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ABSTRACT 

Aquaculture is persistent and well-established in the delta regions of Andhra Pradesh. 

Since 2014, the expansion of aquacultures confers positive economic growth in the 

newly formed state. However, the enormous development of aqua ponds increases the 

effluents from aquacultures and could impact the ecosystem negatively. This research 

work presents the effects of un-engineered aquaculture on the environment in the 

western delta region of Andhra Pradesh. A quantitative and topography survey, 

experimental investigation on aquaculture water and pond bottom soil, contaminant 

exposed soils behaviour, and assessment of ammonia levels using soft computing 

techniques were carried out. 

Based on the questionnaire survey data, the aquaculture practice in the delta region of 

Andhra Pradesh was classified as intensive, semi-intensive and traditional zones. 

Land use and land cover changes shows that aquaculture ponds extended towards the 

northeast from the southwest. Between 2017 and 2021, aquaculture significantly 

increased by 54.35 km2 and agriculture land decreased by 87.06 km2. The 

physicochemical characteristics of the aquaculture water found higher levels of 

alkalinity, salinity, calcium, magnesium, and bicarbonates. The quantity of ammonia 

in the water ranged from 0.05 to 2.8 mg/L. The results show that ammonia levels 

exceeded the permissible limits; and are a significant concern in aquaculture waters 

due to toxicity. The average water quality index (WQI) was 126, with WQI values 

ranging from 21 to 456. Approximately 78% of the water samples were very poor and 

unsafe for the second crop. 

The physicochemical characteristics of the pond subsoil shows higher concentration 

of potassium, Sulphur, and sodium in the intensive zone than the traditional farming 

zone. The results of the swell-shrink behaviour of expansive clays blended with 

aquaculture sludge show a significant decrease in swell potential, swelling pressure, 

and linear shrinkage. Furthermore, the microstructural analysis revealed the formation 

of a crystalline structure and the development of flocs and aggregation of clay 

particles with aquaculture sludge.  
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Pelican optimization algorithm (POA) and novel hybrid approach discrete wavelet 

transforms coupled with POA (DWT-POA) were used to predict ammonia levels in 

aquaculture ponds. DWT-POA model shows a higher performance compared with 

standard POA, with an average percentage error of 1.964 and a coefficient of 

determination (R2) value of 0.822. Moreover, it was found that prediction models 

were reliable with good accuracy and simple to execute. Furthermore, these prediction 

models could help stakeholders and policymakers to make a real-time prediction of 

ammonia levels in intensive farming inland aquaculture ponds. 

Keywords: Aquaculture, contaminants, soft computing, climate change, ammonia, 

sustainable aquaculture 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

In recent years, there has been a significant increase in the demand for food products 

with the population increase in many countries, especially India. Further, to meet their 

requirements, agriculture and aquaculture practices dramatically increase production 

and culture expansion (FAO, 2018). India is currently the second largest aquaculture 

producer, with production rising exponentially from 0.75 million tonnes in 1950 to 

9.6 million tonnes in 2014. The rapid increase in production is due to the uncontrolled 

and unsafe conversion of coastal habitats, especially from mangrove wetlands to 

shrimp cultivation ponds, which caused concern among the scientific community, 

environmental administrators, and policymakers about the effects of aquaculture 

ponds on existing coastal ecosystems (Prasad et al. 2019). This was a result of India's 

rapidly increasing aquaculture production. The subject of aquaculture is an 

interdisciplinary platform to deal with; it involves biology, chemistry, environmental 

engineering, and soil mechanics (Edwards, 2015; Wu and Song, 2021).  

The main problems associated with the intensive aquaculture ponds are seepage of 

contaminated water from the pond embankment to adjacent agricultural fields, 

leaching of polluted water from the subsoil to groundwater bodies, improper or 

untreated aquaculture effluents into nearby irrigation and drinking canals due to lack 

of drains (Cao et al. 2007; Islam and Yasmin, 2017). Geotechnical engineers have 

many aspects of dealing with and developing a sustainable aquaculture pond. Geo-

environmental aspects of aquaculture to be taken care of, like the revolutionary 

development, have been taking place in the engineered landfills recently. In 

aquaculture practice, regular feed to shrimp includes zinc, phosphorous, calcium, 

sodium, potassium, and magnesium, apart from probiotics (Phillips, 2000; Paez, 

2001). The encroachment of contaminated aquaculture ponds at the end of the crop 

has released both organic matters and diluted minerals and chemicals (Lai et al. 

2018). The primary water contamination occurs due to the excess feed and effluents 

generated by the aquatic shrimp (Islam et al. 2004). Furthermore, it increases the 
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nitrates and ammonia concentration in the pond. The intensity of aquaculture practice 

discharges large quantities of untreated wastewater containing organic matter, a high 

concentration of chemicals, plankton, antimicrobial agents, minerals, and antibiotics 

(Rico et al. 2012). This discharged aquaculture effluents to the irrigation canals and 

freshwater bodies affect the yield and quality of the adjacent agriculture fields. Also, 

freshwater bodies such as irrigation canals and drinking water ponds were polluting. 

1.2 SITE DESCRIPTION 

The western Godavari delta region of Andhra Pradesh is bounded by the Bay of 

Bengal, Godavari River, and Kolleru lake. It is located between the northern latitudes 

of 16°19՛06՛՛ and 16°56՛10՛՛ and the eastern longitudes of 81°18՛25՛՛ and 81°52՛45՛՛ 

(Figure 1.1). Geo-hydrologically, this present location is drained by numerous surface 

water resources such as Tammileru, Errakalava, Kovvadakalava and Gunderu. These 

resources supplement the groundwater sources on which many socio-economic 

conditions significantly depend. The Delta region of Andhra Pradesh is one of India's 

major aquaculture producers due to its desirable topography and climatic conditions.  

One-fourth of the inland aquaculture area covered in India is from the western 

Godavari delta region of Andhra Pradesh (Prasad et al. 2019). Moreover, 5% of the 

global aquaculture production is generated from the Andhra Pradesh alone (MPEDA, 

2022). Aquaculture is the primary source of the state economy and the society of 

Andhra Pradesh (Kolli et al. 2020). The topography, soil conditions, water 

availability, transportation facilities, electricity facilities, and other amenities play a 

vital role in the intensity of aquaculture farming. Aquaculture farming in small pits 

along the canals and Kolleru lake was traditional in the delta region. In the early 

2000s, aquaculture emerged as a significant activity, with individual tank sizes 

ranging from 1 acre to 30 acres due to the higher demand for shrimp in the global 

market. The main canals contributing to the expansion of aquaculture in this region 

are the Undi canal, Venkayya canal, Narsapur canal, and Gostani canal. Over the last 

few years, intensive farming in terms of overfeeding, chemical usage, disinfectants, 

and probiotics has led to shallow water and groundwater contamination. The primary 

environmental concern within this area is due to the effluents generated from the 
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aquaculture (Jayanthi et al. 2006; Muralidhar et al. 2021). Many researchers have 

carried out research work related to aquaculture practices and their consequences in 

the recent past (Kathiha et al. 2005; Jayanthi et al. 2019; Prasad et al. 2019). 

 

Figure 1.1 Map of the western Godavari delta region 

In 2014, Andhra Pradesh state was newly formed by separating from Telangana. So, a 

new state with favourable regulations and policies shifts the slow aquaculture farming 

practice into the intensive commercial mode of aquaculture. Another hand, intensive 

farming harms the environment and causes ecological crises. The effluents generated 

from the aquaculture ponds are a significant concern because of organic matter and 

toxic compounds. Moreover, 90% of the surface water sources, canals, and lakes were 

merged with the aquaculture waters after crop change in this region; hence, the 

monitoring of aquaculture waters must be addressed (Kolli et al. 2022). 

Moreover, aquaculture sediment settlement over a prolonged time could pollute 

groundwater bodies. So, this water negatively impacts consumers who consume it for 

drinking and other purposes, and people suffer from various health problems. In the 
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delta region of Andhra Pradesh, a safe and clean drinking water supply to the 

community is hugely vital in maintaining positive health measures. Unfortunately, 

about 90% of the water bodies are polluted with aquaculture sediments, and most 

people need safe drinking water. Areal views of aquaculture ponds were shown in 

Figure 1.2 to understand better the field scenario of aquaculture ponds in the study 

area. 

  

Figure 1.2 Aerial view of aquaculture ponds in the study area 

1.3 NEED FOR THE STUDY  

Improving inland aquaculture's environmental performance is crucial for its long-term 

sustainability. There is serious concern about the intensive aquaculture effects on the 

environment and the need to critically assess the water use in aquaculture ponds 

compared to other competing applications. The present research proposes to assess the 

environmental impact of un-engineered aquaculture ponds in the western delta region 

of Andhra Pradesh. This work carries out extensive experimental and field 

investigations in the study area and proposed ammonia prediction models using soft 

computing techniques. In the literature, numerous studies focused only on the 

economic aspects and land conversation of mangroves to inland aquaculture ponds. 

Moreover, only limited studies on the environmental aspects (Prasad et al. 2019; Duy 

et al. 2022; Luo et al. 2022). Moreover, previous studies successfully applied 
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standalone and hybrid soft computing algorithms for predicting water quality 

parameters (Sakaa et al., 2022; Uddin et al., 2023a; Uddin et al., 2023b). However, 

most studies have focused on the canal or river water quality parameters, and studies 

have yet to be found to predict the ammonia levels in intensive inland aquaculture 

waters. Compared to other prediction studies, the present prediction study widely 

explores, hybridizing a metaheuristic algorithm with a signal processing technique. 

Here, a comprehensive study focuses on the expansion and intensity of aquaculture 

practices by evaluating land use land cover dynamics, aquaculture water quality, 

subsoil properties, and the effect of aquaculture sludge on clays. Further, prediction 

models assess the study area's toxic ammonia levels using standalone and hybrid soft 

computing techniques better to understand the environmental impact of the un-

engineered aquaculture ponds. 

1.4 RESEARCH OBJECTIVES 

The current research investigation's proposed objectives are as follows: 

(1) To assess the water quality in order to understand aquaculture expansion rate 

and its intensity in the study area by conducting lab tests, field investigations 

and topography mapping. 

(2) To characterize subsoil in the aquaculture ponds using physicochemical tests, 

one-dimensional swell consolidation tests, hydraulic conductivity tests, and 

aquaculture sludge exposed clays behavior to understand the aquaculture soils 

quality. 

(3) To estimate the aquaculture ammonia levels using hybrid soft computing 

techniques. 

1.5 ORGANIZATION OF THE THESIS 

The thesis comprises of eight chapters, list of references, appendix, and annexure. A 

brief description of each chapter is presented here. 

Chapter-1 introduces the intensive inland aquaculture ponds, site description, 

aquaculture scenario in the study area, and the need for the present study have been 

discussed. 
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Chapter-2 presents the comprehensive review of aquaculture practices in India and 

their consequences on the environment, recirculating aquaculture systems, and 

application of soft computing techniques in aquaculture. 

Chapter-3 Outlines the procedures used to assess aquaculture ponds in the western 

Godavari delta region of Andhra Pradesh. It includes details on the preliminary 

investigation with questionnaire and topography surveys, experimental techniques, 

methodologies, data standardization, consistency checks, and the methodology of soft 

computing models utilized in the study. 

Chapter-4 presents the results of the physicochemical characteristics of the intensive 

aquaculture pond waters and their quality assessment using the water quality index. 

Chapter-5 explains the findings of the effect of aquaculture sludge on clays in terms 

of swelling and hydraulic conductivity. In addition, microstructural analysis was 

carried out to know the effect of aquaculture sludge leachate on the clay morphology. 

Chapter-6 illustrates the application of DWT-POA hybrid soft computing model to 

predict ammonia levels in the aquaculture ponds. 

Chapter-7 presents the significant conclusions drawn from the study. 

Recommendations for the future research have also been presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

In many countries in the Asia and the Pacific countries, fish and seafood have been 

considered an integral part of traditional cuisine. Generally, capture fishing in the 

marine, freshwater rivers, and inland aquaculture ponds have produced most fish and 

seafood. In addition to providing food and nutrition, fishing and fish farming are 

significant sources of income for many people. Many Asian nations have adopted 

inland aquaculture as a significant and quickly expanding economic activity to meet 

the rising domestic and global demand. India now ranks second in the world for 

aquaculture production due to significant improvements brought about by technology 

in inland aquaculture (FAO, 2021). An important shrimp species called the giant tiger 

shrimp (Penaeus monodon) is raised in India. Additionally, the government of India 

authorized the large-scale farming of white-leg shrimp (Penaeus vannamei), an exotic 

shrimp species, in 2009 following a thorough risk assessment by the central institute 

of brackish water aquaculture (CIBA) in 2003 (Salunke et al. 2020). 

2.2 AN OVERVIEW OF AQUACULTURE PRACTICE IN INDIA 

Aquaculture in brackish or salt water has flourished in India. India's tale of export 

growth is primarily attributed to shrimp aquaculture in brackish water (Salunke et al. 

2020). Based on the Department of Fisheries, India reported that farmed shrimp 

production increased from 20 metric tons in 1970 to 7.47 lakh metric tons in 2020, 

adding significantly to the INR 46,662 crores in fisheries export revenues, which has 

seen tremendous expansion over the past few decades. Since the country barely uses 

about 13% of its 1.42 million ha of brackish ecosystem, brackish water aquaculture 

has a lot of opportunities. Therefore, the Government has concentrated on boosting 

current fish production from 0.7 million metric tons to 1.10 million metric tons by 

2025 to use its potential fully. By 2025, a total of 45000 ha of brackish water area 

would be included, increasing present productivity from 4 tons/ha to 8 tons/ha to 

achieve a production of 15 lakh metric tons. This will need to use the 3.9 million ha of 
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estuaries and the 0.5 million ha of coastal mangrove regions accessible in the nation 

to cultivate finfish and shellfish. Prasad et al. (2019) reported that in India, 3200 km2 

area of inland aquaculture ponds in 2017, which more than 90% of the total 

aquaculture production from four states such as Andhra Pradesh, West Bengal, 

Gujarat, and Tamil Nadu. Figure 2.1 shows the production stats of the leading states 

in India (MPEDA, 2022). 

 

Figure 2.1 Aquaculture production (metric tons) of leading states in India 

The development of the newly formed state Andhra Pradesh after state bifurcation has 

many urgent needs, such as using natural resources, earnings from exports, more 

employment, and a better living environment. Moreover, inland aquaculture is one of 

the higher economic growth activities in the coastal delta region. The pervasive 

aquaculture has been accompanied by many disputes related to environmental 

concerns. Aquaculture contributes mainly through export earnings. Table 2.1 indicates 

a rapid growth in the production of fish and shrimps year by year, indirectly hints at 

the expansion of aquaculture practices in Andhra Pradesh. The significant 

contribution is from the West Godavari district, and mints share of 25.68% of total 

production in the A.P during the year of 2018 to 2019. 
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Table 2.1 Fish and shrimp production in Andhra Pradesh (WGFD, 2022) 

Year 
Fish and shrimp production in metric tones 

Andhra Pradesh West Godavari District 

2014-15 1978578 612616 

2015-16 2352263 731803 

2016-17 2766193 827226 

2017-18 3449558 1051754 

2018-19 4485200 1152201 

2.3 IMPACT OF AQUACULTURE ON ENVIRONMENT 

Inland aquaculture is one of the significant activities in the coastal region of India 

(Jayanthi et al. 2019; Prasad et al. 2019). In recent times, due to the demand for 

aquaculture-based food, economic growth of the state, and employment for local 

people, aquaculture practices were rapidly expanded, and farming intensity also 

increased.s 

In addition to intensive farming, factories that process shrimp and fish generate waste 

streams with various compositions and concentrations that significantly negatively 

influence the environment. Frequently, activities are performed yearly and with 

parallel production lines for various raw materials. Therefore, wastewater outflow and 

aquaculture solid waste are the two main environmental issues raised by the 

aquaculture sector. Figure 2.2 shows the overview of the environmental consequence 

with the aquaculture farming and processing. 

 

Figure 2.2 Overview of the environmental consequences with the aquaculture 

farming and processing 
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2.3.1 Aquaculture wastewater outflow consequences 

Current aquaculture practices in India are more concerned due to the negative impact 

on the environment. Further, without the stricter regime of monitoring leads to a 

hazardous environment. For instance, many researchers have shown significant 

studies in aquaculture ponds such as variations in the dissolved oxygen levels, 

salinity, temperature, pH, total dissolved solids, nitrates, ammonia, calcium, 

potassium, etc., which have effect on shrimp or fish (Kumar et al. 2012; Ariadi et al. 

2019). The most noxious and concern of the above parameters is total ammonia 

because abnormal levels of ammonia become toxic, thereby causing stress to aquatic 

species (Liu et al. 2020; Duan et al. 2021). Aquaculture effluents total ammonia 

bloom at the bottom of the ponds for many months, leading to highly toxic 

substances. It is essential for quality monitoring band assessment of healthy 

aquaculture ponds (Zhou and Boyd, 2015). Higher ammonia levels in the aquaculture 

pond led to phenoloxidase hemolymph antimicrobial activity, reduced dissolved 

oxygen, and growth disease in shrimps (Liu et al. 2020; Zhao et al. 2020). 

Furthermore, it causes a decrease in the shrimp survival rate, economic losses to 

aquaculture framers, and water pollution (Dauda et al. 2019; Chatla et al. 2020). 

Ammonia level depends on many factors such as pH, temperature, dissolved oxygen, 

total dissolved solids, and algal growth (Kim et al. 2006; Collos and Harrison, 2014). 

In aquaculture ponds, ammonia is usually generated due to many factors such as 

organic matter, uneaten feed, algae bloom, shrimp feces, decay of aquatic animals, 

and exogenous substances with nitrogen (Hu et al. 2012; John et al. 2020; Yu et al. 

2021). In municipal solid waste landfills, ammonia toxicity is the most concern 

(Esakku et al. 2006; Akindele and Sartaj, 2018). Ammonia is an inorganic pollutant 

that accumulates at the bottom of the aquaculture pond and landfills (Mook et al. 

2012; Akindele and Sartaj, 2018) (see Figure 2.3). Furthermore, ammonia leachate 

may affect the groundwater bodies (Kjeldsen et al. 2002). To monitor or evaluate the 

aquaculture pond ammonia, it is a predominance water parameter, not only for 

assessing the survival rate of shrimps, but also to know the level of water pollution 

(Karri et al. 2018). 
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Figure 2.3 Formation of ammonia in aquaculture ponds 

Jayanthi et al. (2018) reported that the intensive aquaculture practices in India cause a 

reduction in the mangroves, a threat to the environment, and a change in land-use 

patterns. The report results conclude that aquaculture practices should be monitored, 

and strict environmental regulations must be implemented for a better sustainable 

environment. Jayanthi et al. (2006) reported a case study on the effect of aquaculture 

practices on the Kolleru lake, one of India's major freshwater lakes. Before the state 

bifurcation of Andhra Pradesh, from 1967 to 2004, aquaculture practices (increased 

aquaculture area is 99.74 km2) in that region caused a severe environmental impact on 

the lake ecosystem. Moreover, no regulations for farming result from the watershed 

region's invasion by thousands of unlicensed aquaculture farms, open water regions 

are now difficult to recognize in satellite pictures. The following parts detail the 

condition before and after the commencement of developing the sustainable system, 

known domestically as "Operation Kolleru." To conserve the ecosystem capabilities 

and services provided by the Kolleru, "Operation Kolleru" was launched in 2006 to 

demolish the fishponds located throughout this area as part of the "repair of the lake" 

(Kolli et al. 2020). In recent years, many parts of the lake ecosystem were still under 

the burden of illegal intensive aquaculture farms. The data analysis suggests that, in 
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the present scenario globally, protecting freshwater bodies is much needed for future 

generations. 

Jana and Jana Santana (2003) reported that intensive aquaculture practices reduce the 

yield of the crops adjacent to the aquaculture bodies due to the effluents and salinity 

of the water. The wastewater should not be directly allowed into irrigation canals 

because there is a need for recirculating aquaculture system (RAS) to treat 

aquaculture effluents. Furthermore, using antibiotics in aquaculture is human 

hazardous because their presence in water will be available for up to six months. 

Aquaculture practices could generate various chemicals and minerals, negatively 

impacting the environment. Therefore, proper guidelines should be needed before 

assessing the impact of aquaculture practices on the environment (Piedrahita, 2003). 

This rapid phase expansion of aquaculture and its environmental implications has 

recently grabbed attention worldwide (Eng et al. 1989; Bhavsar et al. 2016; Nhu et al. 

2016). Many countries such as Bangladesh, Thailand, China, Mexico, Vietnam, and 

India face environmental issues with un-engineered aquaculture (Paez et al. 1998; 

Abdullah et al. 2017). 

Moreover, in Thailand, the Thai government banned inland shrimp culture due to 

environmental concerns (Eng et al. 1989; Szuster, 2006; Abdullah et al. 2017; 

Bhavsar et al. 2016). Aquaculture practices significantly influence the environment; 

many aquatic species presences were migrating and disappearing. Furthermore, 

freshwater bodies are being polluted with contaminants from aquaculture (Islam et al. 

2004). In some cases, a high concentration of chemicals causes severe deterioration in 

irrigation or drinking water quality, further affecting human health. However, to date, 

only a few research works have been published in India regarding the environmental 

aspects of aquaculture ponds. 

2.3.2 Aquaculture solid waste 

Aquaculture effluent and shrimp processing waste comprised most of the solid 

aquaculture waste. Figure 2.4 show the aquaculture solid waste characterization.  
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Figure 2.4 Aquaculture waste characterization 

The yield of the aquaculture farm was always influenced by the aquaculture method, 

feed dosage, feed rate, etc., and always contained excess feeds and fish faeces, which 

were further classified into suspended particles and settled solids (Wu and Song, 

2021). For instance, 1.4 million tonnes of fish feeds were used in China's aquaculture 

sector in the year 2015 (Wu and Song, 2021); however, because of feed coefficient 

restrictions, some of these feeds could not be eaten by shrimp and were accumulated 

at bottom of the pond. The aquaculture sludge was not routinely collected in the 

intensive aquaculture ponds. Instead, aquaculture sludge would be dumped directly at 

the adjacent pond embankment and into a nearby canal after being collected from the 

pond bottoms every three years.  

Around 70% of fish must be processed before exporting or consumed, the generation 

of processing waste was unavoidable. shrimp heads, shells, viscera, fins, tails, and 

bones generate most of the processing weight, accounting for 20% to 80% of raw fish 

weight depending on processing techniques and types of fish (Wu and Song, 2021). A 

report by the Food and Agriculture Organization of the United Nations (FAO 2019) 

states that about 9.1 million tonnes of processing waste are thrown away each year. 

Moreover, many farmed fish deaths in several countries were mostly caused by 



14 

 

infections and other diseases that were categorized as processing waste (Solli et al. 

2014). For instance, in 2015, there were over 50 million dead fish in Norwegian 

aquaculture farms (Solliet al. 2018). Unfortunately, most of the solid waste is 

typically dumped as garbage, which represents a significant resource waste and may 

worsen environment (Wu and Song, 2021). 

2.4 RECIRCULATION AQUACULTURE SYSTEM 

The development of inland aquaculture has enormous potential to contribute to the 

sustainable feeding of the world's expanding population. However, many studies have 

indicated that aquaculture production has negative repercussions, particularly its 

effects on the environment and the ecosystem (Luo et al. 2018; Sampantamit et al. 

2020). For instance, the rapid expansion of aquaculture systems is a significant factor 

in the deterioration of mangrove forests, the loss of natural ecosystems, and the 

decline in biodiversity (Sharma et al. 2022). Additionally, aquaculture production 

often concentrates on a small number of chosen species, resulting in a decline in 

biodiversity and nutritional richness. Additionally, ponds continue to have an ever-

increasing carbon impact without engineered aquaculture as the demand for aquatic 

food has increased with population and economic growth (Boyd et al. 2020; Iber and 

Kasan, 2021). These factors have led to a steady interest in the environmental 

sustainability of inland aquaculture techniques. The high concentration of ammonia 

and nitrates in contaminated water results from intense aquaculture operations. 

Recently the potential application of geosynthetic materials in the aquaculture system 

as a seepage control or water barrier is gaining importance. However, in Indian 

aquaculture practices were still exist in traditional methods. Martins et al (2010) 

proposed recirculating aquaculture system (RAS) in Europe for new developments 

based on environmental sustainability. Up to 15% of the entire water volume would 

be changed daily in a RAS for water treatment and reuse (Groenveld et al. 2019; 

Yogev et al. 2020). It typically consists of pumps, storage tanks, and biological and 

mechanical purification elements, and it may also incorporate additional water 

purification components that enhance the system's capacity to prevent disease. These 

methods can be employed when there is a lack of sufficient land or water or when the 

ecosystem is not perfect for the fish or shrimp being raised (Granada et al. 2016). 
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Additionally, the RAS increases the feed exchange rate while lowering wage costs 

and those associated with temperature changes in water. However, to operate, the 

RAS needs significant upfront and ongoing financial commitment and highly skilled 

technical personnel. 

2.4.1 Mechanism of RAS system 

The mechanism of the RAS includes two separate geotextile bag systems that were 

evaluated as a means for capturing and dewatering bio-solids in the effluent stream 

from RAS. Each geotextile bag system used a high molecular weight cationic 

polyacrylamide polymer as a flocculant-aid. The two systems were operated under 

freshwater and brackish water conditions (Guerdat, 2013). Geotextile bag systems 

using flocculant-aids are an efficient means for capturing and dewatering waste solids 

from RAS effluents. Optimized geotextile bag system designs depend on flow rate, 

feed rate, solids dewatering time, and the fate of the treated effluent. This evaluation 

will aid in predicting the expected performance and determining the appropriate size 

of a geotextile bag system. The type of treatment required downstream from the 

geotextile bag system used for solids capture in a RAS wastewater treatment system 

will depend on the intended fate of the treated effluent. The geosynthetics in the form 

of geotextiles, geobag, and geotubes can also be commonly used for aquaculture 

waste management (Hsieh, 2016). 

2.4.2 Advantages of RAS system 

The benefits of the RAS in this approach might be as follows:  better environmental 

management of the production process to ensure optimal development, minimal water 

use per tonne of shrimp produced, containment and treatment of effluent, and year-

round operation are just a few of the goals (Gunning et al. 2016). In RAS system, re-

used water after undergoing treatment. RAS offers the possibility of achieving high 

production, maintaining optimal welfare conditions, and creating a minimal 

ecological impact. Recirculating systems, which come in a wide range of system 

designs and quality levels, are revolutionary innovations. In these systems, 

maintaining adequate water quality, water recycling, structural management of 

processing equipment, waste storage and disposal, and disease outbreak control are 
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crucial operational challenges. In this due consideration, researchers and practitioners 

working on practical RAS solutions aim to minimize energy usage, optimize energy 

savings, and thus develop the environmentally benign RAS, generating 

environmentally benign emissions, improving industrial capacity, protecting natural 

resources, and increasing energy and exergy effectiveness (see Figure 2.5). These 

initiatives are required to improve the RAS's energies, environmental sustainability, 

and energy nexus. 

 

Figure 2.5 Potential of RAS system in inland aquaculture ponds  

2.5 REVIEW OF APPLICATION OF SOFT COMPUTING IN WATER 

QUALITY MONITORING 

Due to the complexity of water faces more significant uncertainty. The below sections 

present the brief details of the different successful soft computing approaches in the 

water quality assessment. 

2.5.1 Artificial neural network (ANN) 

The most promising and well-known method that uses the neural network principle is 

called ANN. The appropriate features of models, including regression, classification, 
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pattern generation, and clustering, are responsible for the network's appeal. To 

analyze and process any model, ANN typically consists of three parts: the input layer, 

hidden layer, and output layer. Furthermore, the bias and weight functions determine 

how accurate the ANN model performs. The linear regression equation in neural 

networks is Y= mX + n, where m and n are the coefficient and slope, respectively. 

Data will be learned and trained based on the function to produce appropriate 

predictions with the least inaccuracy. The water quality, groundwater potential 

mapping, and contaminant rate were all accurately predicted by ANN models (Palani 

et al. 2008; Ahmed et al. 2019; Pham et al. 2021). 

2.5.2 Convolutional neural network (CNN) 

CNN is a unique tool used mostly for image processing using pattern recognition. 

CNN has shown promising results in numerous medical, environmental, and 

engineering domains. The CNN technique was extensively used in geotechnical 

engineering to classify trash, identify earthquakes, predict slope failure, screen for 

pollution, and analyze clay crack patterns. Convolution, polling, flattening, fully 

linked, and output layers are all present on CNN. The convolution layer would aid in 

extracting features from the input layer and filtering each field in CNN models, 

including features like ANN models. Additionally, network neurons change to 

recognize and detect the overall answer. Yang et al (2021) developed the CNN model 

for prediction of water quality parameters with the higher performance. 

2.5.3 Support vector machine (SVM) 

SVM is one of the most sophisticated algorithms for making predictions using 

supervised training and pattern recognition. The most excellent technique for 

classifying and separating data after obtaining raw data is SVM. LINEAR, SIGMOID, 

and RBF were the most frequently utilized kernel functions in SVM-based 

classification. The performance of classification models might be improved by using 

these kernel functions to produce non-linear surface separations. SVM successfully 

resolves pattern recognition and matter classification issues in environmental 

engineering. The water quality, groundwater potential mapping, and contaminant rate 
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were all accurately predicted by ANN models are important contributions of the SVM 

tool (Abobakr et al. 2019; Hasanpour et al. 2022). 

2.5.4 Random Forest (RF) 

By using decision trees for training, random forests operate on the notion of 

resampling the original data. The decision trees are constructed using boosting so that 

each new decision tree works to minimize the errors of the prior one. Each decision 

tree updates the residual mistakes based on what it has learned from its past. 

Consequently, the tree that develops later will likely gain knowledge from revised 

regressions. Additionally, the individual decision split received a random distribution 

of the RF properties. As a result, features decreased the correlation between the 

decision trees. Additionally, the learning process increases the model's performance 

and prediction power. With the help of additional features, RF can effectively model 

high-dimensional complex data that contains missing, category, and binary 

information. Random forests (RF) have been modified, and adaptive random forests 

(ARF) are the most effective classifier for data streams. The ARF's dynamic method 

can help the data as it changes and enables the training of new trees to provide the 

best overall answer. In geotechnical engineering, multi-linear regression prediction 

models have been effectively used to forecast soil water infiltration, water quality, 

groundwater potential mapping, contaminant rate, soil salinity, soil erosion, and soil 

categorization (Ahmed et al. 2019; Deng et al. 2021; Xu et al. 2021; Hasanpour et al. 

2022). 

2.5.5 Genetic algorithm (GA) and particle swarm optimization algorithm (PSO) 

The most effective algorithms in history are genetic algorithms, which are widely 

used. In addition, GA is the first population-based algorithm. The GA searches for a 

global solution with convergence outcomes based on the genetic selection theory. 

Due to the few performance parameters that could be changed, PSO was a successful 

algorithm that was inspired by nature in many fields. Similar to the population of 

random search, PSO operates on the GA principle. However, PSO searches the issue 

space using velocity coefficients that are given to random particles. PSO discovered 

accurate predictions in small datasets (Deng et al. 2021). 
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2.5.6 Fuzzy logic (FL) 

The four promising elements of fuzzy logic are fuzzification, rule base, inference 

engine, and defuzzification. Fuzzy logic is a well-known model. In the FL technique, 

the input data was first divided into various datasets (fuzzified), and then relationships 

between the input and output variables were developed (rule base). Learning with 

rule-based and reducing errors (inference engine) were then performed. Finally, the 

outputs were produced from the fuzzy inference (defuzzification). The FL system can 

approximate the data with its generalization behaviour rather than duplicate the 

laboratory data. Due to the robust non-linear simulation performance and the 

inclusion of fuzzy language rules, the FL system has recently gained prominence. The 

environmental engineering field is drawn to these non-linear models (Trach et al. 

2022). 

2.5.7 Application of soft computing in aquaculture 

Aquaculture has gradually progressed towards an advanced and intelligent path across 

the globe due to developments in automation and intelligent technology. As a result, 

the breeding environment has gradually changed to a sustainable aquaculture industry, 

significantly increasing aquaculture efficiency (FAO, 2018). Despite this, the 

substantial labour required, farming lifeforms, the aquaculture ecosystem, and other 

unpredictable elements have all impacted aquaculture. Due to those mentioned above, 

there are now several issues with aquaculture, including water contamination, disease, 

and shrimp nutrition (Lafferty et al. 2015). Intelligent aquaculture will be dedicated to 

addressing issues with fisheries sustainability and enhancing aquaculture productivity 

as a component of the agricultural revolution (Yang et al. 2020). When used with 

powerful computers, machine learning technology can mine data for high-dimensional 

characteristics and depth information, resulting in a solution for advanced automation 

aquaculture and heralding a new age for the fishery industry (Liakos et al. 2018).  

Machine learning is essential to artificial intelligence and can be learned without 

much programming, and it is a crucial technology for creating an intelligent decision-

making system. Machine learning has been adopted in several fields, including 

medicine (Cleophas et al. 2013), civil engineering (Vadyala et al. 2021), data security 
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(Pan et al. 2019), robotics (Alsamhi et al. 2020), and expert systems (Gu et al. 2019) 

as a result of the ongoing development of online data and low-cost informatics. 

However, traditional machine learning algorithms significantly rely on manual 

programming and cannot accomplish specific aquaculture objectives (Spanig et al. 

2019). Therefore, aquaculture has been maximized by tightly integrating modern 

information systems, including the Internet of Things, soft computing, and cloud 

computing, to establish an intelligent fishing production mode. The efficient fusion 

and advancement of soft computing algorithms and the suggestion of deep learning as 

cutting-edge technologies for aquaculture systems have recently opened a new route 

for advanced automation aquaculture (Bradley et al. 2019). Figure 2.6 shows the 

structure of application of machine learning in aquaculture. 

 

Figure 2.6 Framework of soft computing application in aquaculture 

Recent years inland aquaculture ponds were more concern about the higher 

concentration of ammonia due to mismanagement activities. Aquaculture ponds will 

generate ammonia due to many factors such as organic matter (uneaten feed, algae 

bloom, shrimp feces, decay of aquatic animals, and exogenous substances with 
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nitrogen. Even in municipal solid waste landfills, ammonia toxicity is the most 

concern. Ammonia is an inorganic pollutant that accumulates in the bottom of the 

aquaculture pond and landfills. Further, ammonia leachate may affect the groundwater 

bodies in the long term. Ammonia is a predominance water parameter for assessing 

the survival rate of shrimps and to know the level of water pollution. So, prediction 

models are much needed to assess the water quality to make sustainable water 

management. Nowadays, artificial intelligence is gaining potential in solving complex 

problems. For example, measuring ammonia, many procedures such as 

spectrophotometer, electrochemical sensors method, sodium hypobromite method, 

and Nessler's reagent method are in vogue. However, due to the long detection time, 

toxic chemicals usage in test procedures, and weak scattering of the traces with 

interference signals, ammonia content is a complex task. 

The mentioned artificial intelligence approaches have been proposed to predict 

ammonia levels and their potential in ammonia prediction. Goyal and Garimella 

(2019) reported the application of artificial neural networks (ANN) to compute 

ammonia-water thermodynamic properties. The predicting results found high 

accuracy in estimating the thermodynamic behaviour of ammonia-water mixtures 

with the best fit between input and output variables. Huang et al (2020) stated that in 

the wastewater treatment plant, ammonia nitrogen (NH4-N) is a significant concern. 

In the recent past, many soft computing methods were used to assess ammonia 

nitrogen based on the mean square error (MSE) approach. However, it isn't easy to 

evaluate accurately due to complex statistical information. So, the best alternative, 

probability density function-based fuzzy new network prediction results, was accurate 

and stable compared with other approaches. Pham et al (2021) suggested that adaptive 

neuro-fuzzy system (ANFIS) and ANN could be helpful to predict the water quality 

index effectively, and it can also be used for better water resource management by the 

policymakers. 

Moreover, it decreases the running time and testing phase. Yu et al (2021) developed 

an intelligent model to predict ammonia nitrogen levels in aquaculture ponds. His 

developed model revealed that the extreme learning machine (ELM) and improved 

particle swarm optimization algorithm (PSO) show the best convergent fit between 
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input and output variables. Further, and could be helpful for real-time prediction of 

ammonia levels in the aquaculture ponds. 

Other hand, potential application of soft computing tools is emerging to predict water 

quality parameters due to the rational and systematic approaches. Abyaneh (2014) 

reported that water quality parameters could be predicted using multi-linear regression 

(MLR) and artificial neural networks (ANN). By comparison, MLR and ANN 

models, for predicting the BOD and the COD, ANN prediction models were better 

convergent than the MLR prediction models. Tomic et al (2016) reported that 

assessment of BOD in the Danube River, Serbia, using general regression neural 

networks (GRNN), has convergent results with fewer datasets for training and 

validation. Moreover, even it could be helpful for real-time prediction of BOD values 

in the Danube River, Serbia. Other hand, at the sewage treatment plant, effluents rate 

can be predicted using an advanced PSO-RRBF neural network model, which gives 

more efficient findings due to the compact structure of the model. PSO-RRBF model 

for predicting BOD is simple, reliable, and rational to develop correlations between 

BOD and dependent variables. PSO-ANN-based models are best suitable to predict 

the heavy metals concentration in the Toyserkan Plain, Hamedan Province. In PSO-

ANN-based models, the ANN-based model can enhance by the training data with 

PSO algorithm to achieve better performance and convergence. Moreover, in a few 

cases, water parameters have complex behaviour and depend on many factors. So, 

using ANN, support vector machine (SVM), and ANFIS reduces efficiency in solving 

complex nonlinearity problems. To counteract this, the datasets were pre-processed to 

reduce the noise with the help of potential wavelet transformation analysis. This 

method could help divide into multiple components with the multiresolution 

decomposition. A few studies have investigated the wavelets coupled with soft 

computing methods to predict the complex variables (Barzegar et al. 2016; Feng et al. 

2020; Zhou et al. 2020). ANN-wavelets models can be used to predict water quality 

parameters (Alizadeh and Kavianpour, 2015; Barzegar et al. 2016; Rajaee et al. 2020) 

and salinity intrusion saltwater interface (Yoon et al. 2017; Zhou et al. 2020). 

Similarly, both ANN-wavelets and SVM-wavelets can predict the fluoride and 

phenolic contaminants in the rivers (Barzegar et al. 2017; Feng et al. 2020). 
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2.6 SUMMARY OF LITERATURE 

The literature study revealed that the studies on aquaculture methods conducted by 

various researchers are location specific (Jiang et al. 2022). The contaminants from 

aquaculture ponds rely on various factors, and each inland aquaculture zone is distinct 

in its way (e.g., the intensity of farming, topography conditions, etc.). In most case 

studies, 55% of the data set was from China, followed by Bangladesh with 22% (see 

Figure 2.7). However, Indian case studies mainly focus on economic impacts and 

management implications rather than environmental ones (Jayanthi et al. 2019). 

Research on ecological aspects of aquaculture ponds in India is recent, beginning in 

2015, and flagged only four publications. So, studies on the environmental impact of 

aquaculture have significant potential for future sustainable development. 

 

Figure 2.7 Publications at the intersection of environmental impact, climate 

change and sustainability per journal per year from 2016 -2021 
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CHAPTER 3 

METHODOLOGY 

3.1 GENERAL 

This chapter presents the methodologies adopted for determining the rate of 

expansion of aquaculture, intensity of culture, physicochemical properties of 

aquaculture water, pond subsoil characterization, and effect of aquaculture sludge on 

clays. The other highlights of this chapter are the future ammonia levels in intensive 

aquaculture, which are predicted using soft computing techniques. 

3.2 PRELIMINARY INVESTIGATION 

In this study, a preliminary investigation was carried out with a questionnaire and 

topography survey. The questionnaire helps collect data on aquaculture activities, land 

use patterns, and potential pollution sources that may impact water and soil quality. 

The questionnaire can inquire about the types of aquaculture farming in the study 

area, including information on the scale of the pond, seed and feed aspects, fertilizer 

use, and probiotic application. A topography survey provides detailed information 

about the possible water contamination pathways. By collecting data through 

questionnaires and conducting topography surveys, researchers can better understand 

the study area's socioeconomic context, land use practices, potential pollution sources, 

and the physical landscape. This knowledge serves as a foundation for the subsequent 

assessment of water and soil quality, allowing for a more comprehensive and 

informed analysis of the factors influencing environmental conditions in the study 

area. 

3.2.1 Questionnaire survey in the field 

The preliminary investigation was conducted to collect the field farming practice data 

based on questionnaire interviews in the 40 locations and designated the following 

locations with the sample Id listed in Appendix-I. The locations for the questionnaire 

survey were selected based on factors such as spatial distribution, ponds density, and 

potential pollution sources. This ensured representative coverage of the study area and 
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captured variations in socioeconomic, land use, and environmental characteristics. 

Selecting specific locations within these regions utilized a random sampling technique 

to reduce bias and ensure a fair population representation. Moreover, a structured 

questionnaire was used for standardized data collection, including participant 

instructions, field visits, and data review for accuracy and consistency. According to 

the aquaculture practice, general variables were: 1) chemicals and biological products 

used, 2) feed/acre, 3) seed/Acre, 4) water source in and out, 5) lime usage, 6) salinity 

range, 7) the number of aerations per acre, 8) environmental impact, and 9) 

sustainable concern. Based on the questionnaire survey, the study area was 

categorized into three zones such as traditional zone (Zone-I), semi-intensive zone 

(Zone-II), and intensive zone (Zone -III). 

The questionnaires included area or size of the pond, depth of the pond, the density of 

seed per acre, feed usage per acre, chemicals usage per acre, number of aerations per 

acre, lime usage, probiotics usage, disinfectants usage, number of times water change 

per acre, environmental impact, and sustainability concern. Based on the 

questionnaire survey, the intensity of the aquaculture practice was categorized into 

three zones: traditional farming (Zone-I), semi-intensive farming (Zone-II), and 

intensive farming (Zone-III), shown in Table 3.1. In the delta region of Andhra 

Pradesh, aquaculture mainly involves shrimp and fishponds. The individual fish tanks 

in the study ranged from 10 acres to 150 acres. Although ponds were huge, the 

effluents were low because fewer chemicals, probiotics, chemicals, and disinfectants. 

Shrimp ponds were the significant contribution of effluents because of the severe or 

intensive cultural practices. The shrimp ponds were operated continuously without the 

exchange of water for a minimum of two crops (six months). Every year, the 

sedimented water was discharged out before winter and summer. The quantitative 

analysis can state that intensive aquaculture practices can negatively impact the 

ecosystem. Most of the locations were fell in the severe or intensive zones. 

Agriculture or paddy fields were converting into shrimp ponds due to higher income-

generating through aquaculture and low paddy yield due to adjacent aquaculture 

pond's salinity. It was anticipated that collecting questionnaires from the authorities 

would not be accessible without farmers' support. 
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Table 3.1 Classification of aquaculture practices in the delta region of Andhra 

Pradesh 

Description 

Intensity of aquaculture practice (Penaeus Vannamei) 

Traditional 
Moderate or  

Semi-Intensive 
Severe or Intensive 

Area of pond (acre) 2-5 or < 5-10  10-20 or > 

Depth of water level in the 

pond (m) 
1-1.5 1-3 1.5-4 

Seed density (no/acre) 
10,000 – 20,000 

or < 
20,000 – 60,000 40,000 – 1,00,000 

Feed per acre (kgs) 600-850 1600-1700 2100-2200 

Survival rate (months) 2-3 or < 1-3 or <  1-3 or < 

No of crops per year 4 or < 3-4 3-4 

Aeration sets per acre 1-2 or < 2-4 4-5  

Production per acre per crop 

(tons) 
1-2 or < 1-5 4-8 

Lime used per acre per crop 

(kgs) 
5-10 or < 5-25 10-50 

Potassium/magnesium/calcium 

chlorides used per acre per 

crop (kgs) 

1-5 or < 5-10 5-25 

No of times chemicals used 

per crop 
2-4 or < 2-6 4-8 

No of times probiotics used 

per crop 
1-3 or < 2-8 4-12 

No of times disinfectants used 

per crop 
1-2 or < 1-4 2-6 

Salinity range (ppm) 0-4 4-6 5-9 

Water exchange per year 3-5 or < 3-5 2-3 

Environmental impact  Moderate High relative  

Sustainability concerns Moderate Low relatively low 
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The questionnaire results revealed that no guidelines or measures were considered 

before or during constructing a new aquaculture pond. The survey results also 

reflected the lack of proper communication between the aquaculture framers and 

environmental engineers to implement sustainable ecological advancements in 

aquaculture ponds. Similar trends were witnessed in other regions in India (Jayanthi et 

al. 2018). Moreover, nowadays, intensive usage of chemicals, minerals, antibiotics, 

and probiotics with no mentioned ingredients on the bags gives alarming negative 

signs towards the environment. Based on the visual examination of the bottom surface 

soil of the pond witnesses grey and orange colour due to the anaerobic sediment 

(ferrous iron). In most of the ponds in the delta region of Andhra Pradesh, before 

starting a new crop, large amounts of urea and lime are widely used. Lime is used to 

reduce ammonia concentration and decompose organic matter in the pond bottom soil. 

Lime is used to increase the alkalinity hardness and neutralize the acidity of the 

bottom ground. 

Moreover, aquaculture ponds are often classified based on the intensity of farming. 

Reported literature mentioned that pond bottom with less ammonia load and 

chemicals in the bottom is being classified as younger ponds (Jayanthi et al. 2019). To 

better understand the soil profile, physical, chemical, and biological parameters of 

soils should be tested. Another side, shrimp culture needs a brackish water 

environment for better yield. However, higher salinity levels in the aquaculture ponds 

have a significant effect on the yield of adjacent agriculture fields. From Table 3.2, it 

was observed that most of the locations were fell in the severe or intensive zones. The 

aquaculture intensity was expanding towards the northeast from the southwest. 

Agriculture or paddy fields were converting into shrimp ponds due to higher income-

generating and low paddy yield due to adjacent aquaculture ponds' salinity. 
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Table 3.2 Intensity of aquaculture practices 

Zones (Intensity of aquaculture practise) Sample Id 

Traditional V27, V28, V34, V35, V39, V40,  

Moderate or Semi-Intensive V7, V8, V9, V10, V19, V20, V21, V22, 

V23, V24, V36, V37, V38 

Severe or Intensive V1, V2, V3, V4, V5, V6, V11, V12, V13, 

V14, V15, V16, V17, V18, V25, V26, V29, 

V30, V31, V32, V33 

3.2.2 Topography survey 

A topographical survey is often used to describe the measurement of the surface of the 

Earth's features. Remote sensing uses tools and sensors to obtain data about a location 

or object from a distance, usually using satellite-based platforms. In this instance, data 

on the Earth's surface were gathered via remote sensing to evaluate the land use, land 

cover, surface temperatures, and vegetation indices. 

Researchers and field engineers can gain important information about various 

ecosystems' distribution, productivity, and health by undertaking a topographical 

survey utilizing remote sensing techniques to measure land use, land cover, surface 

temperatures, and vegetation indices. Decisions about land management, for example, 

where to prioritize conservation efforts, where and how to distribute resources for 

inland aquaculture, and where to concentrate revegetation efforts, can be made using 

this information. 

3.2.2.1 Land use and land cover 

The topography survey was carried out in the western delta region of Andhra Pradesh 

using the Sentinel-2A satellite data from the open-source United States Geological 

Survey (USGS) website, which produced images that were all geometrically corrected 

and taken at Level 1T. Furthermore, there is a year-long gap between each satellite 

image because of cloud cover or technically problematic scenarios. According to 

Nazarova et al. (2020), two factors were used to select satellite images for this study, 

including the requirement that the satellite images have a cloud inclusion percentage 
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of less than 10 percent and the requirement that the satellite image sequence is readily 

accessible for an extended period (see Figure 3.1). 

 

Figure 3.1 Methodology of land use and land cover mapping 

Due to its ease of use, authenticity in accuracy, and utility, a classification technique 

based on the Normalized Difference Vegetation Index (NDVI) has been utilized to 

produce land use and land cover (LULC) maps. In order to detect and calculate 

vegetation change throughout the investigation, the study used an NDVI criterion 

method to classify NDVI into five categories based on NDVI data and the analysis of 

Google Earth images (2017–2021). 

The accuracy evaluation is a crucial stage in determining the result of the 

categorization process. To make the best use of the data, the user of land-cover output 

must be aware of how accurate the result is. A confusion matrix (also known as a 

mistake framework) is a table of whole numbers arranged in columns and rows that 

compares the number of test objects (such as polygons, groups of pixels, or pixels) 

assigned to a given class to the actual classification as determined by ground 

inspection. Often, a classifier will receive various quantitative survey data from an 

error matrix. Producer's accuracy (PA), user's correctness (UC), precision and recall 

(PR), and kappa coefficient concepts and calculation methods have all been well-

established in the past (Feizizadeh et al. 2022). The Kappa coefficient is a statistical 

indicator of convergence between two maps (the reference map and the classified 
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map) that demonstrates how each classification varies from a randomized 

classification of class types. When calculating it, the entire error matrix is taken into 

account rather than simply the diagonal components, and non-diagonal items are 

included in the calculation due to row and residual column statistics. To find better 

accuracy of the classification, field examination was done in the 64 sites to understand 

the field scenario. the overall classification accuracy was more than 94.5%. Maps of 

2017, 2018, 2019, 2020, and 2021 were used to quantify the changing land-use 

patterns. Only a few studies have been done on the landscape transformation in 

Andhra Pradesh, especially in the Kolleru basin and Nellore region (Jayanthi et al. 

2019; Kolli et al. 2020). 

The Godavari River is primarily responsible for forming the canal network in the 

western delta region (Figure 3.2). For inland aquaculture ponds, the major canal 

catchments are Venkayya, Attili, Gostanadhi, and Narasapuram offer ideal conditions 

with a length of 72.65km, 36.47km, 66.77km, and 74km, respectively. Table 3.3 

shows the aquaculture catchment in the canal basins and the number of industries 

located. Among all the canals, Venkayya canal exhibits higher aquaculture catchment, 

and it is also located along the Upputeru river and Kolleru lake. The combination of 

dense canal networks and salinity intrusion from the Upputeru River creates favorable 

conditions for aquaculture ponds, particularly for brackish water species. With the rise 

of processing industries, aquaculture farmers have an added incentive to capitalize on 

the potential market demand. This symbiotic relationship between water resources, 

aquaculture, and industries can contribute to the region's economic development while 

promoting profitable aquaculture practices. 

Table 3.3 Canals aquaculture catchment areas and industries 

Canals catchment Aquaculture area (km2) Number of industries 

Venkayya canal 194.8 21 

Attili canal 35.02 7 

Gostanadhi 122.40 14 

Narasapuram 137.41 11 
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Figure 3.2 Study area canal network 

Many farmers who rely on the land for their livelihood live in the area, characterized 

by a network of rivers, canals, and rice fields. The patterns of land use and land cover 

in the delta region have changed significantly through time due to various natural and 

human influences (Kavya et al. 2019). A peer glance at the past study reveals that, 

before the state bifurcation of Andhra Pradesh, from 1988 to 2013, land use converted 

to aquaculture ponds was 13524 hectares (Jayanthi et al. 2018). In this study, the land 

use and land cover classification were performed using the Sentinel-2 satellite data. 

The land-use and land cover classification maps are shown in Figures 3.3 (a-b). The 

land-use patterns were dominated by aquaculture throughout this study. Aquaculture 

ponds are practiced in this region, occupied an area of 723.97 km2 in 2017 and 

increased by 6.98% from 2017 to 2021 (see Fig. 3.4).  
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Figure 3.3 Land use and land cover maps of study area (a) 2017, (b) 2021 
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Figure 3.4 Land use and land cover classification of study area 

From Figure 3.5, between 2017 and 2021, the area geared to aquaculture ponds 

expanded by 54.35 km2 (5435 ha), whereas agriculture shrank by 87.06 km2 (8706 

ha). Between 2017 and 2021, the built-up land area grew steadily, from 152.41 km2 to 

176.48 km2. 

From the present study, after state bifurcation, from 2016 to 2022, the land use 

converted to aquaculture ponds was 8725 hectares (87.25 km2) (see Figure 3.5). 

Prasad et al. (2019) reported in India 3200 km2 area of inland aquaculture ponds in 

2017. This shows that, one fourth of the India inland aquaculture ponds were in the 

western Godavari delta region. The aquaculture intensity was expanding towards the 

northeast from the southwest. Clear rapid urbanization is also apparent in the delta 

region due to the increase in the aquaculture processing industries, feed stores, and 

laboratories. The covered area of drains and their sediments did not show any 

considerable area changes with a loss rate of 0.2% to 0.3% each year because of the 

erosion of canals or ponds embankments. This is due to the no stringent regulations 

for converting agricultural lands into aquaculture ponds. So, an increase in the 

aquaculture practices in the delta region leads to a negative impact on the vegetation 

or croplands. This comparative analysis shows that future aquaculture practices face 

Aquaculture
Flooded

vegitation
Agriculture Built-up Others

2017 723.97 357.18 1455.51 152.41 323.38

2018 728.63 374.18 1421.86 157.82 329.87
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2020 752.4 381.25 1384.02 172.97 321.81

2021 778.32 395.46 1368.45 176.48 293.6
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severe conflict with the irrigation waterbodies and habitations. So, adherence to 

sustainable regulations is much needed for a sustainable environment and to avoid 

water conflicts. 

 

Figure 3.5 Aquaculture change detection in between 2016 and 2022 

3.2.2.2 Vegetation indices 

The most widely used vegetation indices obtained from remotely sensed information, 

such as satellite images, are the NDVI and the Soil-Adjusted Vegetation Index 

(SAVI). The near-infrared (NIR) and red reflectance measurements are divided by 

their sum to determine the NDVI. The range of NDVI values is -1 to 1, with higher 

values indicating more excellent vegetation cover. NDVI is frequently used to assess 

changes in land cover and land use and monitor vegetation's health and productivity. 

To account for the impacts of soil brightness on vegetation indices in places with high 

soil brightness, the NDVI was modified to create SAVI. Higher numbers denote 

higher amounts of vegetation cover; SAVI values range from -1 to 1. In arid and 

2016 2022

Aquaculture area

709.22 km2

Aquaculture area

796.13 km2
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semi-arid areas, where soil brightness can have a significant impact on vegetation 

indices, SAVI is very helpful. 

In agriculture, forests, and environmental monitoring, NDVI and SAVI are frequently 

used to evaluate vegetation cover, condition, and production and to spot changes in 

land use and land cover. They can also be used to estimate various biophysical and 

ecological characteristics, including leaf area index, biomass, and evapotranspiration, 

in conjunction with other remote sensing data. 

Many water-related indices have been developed and used in remote sensing to 

extract various water properties, including ABDI, AWE, MNDWI, NDAVI, and 

NDTI. Some of them concentrate on finding algal blooms, while others pay attention 

to the turbidity of the water. Because turbidity influences other water quality factors, 

it is one of the essential criteria in aquaculture pond waters. To reduce turbidity in 

inland aquaculture ponds, lime treatment was typically used to raise pH levels, 

facilitating optimal photosynthesis and quickly enhancing productivity. However, the 

water level becomes more turbid when the lime's flocculation action wears off 

(Chanda et al. 2019). 

Figures 3.6 (a-b) shows the vegetation indices such as normalized differential 

vegetation index (NDVI) and soil-adjusted vegetation index (SAVI) in the study in 

the period of 2017 and 2021. NDVI and SAVI values were reduced by -0.85 to -0.73 

and -0.91 to -0.78 from 2017 to 2021, respectively, which indicates the absence or 

unhealthy vegetation cover. Due to changes in water quality, aquatic vegetation, and 

algal growth, NDVI and SAVI readings in intensive aquaculture ponds are lower. For 

example, lowered NDVI and SAVI readings can be caused by increased algal growth 

brought on by high nitrogen levels from fish waste and feed inputs. Changes in water 

clarity and depth can also impact these parameters (Roy et al. 2019). On the other 

hand, good pond management techniques, including water exchange, silt removal, and 

input control, can produce greater NDVI and SAVI values (Roy et al. 2019).
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Figure 3.6 Vegetation indices change in the study area (a) NDVI, (b) SAVI 
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3.2.2.3 Water quality indices 

The Normalized Difference Turbidity Index (NDTI) was considered in this study as a 

suitable remote sensing technique to calculate turbidity for monitoring the water 

quality of inland aquaculture ponds and other types of water bodies. The NDTI, 

determined using the spectral reflectance values of the water pixels, is used to assess 

the turbidity in water bodies (Chen et al. 2022). It uses clear water and has higher 

electromagnetic reflectance in the green than in the red spectrum. As a result, the 

reflectance of the red spectrum increases along with turbidity. As a result, the green 

(band-3) and red (band-4) bands of Sentinel-2 are employed to build the NDTI raster 

in the current study, allowing for the computation of the NDTI value for each satellite 

overpass. 

The Sentinel-2 Multispectral Instrument (MSI) consists of 13 spectral bands, with 

spatial resolutions of 10 m for the visible and NIR, 20 m for the red edge and SWIR, 

and 60 m for the atmospheric bands. Its high-resolution multispectral products have 

extensively been used for water quality inversion and body mapping. High-resolution 

optical images from Sentinel-2 were made available by the Google Earth Engine 

(GEE) platform, which also offered a graphical interface development environment 

using JavaScript. The original script was improved by choosing the Sentinel-2 dataset 

and corresponding parameter NDTI computations. 

From Figure 3.7, it was observed that both the fishpond and shrimp pond normalized 

difference turbidity index (NDTI) values varied with the seasons. The study fishpond 

consists of 5-month-old livestock (Rohu fish) crop, which exhibits higher NDTI 

values before and after monsoons. By comparison, the fishpond shows higher NDTI 

values than the shrimp pond. This is because in the study area, the shrimp pond relies 

on the feed in the form of pallets, and in the case of the fishpond, the feed was powder 

form packed in a bag with pores and submerged into pond water, causing more 

turbidity. Profitable aquaculture is also severely constrained by the poor quality 

of feed and fertilizer sources and the high-water turbidity, which diminishes the 

availability of natural food sources and oxygen (Pucher et al. 2016; Abdelrahman and 

Boyd, 2018). 
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Figure 3.7 NDTI values of (a) fishpond (b) shrimp pond 

3.2.2.4 Land surface temperatures (LST) analysis 

Regions with intensive aquaculture are frequently described as fragile eco-

environments. Due to their great sensitivity to climate change, aquaculture ecosystems 

respond to global climate warming earlier than the adjacent agricultural lands, making 

them the perfect indicators for relevant research. As a result, concerns about global 

climate change that affects aquaculture areas are becoming more widespread, which 

has led to the creation of numerous political and scientific sustainability agendas, 

including collaborative regional organizations, seminars, and initiatives (Ahmed et al. 

2019). 

Intensive aquaculture ponds, one of the world's most fragile ecosystems, play a 

critical role in providing essential ecosystem services, such as nutrient-rich food and 

export revenue. However, the consequences of human occurrence and climate change 

significantly impact these amenities. The most noticeable feature connected to these 
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impacts is the poisoning of surface waters, explosive growth, and the increase in 

harmful ammonia levels. 

Aiming to statistically comprehend the geographical and temporal trends of the 

climatic environment, increasing focus has been placed on the extensive inland 

aquaculture ponds, which are of particular importance in the delta region of Andhra 

Pradesh, over the past ten years. For analysing these changes, meteorological 

variables such as relatively close air temperature and rainfall data are crucial proxies. 

Furthermore, such warming patterns have also been found based on measurements 

from weather data for both the average and the high surface air temperature. In order 

to help decision-makers develop effective adaptation measures for the changing 

circumstances therein, it is crucial to comprehend the positive and negative 

implications of climate change on the environment from intense aquaculture 

production. 

Satellite remote sensing, which offers geographically adjoining high-accuracy and 

high-resolution data, overcomes the limitations, especially in areas with a higher 

concentration of aquaculture. As a result, remote sensing represents an alternative 

method for tracking the evolution of surface environments and their reactions to 

climate change. For defining the geographical and temporal volatility of the surface 

thermal conditions and analysing its response to climate change, land surface 

temperature (LST) measurements based on thermal remote sensing are now essential. 

In Bechtel's (2015) report, they demonstrated the potential uses of those parameters in 

global climatology and evaluated their influencing factors. They used the annual 

temperature cycle (ATC) to acquire the yearly LST cycle parameters from 

observations made with the Moderate Resolution Imaging Spectroradiometer 

(MODIS). In monitoring and evaluating the urban thermal environment, identical 

studies can be found. Although the impacts of changing land cover on the LST are the 

focus of analyses of LST fluctuations, interannual climate variability's impact on the 

changing pattern should also be considered. 

The temperature map was generated based on the India Water Resources Information 

System (India-WRIS) data. Due to its capacity to provide daily global coverage, the 
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MODIS LST product is frequently used in regional and international investigations. 

The best option for characterizing the LST temporal and geographic variability is this 

product, which has a relatively good estimation accuracy according to prior validation 

tests. It is generally known that the local atmospheric driving environment has a major 

impact on the LST in addition to surface thermal characteristics. However, cloud 

cover can easily taint the thermal infrared readings, leading to numerous gaps in the 

average temperature measurement. As a result, these discontinuous LST data make it 

difficult to comprehend the surface thermal conditions and their dynamics. Due to the 

significant influence of the atmospheric forcing environment, a single comparison 

with data made on a particular day cannot accurately depict the true variance of the 

thermal environment. Using periodic data at longer intervals should be preferable to 

using instantaneous values. 

The LST parameters help define the geographical and temporal fluctuations in the 

surface thermal environment because they give annually periodic LST information 

connected with the irradiance and climate variability conditions. 

Climate change is a significant concern globally, particularly in India; the highest 

temperatures are witnessed before the monsoon starts (i.e., from March to May). In 

the study area, it was observed that there had been a decreasing trend in the land 

surface temperatures (LST) in recent years (see Figure 3.8). The temperature map was 

generated based on the India Water Resources Information System (India-WRIS) 

data. The map shows that lower temperatures were witnessed in the southwestern 

region where aquaculture is dominant (see Figure 3.9). Humidity data collected from 

the India-WRIS of the western delta region indicates 100% humidity during the 

summers and 80 to 100% humidity during other seasons. Generally, a decrease in the 

areas of water bodies such as ponds and lakes increase the temperature, and vice-

versa. The pond area increased, and temperatures decreased in the current study area. 

Moreover, in shrimp farms, 4 to 5 aerator sets per acre were used to improve the 

dissolved oxygen in the ponds, which also decreased the surface temperatures. 

However, the higher humidity of the region allows heat waves. 
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Figure 3.8 Temperature of western Godavari delta region of Andhra Pradesh 

from 2000 to 2022 

 

Figure 3.9 Spatial distribution of temperatures in 2016 (pre-monsoon) 

Aquaculture catchments were identified as low-temperature zones because of their 

ability to absorb heat directly from solar radiation and their adequate moisture 

content. Furthermore, from 2000 to 2022, changes in the lowest LST on aquaculture 
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catchments in the Venkayya canal basin ranged from 38 oC to 29 oC, while the highest 

temperature recorded in the Attili canal catchment basin ranged from 35 oC to 38 oC. 

It means that LST fell as the number of operational aquaculture ponds in the 

Venkayya canal catchment zone increased. At the same time, LST in the Attili 

catchment increased due to an increase in the barren land area and degradation of 

agricultural cover. As a result, the LST varied dramatically with different biophysical 

compositions. 

3.3 WATER QUALITY ASSESSMENT IN THE AQUACULTURE PONDS 

Managing aquaculture ponds requires regular water quality assessments to maintain 

optimal conditions for aquatic species. 

3.3.1 Analysis of physicochemical characteristics of aquaculture water 

In the present investigation, a field survey was carried out to see the size of the 

aquaculture pond and cultivation days. Followed by a preliminary field investigation, 

water samples were collected from the ponds to determine the physicochemical 

characteristics of aquaculture waters. A total of 190 samples were tested, and datasets 

include sampling was collected from February 2021 to May 2021 (pre-monsoon 

consideration) (see Appendix - II). The pre-monsoon season was chosen to represent a 

distinct period in the annual hydrological cycle. By selecting samples from this 

specific season, we aimed to understand the typical water quality conditions during a 

particular period, which can provide valuable insights into contaminant variations. 

Moreover, the pre-monsoon season is characterized by relatively stable weather 

conditions, with no rainfall and consistent water flow patterns. This stability allows 

for more reliable comparisons of water quality parameters and for developing 

contaminant assessment models. Samples were obtained from aquaculture ponds in 

the western delta region of Andhra Pradesh. The water samples were collected in the 

middle of the aquaculture pond between 7 and 9 in the morning; samples were 

gathered from each area, then put in 250 mL plastic bottles that had been pre-rinsed. 

First, it was washed with 0.1N HCl, then rinsed with millipore water, before labelling 

clearly. To ensure appropriate sample preservation while in the field, each container 

was filled with a water sample, carefully sealed using a plastic bag, and placed right 
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away in a cool box with ice at 5 oC. The samples were refrigerated after being brought 

to the lab to prevent external contamination until the same day as sample collection or 

the following analysis period. The physicochemical characteristics such as pH, 

salinity, alkalinity, bicarbonates, total hardness, electrical conductivity, calcium, 

magnesium, and ammonia were tested. Salinity, pH, total dissolved solids (TDS), 

electrical conductivity (EC), and temperature were determined at the site because of 

their unstable behaviour. HANNA make portable instruments were used to determine 

pH (Model: HI 98129 pHep), EC (Model: HI 9833), TDS (Model: HI 9833), salinity 

(Model: HI 98331), and temperature (Model: HI 9833) (Dey et al. 2021). The 

spectrophotometer (Model: 2203, Systronics Double Beam Spectrophotometer, 

India) measured ammonia, nitrate, nitrite, and phosphates. Alkalinity, total hardness, 

calcium hardness, magnesium hardness, and chlorides are other parameters evaluated 

using the conventional titrimetric analysis method (Dey et al. 2021). 

3.3.2 Water quality index (WQI) evaluation 

The water quality of a pond or lake can be evaluated and summarised using various 

water quality measures based on Water Quality Index (WQI). Physical, chemical, and 

biological factors are commonly used to compute the index, including pH, dissolved 

oxygen, temperature, total dissolved solids, turbidity, nutrients, bacteria, and other 

contaminants. Globally, numerous distinct WQI models have been created and are in 

use. Each has its own unique set of parameters and grading schemes. While certain 

WQIs are more specialized and can only be used with specific water sources, such as 

rivers or lakes, others are more general. One of the most popular techniques for 

determining a WQI is the Arithmetic Weighing (AW) approach. This method gives 

weights to several water quality measures based on how significant they are to the 

water body's overall quality. 

In this study, a set of seven parameters, such as pH, TDS, alkalinity, Ca, Mg, total 

hardness, and nitrates were considered for determining the WQI because they reflect 

the total water quality of the aquaculture waters. The Weighted Arithmetic Index 

Method was used to compute WQI (Bora and Goswami, 2017; Chauhan and Trivedi, 

2022). The most frequently measured water quality variables were considered for 
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calculation in the weighted arithmetic water quality index approach. The following 

expression (1) is used to calculate the quality rating (Rn) for water samples: 

                                            𝑅𝑛 = 100 ∗
𝑉𝑛−𝑉𝑖

(𝑆𝑛−𝑉𝑖)
                                                        (1)                                                     

Where Vn, Vi, and Sn are, respectively, estimated value, ideal value, and standard 

allowable value of the nth parameter. The parameters' unit weight (Wn) is also crucial 

when calculating the WQI. The WQI aggregated the quality rating with the unit 

weight on purpose and expressed in equation (2) given by: 

                                  𝑊𝑄𝐼 = ∑RnWn/∑Wn                                                         (2) 

3.4 AQUACULTURE POND SOIL CHARACTERIZATION AND 

AQUACULTURE SLUDGE BLENDED CLAYS BEHAVIOUR 

In general, aquaculture water quality may depend on the pond subsoil. Therefore, 

assessing the subsoil in an aquaculture pond can provide valuable information on the 

soil's characteristics and suitability for the aquaculture ecosystem and contaminants 

load.  

3.4.1 Physicochemical analysis of soils 

Fifteen soil samples were collected in January 2019 from the ponds bottom in three 

separate aquaculture zones (Zone-1, Zone-2, and Zone-3). Four samples were 

collected from each pond, combined, and homogenized. Drying of the composite 

samples takes place at 60 oC in a mechanical convection oven. To prepare a portion of 

each dry sample for chemical analysis, it is crushed with a hammer-type soil crusher 

until it can pass a sieve with 2.0 mm apertures. According to American Public Health 

Association (APHA) standards, soil samples are analyzed (APHA, 2008). A pH meter 

was used to measure pH at a soil and distilled water suspension ratio of 1:5 (Model: 

HI 98129 pHep, HANNA meter India). A conductivity meter was used to measure 

electrical conductivity (EC) of soil and distilled water suspension ratio of 1:5 (Model: 

HI 9833, HANNA meter India). Flame photometer was used to measure the sodium. 

Total organic carbon (TOC) was measured using heating and oxidation with the 

potassium dichromate method, and phosphorus (P) and sulphur (S) was determined by 
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a spectrophotometer method. Total nitrogen (TN) was determined using a Kjeldahl 

distillation-titration unit. 

3.4.2 Geotechnical characteristics of soils 

Soil samples have been collected from various aquaculture bottom soils in the study 

area to determine the free swell index, plasticity characteristics, and hydraulic 

conductivity tests. 

3.4.2.1 Free swell index 

Free swell index (FSI), According to IS: 2720 Part-40 (2002), was calculated. The FSI 

tests were carried out using collected pond bottom clay that had been oven-dried and 

passed through a 425µm sieve. Petrol was utilized as the test's reference liquid. Two 

100ml tubular jars holding petroleum and distilled water were filled with ten grams of 

oven-dried pond clay that had passed a 425µm sieve. After allowing the jars to remain 

for 24 hours, the soil volumes in the kerosene (Vp) jar and deionized water (Vw) 

containing jars were recorded. The ratio of the difference between the quantities of 

soil in water and petroleum to the soil's volume in petroleum, expressed as a 

percentage, is known as the free swell index (FSI). It is expressed as: 

                             𝐹𝑆𝐼 =
𝑉𝑤−𝑉𝑝

𝑉𝑝
∗ 100                                                                        (3) 

3.4.2.2 Plasticity characteristics 

Plasticity characteristics such as liquid limit (LL), plastic limit (PL), and plasticity 

index (PI) were determined for expansive clay and clay blended with aquaculture 

sludge of 5%, 10%, and 15% of the dry weight of clayey soil. The plasticity 

characteristics were determined in accordance with the IS: 2720 Part-5 (2017). 

3.4.2.3 Hydraulic conductivity 

Tests for proctor compaction were conducted in accordance with IS: 2720 Part-7 

(2017). The hydraulic conductivity of the pond soil at their respective OMC and 

MDD was measured using the variable head permeameter method under IS: 2720 

Part-15 (2017). 
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3.4.2.4 One-dimensional swell-consolidation 

Consolidation characteristics were determined for expansive clay and clay blended 

with aquaculture sludge in accordance with the IS 1498 (1970). Many researchers 

have conducted experimental investigations on expansive clay and clay blended with 

additives to evaluate the rate of heave, swell potential, swelling pressure, and linear 

shrinkage (Rao and Thyagaraj, 2007; Nagaraju and Prasad, 2020). As mentioned in 

the above sections, the clay samples were blended with different dosages of 

aquaculture sludge. The clay samples were pulverized and sieved from the 425µm 

sieve compacted in the oedometer ring with a height of 2cm and a diameter of 6cm. 

The compacted soil was maintained with a 1.3g/cc prefixed density. To determine rate 

of heave, the sample was loaded to an initial surcharge of 5kPa. Rate of heave was 

observed at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 120, 240, 360, 1140, 2880, 

and 4320 min, until it attains maximum swell. 

The swell potential was determined by the ratio of change in the height of the 

specimen to the original height of the specimen (2cm). to evaluate the swelling 

pressure and compression index, stresses were applied (10kPa, 20kPa, 40kPa, 80kPa, 

160kPa, and 320kPa) to observe the deformations. Swelling pressure is defined as the 

pressure required to bring back the soil from the fully swollen state (maximum void 

ratio) to the original form of the sample (initial void ratio). Other series, in a similar 

fashion, the experiments mentioned above were carried out on clay lumps passing 

from a 2mm sieve to understand the behaviour of clay lumps exposed to aquaculture 

sludge. 

3.4.3 Microstructural analysis 

Scanning electron microscopy (SEM) analysis and energy dispersive spectrometry 

(EDS) was carried to know the grain sizes, grain boundaries, fractured surfaces, 

textures, and interface reactions. SEM and EDS analysis was performed using the 

high efficiency FESEM Gemini 300 apparatus. X-ray diffraction analysis was carried 

to know the embedded particles, residual stresses, texture, and mineralogical 

characteristics. XRD was performed using the Empyrean 3rd generation model 

apparatus with features of CuKα point focus, 2D detector using PIXCEL, and 3D 
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detector. The raw materials used in this study were expansive clay and aquaculture 

sludge (AS). 

3.4.4 Cation exchange capacity (CEC) 

The capacity of soils to retain and exchange cations like calcium (Ca2+), magnesium 

(Mg2+), potassium (K+), and sodium (Na+) with the soil solution is known as their 

cation exchange capacity (CEC). A soil sample's CEC can be measured quantitatively 

using the IS: 2720 Part-24 (1976) standard test procedure for assessing soil CEC. 

A soil sample is taken from the field, dried by air to a constant weight, and then 

weighed. After being pulverized to pass through a 2 mm sieve, the sample is kept in a 

clean, dry container. Placing a specified quantity of soil (usually 5–10 g) into a 50 ml 

volumetric flask. The soil is then completely saturated with ammonium acetate 

solution with a pH of 7.0. To ensure the soil is completely soaked, the beaker is 

covered and left to stand for 30 minutes. 

A known quantity of a solution that contains one cation, such as calcium or 

potassium, is put into the beaker after the soil has been completely saturated. After 

that, the beaker is agitated for another 15 minutes to permit cations from the soil and 

liquid to interchange. The solution is filtered after the exchange of cations has taken 

place, and the concentration of the cation in the solution is determined. The amount of 

cation adsorbed is divided by the sample's weight to determine the CEC, which is then 

represented as milliequivalents per 100 grams of soil (meq/100g). CEC values of 

clays and clays blended with aquaculture sludge was determined. 

3.5 SOFT COMPUTING AMMONIA PREDICTION MODELS WITH POA 

AND DWT-POA APPROACHES 

Stochastic population-based optimization techniques are among the most successful 

methods for solving optimization problems. Swarm-based, evolutionary, particle, and 

match optimization algorithms can all be categorized into one of four classes based on 

the key concepts and sources of motivation that went into their creation. 
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3.5.1 Pelican optimization algorithm (POA) 

To better understand natural phenomena, such as the swarm behaviours of animals, 

insects, and other living things, swarm-based optimization algorithms have been 

developed. One of the earliest and most well-known swarm-based algorithms, particle 

swarm optimization (PSO), was inspired by how birds forage food. According to the 

PSO, each population member's status is updated based on their best possible position 

and the right place of the entire population. The development of teaching learning-

based optimization (TLBO) came from simulating the dynamics of a classroom and 

the interactions between the teacher and students. Members of the population in 

TLBO are kept current through teacher training and share knowledge among 

themselves. Grey wolves' hierarchical organization and social behaviour during 

hunting are the sources of inspiration for gray wolf optimization (GWO). The 

hierarchy management of grey wolves is modelled in GWO using four sorts of 

wolves. Most are updated based on models of three primary feeding stages, such as 

the search for animals, surrounding prey, and eating prey. Based on the modelling of 

humpback whale group interactions and their bubble-net fishing technique, the whale 

optimization algorithm (WOA) is a swarm-based optimization algorithm that draws 

inspiration from nature. The three phases of hunting: looking for prey, surrounding 

prey, and humpback whale bubble-net eating behaviour are maintained for each 

population individual in WOA. A tunicate swarm algorithm (TSA) is created based on 

a model of jet engines and tunicates' swarm behaviour throughout the navigation and 

foraging phase. In TSA, the community is maintained based on four phases: 

minimizing search agent conflicts, migrating toward the best neighbour, convergent 

toward the search agent, and swarm behaviour. The marine predator’s algorithm 

(MPA) is modelled after how marine predators manoeuvre to catch food in the ocean. 

The population increase process in MPA has three stages because of the different prey 

and predator speeds. 

In 2022, Trojovsky and Dehghani introduced a novel stochastic nature-inspired 

optimization approach known as Pelican Optimization Algorithm (POA). This 

technique is renowned for its remarkable capacity to balance exploration and 

exploitation while seeking the global optimum (Trojovsky and Dehghani, 2022). The 
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fundamental principles behind POA stem from pelicans' hunting strategy and 

behavior, which serves as a source of inspiration for this innovative optimization 

method. By drawing from nature's wisdom, POA has demonstrated promising 

potential in solving complex optimization problems efficiently (Trojovsky and 

Dehghani, 2022; Alamir et al. 2023). The pelican is a massive bird with a long tongue 

and a wide pouch in its throat for catching and swallowing prey. This bird enjoys 

social interactions and lives in colonies with many hundred pelicans. Pelicans have 

the following physical characteristics: they weigh between 2.75 and 15 kg, are 

between 1.06 and 1.83 m tall, and have a wingspan between 0.5 and 3 m. When a 

pelican is extremely hungry, it will even consume seafood. Frogs, tortoises, and crabs 

are only occasionally eaten by pelicans. Pelicans frequently cooperate during hunting. 

When the pelicans locate their prey, they dive into it from ten to twenty meters. 

Naturally, certain species also drop to catch their prey at lower elevations. The fish 

are then forced into shallow water by the spread of their wings, making it easier for 

them to catch their prey. When capturing fish, the pelican's beak fills up with much 

water, which causes it to tilt its head forward before eating it to release extra water. 

Pelicans have become skilled hunters due to their clever hunting behaviour and 

tactics. The modelling of the strategy above served as the primary source of guidance 

for the creation of the proposed POA. 

Pelicans are included in the population of the proposed POA, which is an algorithm 

based on populations. Each population element represents a potential solution in 

population-based techniques. According to where they are in the solution space, each 

population member suggests values for the variables in the optimization process. The 

equation (4) randomly initializes population members based on the problem's lower 

and upper limits. 

𝑍𝑖𝑗 = 𝑚𝑗 + 𝑣𝑎𝑛𝑑 (𝑥𝑗 − 𝑚𝑗), 𝑖 = 1,2,3, …𝑛, 𝑗 = 1,2,3, … ,𝑚                                (4)               

where mj is the jth lower limit and xj is the jth target value of problem variables, n is 

the number of accessible populations, m is the number of decision variables, vand is a 

random variable in the range [0, 1], and Zi,j is the value of the jth variable indicated 

by the ith solution space. 
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Equation (5) uses the population matrix to identify the pelican individuals from the 

population within the proposed POA. The columns of this matrix reflect the suggested 

values for the random function, and each row represents a potential solution. 

      𝑋 =

[
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                                                       (5) 

If Xi is the ith pelican and X is the pelican population matrix. 

Each member of the population in the suggested POA is a pelican, which is a potential 

fix for the stated issue. As a result, depending on each potential solution, the given 

problem's objective function can be assessed. Equation (6) uses a vector known as the 

objective function vector to determine the values acquired for the objective function. 

where Di is the objective function value of the ith candidate solution and D is the 

optimal solution vector. The updated optimal solutions use the suggested POA, which 

simulates pelicans' behavior and strategies when approaching and hunting prey. Two 

steps of this hunting technique are emulated, including moving toward the prey and 

winging over the water. Figure 3.10 shows a flowchart of the proposed POA's various 

steps. 
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                                                                (6) 
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Figure 3.10 Process of POA model 

3.5.2 Ammonia prediction model using DWT-POA 

To predict the ammonia based on the availability of the metrices like area of the pond, 

cultivation days, pH, salinity, alkalinity, bicarbonates, total hardness, calcium, and 

magnesium, a forecasting model is needed. Since there are no predefined equations to 

calculate the ammonia using these metrices, a statistical model must build with soft 

computing approaches. In this study, a novel DWT coupled POA approach was 

proposed that merges the POA with the DWT, which introduces a unique and 

powerful combination of optimization and signal processing techniques, aiming to 

enhance the algorithm's efficiency and effectiveness in solving complex optimization 

problems (Trojovsky and Dehghani, 2022). Each independent input data which affect 

the output is processed through DWT to extract low and high frequency components 

and a statistical regression model is developed with the decomposed coefficients to 

predict the ammonia. The optimal values of the regression model are identified with 

POA algorithm to minimize the errors between the actual ammonia and predicted 
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ammonia of data collection. The input components for the regression model are DWT 

coefficients extracted when the data is processed through low pass and high pass 

filters. When the data is processed through DWT, approximated (𝑎𝑛), and detailed 

coefficients (𝑑𝑛) are extracted for each level of decomposition (𝑛) using equation (7)  

𝑊𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜑𝑎,𝑏
∞

−∞
(𝑡). 𝑑𝑡                                               (7) 

In equation (7), 𝑓(𝑡) is the input data in time-domain and  𝜑𝑎,𝑏(𝑡) is the wavelet basis 

function with fixed and controllable parameters which influences the process of 

decomposition. Based on the decomposition level, the regression model used for the 

forecasting with the single input variable is: 
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                                  (8) 

In equation (8), 𝛼𝑖(𝑖 = 1,2, … 𝑛) is the coefficient of detailed component 𝑑𝑖  of the 

input variable 𝑥1. Approximated components corresponding coefficient is denoted by 

𝛽 and constant of the regression model is represented by 𝛾. When the number of 

independent variables is increased from 1 to 𝑝 (𝑥1, 𝑥2, … , 𝑥𝑝), the regression equation 

to predict the output variable is given by: 
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Based on the decomposition level (𝑛), the coefficients of the regression model are 

defined. To find a suitable set of regression coefficients which minimize the error 

between the predicted output and actual output values, a random search is required in 

large search space. Therefore, population search-based algorithms are useful to find 

such optimal solutions. In this work, POA is used to find the optimal solution of 

regression model for best prediction. To support POA, a cost function is required 

which measures the fitness of each solution generated by POA identified based on the 

deviation of actual and predicted outputs. For a specific output variable 𝑦, the 

predicted and actual outputs are 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝑦𝑎𝑐𝑡𝑢𝑎𝑙, respectively. The absolute 

error for forecast interval 𝑘 + 1, is expressed as equation (10). 

𝑒(𝑘 + 1) =
𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑘+1)−𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑(𝑘+1)

𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑘+1)
                                       (10) 

Based on the actual and predicted information of output, the cost function is 

developed shown in equation (11) used to find fitness values of the solutions 

generated by POA 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝐶) =
1

𝑘+1
∑ 𝑒2(𝑖)𝑘+1

𝑖=1                                            (11) 

The best solution set of coefficients of the regression model shown in equation (9) are 

identified with a new population search-based algorithm known as pelican optimizer. 

POA is a heuristic algorithm that mimic nature of pelican bird during food searching 

and hunting. Initialization of the search process is started randomly like other 

population search-based methods using the initial vector is shown in equation (12).   
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The initial solution (𝑥𝑗
𝑖) matrix size depends on the population size (𝑛) of the POA 

and decision variables (𝑚) in the objective function of the optimization problem. The 

solutions need to be generated within the boundaries/limits using equation (13) 

𝑥𝑗
𝑖 = 𝑙𝑗 + 𝑟. (𝑢𝑗 − 𝑙𝑗)𝑖 = 1,2, … 𝑛; 𝑗 = 1,2, …𝑚                            (13) 

In equation (7), 𝑢𝑗  and 𝑙𝑗 are the upper and lower limits of the coefficient 𝑗 of the 

regression problem. Getting food with initial positions is not guaranteed and therefore 

pelicans updating their positions using equations (14) and (15) 

𝑥𝑗
𝑖(𝑝1)

= {
𝑥𝑗

𝑖 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑗
𝑖),       𝐶𝑝 < 𝐶𝑖

𝑥𝑗
𝑖 + 𝑟𝑎𝑛𝑑. (𝑥𝑗

𝑖 − 𝑝𝑗),                    𝑒𝑙𝑠𝑒
                                (14) 

𝑥𝑗
𝑖(𝑝2)

= 𝑥𝑗
𝑖 + 𝑅. (1 −

𝑡

𝑇
) (2. 𝑟𝑎𝑛𝑑 − 1). 𝑥𝑗

𝑖                                 (15) 

Where, 𝑥𝑗
𝑖(𝑝1)

and 𝑥𝑗
𝑖(𝑝2)

 are the new positions of 𝑥𝑗
𝑖 after stage 1 and 2, respectively. 

Location of prey for 𝑗th decision variable is represented by 𝑝𝑗 and I is number either 1 

or 2, 𝑅 (constant 0.2), 𝑡 (current iteration number), and 𝑇 (Total number of iterations). 

When current iteration number is equal to maximum number of iterations, then the 

process is terminated. Once the positions of pelicans are updating using stage1 and 2, 

fitness values corresponding to new positions are evaluated and best solutions are 

achieved at the end of the iterations. The best POA solution is optimal regression 

model coefficient values that fit the output data with minimum prediction errors. The 

overall process of the prediction is presented in Figure 3.11.  
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Figure 3.11 Process of identification of regression model 
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CHAPTER 4 

ASSESSMENT OF WATER QUALITY IN THE INLAND 

AQUACULTURE PONDS 

4.1 GENERAL 

One of the vital pathways for human survival in the delta region is the canals, which 

play a special part in the development and growth of human societies. They have 

always been considered essential freshwater supplies for life because most currently 

being developed activities rely on them. Ancient people have also flourished beside 

them. Water is supplied through canals for various purposes, including aquaculture, 

drinking water, industry, and other applications. 

Measurements of physicochemical characteristics indicate the viability of the tested 

water for different types of aquatic life. Therefore, assessing the water quality of 

aquaculture ponds is essential for figuring out the potential classes of limnological 

change. Additionally, fish and shrimp's physiological and behavioural processes, 

including feeding, mating, movement, respiration, and excretion, can all be directly 

impacted by the quality of the water. Therefore, good water quality is essential for 

improved development, survival, and increased farmed fish or shrimp production. 

Furthermore, in the study area, more than 230 villages depend only on aquaculture-

discharged water resources for drinking purposes after traditional sand bed filtration 

treatment. Therefore, water quality assessment could be helpful for the management 

of aquaculture waters. 

4.2 EVALUATION OF INLAND AQUACULTURE PONDS WATER 

QUALITY 

Based on the preliminary investigation in Chapter-3, the study area was classified into 

three zones (traditional, semi-intensive, and intensive farming). This classification 

facilitated comprehensive coverage and allowed for the representation of different 

environmental conditions. A stratified random sampling strategy was employed for 

each zone by considering their accessibility and suitability. One hundred ninety water 
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samples were collected from the aquaculture ponds in the study area to evaluate water 

quality parameters (see Figure 4.1). The water quality results of the aquaculture 

samples are shown in Appendix-II. 

 

Figure 4.1 Sample collection points 

The statistical indices for the water quality indicators acquired from all 64 locations, 

including the minimum (Min), maximum (Max), mean, standard deviation (STD), and 

cumulative variance (CV) values, are shown in Table 4.1. Moreover, Table 4.1 

reflects the desirable ranges for both aquaculture (shrimp) culture and drinking 

purpose (Ray et al. 2011; Tallar and Suen, 2016; Mohanty et al. 2018; Ma et al. 2020; 

Kothari et al. 2021; Nagaraju et al. 2022). In the inland aquaculture environment, the 

temperature is vital in controlling various biological and physicochemical processes. 

The temperatures at the sampling locations in this study tended to be similar, ranging 

from 29.9 °C to 31.0 °C, and these temperatures fell within the ideal range for 

aquaculture, which is between 20-32 °C (Kasnir et al. 2014). The delta region of 
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Andhra Pradesh experiences typical surface temperatures of 30 ± 1.24°C (Nagaraju et 

al. 2022). 

Table 4.1 Statistical data and standard values of physicochemical characteristics 

of the aquaculture waters 

Parameters 

Statistical data 
Desirable 

range for 

shrimp 

aquaculture 

Drinking 

water quality 

standards 

(Indian 

Standard) 

Irrigation 

water quality 

standards 

(Indian 

Standard) 

Min Max Mean SD CV 

pH 7.12 8.98 7.88 0.45 0.21 7.5-8.5 6.5-8.5 6-8.4 

Electrical 

conductivity 

(µS/cm) 

54 39000 3245 5826 3.9*106 - <1500 800-2500 

TDS (ppm) 155 9200 1349 2182 47.59*105 <1000 <500 <2000 

Salinity (ppt) 0 24.80 12.40 8.42 11.20 3-25 0 <0.75 

Alkalinity (ppm) 50 490 259.71 79.65 6344 <140 200-600  

Bicarbonates (ppm) 45 1100 253.47 92.61 8578 100-300 <200 <120 

Total Hardness 

(ppm) 
58 3465 637.42 744.91 55.49*104 >500 200-600 

<500 

Calcium (ppm) 25 412 76.14 72.28 5225.20 >150 75-200 <100 

Magnesium (ppm) 12 745 126.47 146.82 21557.40 >450 30-100 <50 

Ammonia (ppm) 0.05 2.8 0.15 0.27 0.07 <0.1 <0.5 <0.5 

NO3 (ppm) 4 89.70 21.09 24.83 616.90 <5 <45 <45 

WQI (%) 21 456.37 125.85 98.94 9791.05 - 0-50 - 

A pH range of 7.5 to 8.5 must be maintained for the shrimp culture because any 

deviation could result in the death of the shrimp or fish. The delta region's aquaculture 

water's average pH reading was 7.88. Most pH readings fall within the range that is 

ideal for aquaculture.  In addition, the pH in the current study was greater than that of 

earlier research done in the western delta region (Nageswara Rao et al. 2015; 

Nagaraju et al. 2022), who claimed that conventional aquaculture activities might 

cause a pH variance between 6.9 and 7.7. Moreover, in past years, there has been a 

continuous flow of rain waters with silt particles in the canals, resulting in lower pH 

values. In recent years, intensive farming and longer-term storage of aquaculture 

waters have been key factors that change pH concentration and, if not managed, will 
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have a detrimental effect on ecosystems. The reading for the EC ranged between 54 

and 39000 µS/cm, with an average of 3245 µS/cm. However, less than 1500 µS/cm is 

the acceptable amount established by Indian norms. Therefore, a lower value of EC 

indicates that the water contains fewer dissolved ions, such as sodium and organic 

particles (Ameen, 2019). In the case of aquaculture, a higher EC value reflects higher 

salinity which is desirable for brackish shrimp culture (Jayanthi et al. 2019). 

The study area alkalinity values show the highest levels, with the total mean alkalinity 

values ranging from 50 to 490 ppm. Additionally, these values are below the 140 

mg/L threshold, which is ideal for aquaculture (Mishra et al. 2008; Bhatnagar and 

Devi, 2013). Alkalinity is a term used to describe how much water uses carbonate, 

bicarbonate, and hydroxide ions to buffer or neutralize acids. This aids in preventing 

significant pH variations from harming aquatic life. The pH drops to 6 throughout the 

night due to massive volumes of free carbon dioxide being converted to weak 

carbonic acid, produced if there is no buffering capacity. Because of the high rate of 

photosynthesis, where the phytoplankton utilizes most of the available carbon dioxide, 

the pH values can rise over 9.0 (Ma et al. 2020; Mutea et al. 2021). Nagaraju et al. 

2022 reported that intense aquaculture activities without a proper canal network and 

treatment facilities impacted the water quality in the aquaculture ponds and environs, 

resulting in excessive alkalinity levels. 

TDS values for the aquaculture water samples ranged from 155 to 9200 mg/L. The 

TDS values fell outside what is considered acceptable by aquaculture guidelines. 

Continuous use of aerators in shrimp farming (to maintain dissolved oxygen) results 

in mixing aquaculture waste with water on the bottom soil, which raises TDS levels 

and turbidity. 

Salinity values ranged from 0 to 24.8 ppt between sampling sites, which was under 

the permissible limits for shrimp aquaculture (>3 ppt). According to a survey 

conducted in the western delta region of Andhra Pradesh by Nagaraju et al. (2022), 

continuous saltwater pumping from subsurface water sources throughout the crop 

season causes groundwater deprivation and surface water contamination. Saline 

waters reach nearly 50 km inland from the Bay of Bengal through salt intrusion 
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during the summers. Furthermore, similar trend was observed in the aquaculture 

ponds of Tamilnadu state, adjacent to the study area state (Jayanthi et al. 2020). 

White-legged shrimp spend much of their time on the pond's bottom surface; the 

bottom soil conditions are more critical for survival. Intensive aquaculture farming 

generally causes large amounts of ammonia, phosphorus, and organic material to be 

deposited in the bottom soils of aquaculture ponds. In addition, the quality and 

amount of pond bottom sediment reflect pond production. They are crucial for the 

oxidation of organic matter, the uptake and nutrient release into the water, and the 

effect on water quality and shrimp survival rates (Mohanty et al. 2018). Intensive 

aquaculture practices contribute to a higher sedimentation rate in this study area. In 

the delta region of Andhra Pradesh, utilizing lime (Ca) for pond bottom treatment was 

quite common, which aids in balancing the pH of the pond waters and reduces pCO2 

levels in water (Chanda et al. 2022; Nagaraju et al. 2022; Patil et al., 2022). 

Cations like calcium and magnesium and anions like bicarbonate, chloride, and 

sulfate are the leading causes of water hardness. The overall hardness ranged from 58 

to 3465 mg/L. Bicarbonates and carbonates are vital in inland shrimp culture, the 

most crucial elements are Mg, Ca, K, and Na. Na, Ca, and Mg is essential in white-

legged shrimp culture (Zacarias et al. 2019). Calcium values of few samples fall out 

of the permissible limits (200 mg/L). Moreover, calcium concentrations exceeded 100 

mg/L, which is the standard in natural water sources, particularly groundwater (Zhao 

et al. 2013). However, most samples exhibit Ca values of more than 250 mg/L in 

aquaculture waters (Mohanty et al. 2018). Magnesium is present in natural 

groundwater, usually at lower concentrations (Singh and Hussain, 2016). However, 

most samples exceed the limit (100 mg/L), and only a few samples fall within the 

permissible limit. This is due to the regular usage of Mg throughout the aquaculture 

crop for better shrimp growth (Zacarias et al. 2019). 

Bicarbonates ranges from 45 to 1100, with an average of 253 ppm. Furthermore, most 

of the cases bicarbonates are with the desirable range of aquaculture waters (100-300 

ppm). CO2 and HCO3 naturally regulate the pH. When CO2 and H2O mix to form 

H2CO3, which increases pH, HCO3 is formed. Because minerals and salts are 

frequently used in aquaculture ponds during shrimp moulting, salts and minerals can 
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be observed in the soil at the bottom of ponds (Rasid et al. 2021; Nagaraju et al. 

2022). Most of the ponds in the current research area have an alkaline environment 

because of the widespread aquaculture (Nagaraju et al. 2023). As a result, the 

hydrogeochemical facies is dominated by the HCO3 ion. Additionally, while some 

metrics, like pH, salinity, and Ca, have a smaller range of standard deviations, others, 

like EC, TDS, alkalinity, bicarbonates, total hardness, and Mg, show a considerably 

wider range of standard deviations. These imply the mixing of chemical reactions 

brought on by seawater pumping from deep aquifers and other marine sources and the 

flow of water channels (Nageswara Rao et al. 2017). In the study area, Nageswara 

Rao et al. (2020) observed that the most prevalent ion enrichment was Na-Mg-Cl-

HCO3 and Na-Ca-Cl-HCO3 in the groundwater. This dominance causes similar results 

in the surface aquaculture waters due to the continuous year-round pumping of 

groundwater to aquaculture ponds. 

Ammonia is a vital parameter that decides the yield and growth of the shrimp/fish in 

the aquaculture ponds. In the study area, due to the intensive aquaculture farming, 

excess feed, shrimp waste, and shrimp shells increase the ammonia levels. Most of the 

locations witness the higher ammonia levels exceeding the permissible limit 

(0.1ppm). The rise of ammonia levels in aquaculture waters against the intensity of 

aquaculture farming is analysed to affirm the above water quality analysis. A close 

examination of water quality of aquaculture waters and field survey related to the 

intensity of farming can be linked-to know the dominance of ammonia levels in the 

severe farming areas. According to Yuvanatemiya and Boyd (2006) and Zhou and 

Boyd (2014), Ca2+ and Mg2+ usage before and during the crop can reduce or balance 

the ammonia levels due to the adsorption capacity (cation exchange capacity). 

In aquaculture waters, nitrate can be found due to effluents and uneaten feed etc. A 

nitrate surplus can lead to eutrophication, which poses significant health risks and the 

demise of aquatic life (WHO, 1998). Nitrate levels reached their greatest point at 

89.70 ppm. In addition, compared to nitrate levels detected in aquaculture waters by 

Alfiansah et al. (2018) and Azis et al. (2022), the concentration of nitrate load 

observed in the aquaculture waters in the present study is severely polluted. Few 

farmers used biofloc fertilization to perform shrimp aquaculture in the study area. To 
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grow the autotrophic organisms, the biofloc was fertilized by combining calcium 

carbonate (CaCO3), urea (CH4N2O), ammonium sulfate ((NH4)2SO4), and minerals. 

After fertilization, biofloc inoculum (molasses, rice bran, wheat flour, and probiotic 

bacteria) are regularly introduced to change the autotrophs into heterotrophic systems. 

According to Panigrahi et al. (2022), the biofloc system was found to maintain pH, 

salinity, ammonia, and nitrates needed for successful shrimp production. 

4.3 EVALUATION OF WATER QUALITY INDEX OF INLAND 

AQUACULTURE PONDS 

After physicochemical analysis, an index was calculated to simplify the data. WQI 

was evaluated using the recommendations of the Bureau of Indian Standards (BIS) 

and the World Health Organisation (WHO) (WHO, 2004; WHO, 2017; Thatai, 2019). 

Figure 4.2 summarizes the WQI values of the aquaculture water samples from 64 

locations in the western delta region. The findings indicated that most aquaculture 

waters are unsuitable (WQI > 100) for the next crop. In the southwestern portion of 

the delta, where the intensive aquaculture farming WQI values shows that the water is 

only for single crop (i.e., 3 to 4 months period) usage and unfit for long-term 

aquaculture. The continuous year-round aquaculture crop's lack of sufficient flow 

caused the water to stagnate, reducing the self-assimilation capacity of the delta 

region ecosystem, which is another reason behind the region's high pollution level. In 

addition, high ammonia and nitrate levels cause eutrophication of aquaculture waters 

and adjacent waterbodies (Zakaria et al. 2022). The WQI values ranged from 21 to 

456 in various sites and showed considerable variation. As discussed, the intensity of 

aquaculture ponds is severe in the delta region of Andhra Pradesh, where many 

villages are bounded by aquaculture ponds. In this context, the water quality limits 

were compared with the drinking water standards because most of the study area 

locations depended on the aquaculture waters for their drinking purposes. WQI values 

shows that the water is unfit for usage, including drinking, long-term aquaculture, and 

residential purposes. 

The WQI values ranged from 21 to 456 in various sites and showed considerable 

variation. According to sample locations and prior research, the southwestern region 

of the delta had higher water quality index values. As one moves upstream, the 
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pollution level steadily rises from the southwestern delta to the north-eastern delta 

(Nagaraju et al. 2022). Moreover, the same situation is reflected in the expansion of 

land cover of aquaculture bodies from the southwestern delta to the north-eastern 

delta from 2017 to 2020 (Nagaraju et al. 2022). 

 

 

 

 

 

 

 

 

Figure 4.2 Water quality index of aquaculture waters 

In inland aquaculture-intensive regions, ammonia is the primary concern in 

aquaculture waters due to intensive farming. Nagaraju et al. (2023) reported the 

exciting finding that due to ionic exchange, the hydraulic behaviour of aquaculture 

pond bottom clays exposed to effluents exhibits a considerable detrimental impact on 

the permeability of clays. Higher permeability is observed in the clay particles 

interacting with the ammonia in the effluents. Even prolonged exposure to ammonia 

and clays has adverse effects on the ecosystem. Researchers have addressed the 

adverse effects of ammonia levels in aquaculture ponds globally. According to Luo et 

al. (2018) aquaculture scenario study from China, nitrogen releases, aggregation, 

sediment deposition, and discharge into the ocean waters increased by 9.05 times, 

0.24 times, 9.04 times, and 2.56 times from 1978 to 2015, respectively. Recently, 

Sultana et al. (2022) reported intensive aquaculture increases the toxic algal blooms, 

which could result in significant fish fatalities. A single hazardous algal bloom fish-

kill event in Japan was estimated to have cost the country US$330 million. No single 
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research publication highlighting nutrient pollution (eutrophication) and the danger of 

toxic algae blooms in India was recognized. 

Generally, ammonia is influenced by temperature, salinity, alkalinity, nitrates, organic 

particulate matter, calcium, and magnesium. However, ammonia can be varied with 

the parameters mentioned above but not vice versa. Assessing or monitoring ammonia 

levels is a significant task for practitioners and engineers. 

The nutrients with phosphorus (P) and nitrogen (N) bases are primary suspended 

particles dissolved in the feed-derived wastes (Herath and Satoh, 2015). The 

efficiency of nitrogen in shrimp N assimilation has significant effects on the 

economics of inland shrimp farming as well as the quality of the water. The inherent 

efficiency of nutrient use by shrimp suggests that the ability of aquaculture ponds to 

assimilate nitrogenous effluent may be a limiting factor for N loading, which could 

negatively affect water quality and shrimp growth. In aquaculture ponds, dissolved 

inorganic nitrogen build-up will most likely restrict the feeding rate after dissolved 

oxygen. Protein catabolism results in the excretion of ammonia, which can be 

hazardous if left to build up. Hyperactivity, convulsions, loss of equilibrium, lethargy, 

and coma are symptoms of ammonia intoxication. However, rather than manifesting 

as acute toxicity that causes mortality, ammonia toxicity in aquaculture ponds is most 

likely represented as the sublethal inhibition of shrimp growth or immunocompetence. 

The pH, temperature, alkalinity, and total ammonia concentration measured in the 

shrimp shell affect how hazardous unionized ammonia (Venkateswarulu et al. 2019). 

At high pH and temperature, ammonia is more toxic to shrimp, which causes the 

ionization equilibrium to change in favour of the poisonous, unionized gaseous form. 

In the late afternoon, low alkalinity ponds that are poorly buffered are more likely to 

have high pH and unionized ammonia. Ammonia excretion contributes to the N flux 

in aquaculture ponds (Zhong et al. 2015). 

To understand the severity of the aquaculture scenario in the delta region of Andhra 

Pradesh, a peer glance at the nutrient levels in the aquaculture waters and their 

intensity was mentioned in Table 4.2. The nitrogen compounds levels in the current 

study area show higher concentrations compared to the previously published studies 
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(Alfiansah et al. 2018; Azis et al. 2022). Few authors have reported that aquaculture 

wastewater can be utilized for shrimp rearing and adjacent farming (Chatla et al. 

2020; Iber and Kasan, 2021). However, in the field, the diseased and contaminated 

waters in the aquaculture ponds affect the adjacent aquaculture farms and, in the case 

of paddy fields, due to salinity. Strengthening this statement, Yuan et al. (2019) 

reported that inland aquaculture ponds considerably influence agriculture and may 

lead to greenhouse gases and global warming. 

Table 4.2 Ammonia and nitrates levels in aquaculture waters 

Parameter Current study Alfiansah et al. (2018) Azis et al. (2022) 

NH3 0.18-6.14 mg/L 0.37-0.60 mg/L 0.01-0.18 mg/L 

NO2 0.04-2.39 mg/L 0.20-0.33 mg/L 0.37-0.44 mg/L 

NO3 1.21-91.21 mg/L 0.18-0.21 mg/L 1.69-1.96 mg/L 
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CHAPTER 5 

SUBSOIL CHARACTERIZATION AND EFFECT OF 

AQUACULTURE SLUDGE ON CLAY PROPERTIES 

5.1 GENERAL 

In general, constructing new ponds involves the excavation of surface soil and use as 

a fill material for earthen embankments. Most aquaculture ponds are typically on 

clayey deposits with a low amount of organic matter and nutrients at the initial stage 

of the crop. Chemicals and pesticides are sometimes used carelessly in some areas, 

especially in intensive shrimp farms in the delta region of Andhra Pradesh. In 

aquaculture facilities, there is no special legislation for disease control. Using 

excessive feed and antibiotics results in microbial degradation and organism 

mortality, which worsens the pond's anaerobic environment. The control of sediment 

in pond-based aquaculture has a significant impact on the development of carbon and 

the emission of carbon dioxide. The deposition of organic carbon in the aquaculture 

pond makes the environment more anaerobic, which promotes the emergence of 

hazardous microbial by-products and the instability of benthic ecosystems. In the 

study area, ponds are commonly drained, and the deposited sediments are kept 

exposed to the air to encourage organic matter mineralization. Fertilizing is 

occasionally used to encourage rapid oxidation, and lime is regularly added to the 

pond to raise the pH and disinfect the water. 

In an intensive aquaculture zone, continuous year-round crops and surface soil 

exposed to aquaculture effluents may increase the nutrients, organic matter, 

particulate matter, and phytoplankton blooms. This may further influence the 

physicochemical and geotechnical characteristics of the surface and subsoil. In this 

study, in dried aquaculture ponds after crop, soil samples were collected with the help 

of PVC pipe with a diameter of 15cm and length of 1.8m penetrated subsoil and 

collected undisturbed soil samples. The collected samples were tested for 

physicochemical characteristics and geotechnical properties in one series. Another 

series, collected aquaculture sludge, was exposed to the expansive clay and 
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determined the blended clays' swell-shrink behaviour and cation exchange capacity. 

Moreover, the micro-structure of the blended clays was assessed to understand the 

variations in the texture and morphology.  

5.2 PHYSICOCHEMICAL CHARACTERISTICS OF AQUACULTURE POND 

SOILS 

Table 5.1 shows the physicochemical test results of soil samples collected from the 

soils exposed to various concentrations of aquaculture sediments. From Table 5.1, by 

comparison, it was clear that Zone-III soils exhibited higher potassium and 

phosphorus contents. This is because the uneaten feed (phosphorus) strongly adsorbs 

the clay. Moreover, aquaculture pond soil-adsorbed phosphorus will not release into 

the water due to the highly insoluble behaviour of phosphorus.  

Table 5.1 Physicochemical characteristics of aquaculture pond soils 

Zone Village pH TDS 

(ppm) 

EC 

(ds/cm) 

TOC 

(%) 

TN 

(kg/acre) 

P 

(kg/acre) 

K 

(kg/acre) 

S 

(kg/acre) 

Na 

(ppm) 

Zone-III 

V1 8.2 2.5 5.1 1.45 116 507 570 245 238 

V2 8.0 4.2 2.2 2.28 1077 472 432 230 215 

V3 7.7 2.9 2.5 3.98 125 491 848 218 178 

V4 7.5 2.1 5.4 3.72 32 484 564 156 165 

V5 7.4 1.7 2.3 2.99 118 490 388 165 182 

Zone-II 

V7 7.2 1.8 2.7 2.22 188 377 375 154 174 

V8 7.2 1.6 2.4 1.12 85 257 415 145 163 

V9 7.8 1.2 1.8 1.18 102 186 345 205 162 

V10 7.7 0.5 0.7 1.45 78 154 386 88 125 

V19 7.6 1.1 1.9 1.85 84 132 243 106 128 

Zone-I 

V27 7.6 1.7 2.6 0.84 95 195 334 115 134 

V28 7.6 1.2 2.3 0.74 68 88 355 125 185 

V34 7.4 1.2 1.8 0.84 76 85 245 155 215 

V35 7.0 1.4 1.3 1.05 82 157 175 145 113 

V39 7.4 1.2 1.7 1.16 82 165 235 165 151 
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In the study area, test results exhibited cations trend was Ca2+ > Na+ > Mg2+> K+. This 

could be due to the excessive lime, potassium, and magnesium usage in the ponds. 

The discharged effluents from the aquaculture ponds had a higher concentration of 

nutrients, which leads to eutrophication, higher contents of salinity reduce the 

vegetation growth, and higher concentrations of chemicals lead to ecological 

imbalance. 

5.3 GEOTECHNICAL CHARACTERIZATION OF POND SOILS 

The assessment of the index and engineering properties of the soils that comprise the 

pond bed and embankment constitute geotechnical characterization of pond soils. 

5.3.1 Plasticity characteristics and hydraulic conductivity of pond soils 

Table 5.2 shows the test data of the plasticity characteristics and hydraulic 

conductivity of soil samples collected in the aquaculture ponds. All the tested 

expansive clay samples possess intermediate to high compressibility. The samples' 

free swell index ranged from 55 to 145%, and Zone -I samples exhibited higher free 

swell index values than Zone-II and Zone-III. 

This could be due to the lime content in the aquaculture water that reacts with the 

clayey soil. Further, hydraulic conductivity also improved due to the flocculation of 

particles and ion exchange. By comparison, Zone-III and Zone-I, the plasticity 

behaviour of the Zone-III pond bottom clays exhibits low plasticity behaviour due to 

the cation exchange of clays and aquaculture sludge. The observed trends are in 

agreement with Khodary et al. (2020) that the leachate concentration of industrial 

solid waste landfill shows that reduction of plasticity behaviour of clays due to the 

free ions such as K+, NH4
+, Ca+2, and Na+ replaced the cations of the clay surface 

(double diffusion layer). Further improves the pores between the particles. Moreover, 

monovalent cations reduce the double diffusion layer of clays and adsorbed water. 

Hydraulic conductivity is high in Zone-III because of the flocculation and 

agglomeration of particles and ion exchange of clay particles and lime content. 
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Table 5.2 Plasticity and hydraulic behaviour of the soils 

5.4 Aquaculture sludge leachate interaction with clays 

In this study, expansive clay was collected from a residential area away from 

aquaculture ponds, was not contaminated with the aquaculture sludge, and a thorough 

sampling process was conducted. Aquaculture sludge was collected from the five 

years old dry shrimp pond where solid waste from the aquaculture operation 

accumulates over time. The source of aquaculture sludge was selected to ensure it was 

representative of the organic-rich waste generated in aquaculture ponds. Before the 

series of experiments, both the expansive clay and aquaculture sludge underwent oven 

drying (24 hours) and pulverized to 425µm passing IS sieve, as highlighted in the 

Chapter 3. 

 

Zone 
Sample 

Id 

Liquid 

limit, LL 

(%) 

Plastic limit, 

PL (%) 

Plasticity 

index, PI 

(%) 

FSI 

(%) 

Hydraulic 

conductivity 

(cm/sec) 

Zone-III 

V1 65 21 44 85 3.2x10-5 

V2 60 24 36 80 5.1x10-5 

V3 68 20.5 47.5 75 6.8x10-6 

V4 44 18 26 55 5.5x10-5 

V5 54 21.5 32.5 85 3.6x10-5 

Zone-II 

V7 62 32.5 29.5 75 2.8x10-6 

V8 64 33 31 55 5.6x10-7 

V9 84 33.5 50.5 130 6.9x10-7 

V10 64 19.5 44.5 80 4.4x10-6 

V19 84 29 55 120 4.5x10-6 

Zone-I 

V27 80 30 50 105 4.2x10-7 

V28 89 31 58 130 4.6x10-6 

V34 82 32 50 114 5.0x10-6 

V35 76 34 42 145 5.5x10-7 

V39 88 25 63 136 4.4x10-7 
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In general, the swelling behaviour of expansive clays depends on moisture content, 

surface area, particle dimension, morphology, and suction (Estabragh et al. 2013; Rao 

et al. 2021). Moisture content present in the soil reflects the behavior of the structure 

of clays and densities. Several investigations showed the behavior of expansive clays 

exposed to continuous wetting and drying in terms of suction, void ratio, water 

content, and chemical additives (Estabragh et al. 2013; Yilmaz and Marschalko, 

2014). Besides the moisture content, another major factor is surface area which 

reflects the surface attractions or forces. Positive ions generally attract dry clay 

surfaces, and moist clay with an unbalanced negative charge strongly attracts cations. 

Further surface area contributes to the thickness of the clay sheets and the formation 

of a double diffusion layer (Eyo et al. 2019; Rao et al. 2021). Morphology and particle 

dimension depended on the clay mineralogy, chemically bonded water, pore spaces, 

and applied load (Fityus and Buzzi, 2009; Ito and Azam, 2010). Volume change of 

clays was influenced by suction in unsaturated clays. Moreover, lateral confinement, 

compaction or surcharge, degree of saturation, and suction decide soil stability 

(Estabragh et al. 2013; Eyo et al. 2019; Ikeagwuani and Nwonu, 2019; Adem and 

Vanapalli, 2005). From the previous studies, chemical constituents significantly 

influence the volume change behaviour of expansive clays. It is certain that ensued 

chemical reactions between clays and foreign materials are strongly dependent on 

many factors such as the chemical composition of additives, surface area, clay state 

(powders and lumps), humidity, and curing condition (Chaiyaput et al. 2022) To the 

author's knowledge, no research was documented on the effect of aquaculture sludge 

on the swell-shrink behaviour of expansive clays due to the interdisciplinary domain. 

In general, inland aquaculture practices in developing countries are worrisome due to 

the negative environmental impact. Aquaculture sludge and solid waste are more 

concerned nowadays because they are rich in proteins, volatile solids, organic 

particulate matter, ammonia, nitrates, minerals, and other chemicals (Estevez et al. 

2022). 
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5.4.1 Effect of aquaculture sludge content on plasticity characteristics of clays 

In this study, understanding geotechnical properties such as Atterberg limits, free 

swell index, and swell-consolidations is crucial for evaluating the potential impacts of 

aquaculture pond subsoil on the surrounding environment. The study of these 

parameters allows for a comprehensive assessment of subsoil and potential effects on 

surface and groundwater systems. Moreover, in the study area, a common practice of 

excavation of aquaculture effluent sedimented subsoil every 2 or 3 years, and the 

same used as fill material for many sites (expansive clays) were developing as 

commercial and residential apartments, commercial complexes, schools, hospitals, 

and industries. So, understanding the behaviour of aquaculture sludge, blended 

expansive clays, should be studied with various methods to effectively deal with 

aquaculture sludge and lessen the environmental concerns it may raise. Plasticity 

characteristics were significantly improved by adding aquaculture sludge to clays. 

Table 5.3 shows the plasticity characteristics testing data with varying percentages of 

aquaculture sludge as 0%, 5%, 10%, and 15% of the dry weight of clayey soil. 

The liquid limit value decreased with an increasing aquaculture sludge content. This 

is due to the rich Si+ and Ca+ ions in the aquaculture sludge contributing to ion 

exchange between clays and aquaculture sludge. Plastic limit value show increased 

with an addition of aquaculture sludge content. The plasticity index value is the 

numerical difference between the liquid and plastic limits. The plasticity index value 

shows reduced with an increase in aquaculture sludge content. The significant 

reduction in plasticity index is because of the effective chemical reactions of calcium-

rich aquaculture sludge leading to flocculation wherein particles in the blends increase 

in their sizes, apart from the replacement of expansive clay particles by them. 

It is well known that the plasticity index of expansive montmorillonite clays is high. 

This is because the size of the montmorillonite clay particles are the smallest. If their 

size increases through flocculation brought about by aquaculture sludge, the plasticity 

index decreases significantly. This is in accordance with previous research 

(Phanikumar and Nagaraju, 2018). 
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Table 5.3 Effect of aquaculture sludge content on soil properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 presents the effect of aquaculture sludge content on the free swell index of 

the clay blended with the aquaculture sludge content. A decrease in the free swell 

index was observed with the addition of aquaculture sludge content from 0% to 15%. 

As clayey soil particles are replaced by aquaculture sludge content, flocculation 

occurs in the blend, which further reduces the thickness of the double diffusion layer. 

Parameters 

Aquaculture sludge content 

0 (%) 5 (%) 10 (%) 15 (%) 

Plasticity characteristics 

FSI, % 155 127 98 77 

Liquid limit, % 84 75 58 44 

Plastic limit, % 23 25 26 28 

Plasticity index, % 61 50 32 16 

Swell-consolidation characteristics (clay powders) 

Rate of heave, mm 1.44 1.31 1.25 1.07 

Swell potential, % 7.20 6.55 6.25 5.35 

Swelling pressure, kPa  115 140 180 205 

Rebound, mm 0.45 0.35 0.28 0.18 

Linear shrinkage, % 11 7 5 3 

Cation exchange capacity (CEC) 

CEC, mEq/100g 48.4 42.6 37.5 29.8 

Chemical constituents (weight, %) 

SiO2 68.29 30.53 19.60 10.86 

Al2O3 25.91 11.20 5.31 4.94 

MgO 3.64 1.76 1.13 1.04 

CaO 2.16 4.89 8.97 9.65 

K2O - 2.33 6.42 4.84 

CaCO3 - 10.82 32.32 46.26 



74 

 

FSI values decreased from 155% to 77% when the addition of aquaculture sludge 

content increased from 0% to 15%, rendering the blends non-swelling. 

Apart from plasticity behaviour and free swell index, understanding the effect of the 

cation exchange phenomenon in the blended clay is advantageous. In this study, to 

comprehend this, cation exchange capacity (CEC) values were determined, and the 

results were tabulated in Table 5.3. The CEC values were decreased with an increase 

in aquaculture sludge content. Aquaculture sludge was rich in Ca2+, K+, and NH4
+. K+ 

and NH4
+ ions were more dominant in attracting clay surfaces, decreasing double 

diffusion layer thickness, and swelling. The dominance of NH4
+ ions present in the 

aquaculture sludge in the blend can be reasoned to be the collapse of the double 

diffusion layer and the flocculation of clay particles. 

In general, CEC is the fundamental property by which swelling occurs in expansive 

soils. Almost every piece of literature proposes the same fact (Lilkov et al. 2011). 

However, swelling in clays can occur when they are dominant with mineral 

montmorillonite. Keeping a side natural expansive soil, aquaculture sludge blended 

clays are generally referred to as either Ca2+ rich or NH4
+ rich. This inherently 

indicates that these soils are predominant with either Ca2+ or NH4
+ content, which 

controls the overall behaviour of the soil. This is how the role of Ca2+ or NH4
+ 

contents become critical when dealing with expansive grounds. It is well understood 

and proven that Ca-based soils exhibit lesser swelling or volume change than NH4
+ 

based soils due to their innate affinity to adsorb more secondary water. Ca having 

higher valance forms a thinner diffuse double layer than NH4
+ does. This is the 

primary reason behind the evolution of Ca-based additives. Besides this, Ca is highly 

pozzolanic, and when it is admixed with water, it hydrates (Mitchel and Saga, 2005). 

The entire process of Ca reaction is subdivided into (a) hydration, (b) cation 

exchange, (c) flocculation and agglomeration, (d) pozzolanic reaction, and (e) 

potential carbonation. 

5.4.2 Effect of aquaculture sludge on swell-consolidation behaviour of clays 

The influence of aquaculture sludge content on the rate of heave and swell potential of 

clays was presented in Figures 5.1 and 5.2.  
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Figure 5.1 Effect of Aquaculture sludge on rate of heave 

 

Figure 5.2 Effect of aquaculture sludge on swell potential 
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A decrease in the heave and swell potential rate was observed with the addition of 

aquaculture sludge. This might be due to the cation exchange between the clays and 

aquaculture sludge. The interesting point was aquaculture sludge leachate having an 

alkaline environment (pH value greater than 8.5) allows the dissolution of silica and 

alumina ions in the clays. Further, dissolved ions react with Ca2+ ions, contribute to 

dense phases of calcium silicates and aluminates. This was associated with the 

formation of cementitious compounds, which had a significant effect on the rate of 

heave and swell potential. 

Figures 5.3 and 5.4 present the e-logp curves and variation of swelling pressure of the 

expansive clay blended with an aquaculture sludge, respectively. The e-logp plots 

exposed clearly that swelling pressure values significantly increased with increasing 

aquaculture sludge content. Swelling pressure values increased from 115kPa to 

205kPa when aquaculture sludge content increased from 0% and 15%. This is due to 

the exchangeable ions and flocculation of soil particles.  

 

Figure 5.3 e-log p curves 
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Figure 5.4 Effect of aquaculture sludge on swelling pressure 

This helps the specimens to form dense phases and resist the compressive loads. As 

per Mitchel and Soga (2005), the cation replaceability order of 

Al3+>Ca2+>Mg2+>NH+>K+>Na+. Moreover, ions' exchangeable capacity (adsorption 

or desorption) depends on the valance and hydrated radius. 

Aquaculture sludge consists of proteins and volatile solids due to excess feed and 

shrimp species. Prolong the time of culture, aquaculture sludge release ammonia and 

nitrates. Ammonia is one of the favourable monovalent cations for exchangeable ions. 

During aquaculture, sludge exposed to clays cause adsorption of NH+ with the clay 

surfaces, which reduces the double diffusion layer and pore water adsorption capacity. 

Further, it allows the aggregation of clay particles and increases swelling pressure. 

Figure 5.5 presents the variation of rebound and linear shrinkage with the addition of 

aquaculture sludge in the composite samples. Rebound and linear shrinkage values 

decreased with an increase in aquaculture sludge content. 
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Figure 5.5 Effect of aquaculture sludge on rebound and linear shrinkage 

Rebound and linear shrinkage values dropped from 11 to 3 and 0.45 to 0.18, 

respectively, when aquaculture sludge content increased from 0% and 15%. The 

decrease in linear shrinkage may be due to Ca ions contributing flocculation of 

particles and suppressing the adsorption capacity of clays. For the same reason, the 

rebound was decreased with the addition of aquaculture sludge content. 

Several researchers have brought out the influence of chemical additives on the one-

dimensional swell-consolidation behaviour of clay powders (passing from the 425µm 

sieve) (Phanikumar and Nagaraju, 2018; Phanikumar et al. 2022). However, the least 

attention is paid to understanding the chemical constituents of one-dimensional swell-

consolidation of clay lumps. To understand the swell-shrink behaviour of clay lumps 

blended with aquaculture sludge was studied. Figure 5.6 shows the effect of 

aquaculture sludge (15% by dry weight of soil) on clay powders and lumps. 
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Figure 5.6 Rate of heave plots of clay powder and clay lumps 

The heave rate was found less in altered clay lumps than in the clay powders. This is 

due to the flocculated clay lumps exhibiting unsaturated pores within the clay lumps. 

Moreover, exchangeable cations vary with the size of the particles, surface area, and 

clay-pore fluid matrix. In general, bentonite exhibits a higher heave phenomenon than 

expansive clays due to the higher surface area and chemical composition of bentonite. 

Swelling pressure values of 15% aquaculture sludge blended clay powders and lumps 

are 205kPa and 218kPa, respectively. The increase in swelling pressure of blended 

clay lumps than the clay powders is due to the more compressive resistance offered by 

the clay lumps (Phanikumar and Nagaraju, 2018; Phanikumar et al. 2022). 

5.4.3 Effect of aquaculture sludge on micro-structural behaviour of clays 

Scanning electron microscopy (SEM) analyses were carried to expansive clay and 

clay blended with the aquaculture sludge content. The surface texture and particle 

sizes were clearly observed in the SEM images of all the blends. 
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Figures 5.7 to 5.10 demonstrate the significant effect of aquaculture sludge content on 

the clays, revealing flocculation and aggregation of clays. Figures 5.9 and 5.10 

indicate the SEM micrographs of the clays blended with 10% and 15% aquaculture 

sludge content, respectively, which displayed an increase in the size of the particles 

and pore radii. Moreover, examinations under the magnification of 2000 show that 

clay’s structure has been transformed from individual particle form to integrated form. 

This might be due to the dissolution of Al and Si ions contributing to the hydrates of 

Al and Si (vide Figures 5.9 and 5.10). 

  

Figure 5.7 SEM images of the virgin clay sample 

  

Figure 5.8 SEM images of the clay blended with 5% AS 
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Figure 5.9 SEM images of the clay blended with 10% AS 

  

Figure 5.10 SEM images of the clay blended with 15% AS 

The integrated form of soil particles reduces the surface forces and voids between the 

particles. Further, it is likely to have higher resistance against compression and shear 

forces. In aquaculture sludge blended samples, leachate exposed to the clay 

surroundings forms a dense fabric agglomeration of particles. The formation of 

agglomeration or flocculation of clay particles is responsible for the decrease in the 

plasticity nature and swelling behaviour of clays (Bhuvaneshwari et al. 2020). 

Energy dispersive spectrometry (EDS) analyses were carried to expansive clay and 

clay blended with the aquaculture sludge content to know the chemical compounds 

and their reactions. The mineralogical analysis is presented in Table 5.3. Figures 5.11 

to 5.14 show the variation of the chemical composition of the blends with an increase 

in aquaculture sludge content. 
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Figure 5.11 EDS spectra of the virgin clay sample 

 

Figure 5.12 EDS spectra of the clay blended with 5% AS 

 

Figure 5.13 EDS spectra of the clay blended with 10% AS 
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Figure 5.14 EDS spectra of the clay blended with 15% AS 

Based on the EDS analysis, chemical composition (%) reflects the SiO2 and Al2O3 

decrease with the addition of aquaculture sludge content. This is due to the dissolution 

of Si and Al ions. 

Moreover, in clays, Si/Al ratio greater than 2.1 represents the clay has 

montmorillonite mineral (Ramirez et al. 2011). Another hand, CaO, and CaCO3 

values show a significant increase with an addition of aquaculture sludge content. 

This will partly destroy the tetrahedral and octahedral structures of montmorillonite 

clays. Further, it decreases the thickness of the interlayer distance between the sheets 

and improves the structure of clays. 

The influence of the chemical composition of clays blended with various chemical 

additives such as fly ash, rice husk ash, ground granulated blast furnace slag, cement, 

and lime on the swell-shrink behaviour of clays has been brought out by many 

researchers (Mitchel and Saga, 2005). However, limited research was carried out on 

the clays to quantify and illustrate the effect of chemical constituents on clay 

structure. To quantify the exact effect of chemical composition and their effects on 

clay structure, XRD traces were identified to characterize the structure of the clays. 

X-ray diffraction analyses (XRD) was carried to expansive clay and clay blended with 

the aquaculture sludge content. Figure 5.15 represents the XRD traces of the clay and 

clays blended with the aquaculture sludge content. XRD patterns indicate the quartz 

(crystalline) structure in the blends has higher contents of aquaculture sludge. By 

comparison, it is evident that the highest diffraction peaks at 2θ, equalling 21o, 27o, 
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and 50o, were observed for the clays blended with aquaculture sludge content. The 

peaks equalling 21o and 27o indicates the crystalline structure, and the peaks at 50o 

indicate the formation of C-S-H gel. Moreover, peaks equalling 29o, 39o, and 44o 

indicate the CaCO3, which is formed due to the reactions between the Ca ions present 

in the clays and carbon content (organic matter) presence in the aquaculture sludge 

(Ramirez et al. 2011). The silica in the clay matrix combines with ammonia to create 

silica gel, which can then crystallize into quartz. The inclusion of quartz in the XRD 

traces shows that the ammonia addition to the clay caused it to mineralize. In XRD 

patterns of expansive clay combined with aquaculture sludge, the calcite (C) and C-S-

H gel content was produced. This is caused by the aquaculture sludge's high Ca 

content. Furthermore, the presence of the Tobermorite (T) mineral was found in a 

higher percentage of AS mixed clays due to the formation of calcium carbonate. 

 

Figure 5.15 XRD traces with varying AS content 
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CHAPTER 6 

PREDICTION OF AMMONIA LEVELS IN THE INTENSIVE 

AQUACULTURE PONDS USING SOFT COMPUTING 

TECHNIQUES 

6.1 GENERAL 

Aquaculture ponds frequently face ammonia problems because, if not adequately 

controlled, and it can build up quickly and become hazardous to aquatic life. 

Ammonia is generated in aquaculture by decomposing organic materials, including 

uneaten food, excrement, and dead aquatic species. High ammonia levels can 

significantly impact the survival and growth of shrimp and other aquatic organisms in 

aquaculture ponds, resulting in poor water quality. In addition, it may harm the gills, 

resulting in slower development rates, poorer reproductive outcomes, and even death. 

Regular water analysis of water quality indicators, including ammonia, nitrates, 

dissolved oxygen, and pH, can help identify possible issues early on and allow for 

immediate remedial action to manage concentration in freshwater aquaculture. 

6.2 PREDICTION OF AMMONIA IN AQUACULTURE PONDS USING 

HYBRID SOFT COMPUTING TECHNIQUE 

Aquaculture ponds serve as important sources of both food and revenue. Still, they 

must be managed carefully to preserve the water's quality and prevent the formation 

of toxic pollutants like ammonia. A hybrid soft computing approach, which combines 

different artificial intelligence techniques to make predictions, is one option for 

monitoring ammonia levels in aquaculture ponds. 

6.2.1 Dataset preparation 

A total of 64 samples were tested, and datasets include sampling was collected from 

March 2021 to May 2021 (pre-monsoon consideration). Samples were obtained from 

aquaculture ponds in the western delta region of Andhra Pradesh. Ammonia is the 

primary concern in aquaculture ponds. In this context, it is required to predict the 
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ammonia levels in the water samples. Ammonia is considered an organic parameter 

associated with organic matter in water, it can be influenced by various inorganic 

factors (Boyd and Tucker, 2012). Certain inorganic elements and water parameters 

can affect ammonia's conversion, transport, and fate in the inland aquaculture ponds 

(Boyd and Tucker, 2012; Boyd, 2017). Therefore, considering organic and inorganic 

parameters in water quality assessment allows for a more comprehensive 

understanding of the system. For example, pH, salinity, alkalinity, bicarbonates, total 

hardness, calcium, and magnesium are essential parameters that play a significant role 

in inland aquaculture ponds (Boyd et al. 2016; Silva et al. 2023). These factors can 

influence the bioavailability, toxicity, and transformation of ammonia in water (Silva 

et al. 2023). 

To this aim, nine variables were selected for inputs, including area of the pond in 

acres (𝑥1), cultivation days (𝑥2), pH (𝑥3), salinity (𝑥4), alkalinity (𝑥5), bicarbonates 

(𝑥6), total hardness (𝑥7), calcium (𝑥8), and magnesium (𝑥9) with an output of 

ammonia in ppm (𝑦). The dataset used in the study is shown in Appendix-III. 

6.2.2 Ammonia prediction using DWT-POA model 

The input data is processed through DWT, extracted approximated and detailed 

coefficients of the data to predict the output. The approximated and detailed 

coefficients of various levels of each input variable of 64 samples are presented in 

Figures 6.1 to 6.9. For each input, three additional decomposed coefficients 

(𝑑1, 𝑑2, and 𝑑3) features are available for prediction since the decomposition level is 

3. This process is carried out for input data sets and the DWT coefficients are used for 

implementing forecasting models. 
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Figure 6.1 Decomposition process of input variable x1 using DWT 

 

Figure 6.2 Decomposition process of input variable x2 using DWT 
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Figure 6.3 Decomposition process of input variable x3 using DWT 

 

Figure 6.4 Decomposition process of input variable x4 using DWT 
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Figure 6.5 Decomposition process of input variable x5 using DWT 

 

Figure 6.6 Decomposition process of input variable x6 using DWT 
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Figure 6.7 Decomposition process of input variable x7 using DWT 

 

Figure 6.8 Decomposition process of input variable x8 using DWT 



91 

 

 

Figure 6.9 Decomposition process of input variable x9 using DWT 

The process utilizes 9 inputs, and each input produces 4 features when they are 

processed by DWT and therefore, a total of 36 features are available for predicting 

ammonia. Moreover, an additional constant in using the prediction model leads to the 

total number of coefficients of the model being 37. The decomposition of input 

variables reduces the noises of the data and enhances the efficacy of the data sets (Li 

et al. 2009; Muhuri et al. 2020). These changes are made in Equation (1) and optimal 

values of the regression model are identified with POA using cost function provided 

in Equation (2). 

𝑊𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑡)𝜑𝑎,𝑏
∞

−∞
(𝑡). 𝑑𝑡                                               (1) 
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The final regression model for prediction using DWT is given as Equation (3): 

𝑦(𝑘 + 1) = 0.0277𝑎3
𝑥1(𝑘 + 1) + 0.00083𝑑1

𝑥1(𝑘 + 1) − 0.00434𝑑2
𝑥1(𝑘 + 1)

− 0.0103𝑑3
𝑥1(𝑘 + 1) + 0.0006𝑎3

𝑥2(𝑘 + 1) + 0.0009𝑑1
𝑥2(𝑘 + 1)

+ 0.00136𝑑2
𝑥2(𝑘 + 1) − 0.00885𝑑3

𝑥2(𝑘 + 1) − 0.0425𝑎3
𝑥3(𝑘 + 1)

− 0.00714𝑑1
𝑥3(𝑘 + 1) − 0.0541𝑑2

𝑥3(𝑘 + 1) + 0.0113𝑑3
𝑥3(𝑘 + 1)

+ 0.0401𝑎3
𝑥4(𝑘 + 1) + 0.01372𝑑1

𝑥4(𝑘 + 1) + 0.03259𝑑2
𝑥4(𝑘 + 1)

− 0.01487𝑑3
𝑥4(𝑘 + 1) − 0.00107𝑎3

𝑥5(𝑘 + 1) − 0.00059𝑑1
𝑥5(𝑘 + 1)

+ 0.000524𝑑2
𝑥5(𝑘 + 1) − 0.00509𝑑3

𝑥5(𝑘 + 1) + 0.00173𝑎3
𝑥6(𝑘 + 1)

+ 0.00088𝑑1
𝑥6(𝑘 + 1) − 0.00085𝑑2

𝑥6(𝑘 + 1) + 0.00621𝑑3
𝑥6(𝑘 + 1)

+ 5.965𝑥10−7𝑎3
𝑥7(𝑘 + 1) − 4.46𝑥10−5𝑑1

𝑥7(𝑘 + 1)

− 8.11𝑥10−5𝑑2
𝑥7(𝑘 + 1) + 0.00055𝑑3

𝑥7(𝑘 + 1)

+ 3.169𝑥10−5𝑎3
𝑥8(𝑘 + 1) − 4.68𝑥10−5𝑑1

𝑥8(𝑘 + 1)

+ 5.027𝑥10−5𝑑2
𝑥8(𝑘 + 1) − 0.00013𝑑3

𝑥8(𝑘 + 1)

− 0.00025𝑎3
𝑥9(𝑘 + 1) + 0.00021𝑑1

𝑥9(𝑘 + 1) − 0.0002𝑑2
𝑥9(𝑘 + 1)

− 0.003𝑑3
𝑥9(𝑘 + 1) + 0.04596 

                             (3) 
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Using the regression model, estimated values of the ammonia along with actual values 

measured, and errors are plotted in Figure 6.10 (a and b). 

 

Figure 6.10 Prediction performance (a) actual vs predicted ammonia, (b) errors 

The percentage errors of each predicted sample are provided in Figure 6.10. The 

proposed method enhances prediction accuracy due to DWT processing of input 

information. Without coupling DWT to POA, the average error is comparatively 

higher than the proposed method shows in Figures 6.11 and 6.12 reveals the merits of 

the approach. 

(a) 

(b) 
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Figure 6.11 Average Errors of the models 

 

Figure 6.12 Coefficient of determination of the models 
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CHAPTER 7 

CONCLUSIONS 

7.1 CONCLUSIONS 

This environmental impact assessment study aims to demonstrate aquaculture 

practices in the western Godavari delta region of Andhra Pradesh while assessing 

their potential impact on the environment. Various methodologies were employed for 

a comprehensive understanding of the issues related to intensive farming. These 

methodologies included a field-based questionnaire survey, a topography survey using 

GIS, a water quality analysis of aquaculture ponds, an analysis of soil samples, and an 

investigation into the effect of aquaculture sludge on clays. Additionally, the study 

involved the assessment of ammonia levels in the aquaculture ponds using soft 

computing techniques. The following conclusions were drawn from the study: 

1. Questionnaire survey results show most of the locations in the western 

Godavari delta region fall in the intensive farming zone. The growing extent 

of aquaculture ponds operated continuously without water exchange for a 

minimum of two crops with a higher concentration of chemicals and minerals 

is worrisome and needs proper guidelines or attention to make a sustainable 

ecosystem. 

2. Dynamic changes in land use and land cover were witnessed in aquaculture 

ponds that have significantly increased by 6.98% (54.35 km2) from 2017 to 

2021. Despite poor laws and state economic growth concerns, croplands were 

converted to aquaculture ponds. Moreover, intensive aquaculture causes a 

decrease in surface temperatures and increases unhealthy vegetation. 

3. Ammonia and nitrate levels of aquaculture water in the study area were unsafe 

for the next crop. The experimental results showed that the mean alkalinity, 

TDS, Ca, and Mg in the inland water bodies were found exceeding the limits 

of specified for safe aquaculture practice. The average WQI was 126; 

approximately 78% of the pond water samples were unfit for the second crop. 

A severe concern to nearby canals is the direct discharge of contaminated 
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aquaculture water. Managing water quality for a healthy ecosystem depends 

on treating aquaculture effluents before discharge or reuse. 

4. Physicochemical characteristics of the intensive farming zone soils exhibits 

higher levels of the calcium, potassium, and sodium. This is due to the excess 

chemical usage and the uneaten feed (phosphorus) strongly adsorbs to the 

subsoil. 

5. CEC values of aquaculture sludge blended clays were significantly decreased 

with the increase in the sludge content. This is due to the exchangeable cations 

between the aquaculture sludge and clay surfaces. Therefore, it is necessary to 

have sound water barriers (geosynthetic membranes) and effluent purification 

systems to reduce the contaminants loading on the environment. SEM images 

revealed that the surface texture and pore size differences with adding 

aquaculture sludge content. This is due to the integrated form of blends 

reduces the surface forces and improves the aggregation of particles. 

6. This study used a novel approach with POA and POA paired with DWT to 

forecast ammonia by considering the crucial characteristics as input variables. 

DWT improves the model's effectiveness by reducing noise in the input 

variables used for prediction. In contrast, predictions made using the DWT-

POA technique had a higher R2 value (0.822) than those using the POA alone. 

The model first examined the hidden layer node selection, hidden weight 

optimization, and threshold value optimization. The ammonia estimate results 

can be significantly enhanced by choosing the best weight and threshold. As a 

result, the proposed DWT-POA approach helps predict ammonia.  

7. The study suggests using the DWT-POA algorithm for estimating ammonia 

levels in aquaculture waters, which benefits field engineers, farmers, and 

government organizations. 

7.2 LIMITATIONS OF THE STUDY 

One of the study's major limitations is that the models are site-specific and can only 

be utilized if similar site conditions exist. For example, the MLR method assisted with 

WT coefficients of the input variables provided acceptable results to predict the 

ammonia. However, the method is highly suitable for the data with low imbalance 
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rate. The 64 samples data provided in this work is correlated with respect to 

independent variables and the method proposed is suitable to predict the ammonia as 

shown in Figure 7.1a. This clustered data is mixed with other data sets and analysis is 

carried out in the similar way to predict the ammonia for the mixed data with 428 

samples. Due to high imbalance, the method failed to provide acceptable results as 

shown in Figure 7.1b. For both cases, actual and predicted outputs are plotted in 

Figure 7.1c and Figure 7.1d. Therefore, data clustering based on the similarities of the 

input variables and data processing are must to carry the proposed methodology. 

 

Figure 7.1 Predicted outputs (a) after data clustering, (b) before data clustering, 

Actual vs predicted outputs, (c) after clustering, (d) before clustering. 

7.3 SCOPE FOR FUTURE WORK 

1. The present study mainly focused on the physicochemical properties of 

aquaculture waters. The study can be further continued to assess metal 

and pharmaceutical traces in the aquaculture waters. 

2. To investigate cross-contamination between intensive aquaculture 

water and adjacent canals. 
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3. The present study identifies hotspots and risk zones where ammonia 

concentrations are particularly high. The study can be further 

continued to develop mitigation strategies for developing and restoring 

sustainable ecosystems. 

4. There is scope to carry out a similar study for ammonia prediction, 

employing other hybrid techniques such as extreme learning machines 

coupled with particle swarm optimization (ELM-PSO) and extreme 

learning machines coupled with invasive weed optimization algorithm 

(ELM-IWO), which could be explored. 
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Locations in the study area 

S.No Location Latitude (N) Longitude (E) 
Designation/ 

Sample Id 

1 Kalla 16.5283o 81.4087o V1 

2 Kallakuru 16.5283o 81.3832o V2 

3 Kallavapudi 16.4620o 81.3881o V3 

4 Dodanapudi 16.5245o 81.3870o V4 

5 Elurupadu 16.5187o 81.3468o V5 

6 Juvalapalem 16.5190o 81.3695o V6 

7 Sessali 16.5296o 81.4334o V7 

8 Pedhaamiram 16.5443o 81.4903o V8 

9 Chinnaamiram 16.5291o 81.4911o V9 

10 Bhimavaram 16.4851o 81.4883o V10 

11 Annakoderu 16.4840o 81.4825o V11 

12 Vempa 16.4421o 81.5750o V12 

13 chilukuru 16.6232o 80.4354o V13 

14 kolamuru 16.6329o 81.4589o V14 

15 Undi 16.5864o 81.4636o V15 

16 yendagandi 16.6433o 81.5336o V16 

17 Akividu 16.5823o 81.3784o V17 

18 cherkumilli 17.0711o 81.6109o V18 

19 Kolleru 16.6629o 81.3372o V19 

20 pedakapavaram 16.6434o 81.4306o V20 

21 chinakapavaram 16.6348o 81.4162o V21 

22 palakoderu 16.5862o 81.5480o V22 

23 Mogallu 16.6036o 81.5638o V23 

24 vissakoderu 16.5511o 81.5665o V24 

25 Attili 16.6885o 81.6037o V25 

26 Manchili 16.6565o 81.6062o V26 

27 Aravalli 16.6316o 81.6049o V27 

28 Eduru 16.6458o 81.5689o V28 

29 ganapavaram 16.6994o 81.4635o V29 

30 kesavaram 16.6810o 81.5439o V30 

31 Pippara 16.7109o 81.5418o V31 

32 Kasipadu 16.7361o 81.5514o V32 

33 Ardhavaram 16.6889o 81.5061o V33 

34 Eluru 16.7107o 81.0952o V34 

35 Kokkirailanka 16.6382o 81.2354o V35 

36 Komadavole 16.7117o 81.1258o V36 

37 Chataparru 16.6966o 81.1665o V37 

38 Chebrolu 16.8289o 81.3922o V38 

39 Unguturu 16.8230o 81.4238o V39 

40 Denduluru 16.7609o 81.1665o V40 
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Aquaculture ponds water quality data  

S. No 
Latitude 

o (N) 

Longitude 
o (E) 

pH 
TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

1 16.7508 81.6012 8.45 360 500 7.8 180 310 150 200 110 0 6.05 

2 16.7168 81.6113 7.64 450 420 2 240 280 180 45 86 0 11.20 

3 16.4230 81.4915 7.34 230 1480 2 315 180 1100 48 45 0 2.40 

4 16.4155 81.4567 8.15 180 11465 8.4 300 200 760 160 111 0.16 61.80 

5 16.5385 81.5274 7.85 3240 301 5 280 190 1010 128 194 0.03 4.45 

6 16.5317 81.4581 8.15 540 45568 8.7 300 1100 1120 120 199 0.18 66.07 

7 16.5001 81.4548 8.24 300 500 4 220 400 320 64 87 2 81.50 

8 16.4599 81.4151 8.2 240 1355 2 110 190 100 36 42 0 3.45 

9 16.6412 81.6278 7.85 210 989 2 260 300 560 35 94 0.04 2.91 

10 16.7346 81.5361 8.15 140 842 1 300 280 560 30 32 0.03 4.42 

11 16.5381 81.3629 8.08 2400 12695 4 320 330 600 112 140 0.3 4.50 

12 16.5899 81.4163 8.07 130 580 2 350 400 560 38 52 0.1 3.08 

13 16.8124 81.6831 8.32 200 1290 2 300 330 90 120 34 0 9.05 

14 16.6115 81.4951 7.31 180 378 0 70 190 80 25 4 0 3.04 

15 16.6325 81.4184 8.14 530 1800 4 200 270 890 124 257 0.1 2.45 

16 16.5462 81.4392 7.94 200 190 2 200 190 1150 36 30 0.1 51.62 

17 16.7571 81.5687 8.19 240 300 1 140 150 1220 35 35 0.1 67.40 

18 16.6265 81.6225 7.45 180 1590 1 120 230 80 30 22 0.1 2.48 

19 16.6405 81.6133 7.44 210 1020 1 120 150 100 24 26 0 1.34 

20 16.7121 81.5881 7.32 520 978 7.5 160 160 1180 192 218 0.54 3.21 

21 16.5251 81.3937 8.18 1100 11380 7.5 290 270 1450 176 272 0.5 1.40 

22 16.4100 81.4329 8.24 1500 13600 7 240 220 1660 128 325 0.45 1.00 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

23 16.5844 81.3543 7.56 450 21205 8 210 210 1180 88 233 0.54 2.17 

24 16.7768 81.6229 7.88 200 600 1 130 220 80 15 28 0 23.50 

25 16.6468 81.5693 7.52 120 1380 2 160 260 120 20 47 0 10.90 

26 16.5203 81.3447 8.15 400 500 6.5 110 110 1280 64 272 0.42 11.80 

27 16.5643 81.5251 7.56 8000 2010 5 210 210 1280 88 257 0.35 4.45 

28 16.6919 81.4622 7.543 240 240 1 130 130 80 32 7.8 1.8 82.07 

29 16.6149 81.5285 7.88 5000 1790 7 140 330 1720 176 311 0.2 18.90 

30 16.5982 81.5847 8.32 8200 1095 7.5 250 200 1600 160 291 0.32 87.70 

31 16.8160 81.6591 8.25 360 620 7 370 350 840 96 145 0.2 52.91 

32 16.5873 81.5335 8.15 850 1190 4 450 480 920 152 145 0 4.42 

33 16.4650 81.5058 8.24 230 1268 2 160 340 80 32 26 0 69.70 

34 16.4350 81.4306 8.45 240 1750 2 120 200 85 36 32 0 3.08 

35 16.5914 81.5186 7.35 180 1230 2 190 190 140 36 49 0.1 9.05 

36 16.7193 81.6329 7.9 540 350 8.8 180 210 125 80 77 0.56 59.20 

37 16.6206 81.4113 8.88 420 500 5 370 310 620 88 97 0.45 71.10 

38 16.4403 81.4712 8.38 2340 1110 5.5 210 170 1420 168 243 0.2 1.62 

39 16.5913 81.5628 8.15 200 1589 1 120 200 85 25 13 0 37.40 

40 16.4756 81.4175 8.26 230 900 2 220 190 120 24 56 0 2.48 

41 16.7206 81.4731 8.24 2400 238 7 260 250 1220 96 189 0.45 61.34 

42 16.5434 81.4543 8.15 4200 500 4 240 220 800 152 150 0.2 73.21 

43 16.6818 81.5221 7.54 200 500 1.5 240 260 115 20 12 0 1.40 

44 16.7276 81.4944 8.53 760 1000 4 210 200 480 32 121 0 1.00 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

45 16.6632 81.6566 8.44 240 1200 0 150 140 85 24 12 0 2.17 

46 16.5191 81.372 7.55 200 230 0 140 150 80 22 8.2 0 3.50 

47 16.5728 81.5139 8.66 450 1280 2 285 200 140 86 89 0 4.50 

48 16.5495 81.5225 8.15 1200 1265 6 210 210 800 120 121 0 2.65 

49 16.5764 81.3966 8.25 250 668 4 250 230 680 100 97 0 4.45 

50 16.5853 81.4231 8.13 520 500 2 140 350 108 44 46 0 6.07 

51 16.4594 81.3904 7.64 210 235 0 160 230 120 26 14 0 4.90 

52 16.8378 81.67517 8.37 1500 1250 4 150 130 2100 240 369 0 7.70 

53 16.6626 81.4912 7.46 450 880 3 180 170 1260 136 223 0.25 72.91 

54 16.4022 81.4701 7.89 200 1235 3 270 320 188 28 124 0 4.42 

55 16.5791 81.4295 7.81 2300 650 6.8 260 310 1840 160 349 0.4 9.70 

56 16.5378 81.4067 7.78 3400 1150 5.5 180 180 1820 256 286 0 3.08 

57 16.5292 81.3844 8.09 8000 1250 7 250 240 1620 208 267 0 2.45 

58 16.6397 81.5926 7.88 230 1600 3 50 180 186 24 36 0 5.75 

59 16.7432 81.5534 7.88 240 1200 3 190 180 200 36 65 0 2.44 

60 16.7760 81.3151 8.12 210 300 2 270 250 150 26 36 0 1.62 

61 16.7870 81.2883 8.18 360 15900 8.5 320 310 2200 248 383 0.54 88.45 

62 16.7340 81.2452 8.08 850 1020 5 360 350 3300 288 626 0 2.48 

63 16.7070 81.3631 7.88 6200 978 3 280 250 214 84 56 0 1.34 

64 16.4560 81.6391 8.15 210 1380 1 330 300 80 25 88 0 3.21 

65 16.4420 81.6038 7.88 210 600 1 350 280 85 22 45 0 1.40 

66 16.3881 81.6314 8.76 540 12400 10.5 240 240 3240 256 631 0.3 61.00 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

67 16.4142 81.5691 7.22 200 240 0 180 190 80 18 9.8 0 2.17 

68 16.5523 81.7294 7.54 2340 1380 3 180 180 134 20 125 0.1 3.50 

69 16.6646 81.57252 7.19 180 1692 7 290 270 1880 184 345 0.18 66.50 

70 16.5684 81.5341 8.12 320 2010 6 320 300 2340 240 422 0.2 6.80 

71 16.8181 81.6322 8.47 2400 11200 11.5 200 170 1240 88 247 0 14.45 

72 16.5952 81.4191 8.45 4200 34000 9.7 290 290 1000 88 189 0.7 21.80 

73 16.4924 81.3722 8.43 7240 1095 2 220 200 120 25 383 0 8.90 

74 16.6501 81.5552 8.65 760 620 5 370 320 960 96 174 0 17.70 

75 16.5128 81.4729 7.77 230 1190 1 290 290 122 17 30.8 0.8 2.91 

76 16.7479 81.5836 7.56 200 1268 0 360 350 90 18 6.5 0 4.42 

77 16.4306 81.4604 7.22 210 2400 1 280 260 95 20 10.2 0 5.45 

78 16.7096 81.6657 8.04 1200 1200 6 280 280 520 80 77 0.25 13.08 

79 16.6884 81.4919 8.27 250 248 6 310 290 820 96 140 0 9.05 

80 16.5751 81.7625 8.35 220 1000 2 430 40 90 41 88 0.4 5.70 

81 16.6094 81.7732 7.92 1100 1240 8 280 280 1360 192 213 0.45 81.10 

82 16.6562 81.7041 8.05 1500 1589 4 300 290 840 144 116 0.04 1.62 

83 16.4142 81.4663 7.54 200 238 0 300 290 80 14 16.5 0 7.40 

84 16.4682 81.4747 7.3 210 700 0 300 280 80 12 8.4 0 2.48 

85 16.5967 81.4999 8.24 2300 500 6.5 310 300 880 120 240 0.25 11.34 

86 16.4556 81.4243 7.12 230 240 1 340 320 100 14 12.4 0 3.21 

87 16.6744 81.6518 8.06 230 700 2 250 250 140 12 11.6 0 1.40 

88 16.4629 81.4021 8.24 3600 420 9.5 350 350 660 88 106 0.8 21.40 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

89 16.6335 81.6265 8.14 210 1480 1.5 330 320 110 12 13.1 0 2.17 

90 16.6614 81.6109 8.45 8200 3000 7 350 320 1200 104 155 0.16 23.50 

91 16.7382 81.6512 7.45 230 568 1 300 210 70 28 12.2 0 8.90 

92 16.5618 81.4361 7.36 240 600 1 300 280 88 43 5.9 0 6.75 

93 16.7334 81.5919 8.42 6200 1355 7 360 330 2040 240 349 0.24 14.45 

94 16.4638 81.4427 8.4 260 989 3 290 260 125 19 125 0.2 6.07 

95 16.4709 81.4065 8.6 3240 842 8 420 380 280 176 447 0.4 18.90 

96 16.4409 81.4057 8.32 540 580 5 230 220 1100 96 208 0.12 57.70 

97 16.6054 81.5642 8.39 420 1290 8 260 240 720 56 140 0.32 52.91 

98 16.8066 81.6329 7.87 2340 1378 8.5 190 190 1660 96 345 0.5 64.42 

99 16.7444 81.5326 8.15 180 1800 6.2 210 280 1420 136 262 0.16 89.70 

100 16.6951 81.5181 8.15 320 11200 5.5 220 220 1180 56 252 0.1 46.08 

101 16.6292 81.5427 8.98 2400 18000 9 190 140 660 56 126 0.45 79.05 

102 16.8317 81.6895 7.44 210 1590 1 220 220 120 26 5.58 0.1 35.70 

103 16.5897 81.3981 7.45 220 1020 1 240 210 80 32 25 0 22.10 

104 16.5688 81.5051 7.47 280 978 2 220 210 120 56 67 0 1.62 

105 16.5388 81.4979 7.38 310 380 1 170 150 100 18 38 0 7.40 

106 16.6595 81.6426 7.35 8700 280 1 290 260 100 48 23.4 0.6 2.48 

107 16.6088 81.5294 7.3 200 1205 0 260 230 100 26 8.2 0 1.34 

108 16.8663 81.6741 7.37 230 600 1 340 290 120 15 19.9 0 3.21 

109 16.5854 81.5471 8.15 250 1380 6 190 190 220 32 34 0 1.40 

110 16.6741 81.6345 8.81 520 1692 8 200 200 200 32 29 0.45 21.34 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

111 16.4712 81.3818 8.65 1100 24000 8 170 170 220 32 34 0.48 22.14 

112 16.6745 81.5849 8.37 1500 1198 5.2 260 240 1780 128 354 0.12 23.50 

113 16.6223 81.4551 7.24 210 179 1 240 240 65 18 3.49 0.2 4.50 

114 16.6614 81.4883 7.4 210 1095 1 260 230 120 20 3.15 0 4.50 

115 16.6553 81.4924 8.2 2300 12000 6.5 200 200 2680 288 476 0.05 44.45 

116 16.8024 81.6426 8.36 220 390 4 150 130 192 224 330 0 6.07 

117 16.5505 81.4826 7.35 8000 430 0 170 140 115 38 9.8 0 8.90 

118 16.5641 81.4401 7.39 210 1750 0 360 300 112 14 8.45 0 6.44 

119 16.6424 81.6465 7.61 5000 1230 4 370 320 340 56 90 0 2.91 

120 16.7143 81.5475 7.65 450 350 3 310 250 112 85 112 0 4.42 

121 16.4867 81.3775 7.94 360 500 4 390 350 1980 200 359 0 9.70 

122 16.6214 81.4614 7.67 220 1110 2 240 230 170 26 35 0 3.08 

123 16.7316 81.6621 7.42 210 340 0 260 220 126 36 12.4 0 9.05 

124 16.6924 81.6306 8.24 180 900 4 280 260 1540 128 296 0.18 15.70 

125 16.7674 81.5871 7.48 140 238 0 230 210 120 25 17.4 0.1 3.45 

126 16.6508 81.5095 8.55 540 500 8 310 270 2720 22 524 0 11.62 

127 16.5396 81.50691 8.1 420 500 3 210 200 2440 34 500 0.2 7.40 

128 16.7088 81.64925 7.65 320 1000 1 370 320 240 20 14.6 0 2.48 

129 16.7609 81.6763 7.65 310 500 1 210 200 174 22 12.4 0.4 1.34 

130 16.6856 81.4652 7.25 120 42 0 270 250 85 18 3.74 0.05 63.21 

131 16.8003 81.6721 7.45 240 460 0 280 250 120 32 3.59 0 1.40 

132 16.5304 81.4326 8.1 4200 11456 5.5 410 360 2200 192 417 0 13.45 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

133 16.6605 81.5399 7.53 7240 301 6 340 340 1120 12 199 0 22.40 

134 16.5281 81.4369 8.11 760 568 3 290 270 800 10 131 0 12.40 

135 16.8712 81.6718 8.32 530 14000 9.5 490 490 1020 104 184 0.7 60.90 

136 16.5894 81.5316 8.54 8700 11890 10.7 170 140 840 128 126 0 14.80 

137 16.6269 81.5802 7.88 210 842 1.5 130 120 125 56 9.2 0 4.45 

138 16.6841 81.6524 7.27 240 265 1 170 160 120 22 20.4 0 6.07 

139 16.5456 81.4201 7.32 210 580 1 190 170 120 18 16.5 0 28.90 

140 16.8029 81.6405 7.21 180 1290 1 190 170 80 22 18.9 0 27.70 

141 16.5654 81.3862 7.24 180 1378 0 200 170 80 16 16.2 0 22.91 

142 16.6881 81.5435 8.13 1500 1800 5 210 200 1140 176 170 0 4.42 

143 16.7678 81.6721 7.2 510 1190 0 325 310 85 30 9.8 0 26.07 

144 16.6157 81.4071 7.61 210 300 1 290 270 160 10 14.5 0 3.08 

145 16.7811 81.6576 8.1 2300 1590 5.3 280 270 1120 120 210 0 29.05 

146 16.5548 81.3491 8.23 3400 1100 4.5 230 220 1005 152 179 0 35.70 

147 16.7294 81.6003 8.21 8000 18900 6.5 230 230 1380 112 267 0 3.40 

148 16.5917 81.5263 7.67 230 1380 1 330 320 80 208 35 0 31.62 

149 16.5865 81.4616 7.26 300 600 1 180 100 136 18 12.8 0 5.40 

150 16.6125 81.6011 7.39 210 240 0 280 280 120 15 3.5 0.2 32.48 

151 16.6613 81.5273 7.52 210 600 1 210 200 100 20 12.8 0 41.34 

152 16.6442 81.4853 8.24 850 380 5 270 270 2040 224 354 0 33.21 

153 16.7853 81.6504 7.39 230 1692 2 230 230 138 45 24.5 0.8 81.40 

154 16.7268 81.5201 7.22 240 2010 0 210 210 58 12 12.4 0.4 81.00 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

155 16.7132 81.5152 7.34 210 1198 0 320 300 80 17 13.4 0 2.17 

156 16.5654 81.4709 7.34 210 1790 1 300 280 168 18 9.45 0 3.50 

157 16.7046 81.4955 7.28 200 295 0 180 250 80 15 4.9 0 4.90 

158 16.7386 81.6221 7.52 240 260 0 330 310 120 19 12.9 0 8.90 

159 16.4456 81.3961 7.21 210 300 1 170 220 88 21 10.4 0 2.22 

160 16.7309 81.6745 7.31 210 268 0 310 300 100 17 12.4 0.2 56.07 

161 16.6507 81.6643 8.61 2400 1750 9.6 290 270 3360 312 626 0.45 58.90 

162 16.6041 81.4733 7.42 220 1230 1 290 260 100 20 13.6 0 7.70 

163 16.7454 81.6794 7.41 210 1000 0 320 310 80 22 4.8 0 2.91 

164 16.7178 81.6662 8.22 760 36500 8.4 320 300 2260 216 417 0.45 64.42 

165 16.5318 81.4823 7.35 210 1110 1 260 240 202 17 13.8 0 45.45 

166 16.5942 81.5834 7.31 200 1589 0 300 290 80 25 7.4 0.1 51.18 

167 16.7041 81.5375 7.54 200 900 0 290 290 90 14 5.6 0 2.34 

168 16.6424 81.5342 7.51 210 238 0 290 270 90 13 2.9 0 34.50 

169 16.7312 81.6336 7.24 200 500 0 430 400 90 20 3.9 0 6.75 

170 16.3933 81.4488 7.24 210 500 0 190 220 85 15 4 0 32.45 

171 16.3782 81.4993 8.65 1100 1000 6 380 320 880 72 170 0 7.40 

172 16.4931 81.3522 7.86 1500 1050 1 300 320 80 10 6.33 0 2.48 

173 16.5196 81.3232 7.61 210 260 0 340 280 80 14 3.5 0 1.34 

174 16.8796 81.6743 7.61 210 1000 0 350 300 80 19 4.1 0.8 2.22 

175 16.8742 81.6611 7.65 200 249 0 350 240 80 16 1.8 0 21.40 

176 16.5244 81.7871 8.1 210 1340 0 220 230 90 22 5.6 0 31.00 
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Aquaculture ponds water quality data 

S. No 
Latitude 

(N) 

Longitude 

(E) 
pH 

TDS 

(ppm) 

EC 

(µS/cm) 

Salinity 

(ppt) 

Alkalinity 

(ppm) 

HCO3 

(ppm) 

TH 

(ppm) 

Ca 

(ppm) 

Mg 

(ppm) 

NH3 

(ppm) 

NO3 

(ppm) 

177 16.5264 81.8031 8.1 8000 1200 5 380 360 1100 180 256 0.25 22.17 

178 16.5542 81.7582 7.43 230 200 0 240 260 134 16 12.4 0 3.50 

179 16.5192 81.7624 7.45 210 1000 0 370 280 140 20 6.4 0.25 3.45 

180 16.4431 81.5842 8.26 8200 500 7 340 140 125 152 204 0 41.80 

181 16.4061 81.5281 8.54 8000 680 6 440 280 2120 192 398 0 44.45 

182 16.5897 81.7733 7.56 3600 1240 2 250 150 320 26 631 0 36.07 

183 16.8321 81.5841 8.34 5000 10000 4 240 230 1580 240 238 0.45 18.90 

184 16.7811 81.3724 7.54 200 280 0 280 240 120 20 7.3 0.2 6.45 

185 16.7752 81.3211 8.45 420 500 5 370 280 420 88 97 0.45 71.10 

186 16.7324 81.1673 8.88 420 500 5 370 300 450 88 97 0.45 71.10 

187 16.7327 81.2492 8.14 3600 420 8.5 350 330 600 88 106 0.8 21.40 

188 16.7061 81.3541 8.15 3600 420 9 350 320 660 88 106 0.8 61.40 

189 16.7521 81.3824 7.33 210 340 0 260 200 126 36 12.4 0 9.05 

190 16.7733 81.2612 7.32 210 340 0 260 210 85 36 12.4 0 9.05 
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Dataset for ammonia prediction model 

S. No X1 X2 X3 X4 X5 X6 X7 X8 X9 Y 

1 1.5 30 8.16 2 300 290 1120 128 194 0.03 

2 1.5 30 8.26 1.5 290 280 760 104 121 0.03 

3 1 27 7.91 4.5 200 190 1360 96 272 0.1 

4 1.5 27 7.94 5.3 200 190 1660 168 301 0.1 

5 6 72 8.03 6 240 230 1720 160 320 0.1 

6 2 58 8.01 8 340 330 1720 176 311 0.2 

7 2 70 8.34 2 360 340 700 72 126 0.08 

8 7 30 8.54 0 160 140 300 48 73 0 

9 7 30 8.56 0 170 150 380 32 72 0 

10 7 30 8.76 1.8 230 200 940 120 155 0 

11 7 30 8.54 0 200 180 480 64 77 0 

12 1 58 7.54 9.5 180 180 2560 240 475 0.1 

13 3 113 8.24 9.8 320 300 2340 240 422 0.2 

14 3 34 7.15 5.5 220 220 1180 56 252 0.1 

15 1 17 8.98 2.5 190 140 660 56 126 0 

16 7 11 8.38 4 170 150 1340 184 213 0 

17 2 47 8.36 4 150 130 1920 224 330 0 

18 2 47 8.57 4.2 170 140 2020 240 345 0 

19 1.5 20 8.27 5.5 240 230 1700 96 354 0.1 

20 1 11 8.39 2.5 230 210 920 80 174 0.1 

21 15 8 8.44 6.5 280 250 2300 3280 359 0 

22 8 7 8.54 2 170 140 840 128 126 0 

23 6 32 8.32 2.5 190 170 1140 184 165 0 

24 5 22 8.47 3 190 170 1340 224 189 0 

25 1 22 8.52 2 200 170 1060 160 160 0 

26 1 32 8.13 2 210 200 1140 176 170 0 

27 1 5 8.21 2 300 290 660 80 111 0.1 

28 5 5 9 5 350 240 1200 168 189 0 
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Dataset for ammonia prediction model 

S. No X1 X2 X3 X4 X5 X6 X7 X8 X9 Y 

29 5 92 8.1 9.5 380 360 2240 240 398 0.25 

30 2 12 8.61 5 240 200 1580 240 238 0 

31 1 5 9.07 8.8 330 200 2160 232 383 0 

32 3 22 7.63 6.5 130 130 1880 184 345 0.1 

33 2 57 7.85 3.3 160 160 1060 120 184 0.1 

34 3 35 8.54 8.2 330 280 1600 160 291 0.1 

35 2 60 8.07 10 220 210 3200 416 524 0.1 

36 1 38 8.16 2.5 270 260 680 64 126 0.05 

37 3.5 65 8.13 7.8 170 160 2840 424 432 0.1 

38 12 15 8.51 4.8 180 160 1920 256 311 0 

39 3.5 33 8.35 5.2 150 130 2580 496 325 0 

40 7 20 8.96 4 300 210 1940 248 320 0 

41 2 15 8.66 5 280 190 1640 144 311 0 

42 1 15 8.34 6.7 160 130 2020 280 320 0 

43 5 14 8.3 1.5 220 190 600 80 97 0.05 

44 2 7 8.3 1.5 220 190 600 80 97 0.05 

45 2 23 8.43 2 200 170 680 88 111 0 

46 5 78 8.3 5.6 290 280 1640 144 311 0.15 

47 2 26 7.81 7 190 190 2620 528 315 0 

48 3 50 8.44 5 160 160 2320 352 349 0.1 

49 3 30 8.5 5.5 130 120 2240 280 374 0 

50 4 60 8.91 3 130 90 2340 400 325 0 

51 10 60 7.7 6 120 80 2580 440 359 0 

52 5 30 8.19 5.5 140 140 2520 384 379 0 

53 2 33 7.88 6.3 180 180 2380 504 272 0 

54 4 47 7.5 4.5 110 110 1360 168 228 0.1 

55 1.5 48 7.98 6 270 270 1540 128 296 0.1 
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Dataset for ammonia prediction model 

S. No X1 X2 X3 X4 X5 X6 X7 X8 X9 Y 

56 6 26 9.13 7.5 290 250 2120 272 349 0.05 

57 5 20 8.59 5.5 290 190 1700 184 301 0 

58 0.8 48 8.7 4 270 210 3360 280 646 0 

59 1 37 8.12 4.5 260 250 1480 152 267 0.05 

60 2 5 8.45 2.5 380 340 840 64 165 0.1 

61 0.8 7 8.63 2 270 220 700 104 106 0 

62 1.5 15 8.1 0.5 210 200 440 72 63 0 

63 6 15 8.53 5 180 150 1660 256 247 0 

64 2 60 8.73 7 130 100 2720 424 403 0 

 

 

Input variables 

X1 Area of the pond (acres) 

X2 Cultivation days 

X3 pH 

X4 Salinity (ppt) 

X5 Alkalinity (ppm) 

X6 Bicarbonates (ppm) 

X7 Total hardness (ppm) 

X8 Calcium (ppm) 

X9 Magnesium (ppm) 

Output variable 

Y Ammonia (ppm) 
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