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Abstract 
 

The model based development is a widely 
accepted phenomenon to build dependable software. 
This has lead to development of tools which can 
generate deployable code from the model. Hence, 
ensuring the correctness of such models becomes 
extremely important. Model checking technique can be 
applied to detect specification violations in such 
models at the early stage of development life cycle. In 
practice, such validations are done using off-the-shelf 
model checkers. This technique though popular has a 
drawback that, model should be described in the 
native language of the model checker. In this paper, 
we propose a framework for the verification of the 
dynamic behavior of reactive systems modeled using 
UML (Unified Modeling Language) statechart 
diagrams. The model is translated to an intermediate 
representation by parsing the information embedded 
behind the UML statecharts, this intermediate 
representation is used for checking the safety 
violations. Verification framework proposed is 
scalable to complex systems.  
 
 
1. Introduction 
 

The development of dependable software has 
been the major goal for the advent of software 
engineering discipline. The traditional way of 
verifying software systems is through human 
inspection, simulation, and testing. Though these 
methods are cost effective, unfortunately these 
approaches provide no guarantee about the quality of 
the software. Human inspection is limited by the 
abilities of the reviewers, simulation and testing can 
only explore a minuscule fraction of the state space of 
any software system. Model driven software 
development has been a prominent means to enhance 
the understandability of the system’s structure and 
behavior. It has prompted industries to develop tools 
which can generate the code in high level languages 
like C, C++ or JAVA from the model. IBM’s Rational 

Rose RT [1] is one such tool for the development of 
embedded real time systems. As deployable binaries 
are generated from the model, ensuring model’s 
correctness becomes highly essential. The commonly 
used formal model verification technique is model 
checking. Model checking [2] is a pragmatic technique 
that, given a finite-state model of a system and a 
logical property (expected system property), 
systematically checks whether model holds the 
property or not. If the model does not hold the 
expected property, an error trace (also called as 
counter example) is generated. The original model can 
be refined by leveraging information generated by the 
counter example; this approach is known as counter 
example guided model refinement [3]. Several model 
checking tools like SPIN (Simple Promela INterpreter) 
[4], SMV (Symbolic Model Verifier) [5], BLAST 
(Berkeley Lazy Abstraction software verification 
Tool) [6] and RuleBase [7] are in existence. The major 
drawback of using model checking tools for 
verification is that, they expect system to be modeled 
using their proprietary input language. The input 
languages of most of these tools are text based and 
lacks advantages of visual representation. Numerous 
researchers have tried to address this issue. We have 
reviewed some of the papers [8] [9] [10] and found 
that, though they suggest modeling the dynamic 
behavior of the system using UML(Unified Modeling 
Language) statechart diagrams (provides visual 
representation to the models), subsequently these 
statechart diagrams are translated to the input language 
of the model checker before verification. The 
translation process removes the abstraction of the 
models and exponentially increases the state space of 
the complex systems. This could lead to state-
explosion-problem [11]. We in this paper present a 
verification frame work which avoids the usage of off-
the-shelf-model-checker and translation of UML 
statechart models to input language of the model 
checker and hence the state explosion is minimized. 

In the next section, we give the necessary 
introduction to model checking techniques and in 
section 3 proposed model verification framework & 
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methodology are discussed. We draw conclusions in 
section 4. 
 
2. Preliminaries  
 
2.1. Explicit state model checking 
 

Explicit state model checking is systematic and 
exhaustive searching of error states in a state space 
graph using graph search algorithms like DFS and 
BFS. A basic algorithm is that the checker starts from 
an initial state and recursively generates successive 
system states by executing the events of the system. 
States are stored in a hash table to ensure each state is 
explored at most once. The process continues either 
until all reachable states are explored or the checker 
runs out of resources. SPIN [4], developed at Bell 
Labs, is a widely used explicit state model checker. 
This expects that the model to be verified is 
constructed using PROMELA (Process Meta 
Language), which is the input language for SPIN. 
However, one of the main problems associated with 
explicit sate model checking is that of state-space 
explosion. The number of states for a complex 
software system is potentially exponential with respect 
to the number of processes in the system. As a result 
full verification is often impossible. Therefore, several 
techniques are used to reduce the memory required to 
store the state information or the number of 
states/paths explored. Some of the techniques are 
described below. 

Abstraction [12] is one of the most important 
techniques for tackling state explosion problem.  The 
idea is to check if a property holds on an abstract 
system, and then based on this result infer if the same 
property hold on the concrete system. An abstraction 
can be formed by defining a mapping between 
concrete states and abstract states such that the 
abstract transition system allows more behaviors than 
the concrete system but has fewer states. Verification 
task is performed on the abstract transition system, 
which has fewer states than the concrete transition 
system. The second way of dealing with the state 
explosion problem is to reduce the number of concrete 
states that need to be searched during the state space 
exploration. There are two main techniques that use 
this approach, namely, the symmetry reduction 
technique [13] and the partial order reduction 
technique [14]. Both of these techniques induce an 
equivalence relation on states of the system and 
perform analysis without exploring the states which 
have an equivalent state that has already been explored 
( i.e., during the state space exploration if we come to 
a state that has an equivalent state that has already 
been explored, then the current state in not explored). 

.  

2.2. Symbolic model checking 
 

Symbolic model checking algorithms use special 
data structures such as BDD (Binary Decision 
Diagram) for the representation of state transition 
graph, as it allows efficient manipulation of boolean 
formulae. BDDs are directed acyclic graph obtained 
by removing the isomorphic sub trees or redundant 
vertices from binary decision trees [15]. In Symbolic 
model checking technique, states in state transition 
graph is symbolically represented by boolean formulae 
rather than keeping explicit list of states itself to avoid 
the state explosion problem. An SMV [5] system, 
developed by Mc Millan, is a BDD based model 
checker used for checking the model for properties 
expressed in temporal logic CTL (Computation Tree 
Logic). The SMV expects the model to be verified is 
constructed in its own input language. The underlying 
principle of SMV is depicted in the Fig.1. 
 

 
 

Figure 1. Engineering of Symbolic model 
verification 

 
2.3. BMC-Bounded model checking 
 

The symbolic model checking with BDDs have 
been successful formal verification technique till the 
late 90’s. The major problem of this method is that 
BDDs may grow exponentially and amount of 
available memory restricts the size of the system that 
can be verified efficiently. The Bounded model 
checking technique [16] avoids the usage of BDD and 
has become a competing technique to BDD-based 
model checking. The bounded model checking was 
proposed by Biere et.al in 1999 [17] and the technique 
is shown in the Fig. 2. The basic idea here is to search 
for a property in executions whose length is bounded 
by some integer R. If no bug is found, then increases 
the value of R by one until a bug is found, problem 
becomes intractable or some pre-known upper bound 
is reached. The BMC problem can be reduced to 
propositional satisfiability problem and can be solved 
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by SAT methods (beyond the scope of this paper) 
rather than BDDs. NuSMV2 [18] incorporates BMC 
techniques in SMV and users can use both techniques 
(SMV & BMC) for verification. 

 

Figure 2. Engineering of Bounded model 
checking 

2.4. UML statechart diagrams 
 

The Unified Modeling Language (UML) is a 
general purpose visual modeling language that is 
designed to specify, visualize, construct and document 
the artifacts of the software system. The UML 
specification consists of two interrelated parts: 

• UML semantics1: A meta model that 
specifies the abstract syntax and semantics of 
the UML object modeling components 

• UML Notation: A graphic notation for the 
visual representation of the UML semantics 

The UML has a collection of graphical notations 
each with a well defined semantics. It allows 
construction of several diagrams using these notations 
and relationship among them. These diagrams aid to 
visualize a system from different perspectives. The 
UML includes class diagram, sequence diagrams and 
statechart diagrams that can be used to specify both 
structural (class diagrams) and dynamic (sequence and 
statechart diagrams) views of software systems.  
The UML statechart diagrams are used for behavioral 
modeling of the software and greatly increase the 
understanding of a system by revealing 
inconsistencies, ambiguities, and incompleteness that 
might otherwise go undetected. The statecharts were 
first introduced by David Harel in 1987 [20] as a 
visual formalism for complex reactive systems. The 
primary motivation behind this model was to 
                                                        
1 This is not discussed in this paper and interested readers can refer 

to [19]. 

overcome the limitations inherent in conventional state 
transition diagrams (or state diagrams for short) to 
describe the complex systems. State diagrams are 
directed graphs, with nodes denoting states, and 
arrows denoting the transitions. The UML statechart 
diagrams extend state diagrams to include notions of 
hierarchy (ability to cluster many states into a super 
state) and concurrency (orthogonality). Statechart 
shows sequence of states that an object goes through 
during its life cycle in response to stimuli, together 
with its responses and actions. A state in a statechart is 
represented by rounded rectangle and can be 
recursively decomposed into exclusive states (OR-
state) or concurrent states (AND state). A simple 
transition may have a triggering event (whose 
occurrence cause the transition to take place), an 
enabling guard condition (which must be true for the 
transition to be taken), and output event and actions, 
all of which are optional. When a transition in a 
statechart is triggered (i.e. an event is received and 
guard condition becomes true), the object leaves its 
current state, initiates the action(s) for that transition 
and enters a new state. Any internal or external event 
is broadcasted to all states of all objects in the system. 
Transitions between concurrent states are not allowed, 
but synchronization and information exchange is 
possible through events.  The transitions are 
represented by directed arrows with labels showing 
triggering event guard condition and actions 
(optional). An initial state is shown as a small solid 
filled circle and a final state is shown as a circle 
surrounding a small solid filled circle. The final state 
represents the completion of activity in the enclosing 
state.  

Figure 3 a. Abstraction of “Training system” 
 

The Fig.3a is an abstraction of hypothetical “Training 
system, modeled using UML statechart diagram. The 
Figures 3b and 3c shows expansion of AttendCourse 
and Examination states of Fig. 3a into concurrent sub 
states (AND states) and sequential sub states (OR 
states) respectively. Visually AND state is depicted by 
splitting the state using dashed lines as shown in Fig. 
3b. The Fig.3d shows completely expanded/flattened 
view of the abstract model, called global 
representation (without hierarchy). 
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Figure 3 b. Concurrent refinement 

Fig 3 c. Sequential refinement 

Figure 3 d. Global representation 
 

3. Verification Framework  
 

In this section, we present a framework, which 
supports the construction of automated safety violation 
analysis tools for UML statechart diagrams. This can 
be integrated with industrial CASE tools (which 
generate code from the models) for verifying models  
 
3.1. Methodology 
 

A widely known approach for verifying the 
complex systems is, by modeling them in the input 
language (mostly text-based) of the off-the-shelf 
model checker and passing them on to model checker. 

The property expected is specified in temporal logic. 
Subsequently, the need of visual formalism to the 
models was realized and UML statecharts were used 
for modeling dynamic behavior of the system. The 
verification of such models is done by first 
representing the UML statecharts in Extended 
Hierarchical Automata (EHA) [10] [21] [22] and then 
mapping to input language of the model checker. This 
approach is well received and successful for less 
complex systems. As the complexity of the system 
grows, this technique of flattening (removal of 
abstraction) the original model during verification 
would lead to “state-explosion” and hence aborts the 
verification process. 

 
 

Figure 4. Verification model 
 
The proposed framework for verification of systems 
does not use off-the-shelf model checker. The Fig. 4 
depicts the methodology. The logics of the UML 
statechart diagram are captured in a textual format and 
then the same is converted to state space graph. Unlike 
most of the model checkers, here the data structure 
preserves the abstraction and whole state space graph 
is not brought into memory at once. The verification is 
done iteratively so that the state explosion problem 
discussed earlier in the paper would be minimized. 
 
3.2. Architecture 
 

We present the architecture of the verification 
environment in this section. The UML model verifier 
shown in Fig. 5, automatically searches the complete 
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set of states of the state space for an incorrect behavior 
and out puts error trace if any. There are four principal 
components, viz., 

• The UML editor 
• Model compiler 
• Property extractor 
• Checker 

The UML editor allows creating both abstract and 
concrete statechart models of the reactive systems. It 
supports all UML visual notations and semantics to 
capture all important design decisions. The user is 
prompted to enter relevant information as (s) he 
creates the model. This .information is later used by 
“model compiler” for constructing intermediate 
representation of the model. 

The Model Compiler reads the UML statechart 
model and generates an intermediate representation of 
the same by parsing the UML statechart. This 
intermediate textual representation is the translated to 
state space graph. 

 
 

Figure 5. High-level design  
 

The Property Extractor extracts model properties 
such as set of valid states, transitions and events from 
the textual form and the state space graph. It also gets 
safety property to be verified from the external world. 

The Checker searches the state space iteratively for 
the safety violations. It outputs “Yes”, if the specified 
safety property holds, otherwise outputs “No” and the 
error trace (counter example). As this is the core part 
of the verifier we discuss in detail the technological 
aspects in the next section. 
 
3.3 Checker Algorithm 
 

Detection of bad states in huge state space graph 
becomes hard at times. This is due to the limited 

availability of resources, memory in particular. 
Therefore devising a memory efficient algorithm is 
indispensable.  

An iterative search approach is presented below: 

Step 1: Start from the abstract level 
Step 2: Let S represents set of reachable sates (given by  

property extractor)  
Step 3: Let Ø be the expected property (let Ø be the safety  
             violation or bad state) 
Step 4: Let I be the set of initial states (given by property  
            extractor)  
Step 5: Find out set s which can be reached in one step from the  
             current state 
Step 6: Search the resulting s to find Ø 
Step 7: Iterate the steps 5 and 6 until no new states are visited  

or  Ø is found. 
Step 8: Deepen/expand the part of the model and iterate the  

steps 2 through 7, until all the parts of the model is  
exhaustively searched 

Step 9: If Ø is not found output “Yes” otherwise output “No”  
and path from the initial state. 

 
This search algorithm is memory efficient as it does 
not keep the entire state-space of the model in the 
memory instead iteratively expands the model.  
 
4. Conclusions 
 

Most of the existing approaches translate UML 
statechart model into text based modeling language 
which can then be verified using off-the-shelf model 
checker. This translation process removes the salient 
features of the statecharts like hierarchy or abstraction. 
In other words, flattening of the statecharts leads to 
large state space requirement and makes verification 
approach not scalable to complex systems. The 
proposed iterative verification technique does not keep 
the entire state space of the UML statechart models in 
the memory. Hence, system with large state space can 
be handled efficiently. The usage of off-the-shelf 
model checker for verification of UML statechart 
models is avoided here; therefore no translation of 
UML models to the proprietary language of the model 
checker is necessary. 
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