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Abstract— Development of an automated sub-retinal fluid
segmentation technique from optical coherence tomography
(OCT) scans is faced with challenges such as noise and motion
artifacts present in OCT images, variation in size, shape and
location of fluid pockets within the retina. The ability of a fully
convolutional neural network to automatically learn significant
low level features to differentiate subtle spatial variations makes
it suitable for retinal fluid segmentation task. Hence, a fully
convolutional neural network has been proposed in this work
for the automatic segmentation of sub-retinal fluid in OCT
scans of central serous chorioretinopathy (CSC) pathology. The
proposed method has been evaluated on a dataset of 15 OCT
volumes and an average Dice rate, Precision and Recall of 0.91,
0.93 and 0.89 respectively has been achieved over the test set.

I. INTRODUCTION

Central serous chorioretinopathy (CSC) is a chorioretinal
disorder of the eye characterized by serous detachment of
the neurosensory retina, which is located at the posterior
pole of the eye. CSC results in the accumulation of trans-
parent fluid due to the defects at the level of the Retinal
pigment epithelial (RPE), which allows serous fluid from the
choriocapillaris to diffuse into the subretinal space between
RPE and neurosensory retinal layers. Fig. 1 shows a pictorial
representation showing sub-retinal fluid (SRF) pocket and a
sample OCT B-Scan with SRF in CSC disorder. The fluid
has the propensity to accumulate under the central macula,
hence the name CSC [1], [2].

The advancements in diagnostic procedures in ophthal-
mology has revolutionized the diagnosis and management
of patients with retinal diseases through various imaging
techniques like colour fundus photography, fluorescein an-
giography and optical coherence tomography (OCT). Among
these, in recent years, OCT has emerged as the primary
diagnostic tool for the diagnosis of various retinal disorders
including CSC. OCT provides an in-vivo, 3D cross-sectional
view of the retina. The condition of CSC with SRF is clearly
shown in the OCT scan with neurosensory retina being
elevated with an optically empty space above the RPE [3]
(see Fig. 1. (b)). The segmentation of this SRF is essential
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Fig. 1. (a) Pictorial representation of the accumulation of fluid within
the retina1 in case Age-related macular degeneration. The new blood vessel
growth into the retina leads to blood and fluid leakage within the retina.
The SRF is indicated by the bounding box. (b) Sample OCT scan showing
the SRF accumulated due to CSC.

for the assessment of the severity and progression of the CSC
disorder, preferably in an automated way.

Few conventional methods have been proposed in the
literature for automatic segmentation of SRF in CSC disorder
using OCT scans. Wu et al. [4] presented an automated, 3D
method for the segmentation of SRF regions in the case of
neurosensory retinal detachment due to CSC in OCT scans.
The method is based on the construction of probability map
using the texture score, intensity score and distance between
ILM and RPE layers using random forest classifier. Further,
SRF regions are segmented by applying continuous max
flow optimization on the probability map. An automatic,
locally-adaptive method was proposed by Novosel et al. [5]
for the segmentation of SRF in CSC disorder OCT scans.
The approach utilizes the local attenuation differences in
between the retinal layers near an interface and introduces
new auxiliary interfaces so as to segment the fluid region.

Development of an automated retinal fluid segmentation
technique with high enough accuracy is faced with its own
set of challenges such as noise and motion artifacts present
in OCT scans, varying sizes, shape and locations of fluid
pockets within the retina, added with the variations that occur
when dealing with OCT data captured using different OCT
devices.

Recent trend in retinal fluid segmentation in general in
OCT images is to employ deep-learning neural network
architectures, specifically the convolutional neural networks
(CNNs) as they can learn important low level features
automatically and combine them to higher level features in
next layers, which is inspired from the functioning of human

1from http://www.scienceofamd.org/wp-
content/uploads/2012/04/Science of AMD%20Patient Brochure.pdf
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Fig. 2. (a) Sample OCT scan with the 11 layers marked for pre-processing.
(b) Resultant image after neutralizing the background above the first layer
(ILM) and last layer (RPE).

visual cortex in processing visual information and in object
recognition. Hence, many deep-CNN based research works
have been proposed lately towards retinal fluid segmentation
such as [6], [7], [8], [9]. Inspired by their success, a fully
convolutional neural network (FCNN) based method is pro-
posed in this paper for the segmentation of SRF in CSC OCT
scans.

II. PROPOSED METHOD

The proposed SRF segmentation method works in two
stages – pre-processing stage followed by the fluid segmen-
tation stage.

A. Pre-processing

OCT images suffer from granular natured speckle noise
due to the phenomenon of coherence that occurs during
OCT image formation. Speckle noise affects the signal-
to-noise ratio (SNR) and contrast of OCT scans, thereby
making the clinical diagnosis difficult [10]. This speckle
ridden scans negatively affect the model learning process in
turn resulting in poor segmentation. In order to deal with this
issue, the region beyond the retina is neutralized/eliminated
by making it a zero-intensity region. Since this region now
does not contribute to the model learning process, the affect
of noise on the segmentation is reduced by that extent.
Opting for denoising to reduce noise is another alternate,
but the former is chosen here since denoising smoothens
the image resulting in loss of information. Cropping the
unwanted background would also result in similar input,
however, since the volumetric quantification of the retinal
fluid would need the full scale scans, the original image
dimensions are retained here.

In order to nullify the background, the first and the last
retinal layers i.e., internal limiting membrane (ILM) and
RPE layer are segmented. The IOWA reference algorithm
[13] is utilized for this purpose which segments 11 retinal
layers in order. The region beyond the ILM and RPE layers
are explicitly converted into zero-intensity area as shown in
Fig. 2. These background neutralized images form the input
to the deep learning model for fluid segmentation.

B. Fluid Segmentation

A deep learning neural network architecture is employed
for SRF segmentation. The proposed architecture is based on
the FCN as described in the work of [14]. FCN assumes that
the input is image and performs convolution operation on the
input using the weights to extract abstract features from the
image, while retaining the spatial arrangement information.
It produces a prediction score matrix of the same size as
input. This is used to build the binary segmentation output.
The underlying network architecture is adopted from the
popular U-Net architecture proposed by Ronneberger [15]
and is based on the neural network used for intra-retinal
fluid segmentation in [6]. This model takes into account
the local as well as global features to generate an accurate
segmentation map. The global features represent the location
and approximate dimension of the fluid region, while the
local features indicate the accurate region boundary.

The neural network used here consists of two paths – a
contracting path and an expanding path similar to that in
[15], [6], as shown in Fig. 3. The first path performs the
convolution in 3 stages. Every level includes two convolu-
tional layers followed by a downsampling operation using
max-pooling function to gather a bigger receptive field. Each
filter in the convolution layer can be thought of as feature
identifier which identifies specific features like a dot, a
straight line, a curve etc. These low-level features eventually
develop into more complex attributes in following layers.
The expanding path performs the reversing of activations to
get the original resolution. Deconvolution layers which are
trainable in nature do this up-sampling process over 3 stages.
Moreover, in order to obtain an accurate segmentation, the
features extracted in down-sampling phase are transferred
and concatenated with the extracted features in the corre-
sponding output of up-sampling blocks in the expanding path
using skip connections.

The network is designed to accept input images of size
1024×512. In each block of the contracting path, there are
two convolution layers and then a max pooling layer. The
convolution filters are of size 3× 3 throughout the model
to allow for the discriminative feature extraction from the
neighbourhood, at the same time maintain a lower count of
parameters. There are a total of 14 convolutional layers in the
network. The number of filters are doubled in every depth
staring from 32 till 128. The Rectified Linear unit (ReLu)
activation function is applied to each convolution output. The
2× pooling layers progressively reduce the input size by
half so as to reduce the number of parameters and network
computations in turn reducing model over-fitting possibility.

In the expanding path, the activations produced are up-
sampled by employing fractionally-strided convolution (de-
convolution) operation. The number of filters reduce by half
in every up-sampling block, staring from 128 till 32. This
path is similar to the down-sampling path except that the
deconvolution layers are placed instead of pooling layers.
The last layer in the network is a 1×1 convolutional layer
with softmax activation function which produces 1024×512
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Fig. 3. The proposed network archtecture. It is to be noted that the input
and out images are of size 1024×512.

sized output image, giving a pixel to pixel probability of
belonging to fluid class or not. This binary output mask
is compared with the groundtruth and the weights of the
model are updated with the help of the binary cross-entropy
loss function during back propagation, such that the loss is
minimized in every epoch during the training process.

III. EXPERIMENTAL DETAILS

The proposed FCN is implemented in Keras 1.0 [16]
with Tensorflow back-end. The proposed method is tested on
the privately developed dataset under the collaboration with
Pink City Eye and Retina Center, Jaipur, India. The dataset
consists of 15 OCT volumes acquired from CSC patients
using a Zeiss manufactured Cirrus OCT device. Each volume
contains 128 B-scans with a dimension of 1024 × 512 in
vertical and horizontal directions respectively. The volumes
are obtained over 6×6 mm of the macula.

The dataset is divided in to training, validation and testing
sets for training, validation and performance evaluation of
the FCN model respectively. The training set is made up of
five OCT volumes, validation contains two volumes, whereas
testing set consists of eight volumes. In all, the model is
trained with 640 B-scans, validated with 256 B-scans and
tested with 1024 B-scans. The original image dimensions
are retained (1024×512) and the full scale scans are passed
onto the model for training and prediction after normaliz-
ing them to zero mean and unit variance. As mentioned
above, binary cross-entropy loss function is applied during
the network training to obtain minimum loss and Adam
optimizer [17] is employed to update the weights during
model back propagation process. A suitable learning rate of
5×10−4 is empirically chosen using short random search for
model learning. The network weights are initialized using
He normal initializer [18].

The proposed neural network is trained from scratch and
no pre-trained weights are used. In order to generalize the
model despite having less number of training samples, data
augmentation concept is employed with horizontal flipping,
height, width and zoom shifts, and random shear. This also
helps in reducing the possibility of model overfitting. The
augmentation occurs on the fly, thereby avoiding the need for
additional memory. After training the model for 100 epochs
the training and validation loss no longer reduce and the
training is halted at this point.

Fig. 4. Sample segmentation output of the proposed method on a B-scan
from test set.

TABLE I
DC, PRECISION AND RECALL OBTAINED BY THE METHOD ON THE TEST

SET.

Vol DC Precision Recall
1 0.950 0.948 0.954
2 0.963 0.946 0.980
3 0.938 0.908 0.969
4 0.777 0.933 0.665
5 0.874 0.911 0.839
6 0.865 0.908 0.827
7 0.986 0.983 0.988
8 0.928 0.955 0.901

Average 0.910 0.936 0.890

IV. RESULTS AND DISCUSSION

The performance of the method is analysed using 3 pri-
mary metrics generally used in evaluating the segmentation
performance viz. Dice co-efficient (DC) [6], precision [6] and
recall [6]. All these measures are obtained through the pixel-
wise comparison between predicted output and reference
ground truth marked by an expert ophthalmologist.

The results in terms of DC, precision and recall on the test
set is shown in Table I. An average DC of 0.91, precision of
0.93 and recall of 0.89 are obtained. It is to be observed that
except for V4, V5 and V6 all the volumes gave a very high
DC, precision and recall of above 90%. In case of V4, V5 and
V6 the fluid pockets were relatively small in nature and all
these volumes were acquired from one subject at different
times. Also, the training set had relatively less number of
such scans with small volume of accumulated fluid. This
issue may be solved by considering more scans with small
volume regions in the training set so that the model learns
such samples better.

In order to justify the neutralizing of the background
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TABLE II
DC, PRECISION AND RECALL OBTAINED BY THE METHOD ON THE TEST

SET. NO PRE-PROCESSING HAS BEEN PERFORMED IN THIS CASE ON THE

TRAIN, VALIDATION AND TEST SETS.

Vol DC Precision Recall
1 0.808 0.951 0.702
2 0.784 0.972 0.657
3 0.856 0.906 0.811
4 0.758 0.963 0.624
5 0.872 0.949 0.806
6 0.749 0.710 0.791
7 0.634 0.985 0.473
8 0.882 0.962 0.815

Average 0.793 0.924 0.710

during pre-processing of the input, the performance of the
model with the background intact was analysed. The network
was trained with a training set of raw input images and
also validated and tested with raw scans. The results of the
prediction on the eight test volumes are shown in Table II. It
can be noted that a drop of 11.7% in DC, 1.2% in precision
and 18% in recall is observed. This indicates that the pre-
processing has reduced the impact of noise on model training
and prediction.

V. CONCLUSION

In this paper, a method for automatic detection and seg-
mentation of sub-retinal fluid in CSC affected OCT scans has
been presented. To reduce the impact of noise in the back-
ground region on segmentation, the unwanted background
around the retina is converted into a zero-intensity region
as a pre-processing step. The pre-processed data forms the
input to a fully convolutional neural network which learns
the necessary features from the input during training. After
successful training the model is evaluated against a test set
of unseen data. The method yielded appreciable results with
a DC of 0.91, precision of 0.93 and recall of 0.89 on the test
set. As future work, in order test the robustness and gener-
alizability of the model, it is intended to train and test on a
larger dataset with scans from multiple vendors. Combining
deep learning using neural network with conventional feature
extraction techniques to develop a hybrid neural network for
better segmentation result is another possibility that will be
focused on in future.
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