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Abstract 

 
Resource discovery is an important problem in 

unstructured peer-to-peer networks as there is no 
centralized index where to search for information 
about resources. The solution for the problem is to use 
a search algorithm that locates the resources based on 
the local information about the network. Efficient data 
sharing in a peer-to-peer system is complicated by 
uneven node failure, unreliable network connectivity 
and limited bandwidth. A well-known technique for 
improving availability is replication. If multiple copies 
of data exist on independent nodes, then the chances of 
at least one copy being accessible are increased. 
Replication increases robustness. In this paper, we 
present a novel technique based on Q-learning for 
replicating objects to other nodes. 

  
1. Introduction 
 

The principle of a data-sharing P2P system is to 
accept queries from users, and locate and return data. 
Each node owns a collection of files to be shared with 
other nodes. The shared data usually consists of files, 
but is not restricted to files. Queries may take any form 
that is appropriate given the type of data shared. If the 
system is a file-sharing system, queries may be 
identifiers or keywords Nodes process queries and 
produce results independently, and the total result set 
for a query is the bag union of results from every node 
that processes the query [1]. 

We can view a P2P overlay network as an 
undirected graph, where the vertices correspond to 
nodes in the network, and the edges correspond to open 
connections maintained between nodes. Two nodes 
maintaining an open connection between themselves as 
neighbors. Messages may be transferred in either 
direction along the edges. For a message to travel from 
node A to node B, it must travel along a path in the 
graph. The length of this traveled path is known as the 
number of hops taken by the message.  

When a user submits a query, the node becomes the 
source of the query. A source node S may send the 
query message to any of its neighbors. The routing 
policy in use decides to how many neighbors, and to 
which neighbors, the query is sent. When a node 
receives a query message, it will process the query 
over its local collection. If any results are found at that 
node, the node will send reply message back to the 
query source. In some systems, such as Gnutella [2], 
the address of the query source is unknown to the 
responding node. In this case, the replying node sends 
the response message along the reverse path by the 
query message. In other systems, the replying node 
may know the address of the query source, and will 
open a temporary connection with the source to 
transfer the response message [3]. When a node 
receives a query message, it must also decide whether 
to forward the message to other neighbors, or to drop 
it. Again, the routing policy determines whether to 
forward the query, and to whom the query is 
forwarded. 

A basic requirement for every P2P system is fault-
tolerance. Since the main objective is resource location 
and sharing, we require that this fundamental operation 
take place in a consistent manner. If a single peer 
possesses resources, required by a system service, a 
collapse of this peer breaks down the service, as well. 
In other words, the service together fails with its 
resource peers [3]. The system as a whole needs to be 
able to bear single peer and link failures to improve the 
reliability of its services. The problem of failing 
services caused by failing peers owning required 
resources is addressed by replication techniques. 

Replication of a resource creates copies of the 
resource, called replicas, to be distributed across 
divergent hosts. Replication is employed for various 
reasons. It is a well-known means to enhance 
performance, increase availability, and tolerate faults. 
Performance is enhanced by placing a replica on a host 
convenient for a client. Availability is increased, 
because of the redundancy introduced by replicas. If a 
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host of a replica fails, a client trying to access the 
resource can access another host with a replica. Single 
node failures, like crashes of nodes can be tolerated as 
faults within the system as a whole facilitated with the 
help of the redundancy introduced by replicas. 

In P2P systems replication can be performed in a 
variety of manners: owner replication, random 
replication, and path replication [4, 5]. In case of 
owner replication, the peer, which received the service, 
keeps a copy so it can offer the service itself if 
requested by other peers in the future. In other words, 
the receiver peer also becomes a service provider. The 
number of replicas will increase in proportion to the 
number of requests for the service. Nevertheless, it is 
insufficient for fully improve performance. 

In random replication, replicas are randomly 
distributed amongst other peers. If we use random 
forwarding k-walkers random walk, random replication 
is the most effective approach for achieving both 
smaller search delays and smaller deviations in 
searches. In random replication, once a search 
succeeds, we count the number of nodes on the path 
between the requester and provider, and then randomly 
pick P of the nodes to replicate the objects. 

 
Figure 1. Examples of Replication 

Path replication is another approach for distributing 
multiple replicas for each service. As the peers forward 
the query they record their address into the message. 
The service-providing peer receives the query, which 
contains information about the sequence of peers that 
forwarded the message i.e. when a search succeeds; the 
object is stored at all nodes along the path from the 
requester node to the provider node. The provider peer 
can then send a reply and replica of the service in the 
reverse direction of the forwarding route. Simulation 
results have shown that path replication achieves a 
similar performance to random replication [5], while 
implementation is less complex than the random 
replication.  

Path replication and random replication reduces the 
overall message traffic by a factor of three to four. 
Hence, path replication and random replication 
techniques can improve the scalability of P2P systems 

significantly. Both path replication and random 
replication cause reduction in traffic due to reduction 
in the number of hops they take to find an object. They 
outperform the owner replication. However, the 
topological effects of replicating along the path do hurt 
performance of path replication [5].  

The replication techniques discussed above couldn’t 
replicate objects further than the entries in the search 
path. Moreover the existing techniques including 
erasure code based replication [8] do not consider the 
node behavior for hosting replicas. The decision to 
replicate the objects should be done autonomously. A 
novel mechanism is required to increase success rate 
further. In this report, we present a replication 
technique stands on Q-learning. An approach in which 
peers create replicas autonomously in a decentralized 
fashion using reinforcement-learning (RL) framework 
is proposed. Aim of this method is to ensure high data 
availability and to reduce hop counts in finding files. 
Parameters such as bandwidth, node’s degree and 
storage cost are being used in this replication scheme. 
To the best of our knowledge, this is the first work that 
applies reinforcement learning to P2P replication. 

The remainder of this paper is organized as follows. 
Section 2 reviews the related work. Section 3 
introduces Q-learning based replication. Criteria for 
determining the sites for hosing new replica are 
described in section 4. Section 5 discusses the model of 
the system.  P2P algorithm is explained in section 6. 
Results and discussion is in section 7. Section 8 
concludes the paper. 

 
2. Related Work 
 

In [6]   a decentralized model for dynamic creation 
of replicas in an unreliable peer-to-peer system is 
presented. [7] describes a lightweight, adaptive and 
system-neutral replication model for structured P2P 
networks. A replication scheme based on erasure code 
is discussed in [8]. This scheme does not cover node 
behaviour. RL is used in [9] to adapt P2P topologies 
for peer interests. [10] applies RL to P2P searching 
without topology adaptation and the approach 
systematically learns best path to desired files by 
exploring new paths and exploiting existing explored 
paths. [11] uses RL for improving the quality of 
resource allocation in large scale heterogeneous 
systems.  

 
3. Q-Learning based Replication 
 

The proposed replication method facilitates to place 
replicas in such a way that, in spite of constant changes 
to the connection, files are highly available. A node 
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decides where to replicate an object taking into account 
the benefits of creating replicas of a particular file in 
certain sites.  

Reinforcement learning [12, 13] comprises a family 
of incremental algorithms that construct control policy 
through real-world experimentation. An agent learns 
most favorable actions through a trial and error 
examination of the environment and by receiving 
rewards for its actions.  The learning agent interacts 
with an environment over a series of time steps t= 0, 1, 
2, 3… At any instant in the time the learner can 
monitor the state of the environment, denoted by s ε S 
and apply an action, a ε A. Actions alter the state of 
environment, and also generate a scalar pay-off value 
(reward), denoted by r ε R . The next state and reward 
depend only on the previous state and action, but they 
may depend on these in a stochastic manner. The 
objective of the agent is to learn to utilize the expected 
value of reward received over time. It does this by 
learning a mapping from states to actions called a 
policy Π : S → A, i.e. mapping from states s ε S to 
actions a ε A. More precisely, the objective is to 
choose each action to maximize the projected return.  

There are many different ways to incorporate 
reinforcement learning such as Q-learning [12, 13]. In 
case of Q-learning for each possible action, the agent 
keeps a Q-value that indicates the efficiency of that 
node in the past.  Q learning is a form of reinforcement 
learning in which the agent learns to assign values to 
state-action pairs. In the simplest case, the Q-value for 
a state-action pair is the sum of all of these 
reinforcements, and the Q-value function is the 
function that maps from state-action pairs to values. 
However, Q-values depend on future reinforcements, 
as well as current ones. If an agent knows Q-values of 
every state-action pair, it can select an action for each 
state. However, the agent initially has no idea about the 
Q-values of every state-action pairs. The agent's goal, 
then, is to settle on an optimal Q-value function, one 
that that assigns the appropriate values for all 
state/action pairs.  

  Since in our replication scheme, several target 
nodes may be available to host replica, replication of 
an object to a single node alone is not sufficient. If 
more than, one node holding required parameter values 
exist, objects should be replicated to those nodes also. 
Hence, a modification in the Q-learning algorithm is 
needed. Since an object may be replicated to more than 
one node at a time, every node will produce rewards 
for the replication process. All these values should be 
considered for the efficient replication of objects. Q-
learning assigns a ranking value to each resource that 
influences the decision to which resource a data object 

should be replicated. The ranking value is recalculated 
whenever a replication happens in the network. 

 
4. Determining the Sites for a New Replica 

 
The members for the Q-table are assigned after a 

simple operation: a message (Hello message) is send to 
nodes that come within a Time-To-Live (TTL), which 
is the number of hops the message should be 
propagated; the responded nodes become members of 
Q-table with initial Q-value equal to 100. Neighboring 
nodes forward the message to one of its neighbors; 
from there to next hop count. The message has a 
message-id. Nodes, which have already received a 
copy of the message, keep the message-id and address 
of the neighboring node to which the message was 
forwarded.  Hence, when a node receives the same 
message another time it will not be forwarded to a 
node that has received the message previously. 

As the first step of replication, the average value of 
Q-values listed in the Q-table is computed. Nodes with 
Q-values greater than or equal to the average value 
(AvgQ) are selected and a message is send to those 
nodes to verify whether a copy of the object exists in 
their shared folder. If the node is not up, a copy of the 
object is present, or the object’s name appears in the 
Replication List, leave out those nodes. Nodes, which 
have Q-value greater than or equal to AvgQ are 
selected to host a replica. 

For all the nodes in the network, minimum values 
are assigned for bandwidth and storage. The 
representation of bandwidth and available storage of 
each node in percentages stand on those minimum 
values. For example, the minimum values of 
bandwidth and storage are 28kbps and 100MB 
respectively. Let the bandwidth and available storage 
values returned by each node after replication are 
64kbps and 120MB. Hence, the values in percentage 
for bandwidth and storage are being computed as 200 
and 120 respectively.  

When an object is downloaded into the shared 
folder of a node, replication starts autonomously. After 
creating a replica, a node receives a reinforcement 
signal (containing the bandwidth (bw), available storage 
(savbl), calculates the metric ρi, (ρi = ai savbl + (1- ai) bw) 
and translates it into a reward r for node “i” that we 
have chosen as follows: r=sign (ρi). Using the second 
contribution in the metric (ai=0) would bias the 
selection towards the node with highest available 
bandwidth with no apprehension about free storage. 
This will lead to more replacement of files (LRU 
based) to house new files if adequate storage is not 
available. To avoid this from happening we use lower 
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bound for ai at ai=0.2.  Finally, system updates Q-
values using the following Q-function: 

 

 Qi, t+1 ← Qi, t + α (r - Qi, t), where α is the learning rate.  
 

The actual Q-values are retained for the nodes 
comprising a copy of the object by applying a reward 
equivalent to its present Q-value i.e. Qi, t+1 ← Qi, t.   

Nodes that are not up will receive a negative 
reward, r=0 and Q-values are updated according to,  
     Qi, t+1 ← Qi, t (1- α).  

 
5. The Algorithm 
 

The shared folder of a node is periodically checked 
for new objects. The replication process is initiated the 
moment the presence of an object is noticed.  The 
entire steps in replicating an object to different nodes 
are described as an algorithm below:  

 
1. Select an object f for replication. 
2. Compute the average of Q-values corresponding 

to node x (state), AvgQ. 
3. For each entry Ti in the Q-table, select nodes 

with Q-values >= AvgQ. 
4. Compute the hash value h of f. 
5. For each selected node in step 3, check for the 

presence of the object using f’s name or hash 
value. 

6. if f exists in the searched nodes or node is not up 
or the object’s name is in the REPLICATION 
LIST, leave out nodes from replication process 

      else 
 6.1 Select remaining nodes with Q-values >= 
                AvgQ for replication. 
 6.2 Insert the object’s name in the 
               REPLICATION LIST of selected nodes.  
// REPLICATION LIST of a node is a table that 

contains a list of object names reserved by other nodes 
during the object checking process. This evades other 
nodes to replicate the same object to the node selected 
by another node. // 

7. For each chosen node: 
7.1 Replicate the object from source node to 

target node. 
7.2 Remove the object entry from the 

REPLICATION LIST of the destination node. 
7.3 Wait for reinforcement signal. 
7.4 Receive reinforcement signals - available free 

storage after storing the file, and bandwidth. 
7.5 Represent the available storage (Savbl) as well 

as bandwidth (bw) in percentages. 
7.6 Calculate weighted contribution (reward  r) of 

free storage and bandwidth: 
   ρi = ai savbl + ( 1- ai) bw 

                                       r =sign (ρi). 

7.7 update the Q-value corresponding to the node 
X according to Q-function 

 Qi, t+1 ← Qi, t + α (r - Qi, t) for each action,  
           where α is the learning rate. 

7.8 Nodes, which are excluded in step 6, receive a 
reward r equivalent to its present Q-value. 
i.e. update Q-value by Qi, t+1 ← Qi, t. 

7.9 Nodes that are not up (step 6), accept a 
reward, r=0,   

        Update Q-values by Qi, t+1 ← Qi, t (1- α). 
 

 
 

Figure 2: Set of actions taken by a node for 
replicating an object.   

6. An Example 
This section illustrates replication process with an 

example. A graphic representation of a simple P2P   
network shown in figure 3. The neighbors of node G 
are nodes D, H and K. The initial values of Q-table for 
node G after visiting two hop counts is shown in table 
1. The selected nodes including neighbors (hop 1) are 
D, H, K, C, P, and L.  From the second hop onwards, 
only one neighbor of each node is added to the Q-table. 

Table 1: Q-Table 

 
An object is available at node G for replication. 

Assume the object is not present in nodes listed in the 
Q-Table and all the nodes are up. The average of Q-
values is found and destination nodes are selected from 
Q-Table. The object is replicated to the nodes. The 
parameters are collected and the rewards are computed. 
In order to provide a soft punishment to the nodes 
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which are not up, the value of α is set to 0.6. The Q-
values are updated accordingly.  Updated Q-values of 
node G is shown in table 2. 

 

Table 2: An example to illustrate the status of Q-table 
of node G 

 
 

 
Figure 3: An Unstructured P2P Network 

 
7. Simulation Results 
 

We simulated a P2P network consisting of 100 
nodes and 194 links. Peers in the logical network are 
connected randomly. Each peer has a handful of 
neighbors and the set of neighbor connections form a 
P2P network. To find a file, a node queries its 
neighbors. For simplicity we assume that the P2P 
network graph does not change during simulation.  The 
simulation program is developed using Java language. 
Twenty different objects (files) are distributed 
randomly to twenty nodes in the network. We assume 
that all nodes are up during simulation. The 
experiment has been conducted and it is observed that 
availability is very high and it is close to 80%.   Thus, 
the replication process consumes a great deal of 
network traffic and storage space.  Even though the 
bandwidth, number of neighbors and available storage 

space are different, all nodes are treated equally in our 
approach.  

The number of links to a node is called its degree. 
In the network, a few nodes have a large number of 
degrees while most other nodes have only a small 
number of degrees. Peers with a large number of 
degrees make many replicas as peers with a small 
number of degrees. In addition, replicas on large 
degree peers are used frequently as those on peers with 
small degrees [4]. Hence, the reward function r, is 
modified with a new attribute called the degree of the 
node for distributing replicas efficiently without 
consuming undue storage and bandwidth.  

A modified reward function with a new parameter 
degree of node is used to compute the reward and it is 
computed as r = (ai savbl + (1- ai) bw) × (x/y), 
where x is the degree of the node into which replica to 
be placed and y is degree threshold, say eight. The 
value of x may be lower or higher than y. The addition 
of degree attribute contributes heavily in the Q-value 
of a node with lesser degree.  The provider node 
collects the degree of a node when it receives response 
from other nodes against the Hello message. The Q-
values of higher degree nodes are then initialized with 
a value greater than 100, say 120. 

The performance of the Q-learning Replication and 
path replication are compared. The query is forwarded 
to different nodes by means of k-walker algorithm [5]. 
In random walks, the requesting node sends out k 
query messages to an equal number of randomly 
chosen neighbors. Each of these messages follows its 
own path, having intermediate nodes forward it to a 
randomly chosen neighbor at each step. These queries 
are also known as walkers. A walker terminates either 
with a success or with a failure. Failure is determined 
by a TTL-based method. Since the size of the network 
provided for simulation is small, the number of 
walkers is two and the TTL is limited to five. 300 
search queries are submitted from different nodes in 
network. Based on the results, the number of hops 
visited by successful queries during search is noted. 
When an object is found, it will be copied into query 
node. In case of Q-learning replication, the query node    
further replicates the object to other nodes (figure 6).  
For path replication the object is replicated to nodes 
along the search path. The results of simulation are 
plotted on graphs 4, 5, 6, 7, and 8. From the graphs, we 
can conclude that Q-learning based replication 
outperforms path replication.  

The simulation is extended for different TTL values 
and the result is shown in figure 9. For TTL values 
greater than equal to five, the result of search is 
relatively same for Q-replication.    
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Figure 4: Number of hops for successful  

queries (Q- Replication). 
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Figure 5: Number of hops for successful queries  
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Figure 6: Objects’ availability in percentages. 
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Figure 7: Success rate for 300 queries. 
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Figure 8: Average number of hops visited during 

search. 
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Figure 9:  Queries finished for different TTLs  

under Q-replication and path replication. 
 

8. Conclusion 
 

We have proposed a decentralized model for 
creation of replicas in an unstructured peer-to-peer 
system. The aim of our model is to increase the data 
availability and thus to increase the search 
performance. The main advantage of the Q-learning 
based replication is reduction in number of hops visited 
by a search query. Accordingly, the network traffic is 
reduced further. The availability of objects is more 
than 48%, which is higher than the performance of 
path replication. The Q-replication does not rely on 
search path, unlike path replication and random 
replication. However, the proposed algorithm may 
consume network bandwidth when the node checks 
object’s presence in the nodes listed in Q-table. This is 
not considered in the performance evaluation. 
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