadline First (EDF)
 #Least Laxity First (LLF)
 #Rate Monotonic Scheduling (RMS)

• #General Scheduling Algorithms
 #First Come First Serve (FCFS)
 #Round-Robin (RR)
 #Priority-based Round-Robin (PRR)

• #Batch Scheduling Algorithms
 #Shortest Process Next (SPN)
 #Shortest Remaining Time (SRT)
 #Highest Response Ratio Next (HRRN)

Fig. 2. Study of available Scheduling Algorithms to
simulate a scheduler.

 Earliest Deadline First (EDF): Tasks can be periodic or
not and are scheduled according to their deadline.

 Least Laxity First (LLF): Tasks can be periodic or not
and are scheduled according to their laxity.

Laxity= deadline_time - current_time -
CPU_time_needed (1)

 Rate Monotonic: Tasks have to be periodic, and deadline

must be equal to period. Tasks are scheduled according
to their period [13].

 Deadline Monotonic: Tasks have to be periodic and are
scheduled according to their deadline. Rate Monotonic
and Deadline Monotonic use the same scheduler engine
except that priorities are automatically computed from
task period or deadline [3].

 POSIX 1003.1b scheduler: Tasks can be periodic or not.
Tasks are scheduled according to the priority and the
policy of the tasks. POSIX 1003.1b scheduler supports
SCHED_RR, SCHED_FIFO and SCHED_OTHERS
queueing policies. SCHED_OTHERS is a time sharing
policy. SCHED_RR and SCHED_FIFO tasks must have
priorities ranging between 255 and 1. Priority level 0 is
reserved for SCHED_OTHERS tasks. The highiest
priority level is 255.

 A criticality level: The field idicates how the task is
critical. Currently used by the MUF scheduler.

 User-defined scheduler can also be called as parametric
scheduler [4].

 The quantum value associated with the scheduler. This
information is useful if a scheduler has to manage
several tasks with the same dynamic or static priority: in
this case, the simulator has to choose how to share the
processor between these tasks. The quantum is a bound
on the delay a task can hold the processor (if the
quantum is equal to zero, there is no bound on the
processor holding time).

3.2 Research findings and gaps.

 Rate Monotonic Scheduling - a hard real-time

scheduling algorithm - can guarantee time restraints only
up to 70% CPU load. Beyond that it does not support
dynamic systems very well.

 In addition to schedulable bounds that are less than 1.0,
two problems exist for RM algorithms [14]: a) RM
algorithms provide no support for dynamically changing
task periods or priorities and b) tasks may experience
priority inversion.

 The first problem can be resolved by considering fixed
priority scheduling of periodic task with varying task
execution priorities. Specifically tasks may have
subtasks of various priorities [5].

 Priority inversion arises when a high priority job must
wait for a lower priority job to execute, typically due to
other resources being used by executing tasks. i.e tasks
waiting on critical sections [18].

 This implies that applications have to state their run-time
requirements beforehand - how often they must be called
in a second, which maximum response time is acceptable
etc. All this information must be provided by the
application programmer.

 On the other hand, with earliest-deadline-first (EDF) and
minimum-laxity-first (MLF) dynamic scheduling
algorithms, a transient overload in the system may cause
a critical task to fail, which is certainly undesirable.

 The maximum-urgency-first (MUF) combines the
advantages of the RM, EDF, and MLF algorithms [3].

 Like EDF and MLF, MUF has a schedulable bound of
100% for the critical set. And like RM, a critical set can
be defined that is guaranteed to meet all its deadlines.

 The MUF algorithm also allows the scheduler to detect
forms of deadline failures and call failure handler
routines for tasks, which fail to meet their deadlines.

4. Motivation, objectives and Goals

 The scheduler is the part of the kernel responsible for
deciding which task should be executing at any particular
time. The kernel can suspend and later resume a task many
times during the task lifetime [5].

22

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

 The objectives and goals of this research are:

 The comparison of different preemptive scheduling
algorithms.

 The technique of preemption, reordering of requests
and variation of time slice to be used in preemptive
scheduling policies.

 Justification for the of execution of user-defined
code by the scheduling engine.

 Principle is to develop scheduling policy in a real
time environment.

Fig. 3. A Schematic of scheduling

 A mix of CPU-bound and I/O-bound processes exists in
the system.

 An I/O-bound process has a higher priority than a CPU-
bound process.

 Process priorities are static, i.e., they do not change with
time.

 Process scheduling is preemptive; a low priority running
process is preempted if a higher priority process
becomes ready. In effect, a low priority process cannot
be running if a higher priority process exists in ready
state.

 The scheduling policy is the algorithm used by the
scheduler to decide which task to execute at any point in time
[1]. The policy of a (non real-time) multi user system will
most likely allow each task a "fair" proportion of processor
time [3]. In addition to being suspended involuntarily by the
RTOS kernel a task can choose to suspend itself. It will do
this if it either wants to delay (sleep) for a fixed period, or
wait (block) for a resource to become available (Ex a serial
port) or an event to occur (Ex a key press). A blocked or
sleeping task is not able to execute and will not be allocated
any processing time.

5. Research Plan

5.1 Problem statement
 The main aim is to study the policy mechanisms of
different real time schedulers in embedded domain,
evaluation of performance of these mechanisms. In addition,
to arrive at a common solution to simulate a parametric
scheduling policy on real-time Linux kernel for embedded
system domain.

5.2 Background significance
 Real-time or embedded systems are designed to provide
a timely response to real world events. Events occurring in
the real world can have deadlines before which the real-time
or embedded system must respond and the RTOS scheduling
policy must ensure these deadlines are met.
 To achieve this objective, first assign a priority to each
task. The scheduling policy of the RTOS is then to simply
ensure that the highest priority task that is able to execute is
the task given processing time [6]. This may require sharing
processing time "fairly" between tasks of equal priority if
they are ready to run simultaneously.

6. Research Methodology

6.1 Mechanism and policy modules of process scheduler
 In preemptive multitasking, a higher priority task will
forcibly stop a lower priority task and take the CPU time.
This will be very much needed in Real Time Systems so that
the execution time of a task can be guaranteed [5]. The trick
with any scheduling algorithms is that it must fulfill a
number of criteria [12]:

 No task must be starved of resources - all tasks must
get their chance at CPU time.

 If using priorities, a low-priority task must not hold up
a high-priority task.

 The scheduler must scale well with a growing number
of tasks, i.e. taking constant time no matter how many
tasks are queued.

Fig. 4. Mechanism and policy modules of process
scheduler.

33

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

 The scheduler can maintain separate lists of ready and
blocked processes and always select the highest priority
process from the ready list. However, process priorities are
static and scheduling is preemptive [4]. Hence a simpler
arrangement can be designed as follows: The scheduler can
maintain a single list of PCBs in which PCBs are arranged in
the order of reducing priorities. It can scan this list and
simply select the first ready process it finds. This is the
highest priority ready process in the system.

6.2 Priority-based scheduling using CRP
 In addition to the PCB list, the scheduler maintains a
pointer called currently running process pointer (CRP
pointer). This pointer points to the PCB of the process that is
in the running state. When an interrupt occurs, the context
save mechanism saves the PSW and CPU registers into
appropriate fields of this PCB [16].

Fig. 5. Priority-based scheduling.

Example: Figure 5 illustrates the situation when all user
processes are blocked. The only PCB showing a process in
the ready state is the one for the dummy process [8]. The
scheduler selects this process and dispatches it. Figure 5(b)
shows the situation after process P2 becomes ready. The PCB
of P2 is the first PCB in the PCB list that shows a process in
the ready state, so P2 is scheduled and the CRP pointer is set
to point at it.

 A single list of PCBs is maintained in the system.
 PCBs in the list are organized in the order of decreasing

priorities.
 The PCB of a newly created process is entered in the list

in accordance with its priority.

 When a process terminates, its PCB is removed from the
list.

 The scheduler scans the PCB list from the beginning and
schedules the first ready process it finds.

If there is no ready processes exist in the system, then

scheduler should simply ‘freeze’ the CPU so that the CPU
does not execute any instructions, but remains in an
interruptible state so that occurrence of an event can be
processed by the event handler. If the architecture lacks a
‘freeze’ state for the CPU [6], the scheduler can achieve an
equivalent effect quite simply by defining a dummy process
that contains an infinite loop. This process is always in the
ready state. It is assigned the lowest priority so that it gets
scheduled only when no ready processes exist in the system.
Once scheduled, this process executes until some higher
priority process becomes ready [10].

6. 3 Task of the simulator to run user-defined code

Fig. 6. Description of how a user-defined code is run by
the scheduling engine.

 Figure 6, gives an idea on the way the simulation engine
is implemented in the framework with three-step process.

6.3.1 Computing the scheduling
 The first step consists of computing the scheduling. It is
required now to decide which events occur for each unit of
time [9]. Events can be allocating / releasing shared
resources, writing / reading buffers, sending / receiving
messages and of course running a task at a given time. At the
end of this step, a table is built which stores all the generated
events. The event table is built according to the XML
description file of the studied application and according to a
set of task activation patterns and schedulers.

6.3.2 Analysis of the event table
 In the second step, the analysis of the event table is
performed. The table is scanned by "event analyzers" to find
properties on the studied system. At this step, some standard

44

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

information can be extracted by predefined event analyzers,
but users can also define their own event analyzers to look
for ad-hoc properties. The results produced during this step
are XML formatted and can be exported towards other
programs.

6.3.3 Defining task activation patterns
 Now, let's see how user-defined schedulers or task
activation patterns can be added into the framework. All
tasks are stored in a set of arrays [19]. Each array stores a
given information for all tasks. The job of a scheduler is to
find a task to run from a set of ready tasks. To achieve this
job, our framework models a scheduler with a 3 stages pipe-
line which is similar to the POSIX 1003.1b scheduler [5].
These 3 stages are :
The priority stage: For each ready task, a priority is
computed.

The queuing stage: Ready tasks are inserted into different
queues. There is one queue per priority level. Each queue
contains all the ready tasks with the same priority value.
Queues are managed like POSIX scheduling queues: if a
quantum is associated with the scheduler, queues work like
the SCHED_RR scheduling queuing policy. Otherwise, the
SCHED_FIFO queuing policy is applied.

The election stage: The scheduler looks for the non-empty
queue with the highest priority level and allocates the
processor to the task at the head of this queue. The elected
task keeps the processor during one unit of time if the
designed scheduler is preemptive or during all its capacity if
the scheduler is not preemptive.

6.3.4 User-defined schedulers are organized by means of
several sections
The start section: In this section, we declare variables
needed to schedule the tasks. Some of them are those defined
at task/processor/buffer/message definition. This set of
predefined variables can be extended with the "Edit/Add/Add
a Task" submenu. The others are managed by the simulator
engine and describe the state of
tasks/processors/buffers/messages at simulation time.
The priority section: The section contains the code
necessary to compute task priorities. The code given here is
called each time a scheduling decision has to be made.
The election section: This section just decides which task
should receive the processor for next units of time. This
section should only contain one return statement [11].
The task activation section: This section describes how
tasks could be activated during a simulation. In our
framework, 3 kinds of tasks exists [20]: aperiodic tasks
which are activated only one time and periodic or poissons
process tasks which are activated several times [15]. In the
case of periodic tasks, two successive task activations are
delayed by an amount of fixed time called period. In the case
of poisson process tasks, two successive task activations are

delayed by an exponential random delay. The task activation
section is used to define new kinds of task activation
patterns.

7. Conclusion

• The primary goal of this research paper is to study the

policy mechanisms of different real time schedulers in
embedded domain.

• The main aim is to analyze and evaluate performance of
these real time scheduling mechanisms.

• Implement a good, robust, fully preemptive real-time
scheduler.

• Arrive at a common solution to simulate a parametric
scheduler policy to real-time Linux kernel for embedded
system domain.

• As we mentioned before, there are all sorts of variations
on these basic algorithms. The thing to keep in mind is
that the more complicated a scheduling algorithm gets,
the more it lowers system throughput. It may be possible
to write a fancy scheduling algorithm that calculates the
precise amount of time each task will take and
determines its need for user interaction and then
schedules tasks based on mathematical equation.

8. Acknowledgment

 We would like to thank the supervisor for guidance and
support in the work on my research. Our gratitude goes to the
people, who previously succeeded in implementation of
modular kernel, scheduler mechanisms, process
communication, event analysis, interrupt handling etc and
making it available for further development.

References

[1] Chih-Lin Hu, “On-Demand Real-Time Information
Dissemination: A General Approach with Fairness, Productivity and
Urgency”, 21st International Conference on Advanced Information
Networking and Applications, AINA '07, 2007. Page(s):362 – 369,
21-23 May 2007.

[2] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son and
M. Marley, “Performance Specifications and Metrics for Adaptive
Real-Time Systems,” IEEE Real-Time Systems Symposium,
Orlando, FL, Dec 2006.

[3] Jensen 03a, A Timeliness Paradigm for Mesosynchronous Real-
Time Systems, E. Douglas Jensen, 9th Embedded and Real-Time
Applications and Systems Symposium, May 2005.

[4] Jensen et al. 02a, Guest Editors, “ Introduction to Special
Section on Asynchronous Real-Time Distributed System”, E.
Douglas Jensen and Binoy Ravindran, IEEE Transactions on
Computers, August 2005.

55

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

[5] Clark et al. 04, “Software Organization to Facilitate Dynamic
Processor Scheduling”, Raymond K. Clark, E. Douglas Jensen, and
Nicolas F. Rouquette, Proc. of the IEEE Workshop on Parallel and
Distributed Real-Time Systems, Jan 2007.

[6] L. Gauthier, S. Yoo and A. Jerraya, “Automatic generation and
targeting of application-specific operating systems and embedded
systems software,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 20(11), pp.1293-1301,
November 2005.

[7] Lu, C., Stankovic, A., Tao, G. and Son, H.S. “Feedback Control
Real-time Scheduling: Framework, Modeling and Algorithms”,
special issue of Real-Time Systems Journal on Control-Theoretic
Approaches to Real-Time Computing, Vol. 23, No. 1/2
July/September, pp. 85-126, 2002.

[8] A. Wierman, and M. Harchol-Balter. “Classifying scheduling
policies with respect to unfairness in an M/GI/1”. In Proceedings of
ACM Sigmetrics, 2003.

[9] C. D. Gill, D. L. Levine and D. C. Schmidt, "The Design and
Performance of a Real-Time CORBA Scheduling Service," Real-
Time Syst., vol. 20, pp. 117-154, 2001.

[10] W.T. Chan, T.W. Lam and K.S. Mak, “Online Deadline
Scheduling with Bounded Energy Efficiency”,
Proceedings of the 4th Annual Conference on Theory and
Applications of Models of Computation (TAMC), 416-427, 2007.

[11] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.
“Implementation of SRPT scheduling in web servers”. ACM
Transactions on Computer Systems 21(2): 207-233, 2003.

[12] A. Bar-Noy, R. E. Ladner, and T. Tamir. “Windows scheduling
as a restricted version of bin packing”. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 224-233, 2004.

[13] I. Rai, G. Urvoy-Keller, and E. Biersack. “Analysis of LAS
scheduling for job size distributions with high variance”. In
Proceedings of ACM Sigmetrics, 2003.

[14] Lam, T., Ngan, T.J. and TO, K. “Performance Guarantee for
EDF under Overload”, In proceedings of the Journal of Algorithms,
vol. 52, pp. 193-206, 2004.

[15] I. Rai, G. Urvoy-Keller, M. Vernon, and E. Biersack.
“Performance modeling of LAS based scheduling in packet
switched networks”. In Proceedings of ACM Sigmetrics-
Performance, 2004.

[16] H.L. Chan, W.T. Chan, T.W. Lam, L.K. Lee and K.S. Mak,
“Energy Efficient Online Deadline Scheduling”, Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 795—804, 2007.

[17] D. Dyachuk and R. Deters, “Scheduling of Composite Web
Services” in DOA’06: In proceedings of the OTM Workshops 2006,
LNCS 4277, pp. 19 – 20, 2006.

[18] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. “Two-level
processor-sharing scheduling disciplines: Mean delay analysis”, In
Proceedings.of ACM SIGMETRICS ’04, pages 97–105, 2004.

[19] A. Streit. “Evaluation of an Unfair Decider Mechanism for the
Self-Tuning dynP Job Scheduler”, In Proceedings of the 13th
International Heterogeneous Computing Workshop (HCW) at
IPDPS, pages 108 (book of abstracts, paper only on CD). IEEE
Computer Society Press, 2004.

[20] M.V. Panduranga Rao, Dr. K.C. Shet, Roopa K and Sri Prajna
K.J, “Implementation of a simple co-routine based scheduler“, In
Knowledge based computing systems & Frontier Technologies
NCKBFT, MIT Manipal, Karnataka,INDIA. 19th & 20th Feb 2007.

 Author Biographies

K.Roopa is a software engineer at Mphasis Limited.
She is involved in the development of many research
projects on C++ / Linux Plat form in Philips Software
India Ltd and LOGICA CMG Bangalore.
 She received the BE degree in computer science
and engineering from the PES College of Engineering,
Mandya, India, in 1997 and the MTech degree in
computer science and engineering from the
Visvesvaraya Technological University, in 2005.

R.Balakrishna is a research scholar at Sri Krishna
Devarya University, Anantapur, Andra pradesh, India.
His research interests are in the field of Artificial
Intelligence, Artificial Neural Networks, Data mining,
Operating System and Security.
 He has published various papers across India. He is
the Life member of Indian Society for Technical
Education and IAENG. His webpage can be found via
http://www.balakrishnar.i8.com/

Dr. K.C.Shet obtained his PhD degree from
Indian Institute of Technology, Bombay, Mumbai,
India, in 1989. He has been working as a Professor in
the Department of Computer Engineering, National
Institute of Technology, Surathkal, Karnataka, India,
since 1980.
 He has published over 200 papers in the area of
Electronics, Communication, & computers. He is a
member of Computer Society of India, Mumbai,
India, and Indian Society for Technical Education,
New Delhi, India. His webpage can be found via
http://www.nitk.ac.in/~kcshet/index.html .

M.V. Panduranga Rao is a research scholar in
department of computer engineering, National Institute
of Technology Karnataka, Mangalore, India. His
research interests are in the field of Real time and
Embedded systems on Linux platform and Security.
 He has published various research papers across
India. He has also authored two reference books on
Linux Internals for KSOU and Kuvempu University.
He is the Life member of Indian Society for Technical
Education and IAENG. His webpage can be found via
http://www.pandurangarao.i8.com/ .

 Her research interests include hardware and software for embedded and
real-time systems. She has also authored two reference books on Linux
Internals for KSOU and Kuvempu University. She is the Life member of
Indian Society for Technical Education

66

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 04,2021 at 04:18:16 UTC from IEEE Xplore. Restrictions apply.

