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ABSTRACT

This thesis reports the variation in properties of graphene like two dimensional ma-

terials SiC and SiB with the application of strain and their properties in being the anode

of rechargeable Li-ion batteries. The material was modelled and the calculations were

carried out using Density Functional Theory (DFT) using Vienna Ab-initio Simula-

tion Package (VASP) and Quantum Espresso packages. SiC in its pristine case showed

isotropic behaviour but the inducing of stress changed it to anisotropic behaviour. On

the other hand, SiB was anisotropic in its pristine form and anisotropic behaviour in-

creased with the application of strain. Both the structures were mechanically stable

satisfying the Born criteria. The mechanical behaviours showed highly non-linear na-

ture for the case of SiB and the ultimate stress were much higher than their counterpart

silicene. The application of strain specifically biaxial onto SiB generated a new struc-

ture having a planar architecture very similar to graphene. The experimental synthesis

of SiC urged to check its potential in being the anode of Li-ion batteries. Pristine

SiC was a poor candidate and was introduced with defects to check for improvement

in properties for an anode. Bi vacancy defective configurations showed an interesting

characteristic upon optimization. There was a transition from point to topological type

of defects forming 5-8-5 rings in the case of C-bi vacancy and Si-C bi vacancy and it was

a Li mediated transition in the case of Si-bi vacancy configuration. Among the various

defective configurations, Stone-Wales (SW) defective configuration was found to be the

best candidate having lowest value of binding energy compared to all the other configu-

rations. The characteristics of SW configurations are specific capacity 501 mAh/g, open

circuit voltage 0.11 V, diffusion barrier 0.57 eV which is in accordance with the electro-

chemical characteristics in being the anode of Li-ion batteries. Therefore, SW defective

configuration was proposed to be a prospective candidate for the next generation Li-ion

batteries.

Keywords: SiC; SiB; Density Functional Theory; Vienna Ab-initio Simulation Pack-

age; Structural properties; Dynamical properties; Electronic properties: Li-ion battery;

Diffusion barrier; Binding energy; Specific capacity.
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Chapter 1

INTRODUCTION

Materials pave way back to civilizations. The history of civilization can be described

as breakthroughs in materials science progressing from the stone age through Bronze,

Iron, Nuclear and Silicon ages (Crabtree et al. 2010). The advancement in materials

technology through ages have designed the modern civilization making progressive in-

novations in industry, agriculture, health, energy and information technology. Materials

have been in need for all the technological developments and the urge to develop new

technologies need efficient materials. This opened a branch of science called materials

science in which technologically advanced and efficient materials are identified and the

influence of their microscopical features on the macroscopic behaviour are understood

to apply them in various applications (Hafner 2000).

Scrutinizing materials by conducting experiments specially the ones with extreme

conditions like high temperature, high pressure etc. lacked time and resources which

led to the modelling of materials by theory and simulation. To define, a model is an

analogue with various assumptions/approximations of a real system and a simulation is

the reaction of the modeled system to external perturbations (LeSar 2013). The rapid

development of computational power and the easy availability of softwares for the cal-

culations profundly increased the scientific community to come up with technologically

advanced and efficient materials for material processing. This rate of development show

no signs of abating which developed models of unprecedented fidelity and speed and

made a realistic description of wide range of materials possible. Due to this, com-
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putational modelling of materials developed and expanded to all areas of science and

engineering and have become an important tool in industrial and academic research.

Computational materials science (CMS) is a scientific field where materials are mod-

elled and simulated to predict the material behaviour using the known concepts of

Physics, Chemistry, Mathematics and computer science and are applied numerically.

This significantly reduces the designing time, accelerates the deployment of new ma-

terials and experimental testing needs (Crabtree et al. 2010). CMS employs various

steps to carry out calculations. It first defines what to calculate, makes a prototype

of the real system, selects the relevant rule either classical or quantum, specifies the

code or package to carry out the job, analyze the results obtained and compare with

the experimentally determined data (Lee 2016). These are carried out based on any

of the following methods i.e. first principle or ab-initio, molecular dynamics, monte

carlo, finite-element analysis or QM/MM. The method used in the present thesis is the

first-principle calculations.

A material in question consists of atoms or molecules and number of electrons and

nuclei and the laws governing the behaviour of these sub atomic particles are well

known. Solving Schrodinger equation is the basis of first-principle or ab-initio comput-

ing method. Rather than solving the simple hydrogen atom whose analytical solutions

are well understood, instead many electron system needs to be solved which requires

numerous approximations. Electron-electron interactions for a many body system is

complex and is replaced with an effective potential considering each electron indepen-

dent of each other (Ceder 2010). This approach was elaborated and various theorems

were formulated by Hartree, Fock, Slater and further Hohenberg, Kohn and Sham re-

formulated all the above theorems to the much popular Density Functional Theory.

Density Functional Theory popularly known as DFT introduced by the two eminent

scientists Hohenberg and Kohn has been a robust tool for predicting the immense va-

rieties of materials and their properties. This has become a substitute for the wide

variety of experiments which needs to be conducted for predicting the materials prop-
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erties (Saito 2013). DFT is a method of solving the many body Schrödinger equation

in which a real system is represented by an effective one body system and the ground-

state properties are determined from the ground state density (Fiolhais et al. 2003). DFT

specifically can be used to understand the electronic, mechanical, optical, magnetic and

dynamical properties with great accuracy. A detailed description on DFT is given in

Chapter 2 of this thesis.

The discussions of two dimensional materials age back to few decades. Wallace in

1947 proposed a monolayer of graphite to help deal with the band structure of graphite

(Wallace 1947). Semenoff considered the same monolayer of graphite to understand

the condensed matter simulation of a three-dimensional anomaly (Semenoff 1984) and

Haldane in 1988 used it as a model for quantum hall effect (Haldane 1988). In the

same year, Tomanek described a monolayer structure of BC3 which showed distinct

properties from it’s bulk structure (Tomanek et al. 1988). In the 90s, carbon nanotubes

were discovered and the graphite monolayer was used to understnad the electronic states

of carbon nanotubes (Ajiki and Ando 1993). All these gave a prespective that one day

a free standing two dimensional material would be possible. But, the Mermin-Wagner

theorem says that 2D systems cannot spontaneously break the symmetry and cannot

have long range order preventing it from existing unless there is the presence of a strong

height fluctuations (Mermin and Wagner 1966). This theorem is valid only for infinite

systems and does not rule out the pervalence of finite systems in two dimension.

The pioneering segregation of one atom thick layer of graphene in 2004 therefore

came as a huge surprise. Graphene was first synthesized by the two nobel laureates,

Novoselov and Geim giving birth to a new era of two dimensional materials (Novoselov

et al. 2004). Graphene was exciting because of its unique electronic properties which is

originated from its planar honeycomb structure. It has zero band gap with Dirac cones

appearing near Fermi level contributing to its exceptionally high carrier charge density

with charges behaving like relativistic particles (Novoselov et al. 2005, Ponomarenko

et al. 2008). Graphene was also observed with extraordinary mechanical properties with

Young’s modulus of 1 TPa, fracture toughness of 4MPa (Zhang et al. 2014, Jiang et al.
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2009). The advent of graphene with extraordinary electronic properties opened a vast

realm of two dimensional materials to the scientific world including hexagonal Boron

Nitride (h-BN), silicene, carbon nanotubes, silicon nanotubes, ZnO, MoS2, germanene

etc. (Liu et al. 2003, Nakano et al. 2006, Ajayan 1999, Fagan et al. 2000, Topsakal et al.

2009, Splendiani et al. 2010, Acun et al. 2015).

Among the predicted two dimensional materials, silicene was the next extensively

studied candidate and was considered to be of special interest due to its potential appli-

cation and its compatibility in silicon electronics. Silicene is a monoatomic sheet con-

sisting of silicon atoms arranged in hexagonal lattice with atoms buckling out of plane

unlike graphene (Cahangirov et al. 2009). It is a zero band gap semiconductor with lin-

ear bands appearing near the Fermi level and charges behaving like massless relativistic

quantum particles. Silicene has substantially higher spin orbit coupling strength than

graphene owing to sufficiently larger band gap near the Dirac point leading to quan-

tum spin hall effect (Liu et al. 2011). Mechanical properties of silicene fall inferior to

graphene with higher value of elastic bending stiffness due to buckling geometry present

in silicene (Roman and Cranford 2014). The semimetallic characteristic of silicene hin-

dered its use in electronic devices which requires a sizeable and well defined band gap.

This drawback could be overcome to an extent by bandgap engineering which can be

done by introducing vacancies or dopants, exposing to external force or fields or strain,

confining to lower dimensions etc. (Sahin et al. 2013, Shinde and Kumar 2011, Yan

et al. 2015, Gui et al. 2008, Shemella et al. 2007).

Silicene was introduced with various dopants to improve its basic properties. Sil-

icene forms heterosheets of the form SiX and XSi3 (X=B, C, N, Al and P) which are

thoroughly explored by Ding et al. to understand its potential in nanoelectronics and

devices (Ding and Wang 2013). Among the SiX type of derivatives, SiC forms a planar

sheet analogue to graphene. SiB, SiN and SiAl prefers a washboard like configura-

tion and SiP prefers a buckling pattern (chairlike) similar to silicene. On the other

hand, XSi3 exhibited planar configurations for all the sheets except N and P. NSi3 and

PSi3 preferred chairlike configuration similar to silicene. Electronic properties of these
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derivatives showed varied characteristics from silicene. Among SiX, SiC is a wide

band gap semiconductor (> 2 eV), and all the others showed metallic character, and

among XSi3, BSi3 and NSi3 exhibited metallic nature, PSi3 and AlSi3 were narrow

band gap semiconductors and CSi3 showed semimetallic characteristics similar to sil-

icene with Dirac-like bands near Fermi level. Phonon calculations of CSi3, PSi3 and

AlSi3 confirmed their dynamical stabilities. Understanding the basic characteristics of

these derivatives would help in pertaining to various applications.

1.1 SiC

SiC is a binary planar sheet of Si and C akin to graphene with a lattice constant of 3.10

Å and Si-C bond length of 1.79 Å (Ding and Wang 2013). The structure of SiC is as

shown in Fig. 1.1 with the unitcell marked. SiC is a direct band gap semiconductor with

Figure 1.1: Structure of SiC with unitcell and atoms marked.

a band gap of 2.5 eV and high exciton binding energy upto 2 eV making it a futuristic

material for electronic and optoelectronic applications (Shi et al. 2015). Monolayer SiC

absorbs photons at 3.3 eV which enables it to be a potential material for photonic ap-

plications (Lin 2012). It is also assumed to play a major role as metal-free catalyst due

to it’s higher chemical reactivity towards foreign adsorbates (Wang et al. 2016b). Sili-

con carbide in layered, single walled (SW) and double walled nanotubes (DWNT) were

thoroughly examined by Yu et al. to understand their energetics and the effect of buck-

ling on the strain energy and also the variation in energy band gap along the changes
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in tube diameter. They found a planar SiC 2D sheet after an optimization from the pre-

cursor buckling sheet. There was also a reduction in buckling when the tube diameter

in the case of SWNT and DWNT were increased (Yu et al. 2009). SiC nanowires and

nanoribbons were also extensively studied and they were found to be a potential candi-

date for hydrogen storage, nanodevices and microelectrochemical systems (Bekaroglu

et al. 2010).

The synthesis of SiC in various nano-forms started from late 2000. SiC nanoflakes

were synthesized in early 2006 by Zou et al. by a carbothermal process associated

with a reaction of SiCl4 and CaC2 at a lower temperature of 180 ◦C and its structure

was verified by X-ray diffraction, Infrared and Raman spectroscopy analysis (Zou et al.

2006). SiC nanomaterials were synthesized from waste plastics which are greatest envi-

ronmental pollutant mixed with Si powder at temperatures of 350-500 ◦C in a stainless

steel autoclave. This was then passed through HClO4 at 180 ◦C to finally achieve 3C-

SiC nanomaterial (Ju et al. 2009). Kuzubov et al. in 2013 predicted the potential of

Mg(0001) and MgO(111) substrates to grow a monolayer of SiC, among which Mg

tends to be the superior substrate over MgO (Kuzubov et al. 2013). Chabi et al. also

claimed that 2D SiC nanosheet was produced by catalyst free carbothermal reaction

and post sonication process (Chabi et al. 2016). Silicon carbide was also synthesized

in nanowhiskers (SiCNWs) which was known for its exceptional electronic properties,

thermal stability and chemical inertness. SiCNWs were synthesized by heating the

blends of palm kernel shell (PKS) and silica in the ratio of 5:1 in a microwave fur-

nace (Voon et al. 2016). Nanograins of SiC was accumulated in the pores of disordered

graphene oxide (GO) which was confirmed by the scanning transmission electron mi-

croscopy images revealing the existence of planar two dimensional SiC (Susi et al.

2017).

Having a route to the experimental synthesis of 2D-SiC, various practical applications

are thought of among which the capability of SiC to be the anode of Li-ion batteries

was among the first preference. Rechargeable Li-ion batteries (RLIBs) have come as

a remedy to the non-renewable fossil fuels usage and increasing need for electronic
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devices in transportation, domestic applications and in consumer electronics (Meng

and Arroyo-de Dompablo 2009, Goodenough and Park 2013, Islam and Fisher 2014).

Carbon based materials specially graphite was the conventional electrode used in Li-ion

batteries from its very beginning dealing with its safety primarily (Pistoia et al. 1994).

Li intercalation into graphite was much easier because of its layered structure. Every

six Carbon atoms could hold one Li atom forming LiC6 giving a capacity of around

372 mAh/g (Dahn et al. 1995). This low capacity cannot fetch the high energy densities

required for the present day electric vehicles. This was its greatest disadvantage urging

its replacement for better and efficient materials.

Silicon was considered to be a promising material to be the anode of Li-ion batteries.

It was known to have storage capacity of 4200 mAh/g and low discharge potential and is

also abduntantly available in nature and environmental friendly (Franco Gonzalez et al.

2017). Whilst the charge capacity was much higher than the persisting graphite anode,

volume change by 400% and low electrical conductivity resulted in capacity decay lim-

iting its practical applications (Ryu et al. 2004). On the other hand, Li metal was found

to be a superior candidate for anode of Li-ion batteries with a theoretical capacity of

3860 mAh/g and a smallest electrochemical potential. But the dendrite formation and

volume expansion occurring in the batteries raised safety issues eventually looking for

another candidate (Beaulieu et al. 2001). The advent of two dimensional materials and

their exciting electronic and electrochemical properties showed potential in being the

anode of Li-ion batteries. Graphene and silicene rather than in the pristine form showed

superior capacity in the defected and in the doped form (Fan et al. 2012, Setiadi et al.

2013).

Being a wide band gap semiconductor, we expect less electrical conduction of pris-

tine SiC which would in general reduce the capacity. This generated interest to look for

possible alternatives and SiC was introduced with various kind of defects. Defects have

improved the semiconducting nature and have finally enhanced the elctrical conduction

in phosphorene and silicene (Guo et al. 2015, Setiadi et al. 2013). Previous studies re-

ported that the introduction of defects can enhance the adsorption energy and lower Li
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diffusion barrier in silicene thus making it a useful material in Li-ion batteries (Setiadi

et al. 2013). This also causes a change in electronic bands further causing a change in

electrical conduction in silicene (Li et al. 2014). Introduction of defects thus efectively

promotes and improves the adsorption capacity of various adsorbants like graphene, h-

BN sheets and nanotubes, MoS2 etc (Fan et al. 2012, Shevlin and Guo 2007, Sun et al.

2015).

1.2 SiB

The elements silicon and boron are carbon’s neighbours in the periodic table and are

found to possess two dimensional monolayer structures. Silicene is very well described

in the beginning of the introduction section. Boron atoms on the other hand, gave an in-

dication of existence of monolayer with the successful experimental synthesis of single

walled and multi walled nanotubes (SWBNT and MWBNT). The experimental char-

acterization and theoretical prediction of these nanotubes revealed a conducting nature

implying metallic characteristics of boron sheets if they exist (Liu et al. 2010, Bezugly

et al. 2011). Later on, boron in many low dimensional forms were predicted specially

boron fullerenes, α sheet, β sheet, γ sheet, etc (Tang and Ismail-Beigi 2007, 2010, Oz-

dogan et al. 2010). All these appeared flat and metallic except the α boron sheets which

exhibited a buckled geometry with a narrow band gap. Boron is a prominent p-type

dopant utilized in silicon industry due to which silicon-boron compounds have drawn

ample importance. Silicon-boron compound prediction date back to 1900. Moisson and

Stock were able to prepare SiB3 and SiB6 compounds (Moissan and Stock 1900). After

these, SiB4 (Silicon boride) was predicted in 1960 by Cline and group (Cline and Sands

1960). Structure of the compound was found to have resemblance to boron icosahedra.

All the predicted compounds showed higher mechanical hardness which was again a

reason for the interest in silicon-boron compounds.

Hansson et al. in 2012 predicted a graphene-like planar structure made of Silicon

and Boron atoms. He thorougly examined the structural and electronic properties of

SiB and reported a flat conformation of SiB. The calculated total energy plotted against
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the buckling parameter indicated lowest energy when the buckling was zero i.e. flat

conformation. Later in 2013, Ding et al. studied various derivatives of silicene, along

with the two dimensional SiB. SiB was reported to be having a low buckled washboard

configuration by analysing their cohesive and formation energies. The washboard con-

formation was supposed to be having more stability than the flat conformation of SiB

(Ding and Wang 2013). Si and B atoms are arranged alternatively in a hexagon with a

lattice parameter of 3.41 Å(=a) and 5.74 Å(=b) and Si-B bond length of 1.95 Å. The

washboard conformation of SiB reduces the symmetry leading to a rectangular unitcell

with a6=b. The structure of SiB is as depicted in Fig. 1.2 showing the unitcell considered

for study and the buckling of atoms present. Ding et al. confirmed the metallic nature

(a)

(b)

Figure 1.2: Structure of SiB with unitcell marked in fig. (a) and (b) shows the buckling
of the Si and B atoms. Blue spheres are the Si atoms and green are the B atoms.

of SiB along with the determination of elastic constants signifying mechanical stability.

The magnitudes of elastic constants obtained indicated SiB to be mechanically superior

than silicene and the presence of anisotropy (Ding and Wang 2013).
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SiC and SiB in nanostructures are predicted to be potential candidates for various

applications being a derivative of silicene (Gori et al. 2012, Wang et al. 2016b). Thus,

this thesis presents a thorough study of these (SiC and SiB) derivatives specially to

understand the effect of strain on the structural, mechanical and electronic stabilities

and also to understand the efficiency of these materials in being the anode of Li-ion

batteries.

1.3 Scope and Objectives of the present research work

1.3.1 Scope

Excellent efficiency and long life Li-ion batteries and electric vehicles are required by

the next generation automobiles and industries. The present day research predicts many

nanomaterials which doesn’t have even a route to its synthesis. In this context, SiC

which is being experimentally synthesized plays a crucial role if it can overcome the

capacity of the present graphite anode. Most of the two dimensional materials are as-

sembled on a suitable substrate during their synthesis which can exert a strain on the

material. So, it is also evident to look at the variation in properties with the implemen-

tation of strain in these materials and to understand their stabilities in the strain regimes.

SiC being a wide band gap semiconductor would contribute less to electrical conduc-

tion due to which defects are introduced into the material to look for transitions in the

mechanical and electronic properties and to evaluate the modification in adsorption and

capacity. The characteristics of a good anodic materials are

• Lack of cluster formation of the intercalate on host material

• Lack of structural deformation of the host

• Low binding energy of intercalate with the host

• Low barrier potential and low voltage to intercalate through the host
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1.3.2 Objectives

The basic properties of the two dimensional materials under study are determined using

density functional calculations as implemented in VASP. Based on the above scope, the

objectives for the present research work are designed in the following way.

• To apply strain in 2D-SiC and understand its effect on structural, mechanical and

electronic properties.

• Strain is applied on 2D-SiB and understand the stability of SiB in various strain

regimes. Undeformed SiB in its ground state is dynamically unstable and efforts

are done to see if a dynamically stable configuration can exist with the application

of strain.

• Plausible studies to test SiC and SiB to understand its potential in being the anode

of Li-ion batteries.

• Introduce defects and see if there is alteration in basic properties (mechanical,

electronic) and understand the defective configuration for the anode capability of

Li-ion batteries.

1.4 Organization of the Thesis

• Chapter 1 gives an introduction to the materials in general along with a broad

idea about two dimensional materials. The importance of two dimensional ma-

terials on the present day research and their potential practical applications are

thoroughly dealt in this chapter. The materials which are of our interest and their

scope are discussed in detail.

• Chapter 2 describes the methodology used in the present study in detail. A

thorough description on Density Functional Theory and VASP software is carried

out.

• Chapter 3 presents the uniaxial and biaxial strain dependent changes in the struc-

tural, mechanical and electronic properties of 2D-SiC .
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• Chapter 4 discusses the changes in properties of 2D-SiB along with the applica-

tion of uniaxial and biaxial strain.

• Chapter 5 demonstrates the inefficiency of pristine SiC in being the anode of

Li-ion batteries. This is then introduced with various kinds of defects (mono-, bi-

and Stone - Wales) and the transformation in properties along with the efficiency

of defective configurations in being the anode are thoroughly explained.

• Chapter 6 points the major conclusions of the present study and the further op-

portunity in the study of these materials are discussed.
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Chapter 2

COMPUTATIONAL

METHODOLOGY

Carrying out expensive experiments to predict materials in fewer dimensions and under

various extreme conditions like high temperature, high pressure etc. is an exhaustive

process. Similarly, the less human intervened and the places inaccessible to human be-

ing like the extra terrestrial needs to be studied and understood. There is lack of time

and resources to explore all the possible options experimentally. Advanced materials

and processes are critical pacing elements for progress in advanced energy systems

and virtually in all industrial technologies. Theoretical prediction through computer

simulations has become an alternative for these tiring process. Perhaps, the most spec-

tacular increase in capability has been demonstrated in high performance computing.

Over the past decade, computational power has increased by a factor of million due

to advances in hardware and software. This progress in computer technology made a

realistic description of a wide range of materials possible. The present work deploy

Density Functional Theory (DFT) calculations to find out the properties of materials

under consideration.
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2.1 Background

Classical Mechanics that ruled the universe for decades were found inadequate when

the material was taken to subatomic levels. Atom was considered to be the smallest

known entity until the discovery of electrons by J. J. Thomson. The atomic model per-

sisted until then was reworked by Niels Bohr where he proved that the electrons revolve

around nucleus without emitting radiation in specific energy known as orbitals. This

picture of atom prevailed but was unable to completely explain all the characteristics

(multi electron atoms, Stark effect, Zeeman effect) of atoms. On the other hand, quan-

tum theory of radiation by Max Planck considered that the atoms could emit or absorb

energy only in specific packets of energy known as quanta. This gave birth to the field of

quantum mechanics, which understands the science behind elementary particles. This

was followed by the introduction of wave-particle duality by de Broglie. All the above

understanding of elementary particles led to the conclusion that they could be taken as

a wave to completely understand their characteristics.

Erwin Schrödinger in 1926 first brought out his very famous wave equation for which

he shared Nobel prize with Paul A. M. Dirac in 1933 (Pauling and Wilson 2012). This

equation appeared extremely important as it contained all the information about a sys-

tem.

ĤΨ(ri, rI , t) = EΨ(ri, rI , t) (2.1)

Here, Ĥ is the Hamiltonian operator, Ψ is the wave function, ri is the coordinates of

electron and rI is the coordinates of nucleus. Unfortunately, the materials in question

would contain several hundreds or thousands of atoms in it which in turn contributes

majorely to the material properties and finding solutions to Schrödinger equation is a

big hurdle and is almost futile and increases exponentially with the number of electrons

present. This limits its extensive use confining it to solving small number of electronic

systems. For example, a system containing single electron has three degrees of freedom

but if the system contains n number of electrons then the degrees of freedom turns out

to be 3n. Schrödinger equation needs to be solved in this case to completely understand

the system. This becomes impractical and needs many approximations.

14



The first simplification is that of neglecting gravity and relativity assuming very little

mass of electrons and its speed negligible compared to the speed of light. The rela-

tivistic efects for heavier atoms are incorporated in the development of pseudopoten-

tial. Time can be discarded if we restrict ourselves to ground state energy of electrons

therefore the potential energy being constant over time. Taking away time from the

Schrödinger equation, the modified equation becomes,

ĤΨ(ri, rI) = EΨ(ri, rI) (2.2)

2.1.1 Born Oppenheimer approximation

Nuclei being heavier makes the electrons respond spontaneously to nuclear motion and

it occupies the ground state of that nuclear configuration. Thus the position of nuclei

is assumed stationary in Born Oppenheimer approximation and therefore the kinetic

energy of nuclei can be neglected and the Coulomb repulsion between them can be

considered constant. This approximation allows in writing the Schrödinger equation in

terms of electronic coordinates alone.(
− ~2

2m

∑
i

∇2
i +

∑
i

V n(ri) +
1

2

∑
ij

1

|ri − rj|

)
Ψi = EΨi (2.3)

Here, The first term represents the kinetic energy, second term the external potential

and the third is the electron-electron interaction term.

2.1.2 Hartree Method

To bring down the complexity in solving the Schrödinger equation, Hartree in 1928

proposed a one electron model in which each electron is considered independent of

each other and interacts with others in a mean-field Coulomb potential. Hartree dealt

with one electron at a time and the one electron Schrödinger equation turns out to be of

the form (
− ~2

2m
∇2 + V ext(r) + VH

)
Ψ(r) = EΨ(r) (2.4)
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Here, Vext(r) denotes the interaction between electrons and nuclei, VH is the Hartree

potential arising from the interaction between electrons and the mean field. The total

energies appear to be the summation of individual electron energies assuming the inde-

pendent nature of electrons considered in this method and also the wave function tends

to be the product of individual wave function.

E = E1 + E2 + E3 + .........+ En (2.5)

Ψ(r1, r2, r3, ...., rn) = Ψ1(r1)Ψ2(r2)Ψ3(r3).....Ψn(rn) (2.6)

This method results in rough estimates of energies because it neglects the antisymmetry

principle and Pauli’s exclusion principle and also the exchange-correlation energies re-

sulting from the electron interactions. Soon, this was improved to Hartree-Fock method.

2.1.3 Hartree - Fock Method

The improved HF method compared to Hartree method, considers the n-electron wave

function as a slater determinant, the linear combination of noninteracting one electron

wave functions. The ideology of slater determinant brings the missing anti-symmetry

and Pauli’s exclusion principle into the light. Now the Schrödinger equation takes the

following form,

(
− ~2

2m
∇2
i + V ext(r) + Vij

)
Ψi(r) = EΨi(r) (2.7)

The new term appearing in the equation Vij is the electron-electron interaction term

which has two components namely; the Coulomb energy between two electrons i and

j (Hartree energy) and also the exchange energy appearing from the anti-symmetric

nature of wave function thus making the energy calculation much more approximate

compared to the preceding method. The eletrons with same spin are encountered in the

above method but electrons with the opposite spins also needs to be accounted for better

determination of ground state energy. This is the correlation term which is missing in

the above method but HF helped in calculating the materials with few number of atoms
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in it. Density functional theory developed by Kohn and Sham gave a breakthrough

accounting all the missing terms from the above two methods.

2.2 Density Functional Theory

The major breakthrough in the theoretical calculation happened with the introduction of

two theorems developed by Hohenberg and Kohn in 1964 which was later formulated

as Density Functional Theory (DFT) by Kohn and Sham (1965). The theorems dealt

with electron density and energy functional as the two essential entities in resolving a

material under study.

Kohn-Sham uses electron density as the main entity to solve the many body Schrödinger

equation containing n-electrons. This electron density approach cuts down the 3n-

dimensional problem to n-3-dimensional problem and further to 3-dimensional density

of electrons (ρ(x,y,z)). Now in the new approach, one needs to be worried only about

electron density rather than wave function thus helping in analyzing large number of

materials making computational science stream progress to a large extent. Electron

density, ρ(r) is basically the number of electrons per unit volume at a point r. Now

going back to the many electron Schrödinger equation, the total energy of the system

can be written as :

E =< Ψ|Ĥ|Ψ >=

∫
Ψ∗(r1, r2, ..., rn)ĤΨ(r1, r2, ..., rn)dr1.....drn (2.8)

Here

Ĥ = − ~2

2m
∇2 + V n(ri) +

1

2

1

|ri − rj|
(2.9)

Kinetic energy term and the electron-electron interaction term considered within the ex-

change and correlation in the above Hamiltonian is universal and therefore the Hamilto-

nian depends only on the Vn(r) term implying the external potential which rely on ionic

coordinates. This denotes that Vn uniquely determines the ground state wave function

and thus ground state density. From this, it can be understood that the ground state wave

function and ground state energy can be established from ground state electron density
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n(r).

Hohenberg and Kohn in 1964 proposed two theorems which gave a precise ground for

the definition of electron density as the fundamental entity in DFT. This theorems links

between electron density, external potential, Hamiltonian and wave function. The first

Hohenberg-Kohn theorem put forward that the ground state energy determined from the

Schrödinger equation is a unique functional of electron density (Proof in Appendix A).

Mathematically,

E = E[n(r)] (2.10)

The theorem thus implies that knowing electron density can solely determine all the

properties of a system including energy E[n(r)] and wave function Ψ(r1, r2, r3, ...., rn)

of the ground state. This brings down the problem of solving 3n variables, the wave

function to 3 spacial variables, the electron density. But, the exact form of this func-

tional is unknown for a general many body system. So, it is now necessary to understand

how the functional actually look like. This was described in the second Hohenberg-

Kohn theorem which specifies that it is the ground state electron density that minimizes

the total energy of the system corresponding to the full solution of the Schrödinger

equation (Proof in Appendix B).

δE[n]

δn
|n0 = 0 (2.11)

This theorem identifies a method to find out the minimum energy of the system and

proves that this can be done through variational principle. For a given Vn, if we can

reduce the system energy by varying the electron density and reach the minimum possi-

ble system energy, yet not below it, then this is the principle of variation in the scheme

of DFT. Therefore, the functional takes the form

E[Ψi] = Eknown[Ψi] + Exc[Ψi] = Egs (2.12)

Where Eknown includes electron kinetic energies, Coulomb interaction between electron

and nuclei,Coulomb interaction between pairs of electrons and pairs of nuclei and Exc
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includes all the other effects not included in the Eknown term like the exchange energy,

correlation energy etc. The search for the minimum energy can start from any initial

guess usually this is done by taking the electron density generated by atomic orbital

overalpping.

Kohn-Sham introduced a method to find out the right electron density by implement-

ing an approach of reducing the N-interacting electrons to N non-interacting electrons

moving in an effective potential. Kohn-Sham equation can now be written as

(
− ~2

2m
∇2 + V n(r) + V H(r) + V xc(r)

)
ϕ(r) = Eϕ(r) (2.13)

Here, Vn(r) is the interaction term considering the electrons and nuclei, VH(r) is the

Hartree potential given by
∫ n(r)n(r′)

|r−r′| drdr
′, Vxc(r) represents the exchange and correla-

tion contributions from the electrons. The above equation appears similar to Schrödinger

equation with the summation missing in the present form just because the Kohn-Sham

equations are single-electron equations depending on the three spatial coordinates. In

order to solve the above equation (2.13), one needs to find out the Hartree potential

which requires the knowledge of electron density. In order to define the electron den-

sity, the single particle wave function must be known and to determine the single elec-

tron wave function, one must solve the Kohn-Sham equation. This is done through an

iterative process which can be defined the following way,

Kohn-Sham equation :

[− ~2

2m
∇2 + VKS(r)]ϕ(r) = εϕ(r) (2.14)

Kohn-Sham effective potential :

V KS = V n(r) + V H(r) + V xc(r) (2.15)

V n(r) = −ΣI
zI

|r− RI |
(2.16)

∇2VH(r) = −4πn(r) (2.17)
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Vxc(r) =
δExc[n(r)]

δn(r)
|n0 = 0 (2.18)

n(r) = Σi|ϕi(r)|2 (2.19)

• Define an initial trial density n(r).

• Substitute n(r) in eqn. 2.17 and obtain Hartree energy, VH .

• Also, substituting in eqn.2.18 and using LDA or GGA schemes evaluate Vxc.

• Substitute the obtained Vn, VH , Vxc in the KS equation and solve the equation to

get ϕi(r).

• Use the above ϕi(r) and find out the new n(r).

• The obtained ϕi(r) is placed in eqn. 2.19 and a new n(r) is determined and is

compared with the old n(r) and the cycle is continued until both the n(r)’s reaches

the specified accuracy.

2.2.1 Pseudopotential

When the atoms are brought close to form a solid, the valence electrons take part in

atomic interactions and the core electrons remain mostly unaffected by their influence.

This inspires in considering the valence and core elctrons into two different groups

based on their contribution to atomic interactions. Core electrons and nucleus are con-

sidered together and is taken away from the calculations and this approach is called

frozen core approximation. The remaining valence electrons are replaced with an ef-

fective potential, which is the pseudopotential. This concept replaces the actual wave

functions with a pseudo wave function which reproduces the effects of the original wave

function. This approach reduces the number of electrons needed explicitly thus saving

the computational cost.

2.2.2 Exchange Correlation Functional

The XC term from the KS equation (Exc) can be written as a sum of Ex and Ec, where

Ex represents the exchange energy between the electrons with similar spin, is associated
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with Pauli exclusion principle, antisymmetric nature of wave function and Ec represents

the correlation between the electrons with opposite spin, can occupy the same orbital

but repels each other because of same charge. Kohn-Sham equations are easily solv-

able if the exact form of exchange-correlation functional is known but defining this

is extremely difficult. But we know that there is a functional which gives the exact

ground-state energy and density, the various ways in which it can be approximated are

2.2.2.1 Local Density Approximation

Under this approximation, electrons are assumed to be distributed in a homogenous gas

system in which electrons sees the overall density as the local density. So, the whole

system is divided into many fragments containing uniform density and the total XC

energy can be assumed to be the sum of all the energies coupled with the local fragments

(Ceperley and Alder 1980). This approximation is local density approximation (LDA).

This approximation is precise only when the density vary slowly or in the homogenous

electron gas limit.

2.2.2.2 Generalized Gradient Approximation

Systems in reality are obviously not homogenous and have electrons in varying density

terrains. To grab the effect of the inhomogenous density prevailing in the system, this

approximation captures both the local electron density and its gradient at that point.

This would contain more physical information than LDA but does not mean that this

functional is accurate for all the physical real systems. There are many ways in which

the gradient of electron density can be included in GGA functional. Most widely used

GGA functionals are Perdew-Wang functional (PW 91) and Perdew-Burke-Ernzerhof

(PBE) functional (Perdew et al. 1992, 1996).

2.3 Simulation method

In the present thesis work, DFT as implemented in Vienna Ab-initio Simulation Package

(VASP) and Quantum ESPRESSO were used to carry out all the calculations. VASP and
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Quantum ESPRESSO uses Kohn-Sham density functional approach (KSDFT) to solve

the many body Schrödinger equation (Giannozzi et al. 2009). These are based on plane

wave basis set and pseudopotentials (Kresse and Hafner 1993, Kresse and Furthmüller

1996). Generalized gradient approximation (GGA) parametrized by Perdew-Burke-

Ernzerhof (PBE) was used for the calculation of exchange-correlation potential (Perdew

et al. 1996). The valence electrons were considered explicitly for the calculations and

the core electrons are incorporated using projected augmented wave (PAW) method

based pseudopotential. The kinetic energy cutoff was maintained at 900 eV in the case

of SiC and 700 eV in the case of SiB. Gamma-centered kpoint meshes were used to

sample the Brillouin zone and it was found that a 20×20×1 grid is sufficient to en-

sure convergence of energy for SiC and 21x21x1 for SiB and other physical properties.

An interlayer spacing of 15 Å for SiC and 20 Å for SiB was found to be sufficient

to make interlayer interactions, that arises because of the usage of periodic boundary

conditions in VASP, to be negligible so that, for all practical purposes, the calculations

being done pertain to a film of the material considered. The energy was converged to

0.001 eV/atom between two ionic steps and a convergence of 10−8 eV was kept for each

electronic self-consistency (SC) loop. To apply strain on the material, lattice parame-

ters of the unitcell were changed corresponding to compression or elongation in both

uni and biaxial directions and the stress required to equilibrate the system to a varied

unit cell was considered as the applied stress. Stress was applied uniaxially both in

zigzag and armchair directions and biaxially and the variation in structural, mechanical

and electronic properties were noted for both compressive and tensile regimes. The

structure with equilibrium lattice parameter is considered as the undeformed structure

here, and the lattice parameters were varied, increased and decreased up to 20% from

the undeformed lattice parameter.

2.3.1 Elastic constants and mechanical properties

The elastic constants of a material gives its response to external mechanical perturba-

tion. It is important to know the response of a material towards mechanical deformation

for its practical synthesis and applications. The accurate calculation of elasticity helps
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to understand the mechanical properties of solids thus helping the scientific world de-

sign new materials. When a force is applied to a continuum either internal or external,

every point of the continuum is influenced by this applied force. This causes defor-

mation of the medium. The basic law that relates this applied force to the resulting

deformation is the Hooke’s law. In order to study the higher order elastic constants,

elastic properties of a material are described within Lagrangian theory of elasticity in

which a solid is viewed as a homogenous and anisotropic medium [16]. When stress

and strain are uniform, in the linearilized regime, they are related by Hooke’s law.

ηij = Cijklτkl (2.20)

Where Cijkl is the stiffness tensor which in general is the elastic constants of the

medium. Elastic properties of a material is obtained by Taylor expanding the inter-

nal energy as a function of strain, η,

E(S0, ηij) = E(S0, 0)+
S0

2!

∑
ijkl=13

Cijklηijηkl+
S0

3!

∑
ijklmn

Cijklmnηijηklηmn+ ... (2.21)

Where E(S0, 0) is the corresponding ground state internal energy, S0 is the area of the

unstrained system, Cijkl is the second order elastic constants (SOEC), Cijklmn is the

third order elastic constants (TOEC) . To simplify the above equation, Voigt notation 1

is used which cuts each pair of indices to single index and the simplified equation can

be written as,

E(S0, ηi) = E(S0, 0) +
S0

2!

∑
ij

Cijηiηj +
S0

3!

∑
ijk

Cijkηiηjηk + ... (2.22)

Here Cij and Cijk are the second and third order elastic constants. According to the

above equations (1) and (3), elastic constants can be defined as,

Cij =
1

S0

∂2E

∂ηi∂ηj
|η=0 (2.23)

1 ij 11 22 33 23 13 12
i 1 2 3 4 5 6
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Cijk =
1

S0

∂3E

∂ηi∂ηj∂ηk
|η=0 (2.24)

Elastic constants play a significant role in providing information on the stability and

stiffness of the material. They also play a crucial role in determining the strength of the

material. Mechanical properties are divided into four strain domains based on loading

: linear elastic, nonlinear elastic, plastic and fracture. Linear and nonlinear strain do-

mains are reversible i.e., they are brought back to equilibrium after the removal of loads.

Plastic and fracture domains are irreversible i.e., increase in strain nucleates and accu-

mulates defects resulting in rupture (Peng et al. 2013a). Previous studies on various two

dimensional materials have shown that they possess large non-linear elastic deformation

in the tensile regime up to the intrinsic strength of the material and then strain soften-

ing until fracture (Peng et al. 2013b, Wang et al. 2010). Higher order elastic constants

determine non-linear elastic response, anharmonic properties like phonon-phonon in-

teractions, thermal expansion, Gruneisen parameter etc. Second order elastic constants

(SOEC) model the linear elastic response.

By applying small specific elastic strains (α = 1–6 (six finite distortions in directions

like xx, yy, zz, yz, xz, xy)) to the equilibrium unit cell, a set of elastic constants were

obtained from the corresponding change in energy. The elastic constant tensors were

calculated within VASP by performing finite distortions of the lattice and utilizing the

relationship between stress and strain by Hooke’s law, which represents the elastic con-

stants. VASP uses finite difference method to compute the Hessian matrix, which is the

second derivative of energy with respect to atomic positions. Finite difference method

involves displacement of each ion in the direction of cartesian coordinates and the Hes-

sian matrix is determined from the forces involved. Ibrion = 6 in the case of VASP,

considers symmetry inequivalent displacements and symmetry is utilized in filling the

rest of Hessian matrix. Elastic tensor in the case of VASP is computed by carrying

out six finite distortions of the crystal lattice and obtaining the elastic constants via

stress-strain relationships.
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In order to determine the third order elastic constants of SiC, ElaStic was the tool used

incorporated with Quantum ESPRESSO to determine the third order elastic constants

(Golesorkhtabar et al. 2013). The solutions of density functional theory (DFT) calcula-

tions is obtained using Quantum ESPRESSO which is based on plane-wave (PW) basis

set and pseudopotentials (PPs) to incorporate electron-ion interactions. Pbe (GGA) was

used to account for exchange-correlation functional (Perdew et al. 1996). Kinetic en-

ergy cut-off was maintained at 60 Ry and kpoints at 17×17×1. Vacuum region was

maintained at around 28 Bohr to avoid any interaction between the layers. The code

ElaStic requires the information on lattice parameters and crystal structure which was

set in the code quantum ESPRESSO. Once the crystal is set, then ElaStic determines the

space group and further sets the deformation type and energy for each of the deforma-

tion is calculated through ESPRESSO density functional set up. The energy obtained

against each deformation or strain is polynomially fit and the elastic constants are de-

termined by least square fit method with an appropriate polynomial.

2.3.2 Density Functional Perturbation Theory

The initial advancement in DFPT were done by Baroni, Giannozzi and Testa in 1987

and were later on followed by many of them. This method was then utilised in many of

the DFT softare packages including VASP. In order to understand the interesting phys-

ical properties, it is necessary to study the response of a system against external pertur-

bation which is dealt in density functional perturbation theory (DFPT). It is necessary

to obtain the response functions which are second, third, or higher order derivatives

of total energy with respect to applied pertubation. Assume a system is perturbed by

applying an external force, where we define λ as the parameter defining the strength of

perturbation. The new perturbed Hamiltonian appears in the following way and

H(λ) = H(0) + Vext(λ) (2.25)

the Schrödinger equation for the perturbed system becomes

H(λ) |ψi(λ)〉 = Ei(λ) |ψi(λ)〉 (2.26)
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Now the total energy can be written as a power series in λ as

E(λ) = E + λ
∂E

∂λ
+
λ2

2

∂E2

∂λ2
+ ... (2.27)

So as to estimate the first order derivative of energy, it is only essential to calculate the

unperturnbed wave functions and the first order change in external potential. This is

the famous Hellmann-Feynman theorem (Proof in Appendix C). This also states that

the first order energy derivative does not require the derivative of electron density to be

known. So, we have
∂E

∂λ
=

∫
n(r)

∂V (r)

∂λ
dr (2.28)

This makes it easier to calculate the second derivative of energy knowing the first deriva-

tive of electron density which is

∂2E

∂λ2
=

∫
∂Vext(λ)

∂λ

∂n(r)

∂λ
dr +

∫
n(r)

∂Vext(λ)

∂λ
dr (2.29)

This gives an inference that to estimate the 2n+1th derivative of energy it is enough

to know the nth order change in energy. This is known as the (2n+1) theorem which

is useful in calculating the nonlinear response of materials. DFPT as implemented in

VASP determines the interatomic force constants which is then diagonalized to obtain

the dynamical matrix. This dynamical matrix helps in finding out the phonon frequen-

cies, which can be utilized to understand the dynamical stability of the given system

(Baroni et al. 1987)(Baroni et al., 2001). The obtained force constants are supplied in

phonopy code to finally obtain the phonon dispersion curve (Togo et al., 2008).

2.3.3 Nudged Elastic Band Method

Atoms or any other matter will always follow lowest energy paths if they are introduced

with some force under given conditions. Nudged Elastic Band (NEB) is a method help-

ing to find the saddle point (SP) along minimum energy paths (MEP) between known

reactants and products. NEB is a chain of states method which uses string of images

connected by springs between an initial and final states (Henkelman and Jónsson 2000).
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For carrying out the method efficiently, it is necessary to have a continuity in the band

and also the images should be equally spaced which is assured by fixing a fictitious

spring force through which the images are connected. Now, the process starts from the

initial state and passes through each intermediate image which is simultaneously opti-

mized to the MEP. In the normal elastic band method, the intermediate image doesn’t

necessarily fall to the saddle point and so was slightly modified by making one of the

image to nudge to the saddle point which is the Climbing Image Nudged Elastic Band

(CI-NEB) method(Henkelman et al. 2000). In the present case, CI-NEB was carried out

using VASP considering 5 intermediate images between initial and final configurations.

MEP : It is roughly a line connecting an initial and final states (minimum states) passing

through the saddle point (SP).

SP : It is the highest point in the MEP that gives the value of activation energy barrier.

SP energy is the minimum energy needed for a reaction to take place.

To analyse the Li-ion binding energy, the formula defined is as follows

Ebind = (ELi+SiC − ESiC − nELi)/n

where ELi+SiC is the energy of the Li adsorbed SiC, ESiC is the ground state energy of

SiC and ELi ground state energy of the Li atom and n is the number of Li ion adsorbed

onto SiC. To understand Li ion transport through SiC, Climbing Image Nudged Elastic

Band (CI-NEB) method using 5 images was implemented using VASP. The minimum

energy pathway and the diffusion barrier were obtained from the CI-NEB calculations.

Theoretical specific capacity, barrier potential via NEB and open circuit voltage (OCV)

are the prime factors which determine the validation of anode for the Li-ion batteries

to be suitable for the next generation energy resources. Theoretical capacity and open

circuit voltage (OCV) can be calculated considering the following relations :

Capacity, C =
xnF

MW
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Here, n is the number of Li ions, F is the Faraday constant, MW is the molecular weight

of the material under consideration.

Voc = − ∆G

∆nzF
= −∆Eads

∆nzF
= −

(Eads(n2) − Eads(n1))

F (n2 − n1)

Here, ∆G is the Gibbs free energy of the system, z is the charge of Li ions, F is the Fara-

day constant, also, Eads(n2) and Eads(n1) are the adsorption energies of Li incorporated

structures with n2 and n1 number of Li atoms (Butler et al. 2019).

2.3.4 Ab-initio Molecular Dynamics

Ab-initio molecular dynamics (AIMD) is a unique technique which helps in the real-

istic simulation of complex systems, i.e. how it evolves over time. The basic idea of

ab-initio molecular dynamics simulation is to solve the quantum Schrödinger equation

using the real physical potentials. Here atoms are moved in discrete time steps using

Newtonian classical mechanics and the forces are obtained using the quantum mechan-

ical methods. Various ensembles can be used like NVE, NVT, etc. In order to do a

molecular dynamics simulation using VASP, the method involved is on the exact eval-

uation of the electronic ground state at finite temperature at each MD step using matrix

diagonalization schemes and Pulay mixing schemes. To have a constant temperature, a

canonical ensemble with a thermostat algorithm of the kind Nosé-Hoover must be used.

Nosé- Hoover thermostat employs an extra degree of freedom into the Hamiltonian, a

fictitious coordinate and a heat bath which is an integral part of the system.
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Chapter 3

STRAIN DEPENDENT

MECHANICAL AND ELECTRONIC

PROPERTIES OF STABLE

SILICENE DERIVATIVE SiC

A silicene derivative of the form SiC was thoroughly investigated on its behavior with

changes in stress varying from around 140 N/m to around 20 N/m and strain from -0.2

to 0.3. Uniaxial stress (both zigzag and armchair) brought structural changes which

reduced the symmetry of the system but biaxial stress brought no change in symmetry

and shape of the material. Mechanical stability of the system was maintained upto a

considerable stress in both uni- and biaxial cases and the system showed anisotropic

behaviour with stress variations. Electronic structural variations showed strain engi-

neering is a convenient method to tune the band gap very effectively causing semicon-

ducting SiC to transform to metallic one at large stresses and direct to indirect bandgap

in the semiconducting phase at lower stress. Charge density analysis showed a signifi-

cant ionic nature of the material in the semiconducting phase.
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Figure 3.1: Unitcell of SiC considered for Uniaxial and Biaxial stresss. The cell in the
form of a rhombus is used for biaxial stress and the cell in the form of rectangle for
uniaxial application. The direction of zigzag and armchair is as marked.

3.1 RESULTS AND DISCUSSION

3.1.1 Structural Properties

The structure of SiC used for the stress is depicted as shown in Fig. 3.1. A system

with hexagonal symmetry can be represented by an orthorhombic non-primitive unitcell

which was considered for the application of uniaxial stress and the simulation cell was

compressed and elongated along ‘a’and ‘b’thus obtaining zigzag direction along ‘a’and

armchair direction along ‘b’and for biaxial the original unitcell with two atoms was

considered as shown in Fig. 3.1. If a and b are equal, equal amount of stress is required

to impart same amount of deformation along both directions. If a and b are terminated at

90◦ (non-primitive unitcell), the amount of stress required to deform would be different

leading to different physics.

Energy per atom of the system in the whole range of stress studied confirms the ener-

getical stability of SiC when it is subjected to uniaxial stress along zigzag and armchair

directions as well as under biaxial stress. SiC being planar in structure maintains hexag-

onal symmetry with a space group of P-6m2. The symmetry of the system is broken to

orthorhombic when the stress is applied uniaxially along zigzag and armchair direction

leading to different physics but biaxial stress maintains the symmetry of the material.

30



Figure 3.2: Variation in strain energy per atom with strain for zigzag, armchair and
biaxial cases. Strains are varied from -0.2 to 0.3 and all the three curves represents
anharmonicity and anisotropy present in the material.

Strain energy is the amount of energy stored in the system under deformation. La-

grangian strains ranging from -0.2 to 0.3 with an increment of 0.02 is considered for

all three types of deformations. Strain energy per atom is defined as Es = (Etot - E0)/n

where Etot is the energy of the strained system, E0 is the energy of the unstrained or

undeformed system and n is the total number of atoms present in the unitcell. The

variation of strain energy per atom for zigzag, armchair and biaxial stress is plotted in

Fig. 3.2. Variation in strain energy with strain is almost identical for uniaxial zigzag,

uniaxial armchair and biaxial stresses but the values of biaxial stress being higher com-

pared to the other two. The curve representing the variation in strain energy per atom

with strain implies that the strain energy is asymmetric along compression and tension

in all the three cases signifying the anharmonicity and anisotropy present in the system.

The stresses are basically the derivatives of strain energies, in the harmonic region they

maintain a linear relationship. But, in the anharmonic region stresses are non-linear

with respect to strain energies (Peng et al. 2013a).
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3.1.2 Mechanical Properties

The elastic constants are crucial for the determination of the mechanical properties of

materials, providing important information on their mechanical response, stability, stiff-

ness and strength (Wang et al. 2012a). Second order elastic constants (SOEC) model

the linear elastic response. Anisotropic elastic solids in three dimensions have 21 SOEC

which reduces to 5 independent SOEC for a hexagonal structure due to the crystal sym-

metry (Mouhat and Coudert 2014). The deformations in 2D material can be solely

approximated as an in-plane deformation neglecting all the out of plane components

(Cooper et al. 2013). This implies that the in-plane components are non-zero and out

of plane deformations are ideally zero. This implies that the number of independent

SOEC reduces to three, i.e., C11 , C22 and C12 for the general case, and two, i.e., C11

= C22 and C12 for systems with hexagonal symmetry. The mechanical stability of a

two-dimensional sheet is confirmed by Born-Huang stability criteria (Bom and Huang

1954), according to which a mechanically stable sheet with hexagonal symmetry should

satisfy C11 > C12 and C2
11-C11C12 > 0 (Born criteria). Young’s modulus (E) and Pois-

son’s ratio (ν) are calculated using the following equations

Ys =
C2

11 − C2
12

C11

(3.1)

and

ν =
C12

C11

(3.2)

Elastic constants of SiC at ambient conditions are C11 = 179.2 N/m and C12 = 54.5

N/m which matches with the values reported by Ding et al. (2012) as tabulated in

table 3.1. Bulk SiC has polytypes and they exist in more than 250 crystalline forms.

One of the most studied polymorph is α-SiC which is hexagonal in symmetry which

is used here for comparison. The Young’s modulus and Poisson’s ratio of 2D-SiC are
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162.7 N/m and 0.30. SiC is found to be satisfying the above stability criterion thus

confirming its mechanical stability. The variation in elastic constants with stress needs

to be taken care for its practical applications. Figure 3.3 below shows the variation in

elastic constants as a function of uniaxial zigzag, uniaxial armchair and biaxial stresses.

SiC* Graphene** Silicene† α-SiC‡

C11 179.2 358.1 71.3 397
C12 54.5 60.4 23.2 136

Table 3.1: Elastic constants of SiC along with graphene, silicene and bulk α-SiC. The
values of C11 and C12 are in terms of N/m in the case of SiC, graphene, silicene and
that of bulk α-SiC is represented in GPa. *Present study, **Shao et al.(2012), †Ding et
al.(2013) and ‡Malakkal L. et al.(2017)

The values of second order elastic constants are consistent with mechanical stability

of the system in general and their values are plotted in Fig. 3.3. In the case of uniaxial

zigzag stress, the magnitudes of C11 and C12 increase as the compressive stress increases

and they maintain the Born stability criteria till around 35 N/m. The system tends to

resist the deformation which in turn is reflected in the higher magnitudes of elastic

constants. It can be seen that C11 = C22 only when the stress is equal to zero and as the

stress changes this equality is no longer valid because of the presence of anisotropy as

could be observed from Fig. 3.3 in the case of uniaxial stress along zigzag and armchiar

directions. C22 also increases with increasing compressive stress. Young’s modulus

increases with increasing compressive stress making the system stiffer. Poisson’s ratio

also shows an increasing trend along compressive regime. As the stress increases further

to around 77 N/m, the mechanical stability is lost as C12 becomes greater than C11

violating Born criteria. The values of C11 and C12 tend to decrease as we increase

the tensile stresses which corresponds to the less resistance offered by the system to

deform itself. C22 also follows the same trend. Also, Young’s modulus and Poisson’s

ratio decreases as expected. Similar trend could be observed when uniaxial armchair

stress is applied. SiC maintains mechanical stability up to the highest stress of 85 N/m

confirming the elastic resistance of the material till this stress in the compressive regime

and around 19 N/m in the tensile regime. Young’s modulus shows an increasing trend
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Figure 3.3: The graphs represents the variation in elastic constants, Young’s modulus
and Poisson’s ratio along zigzag, armchair and biaxial directions. The three graphs on
the left represents the changes in elastic constants with stress and on the right represents
changes in Young’s modulus and Poisson’s ratio with stress.

implying that the system on increasing the stress, tries to become stiff and strong.

Similar trend in the case of elastic constants could be observed in the case of equi-

biaxial stress also. SiC maintains mechanical stability until around 111 N/m confirming

the elastic resistance of the material till this stress in the compressive regime and around

16 N/m in the tensile regime. When the material is further compressed, to around 135
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N/m the mechanical stability is lost as C12 becomes greater than C11. Young’s mudulus

tends to decrease along the compressive regime and tensile regime. The value of C12

increases substantially compared to C11 which in turn reduces the value of Young’s

modulus in the compressive regime. Poisson’s ratio in the case of equi-biaxial stress is

irrelevant as this is the phenomenon in which a material tries to expand in a direction

perpendicular to the direction of application of stress. In a 2d material this perpendicular

direction becomes the z-axis direction which is immaterial in these materials.

To have a complete non-linear behavior of 2D-SiC, we have done an extensive cal-

culations with unequal biaxial stress which means, strains of different magnitudes were

applied in the material simultaneously within a range of -0.1 to 0.1. A grid of increments

0.02 was considered for both strains along X and strains along Y and elastic constants

were calculated at each grid points. The obtained elastic constants were plotted as a

contour plot as shown in Fig. 3.4. The colour gradation in the contour plot of C11 and

C22 clearly signifies that C11 and C22 are not equal in all ranges of strains indicating an

anisotropic behavior of SiC in all ranges of strains applied.

Higher order (>2) elastic constants of a material are an important quantity which

helps to determine the non-linear elastic response of the material and also the measure

of anharmonicity of crystal lattice (Peng et al. 2012b). The third order elastic constants

(TOEC) become important in describing the mechanical properties of a material under

large stress or strain and also describes the anharmonic properties like thermal expan-

sion, interaction of thermal and acoustic phonon, etc. Similar to SOEC’s, there are 56

TOEC for an anisotropic material reducing to 10 for a hexagonal structure because of

the crystal symmetry, further reducing to 3 (C111, C112 and C222) due to the geometry

confinements in 2D materials. C111 and C222 are the longitudinal modes and C112 is

the shear mode elastic constants . The values of TOEC are all negative because of the

large positive strain energies for the negative strains compared to the positive strains.

The values of TOEC of SiC are also tabulated in Table 3.2. The longitudinal modes

of elastic constants are much larger in magnitude than the shear modes which is well

understood from the fact that we deal with two dimensional materials whose z-direction

35



(a) (b)

(c)

Figure 3.4: Contour plot of (a) C11, (b) C22 and (c) C12. Strains along X and Y is plotted
along X and Y axes respectively. The colour gradation from red to blue implies values
in the descending order.

is arbitrary. The magnitudes of TOEC show much higher magnitudes compared to sil-

icene in the case of SiC as tabulated in table 3.2. This implies that the non-linearity and

anisotropy goes up with the introduction of C atoms into the isotropic sheet of silicon.

C111 C112 C222

SiC -1320.19 -312.49 -1150.63

Silicene* -397.6 -14.1 -318.9

Table 3.2: Third order Elastic constants of SiC and silicene ((Peng et al. 2013b))∗ in
units of N/m
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Determination of elastic moduli experimentally requires the determination of com-

pressional and shear wave velocities that passes through the medium. Understanding

these waves helps to understand the elastic characteristics of that medium. Waves gen-

erating compressions are compressional waves or p-waves in which particles move in

the direction of propagation of wave and those generating shear deformations are shear

waves or s-waves in which particles move perpendicular to the direction of propagation

of waves. Knowledge of second order elastic constants can be helpful in theoretically

determining the compressional and shear waves giving an idea of propagation of sound

waves through these media. This static calculation helps in determining the frequencies

of the long wavelength vibrational modes, on the other hand, lattice dynamics (Quasi

harmonic approximation) determines the frequencies of all vibrational modes which is

beyond the scope of this work.

Figure 3.5: Variation in p- and s- waves with changes in in-plane stress of SiC.

The equations to determine the velocities of s- and p- waves are as follows.

vp =

√
Ys(1− ν)

ρm(1 + ν)(1− 2ν)
(3.3)

and

vs =

√
C12

ρm
(3.4)
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Where Ys is the Young’s modulus, ν is the Poisson’s ratio and ρm is the mass density of

the material. The mass density of a two dimensional material could be calculated using

ρ2D = 4mSiC/3a
2 where mSiC is the atomic mass of SiC and a is the lattice parameter

of SiC.

(a) (b)

(c)

Figure 3.6: Stress-strain curves of (a) uniaxial zigzag (b) uniaxial armchair (c) biaxial
stresses. The untimate tensile stress in each case is marked in the graph and toughness
of the material is also calculated from the graph.

The two-dimensional mass density of SiC was calculated to be 16×10−7 kg/m2

which is about twice than that of graphene due to the higher mass of Si. The magni-

tudes of p- and s- waves decreases with in-plane pressure for SiC is shown in Fig. 3.5.

The velocities of p- and s- waves increases with increasing in-plane pressure during

compression and decreases along tension in the case of SiC.
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Stress-strain curve is an important graphical representation of a material’s mechanical

properties. Stress increases linearly with strain in the harmonic region and Hooke’s law

is obeyed in this regime. Anisotropic region is the one where stress-strain relationship

is no longer valid and the higher order terms become significant. With larger strain,

stress will increase enormously and ultimately the system fails. The maximum stress

a material bear before breaking itself is known as the ultimate stress point or ultimate

tensile strength (UTS) point. When the material undergoes stress beyond this point

permanent damage occurs to the material and it can no longer restore its original shape.

The typical stress - strain curves of SiC within uniaxial zigzag, uniaxial armchair and

biaxial stresses are as shown in Fig. 3.6. Here, the ultimate stress and strain is 20.22

N/m and 0.24 for uniaxial zigzag, 21.21 N/m and 0.24 for uniaxial armchair and 16.05

N/m and 0.18 for biaxial direction respectively. UTS values of graphene, silicene is

also tabulated in Table 3.3 along with SiC to have a comparison on the mechanical

strength of these materials. The values imply that SiC may be considered as a strong

material. The values of stress in the compressive regime is larger compared to that in

the tensile regime as compression brings the atoms closer which makes the system in

need of larger stress to compress than to expand. Also, compression makes the atomic

orbitals repel making the stress almost double in the case of biaxial stress. The whole

area under stress-strain curve upto fracture gives the toughness of the material. It is

actually the energy required or stored by the material before fracture. The calculated

value of toughness is around 3.8 GPa implying that the material is quite tough compared

to graphene having a value of 4.4 GPa.

SiC Graphene Silicene

Σz 20.22 30.4 5.9

Σa 21.21 28.6 6.0

Σb 16.05 32.1 6.2

Table 3.3: Ultimate Tensile Strength of SiC along with graphene and silicene in units
of N/m. Σz - uniaxial zigzag, Σa - uniaxial armchair and Σb biaxial directions.
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3.1.3 Electrical Properties

The electronic band structure of undeformed SiC is shown in Fig. 3.7. It is a wide direct

band gap semiconductor having a direct band gap of 2.35 eV.

(a)

(b)

Figure 3.7: (a) Electronic bands and (b) Dos diagram confirming the semiconducting
nature of SiC. The contibution of partial dos is shown in the dos plot.

Applying or inducing stress is an efficient method to tune the band gap of any ma-

terial. Here, changes in electronic structure was determined with respect to varying

stress. In the case of uniaxial zigzag stress, band gap decreases continuously in the

compressive regime and the nature of the transition changes from direct to indirect with

a slight change in stress value, the band gap reduces further and becomes metallic at the

highest stress of 77 N/m. It shows a decreasing trend in the tensile regime maintaining
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Electronic band and dos plot variations with respect to uniaxial zigzag
stress. (a), (b) & (c) represents compressive regime and (d), (e) & (f) represents tensile
regime. The band gap values are (a) Metallic, (b) Eg = 1.98 eV, (c) Eg = 2.38 eV, (d) Eg
= 2.34 eV and (e) Eg = 1.48 eV and (f) Eg = 0.57 eV.

the direct nature till 12 N/m and then transforming into an indirect band gap semicon-

ductor at 15 N/m as seen from Fig. 3.8. With increasing stress both in compressive
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Electronic band and dos plot variations with respect to uniaxial armchair
stress. (a), (b) & (c) represents compressive regime and (d), (e) & (f) represents tensile
regime. The band gap values are (a) Metallic, (b) Eg = 1.85 eV, (c) Eg = 2.34 eV, (d) Eg
= 2.35 eV and (e) Eg = 1.95 eV and (f) Eg = 0.91 eV.

and tensile regime, the valence and conduction bands shift causing a decrease of the

band gap. The change in inter atomic distance and bond length due to the applied stress

causes different superposition of Kohn-Sham orbitals causing a decrease of band gap.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Electronic band and dos plot variations with respect to biaxial stress. (a),
(b) & (c) represents compressive regime and (d), (e) & (f) represents tensile regime.
The band gap values are (a) Eg = 2.56 eV, (b) Eg = 2.88 eV, (c) Eg = 3.12 eV, (d) Eg =
2.65 eV, (e) Eg = 1.83 eV, and (f) Metallic.

In the tensile regime, as the stress increases valence and conduction bands shift towards

Fermi level reducing the band gap. As the stress increases more and more Kohn-Sham

orbitals come closer to the Fermi level contributing to the reduction in band gap. The
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observation on band gap reduction could also be confirmed by looking at the DOS plot

as shown in Fig. 3.8. Similar trend is observed in uniaxial armchair stress (Fig. 3.9)

with the transition from direct to indirect with a slight compressive stress. The sys-

tem turns metallic at the highest stress of 85 N/m as observed. The indirect nature is

maintained in the whole tensile regime.

In the case of biaxial stress, the band gap shows an increasing trend upto 40 N/m and

then shows a decreasing trend. With increasing compressive stress upto 40 N/m, the

atomic orbitals that contribute to the band gap are mainly the Si(pz) and C(pz) orbitals

which could be seen from the DOS plot (Fig. 3.10). Further increase in stress induces

other atomic orbitals also to come closer to the Fermi level which in turn makes the

system metallic at the highest applied stress (139 N/m), px, py, pz orbitals of Si and

C contribute more towards the Fermi level thus reducing the band gap. Here, system

transforms to indirect band gap semiconductor at a very small stress of around 5 N/m

and then transforms to direct after 40 N/m. In the tensile regime, band gap decreases

continuously maintaining the direct nature and the system turns metallic around 16 N/m.

Thus, application of stress is a convenient way to easily tune the band gap of materials.

Figure 3.11: Charge density plot of undeformed SiC. The red to blue represents maxi-
mum to minimum levels of charge distribution. This plot shows the maximum charge
accumulation around C atom instead of a uniform distribution pointing towards the
ionic nature of the 2D-SiC.

Charge density coutours helps to understand the interactions between different atoms.

The charge density contour was plotted for the undeformed SiC and for the maximum

compressive and tensile stresses in zigzag, armchair and biaxial directions. The charge
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Charge density plot for (a) and (b) uniaxial zigzag, (c) and (d) uniaxial
armchair, (e) and (f) biaxial. Plots for maximum compressive and maximum tensile are
plotted in each case. Red to blue represents the maximum to minimum levels of charge
distribution.

density plot for the undeformed SiC shows a maximum charge density around C atom

implying an ionic character by SiC rather than a covalent nature which may be be-

cause of the higher electronegativity of C compared to Si. Charge density on each atom
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was calculated using Bader analysis by partitioning the charge density along zero-flux

surfaces (Henkelman et al. 2006). Zero-flux surface is a 2D-surface where the charge

density is minimum perpendicular to the surface. Bader analysis done on SiC also con-

firms this observation and the charge density value obtained was 7.99/Å3. The charge

density plot of SiC is as shown in Fig. 3.11.

Figure 3.12 shows the charge density plots for the maximum compressive and max-

imum tensile stresses for uniaxial zigzag, uniaxial armchair and biaxial directions re-

spectively. In the case of compressive stress, the bond length reduces which causes

orbitals to overlap to a greater extent thus increasing the extent of charge density. But

in the case of tensile regime, the bond length increases causing reduced overlapping of

orbitals thus the extent of charge density decreases but in all the cases the maximum

charge density is accumulated around C atom which is also confirmed by the Bader

charge analysis.

46



Chapter 4

STRAIN DEPENDENT

MECHANICAL AND ELECTRONIC

PROPERTIES OF SILICENE

DERIVATIVE SiB

Two-dimensional monolayer SiB is a silicene derivative exhibiting buckling of atoms

similar to that seen in silicene. Here, a systematic study of the strain-dependent vari-

ation of the structural, mechanical, and dynamical properties of SiB was carried out.

Strain was applied in the uniaxial armchair, uniaxial zigzag, and biaxial directions

within the range of -0.2 to 0.3. The resultant strain energy plot indicates anisotropic

behavior of SiB in these directions. The SiB showed a mechanical strength that was

higher than its counterpart, silicene, by an order of 30%. The elastic constant data

from the undeformed SiB indicated an anisotropic nature, which was also seen with

all the strain directions. Charge density contours, along with Bader charge analysis,

confirmed the ionic nature of SiB in its original form. This nature became covalent as

the strain varied from the compressive to the tensile regime in the uniaxial zigzag and

biaxial directions. The major finding described here is a new flat conformation having

orthorhombic symmetry in contrast to the buckled structure. In addition, this mate-

rial was observed to attain stability with the application of uniaxial tensile armchair
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and zigzag directional strains. Ab-initio molecular dynamics simulation confirmed the

thermal stability of SiB in its new conformation.

4.1 RESULTS AND DISCUSSION

4.1.1 Structural properties

The structure of SiB resembles that of silicene with buckling as shown in Fig. 1.2. The

simulation cell marked in the figure 4.1 represents both the equilibrium unit cell and the

cell considered for the application of strain. A system in hexagonal symmetry can be

described by a non-primitive orthorhombic unit cell, which is the equilibrium unit cell

for SiB. The presence of buckling prevents in considering the primitive unit cell in this

case.

Figure 4.1: Structure of SiB with unitcell marked in fig. Blue spheres are the Si atoms
and green are the B atoms.

The rectangular simulation cell marked in the figure is the unit cell considered for all

calculations. The direction along ’a’ is the zigzag direction and along ’b’ is the armchair
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direction. Strain applied equi-biaxially induces different stresses along both directions.

Strain was applied uniaxially and biaxially to the SiB within the range of -0.2 to 0.3

in increments of 0.02. VASP computes the total energy with respect to the energies

of the constituent atoms comprising the material, and therefore the total energy given

by VASP is negative of the cohesive energy. Therefore, the cohesive energy values of

SiB in all strain directions from the compressive to the tensile regime were negative,

implying the energetical stability of strained SiB in the uniaxial and biaxial directions.

Figure 4.2: Strain energy per atom vs strain for uniaxial armchair, uniaxial zigzag,
biaxial implying the presence of anisotropy and anharmonicity present in the system.

The strain energy per atom plotted against strain (see Fig. 4.2) indicates that the strain

energy per atom is not symmetric in the compressive and tensile regimes, implying the

presence of anisotropy in the material (Peng et al. 2012a). Asymmetry is identified in

all cases of the biaxial, armchair, and zigzag directions. The curves representing the

armchair and zigzag directions are identical, but that for the biaxial direction shows

larger values. This variation arises from the fact that equal applied strains produce a
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much larger energy variation in the compressive regime than in the tensile regime, in

the biaxial direction compared to the uniaxial direction very similar to that of SiC.

4.1.2 Mechanical properties

Our material of interest has orthorhombic symmetry due to the presence of buckling,

which in three dimensions has nine independent elastic constants. These reduce to four

in two dimensions. Therefore, C11, C12, C22, and C66 are the four independent elastic

constants for the system under consideration. Young’s modulus and Poisson’s ratio are

calculated using the relations as in eqn 3.1 and 3.2:

Table 4.1: Second order elastic constants of SiB compared with silicene

C11 C12 C22 C66

SiB 101.35 32.56 47.60 19.68

Silicene* 71.3 23.2 71.3 -

In ambient conditions, SiB has elastic constant values higher than silicene, implying

higher mechanical stability and better resistance to in-plane strains (Table 4.1). The val-

ues of C11 and C22 are no longer equal, indicating that SiB is anisotropic in its original

undeformed state. Being orthorhombic in symmetry, SiB has C66 as an elastic constant.

But silicene, being hexagonal, only requires the elastic constants depicted in Table 4.1.

The Young’s moduli and Poisson’s ratios for SiB and Silicene are 90.89 N/m and 0.32

and 60 N/m and 0.4, respectively. Strain was applied uniaxially in the armchair, zigzag,

and biaxial directions, and the effect of the elastic constants have been noted for each

case. Fig. 4.3 shows the variation in elastic constants along with Young’s modulus and

Poisson’s ratio for all three cases considered in the present study. As expected, when

strain was applied in the uniaxial armchair direction (see Fig. 4.3(a) and 4.3(b)), C11

decreased from the maximum compressive strain until the maximum tensile strain was

reached, implying that the system tends to most resist deformation caused by the ap-

plied strain in the compressive regime. The value of C12, on the other hand, shows an
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increasing trend in the compressive regime and a decreasing trend in the tensile regime.

This indicates that the applied strain has a significant effect on C12, lowering its value

to the minimum possible. And then decreasing the strain, the system shows mechanical

resistance which continues until the maximum tensile strain. The value of C22 tends to

increase with increased compressive and tensile strain, and increases beyond the value

of C11 after a tensile strain of 0.06. The values of C11 and C22 are not equal at zero

strain, and there is a large variation in the magnitudes of these elastic terms which again

indicates the anisotropic characteristics of SiB. Young’s modulus shows a decreasing

trend from the maximum compressive to the maximum tensile strain. Poisson’s ratio

shows an increasing trend in the compressive regime because of the large difference in

the magnitudes of C11 and C12. In an isotropic solid, Poisson’s ratio can reach a max-

imum of 0.5, but in anisotropic solids, it can have values of up to 1 or beyond. This

implies that the material is highly anisotropic under strained conditions (Akinwande

et al. 2017).

In the zigzag direction (Fig. 4.3(c) and 4.3(d)), C11 shows a decreasing trend until

-0.1, then increases until 0.1, and then decreases again until the maximum tensile strain.

The magnitude is highest at the maximum compressive strain which indicates the re-

sistance of the material to deformation. The values of C12 show an increasing trend

in the compressive regime and decrease in the tensile regime. The decrease of C12 in

the compressive regime shows that the material has less resistance to deformation. The

values of C22 increase from the maximum compressive regime to the maximum tensile

regime. The anisotropy present in the material is implied by the values of C11 and C22 at

zero strain. Young’s modulus has a very high value at the maximum compressive strain

because of the higher magnitude of C11. The system tends to be mechanically stronger

under the maximum compressive strain. Poisson’s ratio shows an increasing trend in

the compressive regime, then decreases from the compressive to the tensile regime.

In the biaxial case (Fig. 4.3(e) and 4.3(f)), C11 shows much lower values at the maxi-

mum compressive strain, indicating the material’s inability to withstand applied strains

beyond -0.05. The magnitude tends to decrease in the compressive regime, indicating

51



(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The graphs represents the variation in elastic constants, Young’s modulus
and Poisson’s ratio along (a) and (b) armchair, (c) and (d) zigzag and (e) and (f) biaxial
directions. The three graphs on the left represents the changes in elastic constants with
strain and on the right represents changes in Young’s modulus and Poisson’s ratio with
strain.

that the material may be mechanically unstable. As expected, C11 decreases beyond

-0.05 up to the highest tensile strain (0.2). The magnitude of C12 also decreases in the

compressive and tensile regimes. The unequal values of C11 and C22 at the consid-
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ered strains imply that SiB has a highly anisotropic nature. Young’s modulus shows

a decreasing trend as expected, starting from a very low value for the maximum com-

pressive strain. Poisson’s ratio, in the case of biaxial strain, becomes insignificant as

the biaxially-applied strain causes a strain in the perpendicular direction (z direction)

which is irrelevant in two-dimensional materials.

(a) (b)

(c)

Figure 4.4: Stress-strain curves of (a) uniaxial armchair (b) uniaxial zigzag (c) biaxial
stresses. The ultimate tensile strength in each case is marked in the graph and toughness
of the material is also calculated.

Further, the stress-strain graph was plotted for the uniaxial armchair, uniaxial zigzag,

and biaxial cases, and are shown in Fig. 4.4. The mechanical properties of a material

can be understood by observing its stress-strain curve also. The ultimate stress and
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SiB Silicene SiC
Σa 12.0 6.0 21.21
Σz 13.4 5.9 20.22
Σb 10.2 6.2 16.05

Table 4.2: Ultimate Tensile Strength of SiB along with silicene and SiC in units of N/m.
Σa - uniaxial armchair, Σz - uniaxial zigzag and Σb biaxial directions.

strain values for the uniaxial armchair, uniaxial zigzag, and biaxial cases are 12 N/m and

0.28, 13.4 N/m and 0.26, and 10.2 N/m and 0.18, respectively. The values are compared

with silicene and monolayer SiC, and tabulated in Table 4.2. SiB has better mechanical

strength than silicene, and is inferior to monolayer SiC. The stress values are higher in

the compressive regime than in the tensile regime due to the larger resistance offered by

the material when the distance between atoms decreases due to compression.

Figure 4.5: Charge density contour plot of SiB. Red to blue represents the maximum
to minimum level of charge distribution. Charges are being concentrated around the
center B atom.

The contour plot for charge density was obtained for the undeformed SiB and is

shown in Fig. 4.5. The charge density distribution shows a uniform distribution of

charges across the entire unit cell with a slight increase near the Si-B-Si bond connect-

ing two hexagons of the material. Bader charge analysis performed on SiB implies that

it has an ionic nature, with all charges (7.000/Å3) accumulating around the B atom.

The contour plots for the maximum compressive and tensile strains in the uniaxial

armchair, uniaxial zigzag, and biaxial directions were determined. The contour plots

54



for all three cases are shown in Fig. 4.6. The charge density contour plot for the

maximum compressive uniaxial armchair direction (see Fig. 4.6(a)) shows a reduced

distribution near the B atoms which occupy the four corners of the unit cell. The charges

are concentrated toward the center, with the maximum distribution seen near the B atom

(at the center). This indicates that SiB has an ionic nature, which was also calculated

using Bader charge analysis (7.000/Å3). In the tensile case (Fig. 4.6(b)), charges tend

to be distributed throughout the unit cell, with the maximum concentration around the

B atom (at the center), which shows it to be ionic from the Bader charge calculations

(7.000/Å3).

In the uniaxial zigzag direction, charges are concentrated towards the center of the

unit cell, with the highest density of charges being concentrated at the B atom, implying

an ionic nature in the compressive regime (Fig. 4.6(c)). The tensile regime (Fig. 4.6(d))

shows a more uniform distribution of charges, and the Bader analysis (for Si, 2.05 /Å3

and for B, 4.95 /Å3) indicates a transfer of charges from B to Si, showing a transition

from an ionic to a covalent nature. The uniaxial zigzag direction shows a transforma-

tion from an ionic to a covalent nature as we move from the compressive to the tensile

regime. The compressive regime of biaxial strain (Fig. 4.6(e)) has an ionic nature,

with charges concentrating around the B atom. As we move to the tensile regime, the

material transforms from having an ionic to a covalent nature (Fig. 4.6 (f)). This was

also confirmed by Bader analysis, which showed the ionic nature seen in the maximum

compressive regime converting to covalent when the strain reached the maximum ten-

sile point (for Si, 3.49 /Å3 and for B, 3.50 /Å3). When moving from the compressive

to the tensile regime in the uniaxial zigzag and biaxial directions, there is a transition

from an ionic to a covalent nature.

4.1.3 Phonons and new SiB conformation

In general, SiB showed energetical and mechanical stability in a wide range of compres-

sive and tensile strain regimes. However, SiB in its buckled pristine form showed slight
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Charge density plot for (a) and (b) uniaxial armchair, (c) and (d) uniaxial
zigzag, (e) biaxial. Plots for maximum compressive and maximum tensile are plot-
ted in each case. Red to blue represents the maximum to minimum levels of charge
distribution..
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Figure 4.7: Phonon dispersion curve of buckled undeformed SiB

negative frequencies as shown in Fig. 4.7. A system is said to be dynamically stable

only if all phonon modes have real frequencies for all wave vectors. The pristine SiB ex-

hibited slightly negative frequencies in the ΓX and SY directions, implying the phonon

instability of the system. Since the calculations are performed at absolute 0 K, there is a

possibility that these negative phonon modes turn positive when the experimental real-

ization of the system is achieved at room temperature or higher. The unstable nature of

buckled pristine SiB encouraged an investigation into the dynamical stability of these

systems along varied strains. Phonon dispersion curves were computed for all strain

directions, but only cases which showed improved negative frequencies are discussed

here. The phonon dispersion analysis is performed along the biaxial direction with re-

spect to compressive strain values of -0.2 and -0.04. We found that there exist large

negative frequencies in the phonon spectrum with respect to the applied strain. The

phonon dispersion curves for compressive strains showed dynamical instability with

larger negative frequencies for the phonon modes (Fig. 4.8 (a) and (b)). Under com-

pressive strain, the in-plane lattice parameter falls below the equilibrium value, which

results in negative frequencies for the low-lying acoustic modes. This has been already

observed in graphene (Anees et al. 2015).

The phonon dispersion curves for the uniaxial tensile armchair and uniaxial tensile

zigzag cases are shown in Fig. 4(c) and (d). The curves for a tensile strain of 0.08 are

depicted for both the armchair and zigzag directions. The magnitudes of the negative

frequencies have significantly decreased. These would become positive with temper-
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(e) (f)

Figure 4.8: Phonon dispersion curve of SiB along different strain directions. (a)and (b)
Compressive biaxial strains (c) uniaxial armchair and (d) uniaxial zigzag directions.(e)
Slight negative frequency near Γ point due to biaxial tensile strain of 0.04.(f) Transition
to positive phonon frequencies at the biaxial tensile strain of 0.18.

ature effects or temperature-dependent electron-phonon interactions (Sa et al. 2014).

In general, a 2D material which is buckled in its ground state and shows a negative
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frequency becomes dynamically stable after a strain is applied. We did not find much

discussions of this phenomenon in the literature. A similar observation was made by

Wang et al., indicating a stable state of borophene in the uniaxial tensile strain state

(Wang et al. 2016a). Also, Zhang et al. observed structural stability enhancement by

the application of tensile strain (Zhang et al. 2017).

Further, for a biaxial tensile strain of 0.04, only a slight negative frequency appearing

near the Γ point was observed, as shown in Fig. 4.8 (e). In general, two-dimensional

materials are synthesized on any suitable substrate and this imparts a strain on the mate-

rial. Also, note that the present calculations were performed at a temperature of absolute

zero. When the temperature effect is considered, the synthesis of 2D materials is also

achieved by utilizing the thermal coefficient of expansion (TEC) mismatch between

the substrate and the adsorbent material. The strain engineering of 2D materials can

be achieved via chemical vapor deposition (CVD) growth while simultaneously main-

taining high material quality, by utilizing the TEC mismatch between the 2D material

and the growth substrate. Experimentally, electron diffraction of strained monolayers

grown directly onto transmission electron microscopy (TEM) windows are utilized to

unambiguously quantify strain. In real applications, the residual strain usually exists

in nanoscale devices, and the conduction of heat plays an important role in real-world

devices (Ahn et al. 2017). Therefore, it is interesting and necessary to investigate strain

effects on phonon transport in newly proposed 2D materials. Since the DFT calculation

mainly deal with 0 K calculations, we studied the strain effect on SiB and found that the

application of tensile strain provides structural stability to SiB. Based on the previous

reports (Henkelman et al. 2006), we also concluded that the enhanced structural stabil-

ity of SiB by tensile strain may shed light on the experimental fabricability of SiB on a

suitable substrate.

The important observation for the biaxial strain regime is that dynamically stable

SiB is observed at a tensile strain of 0.18 (see Fig. 4.8(f)), in contrast to the unstable

pristine SiB. The new structural symmetry of the strained SiB is depicted in Fig. 4.9.

There was a structural transition from a buckled to a flat conformation which maintained
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(a) (b)

Figure 4.9: SiB in its stable new configuration. Fig. (b) showing atoms lying in a plane
forming a flat conformation.

Figure 4.10: (a) Electronic band structure of the stable SiB using the PBE and HSE
functional. The total and partial density of states using (b) PBE and (c) HSE functional.
The electronic band and DOS analysis confirming the metallic nature of SiB.

orthorhombic symmetry. This was confirmed via phonopy which showed a difference

in structure previously reported by Hansson et al. and Ding et al. (Hansson et al. 2012,

Ding and Wang 2013). The new lattice parameters are a = 4.03 Å and b = 6.78 Å. The

electronic band structure and density of states (DOS) plot of stable SiB are shown in
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Fig. 4.10. The band structure indicates the metallic nature of SiB. One can see from the

diagram that there are bands present near the Fermi level. The single conduction band

starting from the Fermi level and across implies the metallic nature of SiB.

Figure 4.11: Electrostatic potential averaged along the vacuum direction plotted against
the vacuum region z.

We also analyzed the work function which is defined as the minimum energy re-

quired to eject an electron from the bulk to the vacuum region outside the surface of

the material at absolute zero. It can be calculated by taking the difference between the

vacuum level and the Fermi level, and is given by

φ = Evac − εF

, where Evac is the vacuum potential and εF is the Fermi level of the material (Ashcroft

and Mermin 1976).

Knowledge of the work function is crucial in designing electronic devices. In com-

putational and numerical calculations, the work function can be obtained by integrating

the density of states from the lowest energy level to the Fermi level, thus giving the total

number of electrons in the unit cell. A plot showing the electrostatic potential averaged

against the vacuum direction is shown in Fig. 4.11. The Fermi level and vacuum level

are marked in the figure. The vacuum potential Evac is the electrostatic potential aver-

aged along the vacuum direction. The calculated value of the work function φ for SiB

is 4.85 eV.

61



Figure 4.12: The fluctuation of the total potential energy during the AIMD simulation
at 300 K for a supercell of fully lithiated SiC with Stone-Wales defect. The snapshots
of the top and side views of the structure at the beginning and at the end of AIMD
simulation is shown in insets.

Further, to understand the thermal stability of the new structure at room temperature,

an ab-initio molecular dynamics (AIMD) simulation was carried out on a 3x3 supercell.

The variation in potential energy was less than 0.2 eV, confirming the thermal stability

of the new flat conformation, as shown in Fig. 4.12. Heating the system at 300 K for

5 ps led to slight buckling (0.2 Å) of the structure, without much changes in the bond

length.
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Chapter 5

Li ATOM ADSORPTION

CAPABILITY OF PRISTINE AND

DEFECTIVE SiC

First-principles density functional theory (DFT) computations are carried out to as-

sess the potential application of a monolayer Silicon carbide (SiC) with the presence

of topological and point defects. Results show that the unstable binding of pristine SiC

makes it a poor candidate for the anode material. However, the introduction of vacancy

and Stone-Wales type topological defect in SiC possesses a stable Li binding property.

Besides, all the defective configuration showed higher electrical conductivity, superior

mechanical robustness and stable formation energy. We also observed a structural re-

orientation from point to topological defect with a 5-8-5 ring formation in C and Si-C

bi-vacancy and a Li-mediated phenomenon in the case of Si bi-vacancy. All the config-

urations under consideration exhibited low open-circuit voltage (0.1 V), a low Li diffu-

sion barrier ( 0.77 eV), and a fairly high specific capacity (501 mAh/g for Stone-Wales)

compared to the conventional graphite anode. Besides, the ab initio molecular dynam-

ics calculations confirmed the thermal stability and structural integrity of the defective

SiC. Based on these findings, the present study suggests that SiC with a Stone-Wales

defect be a forthcoming candidate for the anode of LIBs.
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5.1 Li atom adsorption on pristine-SiC

Our computation correctly predicts the structural properties of SiC and the results are

comparable with earlier reports using the same method. This validated our DFT method

and also prompted us to follow the same approach for further analysis of SiC (Ding and

Wang 2013).

A supercell of 2×2 was considered to understand the Li-ion adsorption mechanism

in SiC. Li was placed at four different locations on top of SiC sheet. Li was placed on

top of Si (T1), on top of C (T2), on top of Si-C bond (B), at the center of the hexagon

(C) as shown in Fig. 5.1. The side views of the Li adsorption is also represented beside

each of the top views. Fig. 5.1 shows geometrically optimized configurations for all the

cases with a slight orientation of Li towards C rather than being at the center of the Si-C

bond in the case of B (see Fig. 5.1 (c)). Each configuration was initially introduced with

a single Li atom and each of them were optimized to find out the energetical stability of

host SiC with Li. Insertion of Li ions onto the different positions of SiC did not show

much effect on the bond length (< 0.05 Å). The bond length change was only from

1.797 Åto 1.84 Å. The bond length variation occurs only on the bonds which were in

the vicinity of Li ions. The cases of (a) Li on top of Si showed only a meagre change

in bond length of 1.797 Å, (b) Li on top of C showed a bond length of 1.81 Å(change

from original Si-C is 0.02 Å), (c) Li on top of Si-C bond showed a bond length of 1.83

Å(change from original Si-C is 0.04 Å), (d) Li in middle of the Si-C hexagon showed

a change of 1.84 Å(change from original Si-C is 0.05 Å). The Li-Si distance when Li

is placed on top of Si is 2.76 Å, Li-C distance when Li is placed on top of C is 2.14

Å, Li shifts towards C top from the initial position of Si-C bond after the geometrical

optimization, the Li-C distance is 2.11 Åand when Li is in the middle of the hexagon,

the Li-Si distances are 2.62 Å, 2.62 Å, 2.54 Åand Li-C distances are 2.54 Å, 2.54 Å,

2.23 Å. Also, insertion of Li caused a slight buckling of atoms in the case of (c) Li

on top of Si-C bond (0.2 Å) and (d) Li in middle of Si-C hexagon (0.5 Å). The total

energy obtained from VASP confirmed the energetical stability of all the four Li-SiC

configurations and the lowest energy was found when Li was placed at the center of the
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(a) (b)

(c) (d)

Figure 5.1: Li placed at four diferent positions on SiC. (a) Li on top of Si (b) Li on top
of C (c) Li at the Si-C bond (d) Li at the middle of the hexagon and * gives the side
views.

hexagon pointing to the fact that this could be the position which could have the least

energy for Li adsorption which is found by determining the binding energy.

Mechanical stability and integrity of LIBs is a major concern with intercalation and

de-intercalation of Li atoms. The occurrence of mechanical failure of the electrodes

during the Li intercalation and de-intercalation process is a major threat for the smooth

functioning of batteries. Li infusion induces stresses in the electrodes thus leading to

their fracture and failure finally in the loss of battery capacity. Diffusion of Li atoms

through the battery can cause phase transition, volume expansion, stresses etc. which

could completely rupture the electrodes leading to battery deterioration (Wu and Zhang

2015). Li atom insertion into the host SiC can perturb the mechanical stability which

can be checked by calculating the elastic constant values of Li-SiC systems. The values

of elastic constants are tabulated for all the four configurations along with the values of

Young’s modulus and Poisson’s ratio with a single Li atom (see Table 5.1).
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C11

(N/m)
C12

(N/m)
C22

(N/m)
C66

(N/m)
Y

(N/m)
ν

T1 169.77 51.87 169.77 58.95 153.92 0.31

T2 156.95 53.80 156.95 51.58 138.51 0.34

B 162.31 47.97 159.13 56.08 148.13 0.3

C 145.81 33.30 135.44 51.91 138.20 0.23

Pristine SiC 179.2 54.5 179.2 62.24 162.62 0.30

Table 5.1: Elastic constants when Li is placed at T1, T2, B and C configurations

The obtained values for all the four configurations satisfy Born criteria implying the

mechanical stability of Li intercalated SiC systems (Bom and Huang 1954). The values

obtained were compared with the elastic values of pristine SiC. The magnitudes of

elastic constants tend to decrease slightly for the Li-SiC configurations showing a slight

reduction in mechanical robustness. The elastic constants C11 and C22 are equal in the

case of T1 and T2 whereas it is different when its B and C configuration signifying the

presence of anisotropy with the addition of Li on top of Si-C bond and in the middle of

the hexagon configurations.

In order to understand the adsorption of Li on the surface of SiC, the binding energy

of Li on SiC needs to be determined. The calculated values of binding energy for all

the four configurations are tabulated in Table 5.2. A negative value of binding energy

confirms the adsorption of Li onto the host material whereas a positive value implies

a Li clustering and dendrite formation rather than adsorption (Sun et al. 2016). The

positive values of binding energy in the case of SiC indicates there could be formation

of Li clusters and dendrites rather than adsorption and therefore the positive value of

adsorption energy for all the cases makes pristine SiC a poor material for the anode of

Li-ion batteries.

T1 T2 B C

Ebind(in eV) 1.97 1.94 1.92 1.89

Table 5.2: Binding energies of T1, T2, B and C configurations of pristine SiC indicating
a positive value in all the four Li atom positions.
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5.2 Mono-, bi- and Stone-Wales defects and Li atom ad-

sorption in defective SiC

Defects are ubiquitous. Most of the practical synthesis of 2D-SiC are performed at

high temperatures. This would result in the formation of inevitable defects. Therefore,

this section presents the changes in properties of bare 2D-SiC with the introduction of

defects. There are three types of defects which are discussed here namely, mono- and

bivacancy which has reduced number of atoms and are considered to be point defects

and Stone-Wales type which is a topological defect preserving the number of atoms

(Stone and Wales 1986). The inability of pristine SiC to be the anode urged us to look

for the possible changes with the addition of defects onto the host SiC.

Defects were introduced in different ways- by removing Si, C, Si and C and Stone-

Wales types. Mono-vacancy can occur by removing a single Si or C atom from the

host SiC (designated as M1 and M2 respectively). Bi-vacancy occur when two Si or

two C or one Si and one C atoms are removed from the host designated as B1, B2 and

B3 respectively. And a Stone Wales defect is formed when a Si-C bond is rotated at

an angle of 90◦ forming a pentagonal-heptagonal (5-7) pair in the hexagonal network

(designated as SW). The structure of defective SiC along with the electron localization

function (ELF) are schematically represented in Fig. 5.2.

ELF for the M1 depicts a maximum at the Si-C bond leaving a minimum at the

defective region (see Fig. 5.2 (a)) whereas the absence of Si in M2 has accumulation

of electrons in the defective region around the vacancy created by C as could be seen

from Fig. 5.2 (b). In the defective region of bivacancy, there is minimum around the

B1 whereas it shows a slight more distribution towards C atom in the case of B2 and

a combination of minimum and maximum is observed in the case of B3. SW on the

other hand shows an accumulation of electrons around Si pointing towards an ionic

character. As a general trend observed from the ELF, there is more tendency of electrons

to get accumulated around C atom, pointing towards an ionic nature. All the types of

defects at the outset doesn’t show any buckling and maintains a planar structure. The
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Figure 5.2: Electron localization function along with the representation of struture for
(a) Si-monovacancy, (b) C-monovacancy, (c) Si-bivacancy, (d) C-bivacancy (e) Si-C-
bivacancy and (f) Stone-Wales defect. Red to blue indicates the maximum to minimum
electron density distribution.

obtained total energy confirms the energetical stability of all the configurations. The

basic understanding on how SiC would behave with the introduction of defects on their

electronic and charge density are compared with pristine SiC.

A remarkable observation in the case of bivacancy was obtained when the vacancy

introduced structure was undertaken an optimization. There was a transformation from

point to topological defect. The vacancy created was healed in the case of B2(C bi-

vacancy) and B3 (Si-C bivacancy) forming a 5-8-5 ring very similar to the case of

graphene (depicted in Fig. 5.3). These kind of bivacancy which is a type of multiva-

cancy defect appear even in graphene and an extensive work on the properties of these
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kinds of defects were carried out (Kochnev et al. 2014, Wang et al. 2015, Tian et al.

2017). A slight different type of healing occur in the case of Si bivacancy (B1), instead

of a 5-8-5 ring structure, they reorient themselves into varied number of ring structure

i.e. 5-10-7 rings. The structure of this special ring structure is given in Fig. 5.3 (c).

Figure 5.3: (a) and (b) 5-8-5 ring structure of C bivacancy and Si-C bivacancy, (c)
5-10-7 ring structure of Si-bivacancy

Defect formation energy is the difference in energies before and after the formation of

defects. Presence of vacancy causes reduction in number of atoms thus defect formation

energy can be written in the form

Evacancies
form = Edefect − Eperfect +Nµi (5.1)

Evacancies
form = Edefect − Eperfect + nEC +mESi (5.2)

where Edefect is the total energy of the crystal having (m no. of Si), (n no. of C) va-

cancies in it, Eperfect is the energy of the perfect crystal and µi is the chemical potential

which is taken here as the total energy of graphite (EC) and bulk silicon (ESi). In the

case of Stone-Wales where the number of atoms remain unaffected, the defect formation

energy (ESWform) is calculated using the following equation.

ESW
form = ESW − Eperfect (5.3)

Defect formation energy was determined for all the configurations and were tabulated

in Table 5.3. The values of SiC are compared with that of graphene and silicene. For-

mation energy values of SiC in the case of Si-monovacancy (M1) shows a slightly lesser

69



value compared to graphene whereas M2 and bivacancy type shows higher magnitudes.

Comparing the Eform of SW on the other hand shows low value compared to both mono-

vacancy and bivacancy implying that the formation of SW defect is thermodynamically

favored over mono and bi vacancies. We also noticed that the computed Eform of SiC

with SW defect is smaller than that of graphene, h-BN and BCN and higher than that

of silicene. Besides, as shown in Table 5.3, the computed defect formation energy of

SiC is comparable and or smaller compared to that of experimentally synthesized h-BN

and BCN 2D materials (Thomas et al. 2015) implying that these structures are more

accessible to an experimental group.

SiC (E in eV) Graphene∗ (eV) Silicene∗(eV)

Monovacancy
M1=7.26
M2=6.22 7.62 2.87

Bivacancy
B1=6.40
B2=8.22
B3=5.42 7.48 3.24

Stone-Wales 4.23 4.87 1.84

Table 5.3: Defect formation energies of SiC compared with graphene and silicene

Pristine SiC is a wide band gap semiconductor as depicted in Fig. 3.7. The bands

diagram for all the defective configurations are plotted in Fig. 5.4. Fig. 5.4 (a) and

5.4 (b) represents the band diagram for M1 and M2 configurations. Fig. 5.4 (c), 5.4

(d) and 5.4 (e) represents the band diagram for B1, B2 and B3 configurations and 5.4

(f) represents the band structure for SW configuration. The band diagram for M1, M2,

B1 and B2 configurations show a metallic nature confirming a semiconducting-metallic

transition. The bands which were away from the Fermi level in the pristine SiC came

closer to the Fermi level with few bands overlapping with each other and falling into

the conduction band. B3 on the other hand, shows a very low band gap of 0.4 eV and

SW shows a band gap of around 1 eV but much less than pristine SiC. The direct nature

of pristine SiC is now changed to an indirect band gap nature when the defects are SW.

The lowest of conduction band lie at Γ point and the highest of valence lie at K thus

making it an indirect band gap semiconductor.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Electronic band structure for Monovacancy (a) Si removed (b) C removed,
Bivacancy (c) 2Si removed (d) 2C removed (e) 1Si-1C removed, (f) Stone-Wales de-
fect. (a) - (d) characterizes metallic nature and (e) and (f) characterizes semiconducting
nature. The horizontal red line is the Fermi level maintained at zero.

Electronic density of states (DOS) plot along with partial DOS contribution for all the

vacancy configurations are depicted in Fig. 5.5. Compared to the pristine SiC which

was semiconducting, all the mono- and bi- vacancy (except B3) depicted in Fig. 5.5

showed metallic nature as seen also from the electronic bands diagram. DOS plot in

the case of B3 and SW showed empty DOS at the Fermi level. In the pristine case,

the contribution near the Fermi level was notably from the pz orbitals of both Si and C.

With the creation of monovacancy, the p orbitals namely px, py and pz of both Si and
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C approaches towards the Fermi level causing a decrease in band gap finally making

it metallic. In the case of bivacancy, the major contribution in the Fermi level region

is from the Si(py), C(py) and C(pz) converting semiconducting SiC to metallic. Thus,

vacancy creation is a feasible method for the tuning of band gap in 2D-SiC.

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Electronic dos structure for Monovacancy (a) Si removed (b) C removed,
Bivacancy (c) 2Si removed (d) 2C removed (e) 1Si-1C removed, (f) Stone-Wales defect
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Charge density contours (a) Si-monovacancy (M1), (b) C-monovacancy
(M2), (c) Si-bivacancy (B1), (d) C-bivacancy (B2), (e) Si-C bivacancy (B3) and (f) SW.
Contour plot of all the defective configurations confirming the ionic nature in general.

Charge density contour was plotted for all the vacancy induced configurations along

with the confirmation using Bader charge analysis (Henkelman et al. 2006). The contour

plots are depicted in Fig. 5.6. Charge density contours at the outset shows an accumu-

lation of charges around C atom with a reduced distribution slightly farther away from

the atom. Monovacancy configurations show maximum distribution around C (8/Å3)

and zero at the defective region. Bader analysis shows a complete ionic nature in the

case of M1 and a slight magnitude of charge is observed on Si atoms (1/Å3) but being

the greater on C atoms in the case of M2. In the case of bivacancy, much variation in

charge distribution pattern is not observed but still charges tend to spread more com-

pared to the monovacancy configurations as B1 has a charge density of 1.31/Å3 around
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Si and 5.28/Å3, 7.98/Å3, 8.23/Å3 around C atoms, B2 has a distribution of 1.11/Å3,

2.98/ Å3 around Si and 7.98/Å3, 8.04/Å3 around C, B3 has 1.12/Å3 around Si and

6.86/Å3, 7.95/Å3, 8.03/Å3 around Si atom. And the Bader analysis shows a tendency

of few charges to slightly move towards and accumulates around Si atoms (2.40/Å3)

but the ionic nature is predominant in general which is also the case with SW (6.77/Å3,

8.02/Å3 around C atom).

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Electronic bands plot with the presence of Li for Monovacancy (a) Si re-
moved (M1) (b) C removed (M2), Bivacancy (c) 2Si removed (B1) (d) 2C removed
(B2) (e) 1Si-1C removed (B3), (f) Stone-Wales defect (SW)
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We noticed that the charge transfer from Li to the SiC monolayers is∼ 0.9 |e| leading

to the substantial shifting of the Fermi energy level, which also ensures the semicon-

ductor to metal transition during Li adsorption. Thus the observed transformation from

semiconducting to metallic in the case of mono- and bivacancy and also the reduction in

band gap for SW results in higher electrical conduction in defective SiC. This reduction

in band gap would in turn make it a plausible material for the anode of LIBs compared

to the bare SiC. So, to figure out the adsorption pattern of Li ions, the binding energy

was calculated for all the defective configurations (see Table 5.5). A negative value of

binding energy indicates the adsorption of Li ions onto the SiC surface rather than the

Li cluster formation. This also means that the adsorption process is spontaneous and

exothermic which is vital for the functioning of LIBs. According to the above crite-

rion, Li would get adsorbed onto the surface of all the studied defective configurations

without Li metal cluster formation. Among the monovacancy defected configurations,

Si-monovacancy (M1) has a higher binding energy implying a strong binding of Li

with M1 host than the C-monovacancy (M2) configuration. In the case of bivacancy, C-

bivacancy (B2) appears to be having higher binding energy compared to Si-bivacancy

(B1) and Si-C-bivacancy (B3). Stone-Wales (SW) have the least value of adsorption

energy compared to mono- and bivacancy. Now, to understand the effect of Li on the

defects, electronic bands of all the configurations were plotted. The bands diagram are

as depicted in Fig. 5.7. Metallic nature portrayed by M1, M2, B1 and B2 is maintained

as such and B3 and SW is now transformed into metallic with the addition of Li.

Now, a notable observation was made with the addition of Li atom into Si-bivacancy

structure (B1). The addition of Li atom causes a structural reorientation of the 5-10-7

rings in B1 and forms a 5-8-5 ring structure as in C-bivacancy (B2) and Si-C-bivacancy

(B3). It is interesting in the case of Si-bivacancy because this reorientation is a Li-

mediated transformation. So, Li acts as an agent which helps in reorienting the ring

structure to form a stable 5-8-5 ring structure in the case of Si-bivacancy configuration.

And the other two types of bivacancy maintains the 5-8-5 ring structure with the inser-

tion of Li atoms into it. The structure of this new ring conformation with Li inserted are

depicted in Fig. 5.8.
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(a) (b)

(c)

Figure 5.8: Figure showing the 5-8-5 rings after the addition of Li into the host matrix
for the three bivacancy configurations. (a) B1, (b) B2 and (c) B3. 5-8-5 rings of B2
and B3 remain unaffected with the introduction of Lis into it. B1 attains the stable 5-
8-5 rings with the Li mediation. Yellow, grey and green atoms represent Si, C and Li
respectively.

An insight into the mechanical properties are crucial in developing structures for

practical applications thus providing an information on the mechanical strength of the

material (Wang et al. 2012b). Determination of second order elastic constants (SOEC)

are necessary for understanding the mechanical stability of any material thus modelling

the linear elastic response. Second order elastic constants of all the six configurations

are determined to understand the effect of Li on the mechanical stabilities of defective

SiC. The magnitudes of elastic constants along with Young’s modulus and Poisson’s

ratio are tabulated in Table 5.4. The computed values of elastic constants satisfy the

Born stability criteria signifying the mechanical stability of all the configurations with

the presence of Li atom. The elastic constants in general shows mechanical robustness

in all the configurations under consideration. The values of defective SiC are com-

pared with pristine SiC which indicates a reduction in magnitude of SOEC suggesting
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a reduction in mechanical stability with the insertion of Li. Carefully observing these

values suggest an isotropic behaviour in the case of M1 defect with C11 = C22 and an

anisotropic behaviour is observed in all the other configurations in which C11 6= C22.

For the monovacancy cases specially M1, the Poisson’s ratio is nearly 0.5 (0.51 for

M1) signifying the incompressible nature meaning there will be no volume change un-

der any applied deformation which is a positive gesture that can be utilized in battery

applications, also higher Poisson’s ratio is observed in the case of M2 and SW. But biva-

cancy cases, show reduced value of Poisson’s ratio nearing 0.1, pointing to the fact that

there is very less transverse expansion when compressed. Observing the magnitudes of

SOEC implies higher mechanical robustness in the case of SW in comparison to all the

mono- and bivacancy configurations. From the earlier work on defective planar carbon

allotropes (Thomas et al. 2019) and BC3 monolayer (Thomas et al. 2020), we found

that the computed elastic constants satisfy the criteria for mechanical stability; but ex-

perienced a reduction in the mechanical stiffness after Li intercalation. The same trend

is also observed in the case of SiC with SW and vacancy defects and the details are

presented in Table 5.4.

C11

(N/m)
C12

(N/m)
C22

(N/m)
C66

(N/m)
Y

(N/m)
ν

M1 89.38 45.60 89.38 66.12 0.51
M2 77.15 30.69 83.21 33.8 64.94 0.40
B1 118.42 13.64 56.74 39.80 116.85 0.12
B2 115.44 8.03 59.49 33.23 114.88 0.07
B3 109.93 11.32 70.30 39.00 108.76 0.10
SW 162.02 51.53 169.15 55.42 145.63 0.32
Pristine SiC 179.2 54.50 179.2 62.24 162.7 0.3

Table 5.4: Elastic constants of defective SiC with the insertion of Li - Mono-vacancy
(M1, M2), bi-vacancy (B1, B2, B3) and Stone-Wales (SW) defect configurations.

Specific capacity is very crucial to consider a material as an anode of LIBs. Capacity

in general was determined for all the six configurations under consideration. Li was

added one by one to the defective SiC matrix and the binding energy for each config-

uration were calculated. For the monovacancy case, the structures showed buckling
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Figure 5.9: Top and side views of SiC with a SW defect which accommodate a total of
ten Li atoms above and below the SiC sheet.

of atoms with Li insertion and a maximum of nine Li atoms were added above and

below the host defective SiC matrix with least distortion of the lattice. A maximum

of eight Li atoms was inserted into the ring structures of bivacancy defective config-

urations with negative adsorption energy for all the studied cases. In the case of SW,

the maximum Li atoms inserted was around twelve and the adsorption energy showed

negative for all the cases (see Fig. 5.9). All the studied configurations show superior

capacity (see Table 5.5) as compared to the conventional graphite anode (372 mAh/g),

MoS2/graphene (338 mAh/g), Ti3C2 monolayer (320 mAh/g), and Mo2C (526 mAh/g)

(see also Appendix D) (Dahn et al. 1995, Sun et al. 2016, Tang et al. 2012, David et al.

2014). Among all the defects, Si-monovacancy showed highest capacity with maximum

adsorption of nine Li atoms in the stiochiometry Li9Si8C9. Least value of binding en-

ergy for Si monovacancy corresponding to the highest value of capacity. The average

open circuit voltage (OCV) obtained in the case of all the configurations are also tab-

ulated in Table 5.5 which is in accordance with the LIBs requirements. The capacity

of the above studied defective SiC being superior and low OCV and its successful ex-

perimental synthesis would make it an appropriate forthcoming material for the anode

of future Li-ion batteries. However, the basic understanding of mechanical properties,

electrical conduction, and adsorption energy along with the defect formation energy
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point towards the possibility of Stone-Wales defect induced 2D-SiC to be a superior

candidate among all the configurations under consideration. To understand the dynam-

ical stability of Stone-Wales defective configuration, a density functional perturbation

theory (DFPT) calculation was carried and the post processing of the data was carried

out using PHONOPY code. The phonon dispersion curve obtained from the calculation

showed real frequencies of all phonon modes for all the wave vectors implying the dy-

namical stability of Stone-Wales introduced SiC configuration. The graph representing

the phonon-dispersion curve is given as Fig. 5.10.

Ebind (eV) Capacity
(mAh/g)

OCV (V)

M1 -3.03 725 0.33
M2 -1.41 691 0.46
B1 -1.81 616 0.66
B2 -2.27 637 0.33
B3 -0.94 668 0.10
SW -0.60 501 0.11

Table 5.5: Binding energy, theoretical capacity and average OCV for all the defective
configurations.

Figure 5.10: Phonon dispersion spectrum and the density of states of SiC monolayer
with a Stone-Wales defect.

In order to further understand the Li ion movement mechanism and the corresponding

diffusion barriers, a nudged elastic band method was carried out only for Stone-Wales

(SW) configuration. The NEB pathway is as represented in Fig. 5.11. We investigated
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(a) (b)

(c)

Figure 5.11: Minimum energy path for the diffusion of Li atom through (a) Si-
monovacancy, (b) C-bivacancy and (c) Stone-Wales defect.

the Li migration through different ring positions (5,6, and 7 membered rings corre-

sponding to the pentagon, hexagon and heptagon in the SW defect) and found there

exist slight distortion to the host SiC, The computed diffusion barrier heights from 6 to

5 is 0.77 eV and 5 to 7 is 0.57 eV which is slightly higher than that of graphene (0.31

eV) but lower than that of other two dimensional materials like phosphorene, defective

silicene, BC3 nanotubes, etc. (Setiadi et al. 2013, Hardikar et al. 2014, Zhao et al.

2014, 2005). We also considered all other possible diffusion paths through SiC- SW

(Fig. 5.11) and found that the Li may prefer the most stable and lowest energy barrier

path (0.57 eV) during the diffusion process.

We also investigated the average volume change in the xy plane of SiC with Stone-

Wales defect in the fully lithiated state and found that the volume change is about 1.49%

indicating an insignificant volume change. One of the major benefits of low contraction
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Figure 5.12: (a) The fluctuation of the total potential energy during the AIMD simula-
tion at 300 K for a 2×2 supercell of fully lithiated SiC with Si monovacancy (M1). The
snapshots of the top and side views of the structure at the (b) beginning and (c) at the
end of AIMD simulation.

in electrode materials upon Li intercalation or low volume changes is that a large num-

ber of charge/discharge cycles can be attained along with negligible capacitance loss.

Since the insertion of Li atoms into the defective structure showed buckling, an ab-initio

molecular dynamics (AIMD) simulation was performed to understand the thermal sta-

bility of the Li added configuration only for the case of Stone-Wales defect type (SW).

A supercell containing a total of 168 atoms (64 Silicon, 64 Carbon, and 40 Lithium) for

10 picoseconds were considered to carry out the simulation. The fluctuation of the total

potential energy during the AIMD simulation at 300 K was computed using the NVT

ensemble with the Nose-Hoover heat bath method (See Fig. 5.12). We found that the

fully lithiated SiC monolayer with Stone-Wales defect type is energetically and ther-

mally stable with energy fluctuations within 1 eV. Also after heating up the system at

300K for 10 ps, the Li atoms are well dispersed on both sides of the fully lithiated SiC

monolayer (see insets of Fig. 5.12). This observation suggests its structural integrity

and further LIB application in the battery operating temperature.
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Chapter 6

SUMMARY, CONCLUSIONS AND

FUTURE WORK

This chapter summarizes the important findings along with the major conclusions of the

present research work. In addition to that the scope of the future work is also included

in the present chapter.

6.1 Summary

From the results and discussions of Chapters 3,4,5, it can be summarized as :

The past two decades have seen tremendous advancements in the prediction and synthe-

sis of two dimensional materials having novel electronic, chemical, mechanical, optical

and magnetic properties and their potential applications in various fields including me-

chanical engineering, electronics, information and energy technologies. In this thesis,

an attempt have been done to understand the potential of two dimensional SiC in being

the anode of Li-ion batteries along with understanding its behavioural changes with the

application of strain. Strain has also been applied to two dimensional SiB and efforts

are done to find out if a stable SiB structure could be obtained with the application of

strain.

Chapter 3 : Stress was applied on SiC to understand the change in its structural, me-

chanical and electronic behaviours. SiC is energetically stable in the studied stress
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range for both compressive and tensile regime. The uniaxial zigzag and armchair stress

changes the structure and symmetry of the system from hexagonal to orthorhombic

whereas biaxial stress maintains the hexagonal symmetry. The mechanical stability

of the system was studied in terms of the magnitudes of second order elastic constants.

SiC shows considerable stability with uniaxial zigzag, armchair and biaxial stresses and

showed anisotropic behaviour along different directions and along the strain grids from

−0.1 to 0.1. The band gap tuning of SiC was achieved using stress thus transforming

the material from direct to indirect band gap semiconductor. Application of stress also

reduces the band gap making the system metallic. Thus, inducing stress is an efficient

way to easily tune the band gap of materials. Charge density plot and Bader analysis

confirmed the ionic nature of SiC in two dimension.

Chapter 4 : Here, we propose a new flat conformation of SiB having orthorhombic

symmetry. The strain energy and elastic constants data implied anisotropic behavior of

SiB in the studied ranges of strained states. The second order elastic constants showed

that SiB has superior mechanical strength and ultimate tensile strength compared to its

counterpart silicene. SiB in its undeformed state is ionic in nature and becomes covalent

with the application of uniaxial zigzag and biaxial strains. SiB in its original pristine

form showed dynamical instability but was transformed to a dynamically stable config-

uration with the application of biaxial tensile strain. The ab-initio molecular dynamics

simulation further confirmed the thermal stability of the new flat conformation. This

material was also observed to attain stability with the application of uniaxial tensile

strains.

Chapter 5 : Density functional theory calculations were done on pristine SiC to check

its capability in being the anode of Li-ion batteries. Li was positioned at various points

on the surface of SiC and addition of Li onto the pristine SiC implied energetical sta-

bility for all the Li positions. Elastic constants for all the configurations implied me-

chanical robustness. Determination of binding energy suggests the possible candidature

of a material and pristine SiC proved to be a poor candidate due to the positive bind-

ing energy. This was then introduced with defects and the properties were evaluated.

Electronic bands plots for the defective configurations showed improved electrical con-
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duction with a transformation from semiconducting to metallic nature thus implying

higher electrical conduction. Elastic constants showed mechanical stability of the de-

fective structures along with the indication of presence of anisotropy with the introduc-

tion of defects. A remarkable observation in the case of bivacancy configurations was

the structural reorientation with the formation of stable 5-8-5 rings healing the vacancy

created in the case of C-bivacancy and Si-C-bivacancy making a transition from point

defect to topological defect. Li mediated reorientation occurs in Si-bivacancy forming

5-8-5 rings from the 5-10-7 ring structure. Negative binding energy, higher specific

capacity, low OCV and low diffusion barrier ( 0.77 eV) computed for all the configu-

rations gives an outlook for its capability in being the anode of LIBs. Thermal stability

of Stone-Wales (computed for SW only) was proved with the insertion of Li atoms on

either side of the monolayer sheet through ab-initio molecular dynamics calculations.

Therefore, considering all the above results we conclude 2D-SiC in particular SW to be

a plausible and competent material to be the anode of next generation Li-ion batteries.

6.2 Conclusions

The major conclusions drawn from the present research work is that SiC is proposed

to be a prospective candidate for the anode of future Li-ion batteries because of its me-

chanical stabilities in varied strain regimes, improved electrical conduction with strain

and defects, dynamical and thermal stability, higher specific capacity, low open circuir

voltage. Also, the present work proposes a new stable flat configuration of unstable

buckled SiB with the introduction of tensile strain.

6.3 SCOPE FOR THE FUTURE WORK

Efforts can be made in future

• Introduce SiB with point and topological defects and identify if this can be a

potential candidate to be the anode of Li-ion batteries.

• To understand the effect of uniaxial strain on the monolayer BC3 which have been
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analysed for its response towards biaxial strain.

• Pristine monolayer BC3 is identified as a candidate for the anode of Li-ion bat-

teries. So, this can be introduced with point and topological defects and their

capability in being the anode can be identified.

• Apply strain in all the silicene derivatives which are dynamically unstable and

identify if there is any possibility in having a phonon stable structures.
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Appendix A

Hohenberg-Kohn theorem 1
Statement : The ground state energy determined from the Schrödinger equation is a

unique functional of electron density.

Proof : The assumption is that there exist two potentials V1
ext(~r) and V2

ext(~r) which

differs by more than a constant and giving same ground state density n(~r). The two po-

tentials have diferent Hamiltonians corresponing to different wavefunctions i.e. H1
ext(~r)

and H2
ext(~r) corrsponding to Ψ1

ext(~r) and Ψ2
ext(~r) respectively. No other wavfunction

can provide lesser energy than E(1) corresponding to H1
ext(~r) and Ψ1

ext(~r) according to

the Variational principle meaning

E(1) =
〈
Ψ(1)

∣∣H(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣H(1)
∣∣Ψ(2)

〉
The ground state is not degenerate which means this inequality strictly holds. Now,

because we have similar ground state density for both Hmailtonians, we can write the

expectation value as

E(1) <
〈
Ψ(2)

∣∣H(1)
∣∣Ψ(2)

〉
=
〈
Ψ(2)

∣∣H(2)
∣∣Ψ(2)

〉
+

∫
d~r[V 1

ext(~r)− V 2
ext(~r)]n0(~r)

Writing it similarly for H2
ext(~r) gives

E(2) <
〈
Ψ(1)

∣∣H(2)
∣∣Ψ(1)

〉
=
〈
Ψ(1)

∣∣H(1)
∣∣Ψ(1)

〉
+

∫
d~r[V 2

ext(~r)− V 1
ext(~r)]n0(~r)

Adding both the equation gives

E(1) + E(2) <
〈
Ψ(2)

∣∣H(2)
∣∣Ψ(2)

〉
+
〈
Ψ(1)

∣∣H(1)
∣∣Ψ(1)

〉
E(1) + E(2) < E(2) + E(1)

This is a contradiction proving the first Hohenberg-Kohn theorem which states that

there cannot be two potentials yielding the same ground state electron density.
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Appendix B

Hohenberg-Kohn theorem 2
Statement : It is the ground state electron density that minimizes the total energy of the

system corresponding to the full solution of the Schrödinger equation

Proof : The exact ground state electron density is obtained by minimizing the total

energy of the system which is a functional of the ground state electron density. Hohen-

berg and Kohn defined a universal functional which is valid for any system, regardless

of their external potential.

Therefore, for a given external potential Vext(~r), we have the total energy functional

E[n] defined as

E[n] = F [n] +

∫
v(~r)n(~r)d~r

Here interaction energy from nuclei is neglected and the universal functional F[n] con-

tains all of the electronic energy :

F [n] = T [n] + Vee[n]

Where T[n] is the kinetic energy functional and Vee[n] is the potential energy functional

from e−-e− interactions.

For a system with ground state electron density n(~r), the ground state energy will be

equal to the total energy functional E[n], whicch is the expectation value of the Hamil-

tonian for the ground state wave function Ψ

E = E[n] = 〈Ψ|Ĥ|Ψ〉 (6.1)

For a different density n’(~r) and with Ψ′, it follows from the variational principle that

the energy corresponding to this state E’ would be greater than the ground state energy

E

E = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 = E ′ (6.2)

This means the total energy functional E[n] gives the exact ground state energy only for
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the exact ground state density. If one knows the universal functional F[n], then the total

energy can be minimised with respect to n(~r) and the exact ground state energy density

and total energy can be obtained.
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Appendix C

Hellmann-Feynman Theorem
The derivative of energy with respect to any parameter say λ, can be determined by the

expectation value of derivative of Hamiltonian with the same parameter λ. Mathemati-

cally it can be written as,

∂E

∂λ
= 〈ψ(λ)|∂H

∂λ
|ψ(λ)〉 (6.3)

Proof : Consider a system having a Hamiltonian H which is a function of some parame-

ter say λ. ψ(λ) is the eigenfunction and E(λ) is the eigenvalue of the Hamiltonian H(λ).

Now we can write

H(λ) |ψ(λ)〉 = E(λ) |ψ(λ)〉 (6.4)

Giving

E(λ) = 〈ψ(λ)|H(λ) |ψ(λ)〉 (6.5)

Differentiating both sides with λ yields,

∂E

∂λ
= 〈∂ψ

∂λ
|H(λ) |ψ(λ)〉+ 〈ψ(λ)| ∂H

∂λ
|ψ(λ)〉+ 〈ψ(λ)|H(λ) |∂ψ

∂λ
〉 (6.6)

The wave function is assumed to be normalized.

〈ψ(λ)|ψ(λ)〉 = 1 (6.7)

and

H |ψ〉 = E |ψ〉

Now eq. (6.6) can be written as,

∂E

∂λ
= 〈ψ(λ)| ∂H

∂λ
|ψ(λ)〉+ E 〈∂ψ

∂λ
|ψ(λ)〉|+ E 〈ψ(λ) |∂ψ

∂λ
〉| (6.8)

∂E

∂λ
= 〈ψ(λ)| ∂H

∂λ
|ψ(λ)〉+ E

∂

∂λ
〈ψ(λ)| |ψ(λ)〉 (6.9)
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using eq. 6.7,
∂E

∂λ
= 〈ψ(λ)| ∂H

∂λ
|ψ(λ)〉 (6.10)

Hence proved
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Appendix D

Capacity (mAh/g) Diffusion Brrier (eV) OCV (V)
SiC monolayer with SW 501 0.77 0.1

Graphite 372 0.4 -
MoS2/Graphene 338 - 2.0
Ti3C2 monolayer 320 0.07 0.62

Ψ graphene 372 0.31 0.64
Phosphorene 433 0.76 -

2D-Boron 383 0.66 -
Mo2C 400-526 0.14-0.15 0.68
VS2 466 0.22 0.93

Table 6.1: Electrochemical properties of few of the studied anodes of Li-ion batteries.
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Appendix E

VASP Input File

#1 Startparameter for this Run:

NWRITE = 2 ! LPETIM=F write-flag & timer

ISTART = 0 ! job : 0-new 1-contEcut 2-sameBS

INIWAV = 1 ! 0-jellium 1-random

IWAVPR = 1 ! prediction: 0-non 1-charg 2-wave 3-comb

ICHARG = 2 ! 0-from WF 1-from CHGCAR 2-from atom 11-12-fixed

LWAVE = .FALSE. ! determines whether the wavefunctions are written to the WAVE-

CAR file

#2 Electronic Relaxation

NELM = 100 ! number of iterations

EDIFF = 1E-04 ! stopping-criterion for ELM

BMIX = 3.00 ! sets the cutoff wave vector for Kerker mixing for the magnetization

density

ENCUT = 500 ! Cut-Off Energy

#3 Electronic Relaxation

IALGO = 48 ! algorithm for the e-relax

LDIAG = T ! sub-space diagonalisation

LREAL = auto ! real-space projection

PREC = normal ! accuracy

# NBANDS = 30 ! number of bands for diagonalization

#4 Ionic Relaxation

NSW = 200 ! number of steps for IOM

NBLOCK = 1 ! inner block
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KBLOCK = 10 ! outer block

IBRION = 2 ! ionic relax: 0-MD 1-quasi-New 2-CG

ISIF = 4 ! ion&cell relax: 0-MD 2-ion&stress 3-ion&cell&stress

ISYM = 2 ! switch symmetry stuff ON (1 or 2) or OFF (0)

# SYMPREC = 1e-6 !

LCORR = T ! Harris-correction to forces

EDIFFG = -0.04 ! Criterion for geom opt (eV/Ang)

POTIM = 0.50 ! time-step for ionic motion (fs)

SMASS = 3.00 ! Nose mass-parameter (am)

#5 DOS related values

ISMEAR = 0 ! Broadening methode -5-tet -1-fermi 0-gaus 1-mp 2-mp2

SIGMA = 0.05 ! Broadening in eV

LORBIT = 11 ! l-decomposed DOS

# RWIGS = 1.63 1.00 ! Wigner-Zeits radius

# EMIN = ! Minimum energy for DOS

# EMAX = ! Maximum energy for DOS

# NEDOS = 1001 ! Number of DOS points

# NELECT = 100 ! Total number of electrons

# NUPDOWN = 2 ! Difference between UP&DOWN electrons

#6 Parallelizationoption

LPLANE = T ! Parallelization for PWs

NCORE = 8 !

LSCALU = F !

NSIM = 4 !

ISPIN = 1 ! spin polarized = 2, non spin polarized = 1

# MAGMOM = 12*0.6 16*0.6 16*0.6 !

#7 optB86b-vdW functional requires vdwkernel.bindat
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# GGA = MK !

# PARAM1 = 0.1234 !

# PARAM2 = 1.0000 !

# LUSEVDW = .TRUE.!

#AGGAC = 0.0000!

#8 TS calculation ! default:Nudged Elestic Band method

# ICHAIN = 0 ! Method (0=NEB, 1=Dynamical matrix, 2=Dimer, 3=Lanczos)

# SPRING = -5 ! in eV/Ang*2 (sping constant)

# IMAGES = 3 ! Number of images btw Reactant & Product

# LCLIMB = .true. ! cNEB: driven up to the saddle point

# LTANGENTOLD = .true. ! Old central difference tangent

# LDNEB = .true. ! Modified doubble nudging

# NEBCELL = .true. ! NEB for variable cell (w/ ISIF=3)

#9 Dipole Correctionoption

# IDIPOL = 3 !

# LDIPOL = !

#10 lda+uparameters

# LMAXMIX = 4 !

# LDAU = .TRUE. ! or .FALSE.

# LDAUTYPE = 2 ! or 1

# LDAUL = 2 2 2 !

# LDAUU = 0 0 0 !

# LDAUJ = 0 0 0 !

#11 vdWcorrections

IVDW = 12

95



Bibliography

Acun, A., Zhang, L., Bampoulis, P., Farmanbar, M., van Houselt, A., Rudenko, A.,

Lingenfelder, M., Brocks, G., Poelsema, B., Katsnelson, M., et al. (2015). Ger-

manene: the germanium analogue of graphene. Journal of physics: Condensed mat-

ter, 27(44):443002.

Ahn, G. H., Amani, M., Rasool, H., Lien, D.-H., Mastandrea, J. P., Ager III, J. W.,

Dubey, M., Chrzan, D. C., Minor, A. M., and Javey, A. (2017). Strain-engineered

growth of two-dimensional materials. Nature communications, 8(1):1–8.

Ajayan, P. M. (1999). Nanotubes from carbon. Chemical reviews, 99(7):1787–1800.

Ajiki, H. and Ando, T. (1993). Electronic states of carbon nanotubes. Journal of the

Physical Society of Japan, 62(4):1255–1266.

Akinwande, D., Brennan, C. J., Bunch, J. S., Egberts, P., Felts, J. R., Gao, H., Huang,

R., Kim, J.-S., Li, T., Li, Y., et al. (2017). A review on mechanics and mechani-

cal properties of 2d materials—graphene and beyond. Extreme Mechanics Letters,

13:42–77.

Anees, P., Valsakumar, M., and Panigrahi, B. (2015). Temperature dependent phonon

frequency shift and structural stability of free-standing graphene: a spectral energy

density analysis. 2D Materials, 2(3):035014.

Ashcroft, N. and Mermin, N. (1976). Solid state physics (philadelphia, pa: Saunders).

Baroni, S., Giannozzi, P., and Testa, A. (1987). Green’s-function approach to linear

response in solids. Physical Review Letters, 58(18):1861.

96



Beaulieu, L., Eberman, K., Turner, R., Krause, L., and Dahn, J. (2001). Colossal re-

versible volume changes in lithium alloys. Electrochemical and Solid-State Letters,

4(9):A137–A140.

Bekaroglu, E., Topsakal, M., Cahangirov, S., and Ciraci, S. (2010). First-principles

study of defects and adatoms in silicon carbide honeycomb structures. Physical Re-

view B, 81(7):075433.

Bezugly, V., Kunstmann, J., Grundkotter-Stock, B., Frauenheim, T., Niehaus, T., and

Cuniberti, G. (2011). Highly conductive boron nanotubes: transport properties, work

functions, and structural stabilities. ACS nano, 5(6):4997–5005.

Bom, M. and Huang, K. (1954). Dynamical theory of crystal lattices. Clarendon,

Oxford.

Butler, K. T., Gautam, G. S., and Canepa, P. (2019). Designing interfaces in energy ma-

terials applications with first-principles calculations. npj Computational Materials,

5(1):19.

Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., and Ciraci, S. (2009). Two-and
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