A 500 kS/s 8-bit Charge Recycle Based 2-bit per Step SAR-ADC

Pankaj Shrivastava, Kalpana G Bhat, Tonse Laxminidhi and M S Bhat
Department of Electronics and Communication
National Institute Of Technology Karnataka
Surathkal-575025, India

Email: pkjelex@gmail.com, kalps_ bhats@yahoo.com, laxminidhi_ t@yahoo.com, msbhat_99@yahoo.com

Abstract—This paper presents a low power 3.3 V, 500 kS/s 8-bit successive approximation register ADC in 0.18 μm technology. The DAC architecture employs charge recycling to produce 2-bits in one cycle i.e, it takes N/2 clock cycles to generate N-bits. The DAC architecture uses four rail to rail unity gain buffers and seven unit size capacitors in which one is half of the unit size to design ADC. Three comparators have been used to decide the 2-bits in each cycle. The simulated SNDR, at the input frequency of 56.64 kHz, is 48.14 dB and at 232.42 kHz is 47.03 dB. The simulated maximum INL as well as DNL is 0.5 LSB. The design consumes a low power of 1.8 mW from the power supply of 3.3 V.

Keywords-SAR ADC, Unity Gain Buffer, Latch based comparator, Low power, Charge Recycling, 2-bit per step .

I. Introduction

Analog to Digital Converters (ADC) and Digital to Analog Converters (DAC) are essential building blocks of many portable systems. These analog interfacing circuits provide connection between the physical world and the digital computing signal processing systems. In order to bring the interface between analog and digital world as close as possible there is great demand for low power ADCs.

Among different ADC architectures the SAR-ADC represents a common solution for applications demanding medium speed, medium resolution and low power. The conventional SAR-ADCs, as shown in Fig. 1, use charge redistribution DAC [1]-[2]. Speed of conversion is limited as it requires N-clock cycles to convert N-bits. The bulky binary weighted capacitor arrays employed in above architectures require large silicon area.

Recently presented ADC in [3] is a charge recycle based 1-bit per step SAR-ADC. This architecture is area efficient compared to other previous DAC architectures because it uses two buffers and four unit sized capacitors to generate 1-bit per cycle. In this architecture, speed is limited by the slew rate and the output impedance of unity gain buffer.

The ADC presented in [4] uses split capacitor and dual sampling technique to evaluate 2-bit per step. Due to split capacitor arrays and complex control logic, this architecture may demand for advanced process technology.

The ADC presented in [5] uses 2-bit per step approach. The architecture uses kelvin divider and the segmented voltage again subdivided through kelvin divider. This circuit uses large

number of resistors and the controlling switches, which leads to large power and area overhead.

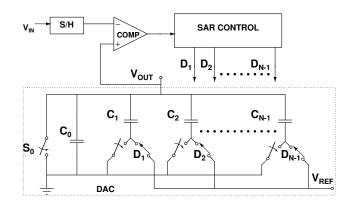


Fig. 1. Conventional SAR ADC

In this paper a multiple value approach to the DAC architecture is presented which takes N/2 clock cycles to convert N-bits. This architecture uses four buffers and seven unit sized capacitors in which one is half of the unit size. Every clock cycle 2 bits are to be generated. This requires three reference voltages to be generated for comparison from DAC. Out of seven unit sized capacitors, four capacitors are used to generate one reference voltage and remaining three capacitors are used to generate other two reference voltages. In one clock cycle only two buffers are in use to generate the 2 bits and the other two buffers are turned off, thus saving the power.

The remaining paper is organized as follows. Section II presents the DAC architecture, section III presents the buffer and the comparator architecture, section IV presents the sample and hold circuit, section V gives the simulation results and section VI conclusion.

II. DAC ARCHITECTURE

The proposed DAC architecture schematic is as shown in Fig. 2(a). This architecture has been derived on the basis of the DAC architecture proposed in [3].

DAC architecture uses four buffers and seven capacitors. The capacitors are chosen such that $C_{TOP1} = C_{TOP2} = C_{BOT1} = C_{BOT2} = C_{TH1} = C_{TH2} = C$ and $C_{TH3} = C/2$. V_{REF1} and V_{REF2} are taken as V_{REF} and zero respectively.

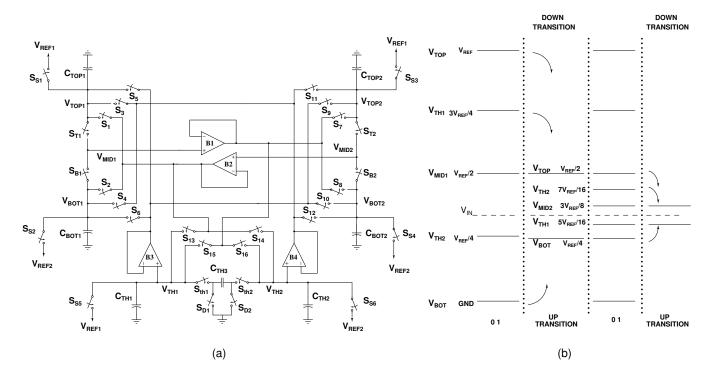


Fig. 2. Proposed DAC (a) Schematic (b) Algorithm

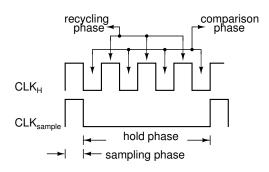


Fig. 3. Timing diagram showing sampling phase, comparison cycle and recycling phase

The Algorithm used for the DAC operation is shown in Fig. 2(b). The DAC is operated as follows: In the sampling phase, the switches S_{S1} - S_{S6} , S_{D1} and S_{D2} are closed. The capacitors C_{TOP1} , C_{TOP2} and C_{TH1} will get charged to V_{REF1} while the bottom capacitors C_{BOT1} , C_{BOT2} and C_{TH2} will get charged to V_{REF2} . At this time all other switches will be open and the voltage across C_{TH3} will be zero. Fig. 3 shows the timing diagram for the DAC operation where CLK_{sample} is the clock applied to the sample and hold circuit, CLK_H is the clock applied to the DAC.

The comparison cycle follows the sampling phase. In this phase switches S_{S1} - S_{S6} , S_{D1} and S_{D2} are open and the

switches S_{T1} , S_{B1} , S_{th1} and S_{th2} are closed. The capacitors C_{TOP1} and C_{BOT1} generate voltage V_{MID1} , i.e, $V_{MID1} = (V_{TOP1} + V_{BOT1})/2 = V_{REF}/2$. The capacitors C_{TOP2} and C_{BOT2} retain the previous voltage levels i.e, $V_{TOP2} = V_{REF}$ and $V_{BOT2} = 0$. The capacitors C_{TH1} , C_{TH2} and C_{TH3} together will generate the voltages V_{TH1} and V_{TH2} . This is explained as follows: In the sampling phase, the switches S_{th1} , S_{th2} are open and S_{D1} , S_{D2} are closed. The node A is charged to V_{REF} and node B is connected to zero so that the voltage across C_{TH1} is V_{REF} and voltage across C_{TH2} , C_{TH3} is zero as shown in the Fig. 4. The charge on C_{TH1} is $C_{TH1} \times V_{REF}$ which is $C \times V_{REF}$. The equivalent circuit during comparison

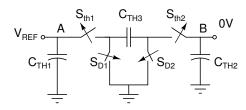


Fig. 4. Threshold voltage generation circuit in sampling and recycling phase

phase is as shown in Fig. 5. In the first comparison cycle the switches S_{th1} , S_{th2} are closed. The charge on C_{TH1} and C_{TH2} will now get redistributed. Therefore according to the charge conservation principle,

$$CV_{REF} = CV_{TH1} + \frac{CV_{TH1}}{3}$$

$$V_{TH1} = \frac{3V_{REF}}{4}$$

$$V_{TH2} = \frac{\frac{C}{2} \times V_{TH1}}{C + \frac{C}{2}}$$

$$V_{TH2} = \frac{V_{REF}}{4}$$
(2)

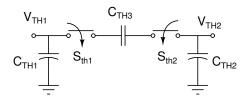


Fig. 5. Threshold voltage generation circuit in comparison phase

These three node voltages i.e, V_{MID1} , V_{TH1} and V_{TH2} are now compared with V_{IN} simultaneously. The result of the comparison is fed to one hot code generator and then to encoder. According to the V_{IN} 's value as shown in Fig. 2(b) the bits generated is 01. Since the V_{IN} lies in between $V_{REF}/2$ and $V_{REF}/4$ the bits produced will trigger the logic circuit to close the switches S_{T1} , S_4 S_7 , S_{12} and S_{15} . In effect the voltages V_{TOP2} and V_{TH1} will recycle to $V_{REF}/2$ during recycling phase and is called a down transition. The nodes V_{BOT1} and V_{BOT2} will recycle to $V_{REF}/4$ and is called as up transition. Now new voltages are such that $V_{TOP1} = V_{TOP2}$ $= V_{TH1} = V_{REF}/2$ and $V_{BOT1} = V_{BOT2} = V_{TH2} = V_{REF}/4$. The capacitor C_{TH3} will be discharged to ground. For the next two bit generation in the next comparison phase, only the switches S_{T2} , S_{B2} , S_{th1} and S_{th2} have to be closed so that the capacitors C_{TOP2} and C_{BOT2} will produce the voltage $V_{MID2} = (V_{TOP2} + V_{BOT2})/2 = 3V_{REF}/8$. The bottom capacitors C_{TH1} , C_{TH2} and C_{TH3} altogether produce $7V_{REF}/16$ and $5V_{REF}/16$ as reference voltages at the nodes V_{TH1} and V_{TH2} respectively. Nodes V_{TOP1} and V_{BOT1} will hold previous voltage levels $V_{REF}/2$ and $V_{REF}/4$ respectively. Now the switches S_{th1} and S_{th2} are open and the switches S_{D1} and S_{D2} closed so as to discharge the capacitor C_{TH3} to ground.

Again in the next comparison cycle V_{IN} is compared with $V_{MID2}, V_{TH1}, V_{TH2}$ and with the presence of V_{IN} in between $3V_{REF}/8$ and $5V_{REF}/16$, the bits generated will be 01. Next recycling period the switches S_{T2}, S_1, S_6, S_{10} and S_{14} are closed. The nodes V_{TOP1} and V_{TH2} will recycle to $3V_{REF}/8$, a down transition and the nodes V_{BOT1} and V_{BOT2} will recycle to $5V_{REF}/16$, an up transition.

In this algorithm in each charge recycling period only two buffers out of four buffers is turned on to charge the capacitors.

III. COMPARATOR AND BUFFER

A. Buffer architecture

The buffer schematic is shown in Fig. 6 [6]. The buffer output impedance and the slew rate determines the speed of the above DAC. Here a buffer architecture with high slew rate is presented. The circuit consists of two complementary differential stages with transistors M_1 - M_5 and M_{10} - M_{14} are connected in parallel. In which each of them drive one half of the output common source push pull stage. The transistors M_6 - M_9 generate bias. In the proposed DAC architecture, only two buffers are turned on in recycling phase. Switches S_1 , S_2 , S_3 and S_4 are provided in buffer (Fig. 6) to turn on/off the required buffer.

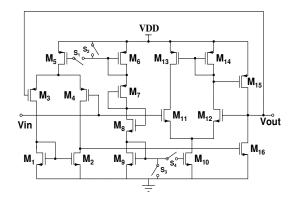


Fig. 6. Schematic of buffer

B. Comparator

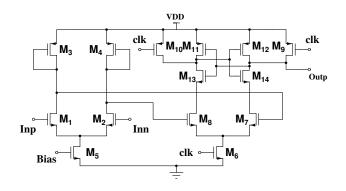


Fig. 7. Schematic of comparator

Schematic of the comparator used in this work is shown in Fig. 7. It is a dynamic latch based comparator as in [7]. The dynamic latch consists of pre-charge transistors M_9 and M_{10} , cross-coupled inverter M_{11} - M_{14} , differential pair M_7 , M_8 and switch M_6 which prevent the static current flow when the clk is low. When the clk signal is low, the drain voltages of M_7

and M_8 are V_{DD} - V_T and their source voltage is V_T below the latch input common mode voltage. Therefore, once the clk signal goes high, the n-channel transistors M_7 , M_8 , M_{13} and M_{14} immediately go into the active region. Because one of the transistors from each cross coupled inverters is off in steady state, there is no static power dissipation. The bias voltage generated for buffer is also used to bias the comparator.

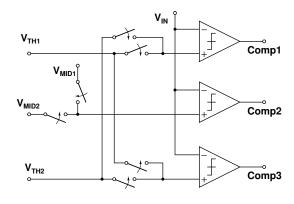


Fig. 8. Switch configuration at input of comparators

Three comparators followed by one hot code generator and encoder are used for two bit generation. V_{TOP1} and V_{TOP2} will always hold voltages higher than V_{BOT1} and V_{BOT2} . But V_{TH1} , V_{TH2} may hold values above and below V_{MID1} / V_{MID2} . Therefore input to the comparator Comp1 and Comp3 are connected to both V_{TH1} and V_{TH2} through switches as shown in Fig. 8. The control logic will take care of the switching, based on the value of V_{IN} , V_{TH1} and V_{TH2} . The V_{MID1} and V_{MID2} are connected to the input of Comp2.

IV. SAMPLE AND HOLD ARCHITECTURE

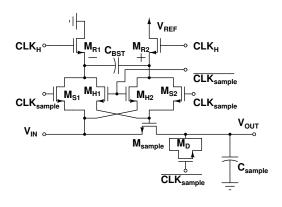


Fig. 9. Sample and Hold circuit

A switched-capacitor clock-boosted architecture is used for the sample-and-hold circuit due to its rail-to-rail capability and low-power operation. Schematic is as shown in Fig. 9 [3]. After a few clock periods, C_{BST} is charged to V_{DD} and subsequently acts as a floating voltage source. At each sampling phase (CLK_{sample}), C_{BST} connects the gate-source terminals of M_{sample} in such a way that $V_{GS} = V_{DD}$. Therefore in

sampling phase, the gate source voltage of M_{sample} will be held at V_{DD} higher than its source voltage regardless of the value of V_{IN} making the switch resistance input independent. On the other hand, in the hold phase, M_{H1} and M_{H2} turn on and M_{S1} and M_{S2} turn off, providing a negative voltage between the gate-source terminals of M_{sample} . This results in $V_{GS} = -V_{DD}$ during hold phase to avoid leakage problem. M_D is employed to cancel the charge-injection effect. The voltage on C_{BST} may degrade due to leakage, so a high frequency clock CLK_H (same as applied in DAC) is applied through transistors M_{R1} and M_{R2} to refresh it to V_{DD} .

V. SIMULATION RESULTS

The proposed ADC is an 8-bit 500 kS/s SAR-ADC and is implemented in $0.18\mu m$ technology. The DAC capacitor used is 2 pF and the sampling capacitor is 500 fF.

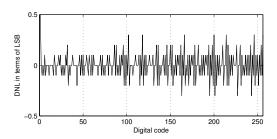


Fig. 10. DNL plot of the ADC

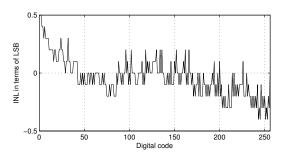


Fig. 11. INL plot of the ADC

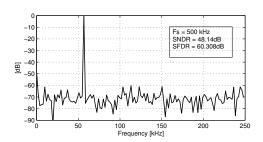


Fig. 12. Output spectrum at input frequency 56.64 kHz

As shown in Fig. 10 and Fig. 11, at 500 kS/s, the simulated DNL and INL are within 0.5 LSB. The spectra for an input full scale sine wave at 56.64 kHz and 232.42 kHz are as shown in Fig. 12 and Fig. 13 respectively for which the SNDR of

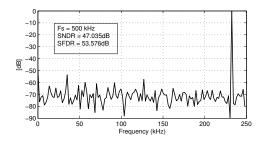


Fig. 13. Output spectrum at input frequency 232.42 kHz

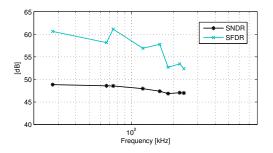


Fig. 14. Variations in SNDR and SFDR with respect to frequency

48.14 dB (ENOB = 7.7) and 47.03 dB (ENOB = 7.52) are obtained, respectively. The variation of the SNDR and SFDR with respect to frequency is shown in Fig. 14. The total power consumption for 56.64 kHz and 232.42 kHz input sine wave are simulated to be 1.8 mW and 2.02 mW respectively.

VI. CONCLUSION

A low power 8-bit SAR-ADC is implemented in $0.18 \, \mu m$ technology. The designed ADC consumes $1.8 \, mW$ power from $3.3 \, V$ supply for low frequencies. The power increased to $2 \, mW$ at Nyquist frequency. Charge recycle based 2-bit per step conversion is employed to achieve $500 \, kS/s$ conversion speed. The porting of the design to $90 \, nm$ or $65 \, nm$ technology and lower supply voltage could bring in a great deal of performance improvement and minimize power and area. The ENOB of $7.52 \, was$ obtained when operated at Nyquist rate.

TABLE I PERFORMANCE SUMMARY OF THE ADC

Parameter	Value
Technology	$0.18\mu\mathrm{m}$
Supply Voltage	3.3 V
Resolution	8 bit
Sampling Frequency	500 kS/s
SNDR	47.03 dB @ 232.42 kHz, 48.14 dB @ 56.64 kHz
ENOB	7.52 @ 232.42 kHz, 7.7 @ 56.64 kHz
Maximum DNL, INL	0.5 LSB, 0.5 LSB
Total Power	1.8 mW

REFERENCES

[1] B. Ginsburg and A. Chandrakasan, "An energy-efficient charge recycling approach for a sar converter with capacitive dac," in *Circuits and Systems*, 2005. ISCAS 2005. IEEE International Symposium on, may 2005, pp. 184 – 187 Vol. 1.

- [2] N. Verma and A. Chandrakasan, "An ultra low energy 12-bit rateresolution scalable sar adc for wireless sensor nodes," *Solid-State Circuits*, *IEEE Journal of*, vol. 42, no. 6, pp. 1196–1205, 2007.
- [3] P. Kamalinejad, S. Mirabbasi, and V. Leung, "An ultra-low-power sar add with an area-efficient dac architecture," in *Circuits and Systems (ISCAS)*, 2011 IEEE International Symposium on. IEEE, 2011, pp. 13–16.
- [4] N. Sugiyama, H. Noto, Y. Nishigami, R. Oda, and T. Waho, "A low-power successive approximation analog-to-digital converter based on 2-bit/step comparison," in *Multiple-Valued Logic (ISMVL)*, 2010 40th IEEE International Symposium on. IEEE, 2010, pp. 325–330.
- [5] H. Wei, C. Chan, U. Chio, S. Sin, U. Seng-Pan, R. Martins, and F. Maloberti, "A 0.024 mm2 8b 400ms/s sar adc with 2b/cycle and resistive dac in 65nm cmos," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International. IEEE, 2011, pp. 188–190.
- [6] A. Nosratinia, M. Ahmadi, G. Jullien, and M. Shridhar, "High-drive cmos buffer for large capacitive loads," *Electronics letters*, vol. 27, no. 12, pp. 1044–1046, 1991.
- [7] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto, "A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture," *Solid-State Circuits, IEEE Journal of*, vol. 28, no. 4, pp. 523–527, 1993.