
Verification Framework for Detecting Safety Violations in UML Statecharts

C.M. Prashanth
Dept. of Computer Engg,

N.I.T.K, Surathkal,
 INDIA-575 025.

prashanth_bcs@yahoo.co.in

Dr. K.Chandrashekar Shet
Dept. of Computer Engg,

N.I.T.K, Surathkal,
 INDIA- 575 025.
kcshet@nitk.ac.in

Janees Elamkulam
IBM India Ltd,

Airport Road, Bangalore,
INDIA -560 017.

janees.ek@in.ibm.com

Abstract

The model based development is a widely
accepted phenomenon to build dependable software.
This has lead to development of tools which can
generate deployable code from the model. Hence,
ensuring the correctness of such models becomes
extremely important. Model checking technique can be
applied to detect specification violations in such
models at the early stage of development life cycle. In
practice, such validations are done using off-the-shelf
model checkers. This technique though popular has a
drawback that, model should be described in the
native language of the model checker. In this paper,
we propose a framework for the verification of the
dynamic behavior of reactive systems modeled using
UML (Unified Modeling Language) statechart
diagrams. The model is translated to an intermediate
representation by parsing the information embedded
behind the UML statecharts, this intermediate
representation is used for checking the safety
violations. Verification framework proposed is
scalable to complex systems.

1. Introduction

The development of dependable software has
been the major goal for the advent of software
engineering discipline. The traditional way of
verifying software systems is through human
inspection, simulation, and testing. Though these
methods are cost effective, unfortunately these
approaches provide no guarantee about the quality of
the software. Human inspection is limited by the
abilities of the reviewers, simulation and testing can
only explore a minuscule fraction of the state space of
any software system. Model driven software
development has been a prominent means to enhance
the understandability of the system’s structure and
behavior. It has prompted industries to develop tools
which can generate the code in high level languages
like C, C++ or JAVA from the model. IBM’s Rational

Rose RT [1] is one such tool for the development of
embedded real time systems. As deployable binaries
are generated from the model, ensuring model’s
correctness becomes highly essential. The commonly
used formal model verification technique is model
checking. Model checking [2] is a pragmatic technique
that, given a finite-state model of a system and a
logical property (expected system property),
systematically checks whether model holds the
property or not. If the model does not hold the
expected property, an error trace (also called as
counter example) is generated. The original model can
be refined by leveraging information generated by the
counter example; this approach is known as counter
example guided model refinement [3]. Several model
checking tools like SPIN (Simple Promela INterpreter)
[4], SMV (Symbolic Model Verifier) [5], BLAST
(Berkeley Lazy Abstraction software verification
Tool) [6] and RuleBase [7] are in existence. The major
drawback of using model checking tools for
verification is that, they expect system to be modeled
using their proprietary input language. The input
languages of most of these tools are text based and
lacks advantages of visual representation. Numerous
researchers have tried to address this issue. We have
reviewed some of the papers [8] [9] [10] and found
that, though they suggest modeling the dynamic
behavior of the system using UML(Unified Modeling
Language) statechart diagrams (provides visual
representation to the models), subsequently these
statechart diagrams are translated to the input language
of the model checker before verification. The
translation process removes the abstraction of the
models and exponentially increases the state space of
the complex systems. This could lead to state-
explosion-problem [11]. We in this paper present a
verification frame work which avoids the usage of off-
the-shelf-model-checker and translation of UML
statechart models to input language of the model
checker and hence the state explosion is minimized.

In the next section, we give the necessary
introduction to model checking techniques and in
section 3 proposed model verification framework &

Second Asia International Conference on Modelling & Simulation

978-0-7695-3136-6/08 $25.00 © 2008 IEEE
DOI 10.1109/AMS.2008.9

849

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

methodology are discussed. We draw conclusions in
section 4.

2. Preliminaries

2.1. Explicit state model checking

Explicit state model checking is systematic and
exhaustive searching of error states in a state space
graph using graph search algorithms like DFS and
BFS. A basic algorithm is that the checker starts from
an initial state and recursively generates successive
system states by executing the events of the system.
States are stored in a hash table to ensure each state is
explored at most once. The process continues either
until all reachable states are explored or the checker
runs out of resources. SPIN [4], developed at Bell
Labs, is a widely used explicit state model checker.
This expects that the model to be verified is
constructed using PROMELA (Process Meta
Language), which is the input language for SPIN.
However, one of the main problems associated with
explicit sate model checking is that of state-space
explosion. The number of states for a complex
software system is potentially exponential with respect
to the number of processes in the system. As a result
full verification is often impossible. Therefore, several
techniques are used to reduce the memory required to
store the state information or the number of
states/paths explored. Some of the techniques are
described below.

Abstraction [12] is one of the most important
techniques for tackling state explosion problem. The
idea is to check if a property holds on an abstract
system, and then based on this result infer if the same
property hold on the concrete system. An abstraction
can be formed by defining a mapping between
concrete states and abstract states such that the
abstract transition system allows more behaviors than
the concrete system but has fewer states. Verification
task is performed on the abstract transition system,
which has fewer states than the concrete transition
system. The second way of dealing with the state
explosion problem is to reduce the number of concrete
states that need to be searched during the state space
exploration. There are two main techniques that use
this approach, namely, the symmetry reduction
technique [13] and the partial order reduction
technique [14]. Both of these techniques induce an
equivalence relation on states of the system and
perform analysis without exploring the states which
have an equivalent state that has already been explored
(i.e., during the state space exploration if we come to
a state that has an equivalent state that has already
been explored, then the current state in not explored).

.

2.2. Symbolic model checking

Symbolic model checking algorithms use special
data structures such as BDD (Binary Decision
Diagram) for the representation of state transition
graph, as it allows efficient manipulation of boolean
formulae. BDDs are directed acyclic graph obtained
by removing the isomorphic sub trees or redundant
vertices from binary decision trees [15]. In Symbolic
model checking technique, states in state transition
graph is symbolically represented by boolean formulae
rather than keeping explicit list of states itself to avoid
the state explosion problem. An SMV [5] system,
developed by Mc Millan, is a BDD based model
checker used for checking the model for properties
expressed in temporal logic CTL (Computation Tree
Logic). The SMV expects the model to be verified is
constructed in its own input language. The underlying
principle of SMV is depicted in the Fig.1.

Figure 1. Engineering of Symbolic model
verification

2.3. BMC-Bounded model checking

The symbolic model checking with BDDs have
been successful formal verification technique till the
late 90’s. The major problem of this method is that
BDDs may grow exponentially and amount of
available memory restricts the size of the system that
can be verified efficiently. The Bounded model
checking technique [16] avoids the usage of BDD and
has become a competing technique to BDD-based
model checking. The bounded model checking was
proposed by Biere et.al in 1999 [17] and the technique
is shown in the Fig. 2. The basic idea here is to search
for a property in executions whose length is bounded
by some integer R. If no bug is found, then increases
the value of R by one until a bug is found, problem
becomes intractable or some pre-known upper bound
is reached. The BMC problem can be reduced to
propositional satisfiability problem and can be solved

850

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

by SAT methods (beyond the scope of this paper)
rather than BDDs. NuSMV2 [18] incorporates BMC
techniques in SMV and users can use both techniques
(SMV & BMC) for verification.

Figure 2. Engineering of Bounded model
checking

2.4. UML statechart diagrams

The Unified Modeling Language (UML) is a
general purpose visual modeling language that is
designed to specify, visualize, construct and document
the artifacts of the software system. The UML
specification consists of two interrelated parts:

• UML semantics1: A meta model that
specifies the abstract syntax and semantics of
the UML object modeling components

• UML Notation: A graphic notation for the
visual representation of the UML semantics

The UML has a collection of graphical notations
each with a well defined semantics. It allows
construction of several diagrams using these notations
and relationship among them. These diagrams aid to
visualize a system from different perspectives. The
UML includes class diagram, sequence diagrams and
statechart diagrams that can be used to specify both
structural (class diagrams) and dynamic (sequence and
statechart diagrams) views of software systems.
The UML statechart diagrams are used for behavioral
modeling of the software and greatly increase the
understanding of a system by revealing
inconsistencies, ambiguities, and incompleteness that
might otherwise go undetected. The statecharts were
first introduced by David Harel in 1987 [20] as a
visual formalism for complex reactive systems. The
primary motivation behind this model was to

1 This is not discussed in this paper and interested readers can refer

to [19].

overcome the limitations inherent in conventional state
transition diagrams (or state diagrams for short) to
describe the complex systems. State diagrams are
directed graphs, with nodes denoting states, and
arrows denoting the transitions. The UML statechart
diagrams extend state diagrams to include notions of
hierarchy (ability to cluster many states into a super
state) and concurrency (orthogonality). Statechart
shows sequence of states that an object goes through
during its life cycle in response to stimuli, together
with its responses and actions. A state in a statechart is
represented by rounded rectangle and can be
recursively decomposed into exclusive states (OR-
state) or concurrent states (AND state). A simple
transition may have a triggering event (whose
occurrence cause the transition to take place), an
enabling guard condition (which must be true for the
transition to be taken), and output event and actions,
all of which are optional. When a transition in a
statechart is triggered (i.e. an event is received and
guard condition becomes true), the object leaves its
current state, initiates the action(s) for that transition
and enters a new state. Any internal or external event
is broadcasted to all states of all objects in the system.
Transitions between concurrent states are not allowed,
but synchronization and information exchange is
possible through events. The transitions are
represented by directed arrows with labels showing
triggering event guard condition and actions
(optional). An initial state is shown as a small solid
filled circle and a final state is shown as a circle
surrounding a small solid filled circle. The final state
represents the completion of activity in the enclosing
state.

Figure 3 a. Abstraction of “Training system”

The Fig.3a is an abstraction of hypothetical “Training
system, modeled using UML statechart diagram. The
Figures 3b and 3c shows expansion of AttendCourse
and Examination states of Fig. 3a into concurrent sub
states (AND states) and sequential sub states (OR
states) respectively. Visually AND state is depicted by
splitting the state using dashed lines as shown in Fig.
3b. The Fig.3d shows completely expanded/flattened
view of the abstract model, called global
representation (without hierarchy).

851

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

Figure 3 b. Concurrent refinement

Fig 3 c. Sequential refinement

Figure 3 d. Global representation

3. Verification Framework

In this section, we present a framework, which
supports the construction of automated safety violation
analysis tools for UML statechart diagrams. This can
be integrated with industrial CASE tools (which
generate code from the models) for verifying models

3.1. Methodology

A widely known approach for verifying the
complex systems is, by modeling them in the input
language (mostly text-based) of the off-the-shelf
model checker and passing them on to model checker.

The property expected is specified in temporal logic.
Subsequently, the need of visual formalism to the
models was realized and UML statecharts were used
for modeling dynamic behavior of the system. The
verification of such models is done by first
representing the UML statecharts in Extended
Hierarchical Automata (EHA) [10] [21] [22] and then
mapping to input language of the model checker. This
approach is well received and successful for less
complex systems. As the complexity of the system
grows, this technique of flattening (removal of
abstraction) the original model during verification
would lead to “state-explosion” and hence aborts the
verification process.

Figure 4. Verification model

The proposed framework for verification of systems
does not use off-the-shelf model checker. The Fig. 4
depicts the methodology. The logics of the UML
statechart diagram are captured in a textual format and
then the same is converted to state space graph. Unlike
most of the model checkers, here the data structure
preserves the abstraction and whole state space graph
is not brought into memory at once. The verification is
done iteratively so that the state explosion problem
discussed earlier in the paper would be minimized.

3.2. Architecture

We present the architecture of the verification
environment in this section. The UML model verifier
shown in Fig. 5, automatically searches the complete

852

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

set of states of the state space for an incorrect behavior
and out puts error trace if any. There are four principal
components, viz.,

• The UML editor
• Model compiler
• Property extractor
• Checker

The UML editor allows creating both abstract and
concrete statechart models of the reactive systems. It
supports all UML visual notations and semantics to
capture all important design decisions. The user is
prompted to enter relevant information as (s) he
creates the model. This .information is later used by
“model compiler” for constructing intermediate
representation of the model.

The Model Compiler reads the UML statechart
model and generates an intermediate representation of
the same by parsing the UML statechart. This
intermediate textual representation is the translated to
state space graph.

Figure 5. High-level design

The Property Extractor extracts model properties
such as set of valid states, transitions and events from
the textual form and the state space graph. It also gets
safety property to be verified from the external world.

The Checker searches the state space iteratively for
the safety violations. It outputs “Yes”, if the specified
safety property holds, otherwise outputs “No” and the
error trace (counter example). As this is the core part
of the verifier we discuss in detail the technological
aspects in the next section.

3.3 Checker Algorithm

Detection of bad states in huge state space graph
becomes hard at times. This is due to the limited

availability of resources, memory in particular.
Therefore devising a memory efficient algorithm is
indispensable.

An iterative search approach is presented below:

Step 1: Start from the abstract level
Step 2: Let S represents set of reachable sates (given by

property extractor)
Step 3: Let Ø be the expected property (let Ø be the safety
 violation or bad state)
Step 4: Let I be the set of initial states (given by property
 extractor)
Step 5: Find out set s which can be reached in one step from the
 current state
Step 6: Search the resulting s to find Ø
Step 7: Iterate the steps 5 and 6 until no new states are visited

or Ø is found.
Step 8: Deepen/expand the part of the model and iterate the

steps 2 through 7, until all the parts of the model is
exhaustively searched

Step 9: If Ø is not found output “Yes” otherwise output “No”
and path from the initial state.

This search algorithm is memory efficient as it does
not keep the entire state-space of the model in the
memory instead iteratively expands the model.

4. Conclusions

Most of the existing approaches translate UML
statechart model into text based modeling language
which can then be verified using off-the-shelf model
checker. This translation process removes the salient
features of the statecharts like hierarchy or abstraction.
In other words, flattening of the statecharts leads to
large state space requirement and makes verification
approach not scalable to complex systems. The
proposed iterative verification technique does not keep
the entire state space of the UML statechart models in
the memory. Hence, system with large state space can
be handled efficiently. The usage of off-the-shelf
model checker for verification of UML statechart
models is avoided here; therefore no translation of
UML models to the proprietary language of the model
checker is necessary.

5. References

[1] IBM rational rose real time
 http://www.ibm.com/developerworks/
 rational/library/797.html, visited on 01/12/2007
[2] Edmund M. Clarke,Jr., Orna Grumberg and Doron A.
 Peled , Model Checking (The MIT press, 1999)
[3] Edmund M Clarke, Ansgar Fehnker, et.al.: Abstraction
 and Counterexample refinement fin model checking of
 Hybrid Systems, Vol.14, No 4, International journal of
 foundations of computer science, (2003), 583-604
[4] Gerard J. Holzmann, The Model Checker Spin, IEEE
 Trans. on Software Engineering, Vol. 23, No. 5,

 (1997), 279-295
[5] Kenneth L. Mc. Millan, Symbolic Model Checking: An

853

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

 approach to the state explosion problem, (Ph.D thesis
 submitted to Carnegie Mellon University (CMU),

 (1992)
[6] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar,
 Grégoire Sutre, Software Verification with BLAST,
 Electronic Editions (Springer LINK), 235-239
[7] I. Beer, S. Ben-David, C. Eisner and Landvar :
 RuleBase-an industry-oriented formal verification tool,
 Proceedings of 33rd Design Automation Conference
 (DAC), Asociation for Computing Machinery
 Inc.,(1996), 655-660.
[8] Johan Lilus, Ivan pores paltor, vUML: A tool for
 verifying UML models, Proceedings of the 14th IEEE
 international conference on automated software
 engineering,(1999) 225-228
[9] E. Clarke and W. Heinle, Modular translation of
 statecharts to SMV, Technical report, school of
 computer science, Carnegie Mellon University,
 Pittsburgh, (2000)
[10] Diego Latella, Istvan Majzik and Mieke Massink,
 Automatic verification of a behavioural subset of UML
 statechart diagrams using the SPIN model checker,
 Formal Aspects of Computing, volume 11(6),
 (1999),637-664
[11] Valmari,A.: The State explosion Problem, Lectures on
 Petri Nets I: Basic Models, LNCS 1491, Springer-
 Verlag (1998) 429-528
[12] Edmund M Clarke, Orna Grumberg & David E. Long,
 Model checking and Abstraction , Proc. of the 19th
 ACM SIGPLAN-SIGACT symposium on principles of
 programming languages Albuquerque, New Mexico,
 United States (1992),343 – 354
[13] E. A. Emerson and A. P. Sistla, Symmetry and model
 checking, In Proc. of the International Conf. on
 Computer Aided Verification, LNCS 697, ,Elounda,
 Greece, (1993). 463-478
[14] E. Clarke, O. Grumberg, M. Minea, D. Peled. State-
 Space Reduction using Partial-Ordering Techniques,
 STTT 2(3), (1999), 279-287
[15] Randal E. Bryant, Graph based algorithms for Boolean
 function manipulation, IEEE Trans. on Computers

 Vol. C-35 No. 8, (1986),677 – 691
[16] Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
 Ofer Strichman, Yunshan Zhu, The Bounded Model
 Checking, In highly dependable software, Volume 58,
 Advances in computers, Academic press 2003
[17] A. Biere, A. Cimatti et.al., Symbolic model checking
 without BDDs, Proc. of the worksphop on Tools and
 Algorithms for the construction and Analysis of
 Systems, LNCS, Springer-verlag, (1999)
[18] NuSMV2: a new symbolic model checker, Visited on
 16/08/2007 http://nusmv.irst.itc.it/
[19] Rational software, IBM, Microsoft et al, UML
 semantics OMG document:visited on 02/09/2007.
 ftp://ftp.omg.org/pub/docs/ad/97-08-04.pdf
[20] D. Harel, Statecharts: A Visual Formalism for
 Complex Systems, Science Computer Programming 8,

 (1987), 231-274.
[21] G.J. Holzmann et.al., Implementing statecharts in
 PROMELA/SPIN, proc. workshop on industrial
 strength formal specification techniques WIFT’98,
 USA, IEEE computer society, (1998).
[22] Adam Darvas et.al., Verification of UML statechart

 models of embedded systems 5th IEEE design &
 diagnostics of electronic circuits and systems
 workshop, (2002),70 -77

854

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on February 17,2021 at 04:59:59 UTC from IEEE Xplore. Restrictions apply.

