
Autonomous Data Replication Using Q-Learning for Unstructured P2P
Networks

 Sabu M. Thampi

 Department of CSE
L.B.S College of Engineering

Kasaragod-671542
Kerala, India

smtlbs@yahoo.co.in

 K. Chandra Sekaran
Department of CSE

National Institute of Technology Karnataka
Surathkal-575025

Dakshina Kannada, Karnataka, India
kch@nitk.ac.in

Abstract

Resource discovery is an important problem in

unstructured peer-to-peer networks as there is no
centralized index where to search for information
about resources. The solution for the problem is to use
a search algorithm that locates the resources based on
the local information about the network. Efficient data
sharing in a peer-to-peer system is complicated by
uneven node failure, unreliable network connectivity
and limited bandwidth. A well-known technique for
improving availability is replication. If multiple copies
of data exist on independent nodes, then the chances of
at least one copy being accessible are increased.
Replication increases robustness. In this paper, we
present a novel technique based on Q-learning for
replicating objects to other nodes.

1. Introduction

The principle of a data-sharing P2P system is to
accept queries from users, and locate and return data.
Each node owns a collection of files to be shared with
other nodes. The shared data usually consists of files,
but is not restricted to files. Queries may take any form
that is appropriate given the type of data shared. If the
system is a file-sharing system, queries may be
identifiers or keywords Nodes process queries and
produce results independently, and the total result set
for a query is the bag union of results from every node
that processes the query [1].

We can view a P2P overlay network as an
undirected graph, where the vertices correspond to
nodes in the network, and the edges correspond to open
connections maintained between nodes. Two nodes
maintaining an open connection between themselves as
neighbors. Messages may be transferred in either
direction along the edges. For a message to travel from
node A to node B, it must travel along a path in the
graph. The length of this traveled path is known as the
number of hops taken by the message.

When a user submits a query, the node becomes the
source of the query. A source node S may send the
query message to any of its neighbors. The routing
policy in use decides to how many neighbors, and to
which neighbors, the query is sent. When a node
receives a query message, it will process the query
over its local collection. If any results are found at that
node, the node will send reply message back to the
query source. In some systems, such as Gnutella [2],
the address of the query source is unknown to the
responding node. In this case, the replying node sends
the response message along the reverse path by the
query message. In other systems, the replying node
may know the address of the query source, and will
open a temporary connection with the source to
transfer the response message [3]. When a node
receives a query message, it must also decide whether
to forward the message to other neighbors, or to drop
it. Again, the routing policy determines whether to
forward the query, and to whom the query is
forwarded.

A basic requirement for every P2P system is fault-
tolerance. Since the main objective is resource location
and sharing, we require that this fundamental operation
take place in a consistent manner. If a single peer
possesses resources, required by a system service, a
collapse of this peer breaks down the service, as well.
In other words, the service together fails with its
resource peers [3]. The system as a whole needs to be
able to bear single peer and link failures to improve the
reliability of its services. The problem of failing
services caused by failing peers owning required
resources is addressed by replication techniques.

Replication of a resource creates copies of the
resource, called replicas, to be distributed across
divergent hosts. Replication is employed for various
reasons. It is a well-known means to enhance
performance, increase availability, and tolerate faults.
Performance is enhanced by placing a replica on a host
convenient for a client. Availability is increased,
because of the redundancy introduced by replicas. If a

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

host of a replica fails, a client trying to access the
resource can access another host with a replica. Single
node failures, like crashes of nodes can be tolerated as
faults within the system as a whole facilitated with the
help of the redundancy introduced by replicas.

In P2P systems replication can be performed in a
variety of manners: owner replication, random
replication, and path replication [4, 5]. In case of
owner replication, the peer, which received the service,
keeps a copy so it can offer the service itself if
requested by other peers in the future. In other words,
the receiver peer also becomes a service provider. The
number of replicas will increase in proportion to the
number of requests for the service. Nevertheless, it is
insufficient for fully improve performance.

In random replication, replicas are randomly
distributed amongst other peers. If we use random
forwarding k-walkers random walk, random replication
is the most effective approach for achieving both
smaller search delays and smaller deviations in
searches. In random replication, once a search
succeeds, we count the number of nodes on the path
between the requester and provider, and then randomly
pick P of the nodes to replicate the objects.

Figure 1. Examples of Replication

Path replication is another approach for distributing
multiple replicas for each service. As the peers forward
the query they record their address into the message.
The service-providing peer receives the query, which
contains information about the sequence of peers that
forwarded the message i.e. when a search succeeds; the
object is stored at all nodes along the path from the
requester node to the provider node. The provider peer
can then send a reply and replica of the service in the
reverse direction of the forwarding route. Simulation
results have shown that path replication achieves a
similar performance to random replication [5], while
implementation is less complex than the random
replication.

Path replication and random replication reduces the
overall message traffic by a factor of three to four.
Hence, path replication and random replication
techniques can improve the scalability of P2P systems

significantly. Both path replication and random
replication cause reduction in traffic due to reduction
in the number of hops they take to find an object. They
outperform the owner replication. However, the
topological effects of replicating along the path do hurt
performance of path replication [5].

The replication techniques discussed above couldn’t
replicate objects further than the entries in the search
path. Moreover the existing techniques including
erasure code based replication [8] do not consider the
node behavior for hosting replicas. The decision to
replicate the objects should be done autonomously. A
novel mechanism is required to increase success rate
further. In this report, we present a replication
technique stands on Q-learning. An approach in which
peers create replicas autonomously in a decentralized
fashion using reinforcement-learning (RL) framework
is proposed. Aim of this method is to ensure high data
availability and to reduce hop counts in finding files.
Parameters such as bandwidth, node’s degree and
storage cost are being used in this replication scheme.
To the best of our knowledge, this is the first work that
applies reinforcement learning to P2P replication.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3
introduces Q-learning based replication. Criteria for
determining the sites for hosing new replica are
described in section 4. Section 5 discusses the model of
the system. P2P algorithm is explained in section 6.
Results and discussion is in section 7. Section 8
concludes the paper.

2. Related Work

In [6] a decentralized model for dynamic creation
of replicas in an unreliable peer-to-peer system is
presented. [7] describes a lightweight, adaptive and
system-neutral replication model for structured P2P
networks. A replication scheme based on erasure code
is discussed in [8]. This scheme does not cover node
behaviour. RL is used in [9] to adapt P2P topologies
for peer interests. [10] applies RL to P2P searching
without topology adaptation and the approach
systematically learns best path to desired files by
exploring new paths and exploiting existing explored
paths. [11] uses RL for improving the quality of
resource allocation in large scale heterogeneous
systems.

3. Q-Learning based Replication

The proposed replication method facilitates to place
replicas in such a way that, in spite of constant changes
to the connection, files are highly available. A node

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

decides where to replicate an object taking into account
the benefits of creating replicas of a particular file in
certain sites.

Reinforcement learning [12, 13] comprises a family
of incremental algorithms that construct control policy
through real-world experimentation. An agent learns
most favorable actions through a trial and error
examination of the environment and by receiving
rewards for its actions. The learning agent interacts
with an environment over a series of time steps t= 0, 1,
2, 3… At any instant in the time the learner can
monitor the state of the environment, denoted by s ε S
and apply an action, a ε A. Actions alter the state of
environment, and also generate a scalar pay-off value
(reward), denoted by r ε R . The next state and reward
depend only on the previous state and action, but they
may depend on these in a stochastic manner. The
objective of the agent is to learn to utilize the expected
value of reward received over time. It does this by
learning a mapping from states to actions called a
policy Π : S → A, i.e. mapping from states s ε S to
actions a ε A. More precisely, the objective is to
choose each action to maximize the projected return.

There are many different ways to incorporate
reinforcement learning such as Q-learning [12, 13]. In
case of Q-learning for each possible action, the agent
keeps a Q-value that indicates the efficiency of that
node in the past. Q learning is a form of reinforcement
learning in which the agent learns to assign values to
state-action pairs. In the simplest case, the Q-value for
a state-action pair is the sum of all of these
reinforcements, and the Q-value function is the
function that maps from state-action pairs to values.
However, Q-values depend on future reinforcements,
as well as current ones. If an agent knows Q-values of
every state-action pair, it can select an action for each
state. However, the agent initially has no idea about the
Q-values of every state-action pairs. The agent's goal,
then, is to settle on an optimal Q-value function, one
that that assigns the appropriate values for all
state/action pairs.

 Since in our replication scheme, several target
nodes may be available to host replica, replication of
an object to a single node alone is not sufficient. If
more than, one node holding required parameter values
exist, objects should be replicated to those nodes also.
Hence, a modification in the Q-learning algorithm is
needed. Since an object may be replicated to more than
one node at a time, every node will produce rewards
for the replication process. All these values should be
considered for the efficient replication of objects. Q-
learning assigns a ranking value to each resource that
influences the decision to which resource a data object

should be replicated. The ranking value is recalculated
whenever a replication happens in the network.

4. Determining the Sites for a New Replica

The members for the Q-table are assigned after a

simple operation: a message (Hello message) is send to
nodes that come within a Time-To-Live (TTL), which
is the number of hops the message should be
propagated; the responded nodes become members of
Q-table with initial Q-value equal to 100. Neighboring
nodes forward the message to one of its neighbors;
from there to next hop count. The message has a
message-id. Nodes, which have already received a
copy of the message, keep the message-id and address
of the neighboring node to which the message was
forwarded. Hence, when a node receives the same
message another time it will not be forwarded to a
node that has received the message previously.

As the first step of replication, the average value of
Q-values listed in the Q-table is computed. Nodes with
Q-values greater than or equal to the average value
(AvgQ) are selected and a message is send to those
nodes to verify whether a copy of the object exists in
their shared folder. If the node is not up, a copy of the
object is present, or the object’s name appears in the
Replication List, leave out those nodes. Nodes, which
have Q-value greater than or equal to AvgQ are
selected to host a replica.

For all the nodes in the network, minimum values
are assigned for bandwidth and storage. The
representation of bandwidth and available storage of
each node in percentages stand on those minimum
values. For example, the minimum values of
bandwidth and storage are 28kbps and 100MB
respectively. Let the bandwidth and available storage
values returned by each node after replication are
64kbps and 120MB. Hence, the values in percentage
for bandwidth and storage are being computed as 200
and 120 respectively.

When an object is downloaded into the shared
folder of a node, replication starts autonomously. After
creating a replica, a node receives a reinforcement
signal (containing the bandwidth (bw), available storage
(savbl), calculates the metric ρi, (ρi = ai savbl + (1- ai) bw)
and translates it into a reward r for node “i” that we
have chosen as follows: r=sign (ρi). Using the second
contribution in the metric (ai=0) would bias the
selection towards the node with highest available
bandwidth with no apprehension about free storage.
This will lead to more replacement of files (LRU
based) to house new files if adequate storage is not
available. To avoid this from happening we use lower

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

bound for ai at ai=0.2. Finally, system updates Q-
values using the following Q-function:

 Qi, t+1 ← Qi, t + α (r - Qi, t), where α is the learning rate.

The actual Q-values are retained for the nodes
comprising a copy of the object by applying a reward
equivalent to its present Q-value i.e. Qi, t+1 ← Qi, t.

Nodes that are not up will receive a negative
reward, r=0 and Q-values are updated according to,
 Qi, t+1 ← Qi, t (1- α).

5. The Algorithm

The shared folder of a node is periodically checked
for new objects. The replication process is initiated the
moment the presence of an object is noticed. The
entire steps in replicating an object to different nodes
are described as an algorithm below:

1. Select an object f for replication.
2. Compute the average of Q-values corresponding

to node x (state), AvgQ.
3. For each entry Ti in the Q-table, select nodes

with Q-values >= AvgQ.
4. Compute the hash value h of f.
5. For each selected node in step 3, check for the

presence of the object using f’s name or hash
value.

6. if f exists in the searched nodes or node is not up
or the object’s name is in the REPLICATION
LIST, leave out nodes from replication process

 else
 6.1 Select remaining nodes with Q-values >=
 AvgQ for replication.
 6.2 Insert the object’s name in the
 REPLICATION LIST of selected nodes.
// REPLICATION LIST of a node is a table that

contains a list of object names reserved by other nodes
during the object checking process. This evades other
nodes to replicate the same object to the node selected
by another node. //

7. For each chosen node:
7.1 Replicate the object from source node to

target node.
7.2 Remove the object entry from the

REPLICATION LIST of the destination node.
7.3 Wait for reinforcement signal.
7.4 Receive reinforcement signals - available free

storage after storing the file, and bandwidth.
7.5 Represent the available storage (Savbl) as well

as bandwidth (bw) in percentages.
7.6 Calculate weighted contribution (reward r) of

free storage and bandwidth:
 ρi = ai savbl + (1- ai) bw

 r =sign (ρi).

7.7 update the Q-value corresponding to the node
X according to Q-function

 Qi, t+1 ← Qi, t + α (r - Qi, t) for each action,
 where α is the learning rate.

7.8 Nodes, which are excluded in step 6, receive a
reward r equivalent to its present Q-value.
i.e. update Q-value by Qi, t+1 ← Qi, t.

7.9 Nodes that are not up (step 6), accept a
reward, r=0,

 Update Q-values by Qi, t+1 ← Qi, t (1- α).

Figure 2: Set of actions taken by a node for
replicating an object.

6. An Example
This section illustrates replication process with an

example. A graphic representation of a simple P2P
network shown in figure 3. The neighbors of node G
are nodes D, H and K. The initial values of Q-table for
node G after visiting two hop counts is shown in table
1. The selected nodes including neighbors (hop 1) are
D, H, K, C, P, and L. From the second hop onwards,
only one neighbor of each node is added to the Q-table.

Table 1: Q-Table

An object is available at node G for replication.

Assume the object is not present in nodes listed in the
Q-Table and all the nodes are up. The average of Q-
values is found and destination nodes are selected from
Q-Table. The object is replicated to the nodes. The
parameters are collected and the rewards are computed.
In order to provide a soft punishment to the nodes

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

which are not up, the value of α is set to 0.6. The Q-
values are updated accordingly. Updated Q-values of
node G is shown in table 2.

Table 2: An example to illustrate the status of Q-table
of node G

Figure 3: An Unstructured P2P Network

7. Simulation Results

We simulated a P2P network consisting of 100
nodes and 194 links. Peers in the logical network are
connected randomly. Each peer has a handful of
neighbors and the set of neighbor connections form a
P2P network. To find a file, a node queries its
neighbors. For simplicity we assume that the P2P
network graph does not change during simulation. The
simulation program is developed using Java language.
Twenty different objects (files) are distributed
randomly to twenty nodes in the network. We assume
that all nodes are up during simulation. The
experiment has been conducted and it is observed that
availability is very high and it is close to 80%. Thus,
the replication process consumes a great deal of
network traffic and storage space. Even though the
bandwidth, number of neighbors and available storage

space are different, all nodes are treated equally in our
approach.

The number of links to a node is called its degree.
In the network, a few nodes have a large number of
degrees while most other nodes have only a small
number of degrees. Peers with a large number of
degrees make many replicas as peers with a small
number of degrees. In addition, replicas on large
degree peers are used frequently as those on peers with
small degrees [4]. Hence, the reward function r, is
modified with a new attribute called the degree of the
node for distributing replicas efficiently without
consuming undue storage and bandwidth.

A modified reward function with a new parameter
degree of node is used to compute the reward and it is
computed as r = (ai savbl + (1- ai) bw) × (x/y),
where x is the degree of the node into which replica to
be placed and y is degree threshold, say eight. The
value of x may be lower or higher than y. The addition
of degree attribute contributes heavily in the Q-value
of a node with lesser degree. The provider node
collects the degree of a node when it receives response
from other nodes against the Hello message. The Q-
values of higher degree nodes are then initialized with
a value greater than 100, say 120.

The performance of the Q-learning Replication and
path replication are compared. The query is forwarded
to different nodes by means of k-walker algorithm [5].
In random walks, the requesting node sends out k
query messages to an equal number of randomly
chosen neighbors. Each of these messages follows its
own path, having intermediate nodes forward it to a
randomly chosen neighbor at each step. These queries
are also known as walkers. A walker terminates either
with a success or with a failure. Failure is determined
by a TTL-based method. Since the size of the network
provided for simulation is small, the number of
walkers is two and the TTL is limited to five. 300
search queries are submitted from different nodes in
network. Based on the results, the number of hops
visited by successful queries during search is noted.
When an object is found, it will be copied into query
node. In case of Q-learning replication, the query node
further replicates the object to other nodes (figure 6).
For path replication the object is replicated to nodes
along the search path. The results of simulation are
plotted on graphs 4, 5, 6, 7, and 8. From the graphs, we
can conclude that Q-learning based replication
outperforms path replication.

The simulation is extended for different TTL values
and the result is shown in figure 9. For TTL values
greater than equal to five, the result of search is
relatively same for Q-replication.

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

0

1

2

3

4

5

6

Successful Queries
TTL=5

#H
op

s

Figure 4: Number of hops for successful

queries (Q- Replication).

0

1

2

3

4

5

6

Successful Queries
TTL=5

#H
op

s

Figure 5: Number of hops for successful queries

(path replication).

27.5

39.7
48.13

0
10
20
30
40
50
60

Path
Replication

Q-Replication Q- Replication
after search

ob
je

ct
 a

va
ila

bi
lti

y
(%

)

Figure 6: Objects’ availability in percentages.

49%

93%

0%

20%

40%

60%

80%

100%

Path Replication Q-Replication

Se
ar

ch
 s

uc
ee

ss
 ra

te

Figure 7: Success rate for 300 queries.

0
1
2
3
4
5

Q-Replication Path Replication

A
vg

. n
o.

 o
f h

op
s

 f
or

 T
TL

=5

Figure 8: Average number of hops visited during

search.

0

20
40

60

80

100

1 2 3 4 5 6 7 8 9 10
 TTL

qu
er

ie
s

fin
is

he
d

(%
)

Q-Replication

Path replication

Figure 9: Queries finished for different TTLs

under Q-replication and path replication.

8. Conclusion

We have proposed a decentralized model for
creation of replicas in an unstructured peer-to-peer
system. The aim of our model is to increase the data
availability and thus to increase the search
performance. The main advantage of the Q-learning
based replication is reduction in number of hops visited
by a search query. Accordingly, the network traffic is
reduced further. The availability of objects is more
than 48%, which is higher than the performance of
path replication. The Q-replication does not rely on
search path, unlike path replication and random
replication. However, the proposed algorithm may
consume network bandwidth when the node checks
object’s presence in the nodes listed in Q-table. This is
not considered in the performance evaluation.

9. References

[1] Beverly Yang and Hector Garcia-Molina.

Improving Search in Peer-to-Peer Networks. In
proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS’02).

[2] Gnutella website: http://gnutella.wego.com.
[3] Timo Warns and Grenadierweg. Replication for

Peer-to-Peer Systems to Improve Dependability.

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

Diploma Thesis, Department of Computing
Science, Software Engineering Group, Carl Von
Ossietzky University, Oldenburg.

[4] Yoshihiro Gotou. Replication Methods for
Enhancing Search Performance in Peer-to-peer
Services. http://citeseer.ist.psu.edu/640281.html.

[5] Q.Lv, E.Cohen, K.Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer
Networks. In proceedings of ICS 2002.

[6] Kavitha Ranganathan, Adriana, and Ian Foster,
Improving Data Availability through Dynamic
Model-Driven Replication in Large Peer-to-Peer
Communities. In proceedings of the Workshop on
Global and Peer-to-Peer Computing on Large
Scale Distributed Systems, Berlin, May 2002.

[7] Vijay Gopalakrishnan, Bujor Silagi, Bobby, and
Pete Keleher. Adaptive Replication in Peer-to-Peer
Systems. In proceedings of ICDCS’04.

[8] Francisco Matias, Richard P. Martin, and Thu D.
Nguyen. Autonomous Replication for High
Availability in Unstructured P2P Systems. In
Proceedings of the 22nd IEEE International
Symposium on Reliable Distributed Systems, 2003.

[9] L.Gatani, G.L.Re A. Urso, and S. Gaglio.
Reinforcement learning for P2P Searching. In
proceedings of the International Workshop on
Computer Architecture for Machine Perception
(CAMP’05), 2005.

[10] Xiuqi Li and Jie Wu. Improve Searching by
Reinforcement Learning in Unstructured P2Ps.
www.cse.fau/~jie/research/publications/Publicatio
n_files/p2pdak06.pdf.

[11] Aram Galstyan, Karl Czajkowski, and Kristina
Lerman. Resource Allocation in the Grid Using
Reinforcement Learning. In proceedings of
International Conference on Autonomous Agents
and Multiagent Systems –Vol. 3.

[12] Watkins C, Dayan P. Technical Note: Q-Learning.
Machine Learning, 8, pp. 279-292, 1992.

[13] Pierre Yves Glorennec. Reinforcement Learning:
an Overview. ESIT 2000, 14-15 September 2000,
Aachen, Germany.

[14] Sabu M. Thampi, K. Chandra Sekaran. An Agent
Based Peer-To-Peer Network with Thesaurus
Based Searching and Load Balancing. In
proceedings of CIMCA-IAWTIC’05, vol 1.

Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007)
0-7695-2922-4/07 $25.00 © 2007

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 23,2021 at 11:06:33 UTC from IEEE Xplore. Restrictions apply.

