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Abstract

The main aim of the hand prostheses is to help people restore human hand

functions using artificial limbs. Electromyogram (EMG) signals have been

used as a control signal, and this control scheme is referred to as Myo-

electric Control (MEC). The conventional prostheses use a proportional

control scheme based on the amplitude of the EMG signal. However,

these schemes cannot achieve more than two degrees of freedom. This

limited functionality is the key reason for the rejection of prosthesis by

the amputees. If additional degrees of freedom are required, then Pattern

Recognition (PR) based MEC offers favorable control.

This research work aims at improving the classification accuracy of sur-

face EMG driven pattern recognition (PR) system. Many factors affect

the classification efficiency of PR based MEC. Significant challenges and

practical limitations need to be addressed before making the PR scheme

commercially available. The goal is to tackle these problems and to pro-

vide a solution using novel strategies developed in this research work.

Surface Electromyogram (sEMG) signals are contaminated with a wide

variety of noise, and this causes problems in PR. Noise sources such as

power-line interference, motion artifact, ambient noise, characteristic in-

stability of the signal, and noise due to electronic and recording equipment

could be present in the sEMG signal. Noises can be decreased but can-

not be removed totally by using high-quality equipment and intelligent

circuits. Conventional filtering methods are commonly used to remove

noise. But, if the noise from the recording instrument lies in the usable

frequency range, it becomes hard to eliminate noise using conventional

filters. In the pre-processing of sEMG signals, the challenge lies in the

suppression of noise associated with the measurement and signal condi-

tioning. The first contribution of the thesis is overcoming this limitation

by proposing a novel pre-processing method. The method differentiates

the original sEMG from noise using higher order statistics such as kurto-

sis, which is the fourth moment of distribution. The effectiveness of the

method is demonstrated in terms of the improvement in PR performance.

A significant number of studies have been performed on the various stages
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of sEMG-based PR. There have been problems during the clinical imple-

mentation of the system even though the previous studies have reported

a high classification accuracy of more than 90%. PR has shown great

promise in predefined settings in laboratory conditions. The real-time

factors which affect the performance have to be taken into consideration

for PR to be commercially available. There are various other factors that

also affect the performance of the PR system, such as variation in limb

position, variation in forearm orientation, variation in electrode position,

variation in force level, and change in the characteristics of the sEMG

signal. It is becoming crucial to test the PR with these various factors

due to the difference between ideal laboratory conditions and practical

application of the MEC prostheses. The second contribution of the thesis

is to address the robustness aspect of the PR-based control by developing

a novel classification scheme that can function well under such changing

conditions. Specifically, the focus was given to variations in force lev-

els and wrist orientations. The proposed scheme achieved a significant

improvement in classification accuracy when compared to the traditional

method. To demonstrate that this research can be translated to clinical

applications, study has been conducted on sEMG data set of upper limb

amputees. This distinguishes the study from most of the previous studies

done on non-amputee subjects.

The findings of this work could improve the quality of life of amputees

with better interaction to the outer world.
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Chapter 1

Introduction

1.1 Background

The artificial device which replaces the missing part of our body is known as pros-

theses. Such amputation may be due to trauma, diseases, or accidents. Amputation

of the limb, in particular, affects the person’s ability to interact with the outer world.

It is now known for a fact that the development of the thumb of a human gave us

the capability of complex maneuvers, giving us an evolutionary advantage over other

animals. Statistics show that forty percent of our day-to-day activities can be as-

sociated with our hands directly or indirectly (Edeer and Martin, 2011). Losing a

hand can create a massive void from a physical viewpoint, and it can have much

more devastating consequences psychologically (Bhuvaneswar et al., 2007). Due to

these reasons, there has been growing interest in the field of artificial limbs for the

upper-limb amputees with many companies giving the patient with advanced features.

Even though the research in this field is happening for centuries, the solutions still

lack their reachability to the needy giving ample scope of improvements in this area

of research.

Considering developing economies like India, the cost becomes the prime factor

in deciding the use of such products. It is evident that the people whose daily work

involves dealing with dangerous machinery are more likely to suffer such ill fate of

losing a hand or a limb. Typically such population belongs to the middle class or

the lower-middle class who unfortunately cannot afford such high-cost products as a

replacement for their hand. Despite this fact, there is very little ongoing research for

developing a cost-effective solution to cater to the basic needs of such people.
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This chapter provides a necessary background in history and present-day pros-

thetics. Further, the amputation statistics and the cause for prostheses rejection by

the amputees is highlighted. This chapter gives the reader an overview of surface

Electromyography (sEMG) driven prosthetic arm. The various methods of control

for the prosthetic arm are discussed with emphasis on problems associated with the

current prostheses control. The main aim of this chapter is to provide the motivation

behind the work and to list the major issues that need to be resolved to enhance the

performance of Myoelectric Controller (MEC). The chapter also describes the main

objectives of the thesis and gives an overview of how the thesis is structured for better

readability.

1.2 History and present day prostheses

Figure 1.1: Evolution of Prosthetics (Source: (Finch, 2011, Norton, 2007, Dellon and
Matsuoka, 2007))

It is mentioned in the Rig Veda that, an iron leg was made for the warrior queen

Vishpala. She lost her leg in Khela’s battle; so they gave her a “leg of iron” (Muneer

and Pearce, 2016). The early pioneers of prosthetic technology are Egyptians. An

ancient Egyptian false toe was found on the female mummy buried near Luxor (Finch,

2011) and is shown in Figure 1.1. The prosthetic limb was made of fiber. In the second

Punic war, Roman general who was a right arm amputee had an iron hand to hold his

2



shield. By the medical discoveries of the Greeks and Romans concerning prosthetics,

prostheses during the Renaissance period were generally made of iron, steel, copper

and wood (Norton, 2007).

The first myoelectric prosthetic hand was used around 1943, and the system was

not portable. The commonly used modern-day prosthetics range from hook to ON/

OFF control which uses sEMG signal for control (Dellon and Matsuoka, 2007) as

shown in Figure 1.1. To provide amputees with many functions, today’s prosthet-

ics are much lighter and user-friendly, made of plastics, aluminum, and composite

materials.

1.3 Amputation Statistics and Prostheses Rejec-

tion

To get a better understanding, the Ministry of Statistics and Programme Implemen-

tation has provided the statistics on disabled people in India based on the census from

2011 (Division, 2016). It showed that around 2.21% of the total population consti-

tuted of disabled people. The persons with disability in the movement are about 20%

of the disabled community. Lower limb amputation cases are more than the upper

limb (Division, 2016). In India, it has been assessed that for thousand populations

there are 0.62 amputees (Sahu et al., 2016). The primary cause of amputation in a

developing country like India is diabetes. Around 35 million people are affected by

diabetes. Approximately forty to seventy percent of limb amputation occurs due to

diabetes. The majority is from Southern parts of the country. The primary lower

limb amputation is due to a foot ulcer, which is caused by infection and improper foot

care. Males are most commonly affected when compared to women (Viswanathan and

Kumpatla, 2011). Losing an arm is particularly difficult because it performs most of

the complex activities and interaction with the outside environment is done by it

(Division, 2016).

The below-elbow amputation occurs mainly through the long bones of the ra-

dius and ulna (National Academies of Sciences et al., 2017). There are four major

categories of upper limb amputation, as shown in Fig 1.2. They are, 1) wrist disar-

ticulation, 2) transradial amputation, 3) transhumeral amputation, and 4) shoulder

disarticulation. The focus of this work is on below elbow amputation, i.e. (transra-
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dial and wrist disarticulation) and develop efficient myoelectric control strategies for

prosthesis devices for such amputees, thereby improving the quality of life of such

individuals.

Figure 1.2: Different levels of upper limb amputation (Source: (National Academies of
Sciences et al., 2017))

A survey was conducted on 71 traumatic upper-limb amputees, to measure the

success of prosthetics, which was based on patient satisfaction, prosthetic usage, and

activity level. The study was conducted at Kasturba Medical College, India. Among

the 71 traumatic upper-limb amputees, significant causes of amputation were occu-

pation and traffic accidents. The age group was around 40 (plus or minus 11.7) years.

All the amputees were using a body-powered prosthesis (subsection 1.5.1), which is

the most commonly used prosthesis in India. The primary causes for rejection were

found to be a mechanical failure, stump pain, discomfort, weight and cost of replace-

ment and repair of prosthetics (Bhaskaranand et al., 2003).

Another survey of 60 patients was carried out in NGO limb-fitting center (Mobility

India, Bangalore) to examine the satisfaction level and functionality of upper limb

prostheses for Indian users (Nagaraja et al., 2016). The age group was around 15-
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54 years. The most common causes of amputation were either occupational or road

traffic accidents, which accounted for about 85%. The remaining was congenital

amputation. The amputees used cosmetic, body-powered, and myoelectric prostheses.

The minimum duration of usage of prosthetics was around three months. Among the

prostheses users, 93% used cosmetic and body-powered, and 90% of them used the

prosthesis for less than six hours per day due to the heavyweight prosthetic arm

design. In the findings of the survey, it was noted that prosthetic users preferred

function, comfort, and durability over their appearance and usability (Nagaraja et al.,

2016). From the survey, it has been concluded that the currently available prostheses

are not providing the amputees with the required functionality, which is the vital

requirement for daily prosthetic use. Secondly, the study recommends to bring down

the weight of the device with fewer components.

1.4 sEMG driven Prosthetic arm

Electromyography is the process of recording and analyzing the electrical activity

produced by the contraction of the muscles, and the signal is known as Electromyo-

gram (EMG)(Ahmad Nasrul and Mohd Hanafi, 2009). They are useful electrophysi-

ological signals which are non-stationary, non-linear, and highly complex with large

variations that carry the distinct signature of voluntary intent of central nervous sys-

tem (Khushaba et al., 2009b). EMG signals are measured by electrodes that are

placed on the target muscles using needle electrode (invasive method) or surface elec-

trode (non-invasive method), and since the use of needle electrode involves medical

skill and can cause pain and discomfort to the subject (Phinyomark et al., 2012b),

surface electrodes have been used in this work. Surface EMG (sEMG) finds its appli-

cation in the field of electric wheelchair control, determination of muscle fatigue and

muscle contraction, cursor control, biomechanics, ergonomics, diagnosis of neuromus-

cular disorder and prosthetics control (Phinyomark et al., 2012c, Farina et al., 2017).

In this thesis, the sEMG is used in the identification of hand motion commands for

the control of upper limb prostheses.

sEMG signals, when used as the control signal for prosthetic devices it is referred

to as myoelectric control (MEC). MEC convey the commands given by the sEMG

signals to the prosthesis in an appropriate manner. Amputees can generate varying

sEMG signal patterns during different levels of static muscle contraction or dynamic
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limb motion. They are comparable to that of healthy subjects (Herberts et al., 1973,

Su et al., 2007). The pattern generated can be used in controlling the prosthetic hand

with a machine learning framework. The block diagram of sEMG driven prosthetic

arm is shown in Figure 1.3.

Figure 1.3: sEMG driven prosthetic arm

The work involves the analysis of sEMG signals for the classification of patterns

generated for different movements to control prostheses. The main aim of the work

is to assist upper limb amputees in efficiently controlling the prosthetic arm. The

arm acts as an aid and helps the amputees in interacting with the outer world with

limited efforts. The main problem is to control the prostheses with high accuracy,

less delay, and in an intuitive manner for different patterns of sEMG signals.

1.5 Methods of Prostheses Control

1.5.1 Body powered control

Figure 1.4: Body powered prosthetic hand (Source: (Geethanjali, 2016))

The body-powered prostheses use muscle energy to operate a cable link. These
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are the most widely used prosthetic devices owing to easier maintenance and lower

cost. The main disadvantage is the significant effort involved in getting only a single

degree of freedom. These generally consist of a hook, which has less weight, better

gripping, less maintenance, and excellent durability and is made up of materials like

stainless steel and aluminum. Nowadays, the hooks are replaced by a cosmetic hand

(Geethanjali, 2016).

1.5.2 ON/ OFF Control

This control scheme was developed at the end of world war II by Reinhold (Weihe,

1999); wherein sEMG signals were used from one or two muscle groups to control

the prosthesis. This is a simple control mode with immense popularity. In this

control mode, a function of prostheses (e.g., movement with constant speed in two

directions) is turned ON or OFF (Fougner et al., 2012). The most straightforward

ON-OFF control is based on a threshold of sEMG.

If the sEMG is sensed using a single electrode, an upper and lower threshold will be

used to monitor hand open (ON), or hand close (OFF) commands respectively. The

same technique is deployed, even when two electrodes are used to measure sEMG

signal from two muscle groups, namely flexors and extensors (Battye et al., 1955,

Popov, 1965). The main disadvantage of this control is that it is sequential, and the

classes of movements generated are limited (Roche et al., 2014).

Figure 1.5: ON /OFF control with one electrode (Source: (Roche et al., 2014))
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1.5.3 Proportional control

In this type of control, the user can control at least one mechanical parameter, such

as force, position, etc., within a finite, useful, and substantially continuous interval

by varying his/her control input within a corresponding continuous interval. Here

a single channel of sEMG is assigned with only one class of motion (Fougner et al.,

2012).

To achieve hand open/ close; if the velocity or force of the prosthetic hand is varied

continuously and proportionally to the recorded sEMG signal, then it is proportional

control. In this scheme, the voltage applied to the motor of prostheses is proportional

to the intensity of sEMG signal (Fougner et al., 2012). The main disadvantage here is

the lack of a multifunctional control, with less degree of freedom (Roche et al., 2014).

Figure 1.6: Proportional control with two electrodes (Source: (Roche et al., 2014))

1.5.4 Pattern Recognition Based MEC Control

This method was introduced around 1970 for multifunctional control, where the

previously discussed methods have limited scope. In 1993, Hudgins et al. (1993)

showed that a more refined interpretation of the content of the sEMG signal could

be achieved, setting the basis for pattern recognition control (Fougner et al., 2012).

For a given electrode location, features which help distinguish different movements

are extracted from sEMG signals for a specified duration. Based on the values of

these extracted features, a pattern recognition algorithm helps classify various move-

ment commands for the prostheses. These control algorithms have the potential for

achieving higher degrees of Freedom (DOF) when compared to the traditional control

8



schemes (Hargrove et al., 2010). The steps involved in sEMG pattern recognition sys-

tem is shown in Figure 1.7. The three main stages of classification of sEMG signals

are feature extraction, dimensionality reduction, and classification.

Figure 1.7: Steps for the sEMG pattern recognition

Feature extraction highlights the relevant structures which are hidden in the data
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stream and removes the interferences and irrelevant sEMG signals (Phinyomark et al.,

2012a). The features extracted may be in the time domain, frequency domain, or

time-frequency domain. The obtained features should have maximum class sepa-

rability, robustness, and low computational complexity (Phinyomark et al., 2009d).

Dimensionality reduction aims to select a subset of features to reduce feature set di-

mensionality, which is achieved by removing irrelevant and redundant features. This

reduces the computational complexity and results in better generalization for the

classifier (Khushaba et al., 2008). The classifier generates the control command by

mapping the extracted features to the target class. Finally, the control algorithm

takes the command from the classifier to control the actuators.

1.6 Challenges with MEC

In MEC of upper limb prostheses, the two significant challenges lie in (i) pre-processing

the sEMG signal for better pattern recognition, and (ii) improving the robustness of

the pattern recognition algorithm in the presence of various factors such as varying

force levels of the muscles, the change in orientation of the wrist, etc. These two

factors are elaborated in the following paragraphs.

In the case of sEMG signals, the extracted signal will not have the same waveform

as the source due to contamination with various noise sources. If the conventional

filters are used, they attenuate the noise by removing some of the important infor-

mation present in the signal. This affects the accuracy with which the sEMG signal

is classified. In practice, pre-processing is a challenging issue that should be more

carefully investigated. To achieve good performance of the MEC system, selection of

filters becomes essential. The main challenges in pre-processing sEMG signal are the

limited tools that can be used to minimize the noise such as power line interface, elec-

trode noise, broadband noise from the instruments, motion artifacts, white Gaussian

noise, etc., and to enhance the feature with the recovery of the signal without much

loss of information.

PR of sEMG signals have been used to control prosthetic devices with the aid of

advanced signal processing methods. Though high classification accuracy of around

98% has been reported in the literature, the practical deployment of the prostheses

has not taken place. This is due to the gap between research and clinical study. PR

has shown great promise in predefined settings in laboratory conditions. For PR to
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be commercially available, real-time factors that affect the performance have to be

taken into consideration. Many of the real-life aspects, such as wrist orientation,

force variation, electrode shift, limb position, etc., degrade the performance of PR.

Since the studies conducted in a laboratory environment have a lesser possibility

of occurrence of such issues, the classification accuracy thus reported may not be

conceived in practice. Hence the PR scheme has to be designed by considering these

factors.

This research work aims to overcome such challenges and build an efficient and

practical MEC for the upper limb prosthesis. In addition to these, it was observed

during the research that most of the previous work analyzed sEMG signals from

healthy subjects rather than the amputees. This research has also worked towards

bridging this gap by adopting methods that can be used for amputees as well.

In summary, the sEMG driven prostheses require accuracy, speed, and robustness

of PR. This can only be addressed with the help of novel pre-processing methods, effi-

cient machine learning schemes which are computationally cheap, thereby developing

a MEC which can be used in practice.

1.7 Research Objectives

After an extensive literature review and having a deeper understanding of the chal-

lenges involved in MEC, the following research objectives are formed towards devel-

oping a sEMG driven PR system which is accurate and efficient with respect to the

state-of-the-art techniques. The main objectives identified are listed below.

1. The main aim is to improve the classification accuracy of the sEMG based

pattern recognition system. This is approached by a) developing novel pre-

processing method since the main challenge lies in pre-processing of sEMG

signal is the limited tools that can be used to minimize the noise, and b) in-

vestigating on dimensionality reduction methods, since the success of pattern

recognition depends on the quality of features selected, there is a need to produce

a subset of features that bring about a better separability between movement

classes. Feature projection or reduction techniques help in improving the real-

time performance of the classifier by selecting a fewer set of features, making it

convenient for the prostheses user.
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2. To improve the practical robustness of sEMG pattern recognition system. The

performance of sEMG pattern recognition system decreases due to various fac-

tors such as electrode shift, force variation, limb position variation, and changes

in the wrist orientation. There is very little research on tackling the robustness

of pattern recognition under such conditions. Out of such effects, force level

variation and wrist orientation changes are reported to be the most common

and the most influential factors affecting the performance of the PR system.

This research proposes an appropriate scheme to handle such effects, and the

suitability of the scheme is demonstrated by comparing it with the state-of-the-

art schemes on sEMG data extracted from amputee subjects.

The research outcome will be supported by:

1. Demonstrating the performance of the proposed methods on available sEMG

database

2. Comparing them with the previously used MEC schemes in the literature on

the same database

3. Building own sEMG dataset using the in-house laboratory equipment from dif-

ferent subjects and validating the performance of the developed algorithm on

this database

1.8 Thesis Structure

The thesis document consists of five chapters, an outline of which is highlighted in

Figure 1.8.

Chapter 2 : introduces the background information on sEMG, which includes the

sEMG signal generation, its properties, and how it is measured using

electrodes. An overview of a different aspect of MEC such as sEMG

signal windowing, feature extraction, dimensionality reduction, classifi-

cation, real-time implementation challenges such as controller delay, etc.

is given in this chapter. In addition to this, a detailed literature survey

is presented here with a focus on the challenges to the performance of

MEC.
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Figure 1.8: Outline of the thesis

Chapter 3 and Chapter 4 forms the major contributing chapters of this thesis by

proposing different algorithms for improving the MEC performance.

Chapter 3 : Here, a novel pre-processing method called Minimum Entropy De-

convolution Adjusted (MEDA) is used for sEMG signal enhancement

and better characterization. The technique is validated on sEMG data

collected from seven subjects in the institute laboratory. A detailed com-

parison of the proposed scheme is performed with the other popular pre-

processing schemes from the literature.

Chapter 4 : presents the tests and outcomes for the force effect variation on PR

systems for the intact-limbed subjects and amputees. The technique used

here for overcoming force level variation is also tested to overcome wrist

orientation variation on PR. The method is compared with the results

achieved by the state-of-the-art.

13



Chapter 5 : summarizes the conclusion of the work and suggests possible future

research.

1.9 Summary

The basic overview of the problem of sEMG driven prostheses is provided in this

chapter. The history and present-day prosthesis, the amputation statistics, and the

reason for prosthesis rejection are presented. Different approaches for controlling the

prosthetic arm is discussed with special emphasis on MEC. The challenges associated

with MEC are also elaborated here. The chapter also highlights the factors which

motivated this research. Finally, the thesis structure is provided.
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Chapter 2

Background and Literature Survey

2.1 Introduction

This chapter covers the relevant introduction to sEMG signal generation, charac-

teristics, and measurement. The general overview of Myoelectric Control (MEC) is

provided. The steps for Pattern Recognition (PR) for sEMG classification is reviewed

from the literature. A thorough literature survey on the research problems is carried

out with the state-of-the-art literature on PR based MEC. Finally, the summary of

the chapter is provided.

2.2 sEMG Signal Generation, Characteristics, Mea-

surements and Signal conditioning

2.2.1 sEMG Signal Generation

The motor unit is made up of a group of fibers, axon, and the nerve-cell body. It

undergoes contraction and is the smallest subdivision of the muscle. Depending on

the type of muscle, the number of motor units varies from 2 to 2000. The muscle is

made of a large number of motor units. Whenever there is a need for the contraction

of the muscle, a train of nerve impulses is generated in the motor cortex of the

brain. Depending on the level of contraction, the required number of motor units

are simulated. Motor units, after receiving the impulse train successfully, generate

motor-unit trains and summate to form the myoelectric signal. The generation of the
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Figure 2.1: Myoelectric signal generation (Source: (Brody et al., 1974))
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Figure 2.2: Raw sEMG signal (Source: (Konrad, 2005))

myoelectric signal is shown in Figure 2.1.

2.2.2 sEMG Characteristics

The amplitude of sEMG signal is random and can range from 0 to 10 mV (peak-

to-peak). The usable energy lies in the range of 0 − 500 Hz frequency range. The

raw sEMG is shown in Figure 2.2 (Konrad, 2005). Whenever there is no movement

of the muscle, a noise-free line can be seen. The quality of the sEMG amplifier can

be decided using the baseline; usually, the amplitude should not be more than 3− 5

mV for a good recording. The baseline is affected by the quality of the sEMG am-

plifier, the noise, and the detection condition. Whenever there is a muscle activity, a

spike or a burst is produced. These bursts differ for different hand movements since

the set of recruited motor units constantly change for different movements. The raw

sEMG is in the range of +/− 5000 µV.

2.2.3 sEMG Measurements

sEMG signals are measured by electrodes that are placed on the target muscles us-

ing a needle electrode (invasive method) or surface electrode (non-invasive method).

Since the use of a needle electrode involves medical skill and can cause pain and

discomfort to the subject (Phinyomark et al., 2012b), surface electrodes have been

used in this research. Differential amplifiers are used to measure the potential dif-

ference generated between two electrodes and to eliminate the artifacts. The sEMG
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signal which is not amplified lies in the range of 2 − 5 mV. This signal is generally

amplified with a gain in the range of 500 to 1000. Analog to digital conversion is

performed before the signal is displayed on the screen with a minimum resolution of

12 bit (Khushaba et al., 2012). Since most of the signal power components lie in the

range of 20− 500 Hz; the minimum sampling frequency must be twice the maximum

frequency, i.e., 1000 Hz for efficiently reproducing the signal. In most of the literature,

sampling rate is chosen to be 2000 Hz (Khushaba et al., 2012, Oskoei and Hu, 2006).

2.2.4 sEMG Signal Conditioning

Signal processing is used to increase the reliability and validity of the findings. Here,

the signal is acquired from the electrodes and is filtered to reduce the noise produced

due to motion artifacts, equipment, and other noise. Process of rectification takes the

absolute value of the signal, as shown in Figure 2.3. Most of the literature associated

with MEC uses rectification or RMS value calculation before extracting information

for the signal.

Filtering of sEMG signals: apart from the essential anti-alias filter, the pre-

processing of sEMG signal almost always involve digital filters. In fact, a considerable

amount of research goes into preprocessing of sEMG signal, and Chapter 3 of this

thesis discusses that aspect in detail. Additionally, as a part of the filtering, the active

part of the signal is extracted for further processing, as shown in Figure 2.4.

2.3 Windowing

The sEMG signal is a non-stationary signal, i.e., every time a movement is made, the

shape of the signal varies; even if the hand movements are identical. This is because

when identical movements are made, the set of recruited motor units are different.

To capture this, time domain windowing is utilized. The time slot (W) required for

acquiring myoelectric data during feature extraction is called a window. The time

taken by the controller to extract signal features and perform pattern recognition is

called processing time (τ). The class decisions cannot be generated instantaneously

because of the processing time.

In general, there are two methods of windowing (Englehart and Hudgins, 2003):

18



Samples
×104

0 2 4 6 8 10 12 14 16 18

sE
M

G
 A

m
p

li
tu

d
e 

(V
)

-3

-2

-1

0

1

2

3

Raw  sEMG

Samples
×104

0 2 4 6 8 10 12 14 16 18

sE
M

G
 A

m
p

li
tu

d
e 

(V
)

0

0.5

1

1.5

2

2.5

Rectified  sEMG

Figure 2.3: Raw sEMG converted into positive amplitude

19



Samples ×104
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

sE
M

G
 A

m
p

li
tu

d
e 

(V
)

0

0.5

1

1.5

2

2.5

Figure 2.4: Active part of the signal is taken

2.3.1 Disjoint Windowing Scheme

For feature extraction, segments with predefined lengths (W) are used. After an

inevitable processing delay, the classification of motion occurs, and it is associated

with only the segment length. The processor remains idle during the time (W- τ)

as shown in Figure 2.5. Processing system is not entirely utilized since processing

(feature extraction and classification) occurs in only a portion of the time spent

acquiring data. Even though it does not utilize the processor optimally, due to the

simplicity in implementation, it is commonly used in the literature (Khushaba et al.,

2012).

2.3.2 Overlapped Windowing Scheme

As the name indicates, in the case of overlapped windowing scheme, the new segment

slides over the current section, with an increment time less than the segment length as

shown in Figure 2.6. It is associated with both segment length and increment. Here

the computing power of the system is better utilized. Englehart and Hudgins (2003)

proved that overlapped windowing scheme produces better accuracy than disjoint

window scheme. The class decisions are also provided at a higher rate while using

20



Figure 2.5: Windowing using disjoint scheme wherein, W1, W2, and W3 are the analysis
window segments. D1, D2 and D3 represent the decision made for W1, W2, and W3
respectively, with a processing time of τ (Source: (Englehart and Hudgins, 2003))

this scheme since the data acquisition and classification runs in parallel.

These two parameters, i.e., the window length, and its configuration (disjoint or

overlapped) is decided based on the controller delay in a practical implementation,

which is explained below in Section 2.3.3.

2.3.3 Controller Delay

The maximum delay of the prostheses to respond to users’ command (response time)

depends on data segment length (W) and processing time (τ). The controller delay is

the sum of segment length (W) and processing time (τ) while using a disjoint window

scheme. Researchers have reported on different controller delays for the control of

multifunctional upper-limb prostheses, and some of the interesting ones are described

below:

� Hudgins et al. (Hudgins et al., 1993) stated that the delay should be less than

300 ms, to reduce the computational complexity and real-time delay. They also

specified that to do feature extraction and classification, time left is less than

100 ms.

� Graupe et al. (Graupe et al., 1982) reported that a delay of 200 ms is accept-

able for a prosthesis user.
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Figure 2.6: Windowing using overlapped scheme wherein, R1, R2, and R3 are the anal-
ysis window segments. D1, D2 and D3 represent the decision made for R1, R2, and R3
respectively, with a processing time of τ (Source: (Englehart and Hudgins, 2003))

� Shenoy et al. (Shenoy et al., 2008) stated that 128 ms window length is

sufficient for developing a responsive sEMG-based controller. They mentioned

that the update rate was sufficient for developing a responsive sEMG-based

controller.

� Chu et al. (Chu et al., 2006) showed that, with an operation delay of less than

300 ms, the algorithm will be able to the control multifunction myoelectric hand

in real-time. They used an overlapping window of 250 ms with 125 ms window

increment. The scheme generated two decisions within 300 ms which guarantees

that a user can control a directed myoelectric hand function within 250 ms from

the instant when the user’s intention is given.

� Farrell and Weir (Farrell and Weir, 2007) tested on twenty-abled body sub-

jects, with seven different levels of controller delay ranging from 0−300 ms and

stated that optimal controller delay lies between 100 ms and 175 ms for the

average user.

� Smith et al. (Smith et al., 2011) suggested the optimal window length to

be between 150 ms and 250 ms for best performance. They tested a variety

of analysis window lengths ranging from 50 ms to 550 ms using 12 different
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classifiers. The study was performed on 13 healthy subjects who were trained

and operated virtual prostheses using pattern recognition. A linear mixed effects

model was created to determine the relationship between window length and

classification error.

From the above literature, it can be observed that window length ranging from

100 to 300 ms is commonly employed for pattern recognition and classification. Con-

sidering this into account, a window length of 200 ms was chosen here.

2.4 Feature Extraction

Feature extraction highlights the relevant structures which are hidden in the data

stream and removes the interference and irrelevant sEMG signals (Farina et al., 2017).

It is the process of converting a pattern into features. This is the first step after the

pre-processing step in pattern recognition and is the most crucial one. The success

of sEMG classification depends on the selection of appropriate sEMG features. Fea-

tures are computed from sEMG signal using windowing techniques to extract the

temporal characteristics and to minimize the spectral leakage. The obtained fea-

tures should have maximum class separability, robustness, and low computational

complexity (Phinyomark et al., 2012a).

The features extracted may be in the time domain, frequency domain, or time-

frequency domain. A detailed discussion regarding several sEMG features is given in

the following subsections.

2.4.1 Time domain features

Time domain features are prevalent because they do not require any transformation

and are quick to calculate (Phinyomark et al., 2013, Westerink et al., 2008, Zhang

and Zhou, 2012).

� Hudgins et al. (Hudgins et al., 1993) was the first to extract features in

the time domain where features such as Mean Absolute Value (MAV), Mean

Absolute Value Slope (MAVS), Zero Crossings (ZC), Slope Sign Changes (SSC)

and Waveform Length (WL) were used. The classification accuracy obtained

was around 91.2% with normal limbed subjects and 85.5% with amputees for

four different limb functions using a single bipolar surface electrode pair.
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� Shenoy et al. (Shenoy et al., 2008) collected data from three subjects for

eight movements using RMS as a feature. High accuracy of about 92−98% was

obtained for eight classes of hand movements using eight bipolar electrodes.

� Amsuss et al. (Amsuss et al., 2013) used four time domain features namely

RMS, Zero Crossings (ZC), Slope Sign Changes (SSC) and Waveform Length

(WL) for eight class movements. The average classification accuracy of 97.9%

was reported using eight dry bipolar electrodes.

� Li et al. (Li et al., 2010) used Mean Absolute Value (MAV), Zero Crossings

(ZC), Waveform Length (WL), and Slope Sign Changes (SSC) as features and

classification accuracy of 93.1% was reported for six movements using twelve

self-adhesive Ag/AgCl snap bipolar electrodes.

2.4.2 Frequency domain features

Frequency domain features are calculated from the estimated power spectrum den-

sity (PSD) of a signal. Usually, frequency domain features have higher computation

complexity in comparison to time domain features (Phinyomark et al., 2013).

Fourier analysis helps to find the frequency content of the signal by decomposing

the original signal into sinusoids of specific magnitudes and phases.

� Nishikawa and Kuribayashi (Nishikawa and Kuribayashi, 1991) used the

neural network to learn the relation between the power spectrum of sEMG

signal analyzed by Fast Fourier transform and the performance needed by the

amputees.

� Matsumura et al. (Matsumura et al., 2006) classified the sEMG signal into

seven categories by using a neural network. The neural network learned FFT

spectra to classify the sEMG signal into seven categories. They also mentioned

that frequencies below 600 Hz are important for analyzing sEMG signals.

2.4.3 Time-Frequency domain features

To overcome the loss of temporal information associated with Fourier transform and to

tackle the non-stationary behavior of sEMG signals, Short Time Fourier Transform

(STFT) was introduced in the feature extraction process. Here, the longer time
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signal is divided into shorter segments of equal length, and then Fourier transform is

computed on each shorter segment.

� Hannford and Lehman (Hannaford and Lehman, 1986) applied STFT for

sEMG signals. They used STFT to locate time dependencies in the sEMG

signals that are normally averaged in the Fourier analysis.

� Karlsson et al. (Karlsson et al., 2000) compared STFT, the Wigner–Ville dis-

tribution, the Choi–Williams distribution, and the continuous wavelet transform

for accuracy and precision. They found that the continuous wavelet transforms

provided better accuracy and precision than other methods.

STFT extracts the temporal as well as the spectral information from the signal.

However, it works on a fixed time and frequency resolution. Multi-resolution analysis

tools such as Continuous Wavelet Transform (CWT), the Discrete Wavelet Transform

(DWT), and the Wavelet Packet Transform (WPT) helps in achieving this. It is a

time-frequency representation of the signal.

� Englehart et al. (Englehart et al., 1999) used feature sets based upon the

STFT, the wavelet transform, and the wavelet packet transform. For dimen-

sionality reduction, Principal Component Analysis (PCA) was employed with

Linear Discriminant Analysis (LDA) as a classifier. The best performance was

exhibited using WPT with an average classification error of 6.25%.

� Boostani and Moradi (Boostani and Moradi, 2003) used features from the

wavelet transform. The energy of wavelet coefficients of sEMG signals in nine

scales and the cepstrum coefficients were found to produce the best features.

� Li et al. (Li et al., 2005) developed an efficient fuzzy wavelet packet (WP)

based feature extraction method for the classification. They found that the

combination of fuzzy theory and wavelet can achieve improved sEMG signal

classification performance.

2.5 Dimensionality Reduction

The second step, which is dimensionality reduction of features aims at reducing the

data complexity while preserving essential information. This step helps to reduce
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Figure 2.7: Dimensionality reduction techniques

the amount of processed data. The main problem that occurs in pattern recognition

is the curse of dimensionality due to a very high order feature vector. Also, as the

number of channels increases, the size of the feature set is further increased, i.e.,

the total number of features = number of features/channel × number of channels.

Dimensionality reduction also helps in improving the real-time performance of the

classifier with a fewer feature set, making it convenient for the prosthesis user since

shorter training sessions are required (Hargrove et al., 2010). This also helps in

removing redundant and irrelevant features.

Dimensionality reduction techniques can be classified into two major categories as

shown in Figure 2.7.

2.5.1 Feature projection

Feature projection maps the original data set into another space with reduced di-

mension using linear or non-linear mapping. Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA) are the two widely used linear mapping

methods. PCA finds the subset of variables, based on which original variables have

the highest correlation with the principal component. The first principal component

carries much of the variability in the signal, and the following components take the

remaining variability. PCA finds the component axes that maximize the variance of

data, while the LDA finds the axes that maximize the separation between multiple

classes. Traceability of the features is not possible here (Hargrove et al., 2010).
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2.5.2 Feature Selection

The main aim of feature selection is to reduce the dimensionality of the feature set

by selecting a subset of features which performs best under some classification condi-

tion. Thus the usage of irrelevant and redundant features is avoided, which reduces

the computational cost and results in better representation of patterns. The two

most important aspects that need to be considered in feature subset selection are the

evaluation measure and the search procedure. According to the dependence on the

classification algorithm, evaluation measures are divided into two types, namely filters

and wrappers. Filter based methods use a measure such as mutual information to

estimate the relative significance of individual elements or subset of features. In the

wrapper-based approach, the feature subset is selected with the help of a classifier.

Hence the filter method is faster than the wrapper method, even though wrapper

based methods are more accurate. To explore the feature space, a search strategy is

needed. To search the solution space, various search algorithms have been employed

(Khushaba et al., 2008).

Some of the literature associated with the dimensionality reduction technique for

sEMG pattern recognition are reviewed here.

� Chu et al. (Chan et al., 2007) used a linear-nonlinear feature projection com-

posed of PCA and a self-organizing feature map (SOFM) for dimensionality

reduction with multilayer perceptron (MLP) as a classifier. The proposed pro-

jection method improved the class separability and recognition accuracy.

� Hargrove et al. (Hargrove et al., 2007) used the first forty principal compo-

nents of a feature set. In the study, six different feature sets with six different

classifiers were analyzed. They observed that there was some loss of useful data

during the PCA when the number of channels was increased from 10 to 15 and

also suggested to use other data reduction techniques.

� Oskoei (Oskoei and Hu, 2006) adopted genetic algorithm (GA) as a search

strategy, Davies-Bouldin Index (DBI) and Fishers Linear Discriminant Index

(FLDI) were employed as the filter objective functions, and linear discriminant

analysis (LDA) has been used as the wrapper objective functions. Artificial

neural network (ANN) was used as the main classifier. The study stated that

the DBI index provides more reliable information.
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� Khushaba et al. (Khushaba et al., 2010) proposed a new dimensionality

reduction method, referred to as orthogonal fuzzy neighborhood discriminant

analysis (OFNDA). OFNDA was compared to other feature projection methods

and demonstrated that it performed better with accuracies ranging from 97.66%

to 87.84% for 5 to 10 classes of movements.

2.6 Classification Techniques

For predicting different movements, the extracted features are given to the classi-

fiers in the final stage. This section provides a brief overview of the classifiers used

in the literature concerning sEMG. Several classifiers namely Decision Tree (DT), k-

Nearest-Neighbor (kNN), Support Vector Machine (SVM), Linear Discriminant Anal-

ysis (LDA) and Artificial Neural Networks (ANN) have been used to obtain high

classification accuracy.

� Phinyomark et al. (Phinyomark et al., 2012a) used LDA as a classifier with

thirty-seven-time domain and frequency domain features to classify six move-

ments. The results of LDA were performed by 10-fold cross validation for each

subject.

� Khushaba et al. (Khushaba et al., 2010) used SVM to classify ten classes of

the forearm movement collected from ten subjects. The results of SVM were

tested using three-way data split.

� Hangroove et al. (Hargrove et al., 2007) compared the classification accuracy

of several classifiers and showed that the choice of feature set and dimensionality

reduction is more important than the choice of classifiers.

It is evident from the above discussion that for a sEMG based MEC, many

classifiers are reported in the literature. The aim of this thesis is not to study dif-

ferent classifiers but rather use many of them to validate the other steps of pattern

recognition, namely preprocessing, feature selection, etc. The aim here is also to-

wards improving the system robustness against different factors such as the effort or

force level variations, wrist orientation changes, etc., making it usable in a real-life

situation. A thorough literature review will be done on these aspects in the following

sections.
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2.7 Literature review on Pre-processing of sEMG

signal

In literature related to sEMG signal processing, it was found that the major chal-

lenge is to separate the noise from actual data. Unlike other physiological signals like

electrocardiogram (ECG), there is no studied or well-understood pattern for sEMG

signals. Additionally, sEMG signals are contaminated with a wide variety of noise,

and this causes issues in signal onset detection, feature extraction, and pattern recog-

nition (Reaz et al., 2006). Noise sources such as power-line interference, motion arti-

fact, ambient noise, characteristic instability of the signal, and noise due to electronic

and recording equipment could be present in the sEMG signal. By using high-quality

equipment and intelligent circuits, noises can be reduced but cannot be entirely re-

moved. Filtering methods are commonly used to remove noise (Powar et al., 2018).

In some cases, time-frequency domain schemes like Wavelet transform have also been

used in the literature as a filtering tool for sEMG signals. However, due to the com-

putational complexity of these methods, conventional frequency-selective filters are

preferred. But, if the noise from the recording instrument lies in the usable frequency

range, it becomes hard to eliminate noise using conventional filters (Phinyomark et al.,

2012c). Different noise reducing methods have been discussed in previous studies. In

practice, filtering is a challenging issue that should be more carefully investigated.

2.7.1 Noise in sEMG signal

sEMG signal is contaminated with various noises during the recording, making it

nearly impossible to recover the generated sEMG signal without any noise. A poorly

extracted sEMG signal implies a poor performance from the MEC algorithm due to

inaccurate values of the extracted feature, making it one of the critical issues to be

addressed. The various factors that affect the recovery of the sEMG signal depend

on the tissue structure, subject skin formation, internal structure of the subject, skin

temperature, and more.

This section gives a detailed overview of the various noise sources that the sEMG

signal extraction process is subjected to in a real-life environment (Chowdhury et al.,

2013).
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2.7.1.1 Inherent Noise in the Electrode

If the size of the electrode is large, the impedance decreases, but a large-sized electrode

makes the regular usage of prosthesis uncomfortable for amputees. On the other

hand, if the size of the electrode is reduced, the impedance increases resulting in

deterioration of the signal-to-noise ratio (SNR) of the signal. Thus a careful selection

of the electrode must be carried out before the recording.

2.7.1.2 Movement Artifact

Movement artifacts are generated due to movement between the skin and the surface

of the electrode. It can also be caused due to the movement of the connecting cables

between the electrode and the data acquisition system. These noises are reported to

be in the frequency range of 1 − 10 Hz with an amplitude close to that of sEMG.

Conforto et al. (1999) compared four filtering procedures; Chebyshev high pass filters,

the moving average filter, the moving median filter, and the wavelet filter to remove

the motion artifact from sEMG signal. The wavelet filter was found to be more precise

than other methods since it retains most of the information.

2.7.1.3 Electromagnetic Noise

The human body is exposed to electric and magnetic radiation, and these electro-

magnetic noises cancel or superimpose on the actual sEMG signal being measured.

The dominant noise arises from the radiation of power sources, whose frequency lies

in the range of 50 − 60 Hz with an amplitude that is one to three times that of the

measured sEMG signal. An efficient filter can eliminate power-line interference from

sEMG signal.

2.7.1.4 Cross Talk

This is due to the undesired sEMG signal from a muscle group that is not com-

monly monitored. By carefully choosing electrode size and inter-electrode distances

(typically 1− 2 cm) this can be minimized.
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2.7.1.5 Internal Noise

The thickness of the skin (body fat) affects the amplitude of the sEMG signal. As the

thickness increases, the sEMG activity decreases. The choice of filters can partially

reduce these.

2.7.1.6 Electrocardiographic (ECG) Artifacts

The activity of the heart affects the sEMG signal during recording. The effective

method to eliminate this is by using a high pass filter.

2.7.2 Methods for pre-processing

De-noising is a challenging task, and it is difficult to obtain quality sEMG signal for

PR of MEC. If the raw sEMG is adequately used, it gives us valuable information.

Various pre-processing methods are applied to achieve a high classification accuracy

of PR. This section provides an extensive literature review on the filtering schemes

for preprocessing of sEMG signals .

2.7.2.1 Autoregressive Modeling (AR) and Autoregressive Moving Aver-

age Modeling (ARMA)

Autoregressive Modeling (AR modeling) has been a developing trend in sEMG pre-

processing. Hefftner et al. (1988) investigated the suitability of the method for pro-

cessing sEMG signals. In their work, a fourth order AR model was used with a

sequential least square algorithm to determine the parameters. Graupe et al. (1983),

Doerschuk et al. (1983), and Triolo and Moskowitz (1985) have also used AR model

approach for sEMG processing.

Graupe and Cline (1975) extracted complete linear information of the sEMG signal

using the ARMA model. The outcome of the study was that a 5th order ARMA model

was acceptable in describing the sEMG signal, and the signal can be considered

stationary over short intervals of time. Barişçi (2008) used ARMA model in the

calculation of the spectrum of sEMG signals. Doerschuk et al. (1983) have also used

ARMA model in their work.

The main disadvantage of AR and ARMA model is the high computational cost,

and determining the model order is complex (Reaz et al., 2006, Kiryu et al., 1992).
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2.7.2.2 Empirical Mode Decomposition (EMD)

The EMD method decomposes the dataset into a finite and small number of com-

ponents called as Intrinsic Mode Function (IMF). The technique has been shown to

attenuate background noise from the signal successfully. Here, the shifting process is

involved, which is data-driven and adaptive. First, the signal is decomposed into dif-

ferent IMF components, then the components below a pre-specified threshold value

are removed, and finally, the signal is reconstructed. The main advantage of this

method is that it does not require prior information about the data. Andrade et al.

(2006) used EMD method for filtering and compared with the wavelet filter. The

results showed that the EMD method could successfully attenuate noise by preserv-

ing the information in the signal. Yang et al. (2014) have also used the technique for

muscle fatigue analysis from the sEMG signals. In addition to EMD, Zhang and Zhou

(2013) utilized the ensemble EMD (EEMD), where the comparison was made with

traditional filters. In their work, they have shown that the EEMD method outper-

forms traditional filters. The main drawback of the method is that the non-linearities

are frequently introduced by noise and is quickly captured by EMD. The computation

time is high for this method (Andrade et al., 2006).

2.7.2.3 Cyclostationary Analysis

It is a spectrum based method applied to sEMG pre-processing which takes advan-

tage of the non-stationary and cyclostationary property of the signal. Only a hand-

ful of work related to cyclostationary analysis of sEMG signals exists in the litera-

ture. To study the cyclostationary property of sEMG signal, the Spectral Correla-

tion Density (SCD) function is used. Strip Spectral Correlation Algorithm (SSCA)

and Fourier Transform Accumulation method (FAM) are used to estimate the SCD.

Compared to SSCA, FAM provides a better representation of cyclostationary com-

ponents. Roussel et al. (2017) have determined the mean firing rates, which are

based on Blind Source Separation (BSS) decomposition method for multi-channel in-

tramuscular sEMG. Karthick et al. (2016) have used FAM based SCD function to

study the cyclostationarity related to dynamic contractions of biceps brachii muscle.

The computational cost and complexity of this method are high as reported in the

literature.
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2.7.2.4 Cepstrum Analysis

Cepstrum analysis is the inverse Fourier Transform of the logarithm of the power

spectrum magnitude of the signal. The coefficients can be obtained from autore-

gressive modeling. Kang et al. (1995) used cepstral analysis and maximum likelihood

method (MLM) for sEMG pattern recognition. Comparison between conventional au-

toregressive (AR) coefficients and cepstral coefficients was performed in their study,

and it was found that cepstral coefficients demonstrated improved separability in the

feature space. The study also highlighted that the spectral difference is higher in

the low-frequency band giving better discriminative information. Shokrollahi et al.

(2009) and Phinyomark et al. (2012a) have also used the cepstral coefficients method

for sEMG signature discrimination.

2.7.2.5 Independent Component Analysis (ICA)

By maximizing the statistical independence amid the estimated source signal, ICA

extracts the source signal from the observed signal. It decomposes the signal into indi-

vidual muscle activity. There are different ICA algorithms used to decompose sEMG

signals. Ren et al. (2006) applied combined ICA and wavelet filtering to remove

power line noise. The method was fast and robust when compared with conventional

digital filtering methods. McKeown and Radtke (2001) used ICA and reported the

decomposition of the signal for the PR of hand movements. Jung et al. (2000) applied

ICA and obtained an improvement in classification accuracy of 40% when compared

with raw sEMG. Naik and Kumar (2012) used the various estimation methods of the

unmixing matrix to decompose the signal and reported an increase in accuracy of 34%

during sEMG classification of hand motions. Willigenburg et al. (2012) applied ICA

for removing ECG from sEMG and compared with other procedures and showed that

ICA outperformed the other methods in terms of preserving the spectral information

of the sEMG signal. Naik et al. (2007) compared the performance of four ICA algo-

rithms for four different hand gestures using ANN. Subasi and Kiymik (2010) studied

ICA to detect fatigue of biceps brachia muscle. The results showed that ICA, when

combined with ANN, separates sEMG signals from fresh and fatigued muscles. The

major drawback of ICA is that it is an iterative process and has random initializa-

tion. The quality of separation has randomness, and the performance is not always

optimum.
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2.7.2.6 Higher Order Statistics (HOS)

HOS is applicable for efficient processing of sEMG signals because of the unique prop-

erties. The method can quickly identify deviations from linearity and Gaussianity in

the signal. There has been growing interest in using this method. By using this

method, precise phase reconstruction is possible. In HOS, cumulants and moments

are used, which are the measures of asymmetry and peaks of the probability distri-

bution. Kaplanis et al. (2000) used HOS to obtain new parameter (power spectrum

median frequency) that could increase the analytic character of sEMG. Yana et al.

(1989) applied this method to simulated sEMG signals to recover motor unit action

potential from the sEMG signals. The technique is mainly used for diagnosis of the

neuromuscular disorder. Shahid (2004) used HOS on the sEMG signal and proposed

bispectrum of the linear system. The method had been improved by separating the

skewness parameter. The developed technique showed better performance than the

traditionally used methods.

2.7.2.7 Wavelet Transform

A wavelet transform performs a multiresolution analysis of a time domain signal.

Unlike STFT where the time-frequency resolution is a constant, the wavelet trans-

form has a varying resolution in the time-frequency plane, thereby better resolving

both the time and frequency axes. When the wavelet transform is used in filter-

ing, care must be taken to choose a particular wavelet function and decomposition

levels that are suitable for the target application. Filtering using wavelet transform

is performed in three steps: First, the signal is decomposed into discrete wavelet

transform (DWT) to get detail and approximation coefficients. The high-frequency

components and low-frequency components are obtained from detail and approxi-

mation coefficients respectively. The noise usually contributes to the detail coeffi-

cients. In the second step, based on the noise variance, a threshold value is calculated

and applied to detail coefficients by the linear or non-linear transform. In the final

step, using the remaining terms after the thresholding, the sEMG signal is recon-

structed (Phinyomark et al., 2011). For estimation of denoised sEMG, Khezri and

Jahed (2008) proposed Stein unbiased risk method and demonstrated an improve-

ment in PR scheme with this pre-processing step. For upper limb motions, Hussain

et al. (2009) suggested universal thresholding technique and was able to improve
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the sEMG PR accuracy. Phinyomark et al. (2009b) proposed a novel pre-processing

method based on wavelet-based denoising algorithm where the optimal weighted pa-

rameter is assigned for universal thresholding method. The results were evaluated for

seven hand gestures. Ortolan et al. (2003) evaluated three noise reduction methods,

namely adaptive filter using least mean square, finite-impulse-response nonadaptive

filter, and wavelet transform. Wavelet filter outperformed other filtering methods in

their study. Phinyomark et al. (2009a) compared four denoising algorithms, namely,

universal thresholding, SURE thresholding, hybrid thresholding, and minimax thresh-

olding for wavelet denoising. The best of wavelet denoising algorithm was found to

be universal thresholding method.

Despite its popularity, wavelet transforms are computationally intensive tech-

niques. Selection of wavelet function is also critical for effective noise removal.

Traditional finite impulse response (FIR) and infinite impulse response (IIR) filters

are also widely used in the literature for sEMG signal processing. Since they are well

known, they are not discussed in this thesis.

It is clear from the literature review that a significant amount of research is done

in the area of denoising of sEMG signals. However, many of the advanced schemes

are found to be computationally intensive. Literature also suggests that while re-

moving noise, some of the critical information in the signal might also be removed.

Overcoming these aspects will be a significant challenge in the area of MEC.

2.8 Literature review on factors affecting the ro-

bustness of myoelectric pattern recognition

A significant number of studies have been made on various stages of sEMG PR such

as pre-processing, feature extraction, novel feature identification, dimensionality re-

duction, and classification (Powar et al., 2018, Powar and Chemmangat, 2017). Even

though the previous studies report high classification accuracy of more than 90%,

there have been problems during the clinical translation of the system. There are

various other factors that affect the performance of PR system such as: variation in

limb position, variation in forearm orientation, variation in electrode position, varia-

tion in force level and change in the characteristic of sEMG signal (Khushaba et al.,

2016b, Staudenmann et al., 2010). Because of the gap between the ideal laboratory
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condition and practical application of the myoelectric prostheses, it becomes crucial

to test the PR with these various factors (Geng et al., 2012).

There exists a gap between research findings and clinical implementation of MEC.

For example, when an experiment is conducted in the laboratory for data collection,

the subject is made to sit in a fixed position with arm resting on the chair. This

arrangement is made so that it is comfortable for the subject to produce repeatable

contractions across trials resulting in higher accuracies. But in a clinical environment,

data is collected more practically in a scenario with a wide variety of force levels for

different limb positions, etc. For example, if a prosthetic user wants to hold an object,

the control algorithm should be trained in a variety of limb position and various force

levels (Scheme et al., 2010). The following subsection gives an overview of some of

the crucial factors that can affect the performance of the MEC.

2.8.1 Force Level Variation

One of the challenging aspects is the force level changes that can arise due to activ-

ities such as the lifting of heavy objects, handling mechanical tools, etc., which can

occasionally happen (Shin et al., 2016). Biologically, this is due to variation in the

length of the forearm muscles (Hoozemans and Van Dieen, 2005). If the PR system

is not trained for such scenarios, it misclassifies the pattern and produces the wrong

control decision. Therefore, this study investigates the effect of force level changes on

the classification accuracy of PR at three wrist positions.

Recently there has been significant research dedicated towards the problem of force

level variations, as they significantly influence the performance of myoelectric control

(Yang et al., 2016). Maclsaac et al. (2001) analyzed muscle fatigue, considering both

force level variation and joint angle. They used conduction velocity, and EMG mean

frequency in their work. The study states that both factors affect the performance

of sEMG PR. Tkach et al. (2010) considered two force level variations (i.e., low and

high) in their experiments. Apart from the force level variation, they have examined

the impact of electrode shift and muscle fatigue on PR accuracy. Force level varia-

tion had significantly reduced the classification accuracy. They showed that selecting

suitable sEMG feature combinations was not adequate. Developing effective training

strategies for the classifier is suggested for improving the robustness, and they were

able to achieve an accuracy of 86%. Scheme and Englehart (2011) demonstrated the
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impact of force changes on PR based EMG control. The sEMG data were recorded

from eleven subjects with nine classes of hand movements. The subjects varied the

force level from 20% to 80% of maximum voluntary contraction. LDA classifier with

time domain features was used. The classifier was trained at the individual force level

and examined at all force level. The classification inaccuracy ranged between 8% and

19%. He et al. (2015) recommended a feature extraction technique based on mus-

cle coordination and discrete Fourier transform. By the usage of the approach, the

classification accuracy was improved by 11% for the sEMG data gathered from nine

instructions of motions with three different force levels. Yang et al. (2017) inspected

four distinctive data-collection procedures and calculated their efficiency for getting

robust classification, despite dissimilarities presented by unlike muscle variations, dy-

namic arm movements, and outside interfering forces. They used mean absolute value

as a feature for evaluation. Al-Timemy et al. (2015) investigated the problem of force

level on the sEMG pattern recognition system. The sEMG information was recorded

from nine amputee subjects executing six instructions of motions with different force

ranges (i.e., low, medium and high). Maximum classification accuracy of 93% was

achieved when trained with all three force levels. Additionally, a novel set of features

was proposed to enhance the execution. Khushaba et al. (2016b) made a thorough

study on the impact of force level variation and used time-dependent spectral fea-

ture extraction method to diminish the effect of muscular contraction levels. The

sEMG records from six classes of hand actions at three force levels were considered.

Classification accuracy of up to 91% was attained.

2.8.2 Wrist Level orientation

Amputees with functional wrist preserve the ability to move the wrist and are es-

sential for their routine activity. Usually, the prosthesis is trained at a specific wrist

orientation, and if the prosthesis is operated in another orientation the performance

of PR scheme is degraded. This leads to misclassification of movements. The PR

must be robust against such conditions allowing the amputees to use their wrist at

different orientations (Adewuyi et al., 2016, 2017). Therefore, this study investigates

the effect of changing wrist orientation on the classification accuracy of PR.

Recently, some relevant studies have been reported in the literature which checks

the PR performance in the presence of wrist variation. Peng et al. (2013) conducted a
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pilot study on how the forearm orientation degrades the classification accuracy. The

solution for this was proposed by using an additional accelerometer by estimating

the rotation angles. The classification error achieved was less than 3.3%. Adewuyi

et al. (2013) examined the result of statically and dynamically changing wrist posi-

tion on PR to classify hand movements in able-bodied persons. It was observed that

varying the wrist degraded the system performance. The system’s accuracy was im-

proved when trained in all wrist positions. Roman-Liu and Bartuzi (2013) inspected

how different wrist positions affects the association among the time and frequency

measures of the sEMG signal among thirteen participants. It was observed that the

spectral measures of the sEMG signal change at different wrist positions and should

be considered. Tkach et al. (2010) validated that wrist variation affected PR accu-

racy. The study was conducted at seven different wrist positions for three different

hand movements. As in the case of Roman-Liu and Bartuzi (2013) and Adewuyi et al.

(2013), it was shown that including the training data from different wrist position

decreased the classification error. Scheme and Englehart (2011) conducted a study on

seventeen non-amputee subjects and two partial hand amputees to determine the PR

classification accuracy at various static and dynamic wrist positions. The sEMG PR

accuracy reduced by 35% for six hand grasps. A dual-window classifier was proposed

in the study to increase the classification accuracy. Adewuyi et al. (2016) investigated

the performance of non-linear and linear pattern recognition algorithms and also op-

timal sEMG feature subsets on sixteen non-amputees and four amputee subject for

four-hand movements at different wrist positions. The results suggested some widely

used time domain features for classification of data with multiple wrist positions. It

was shown that LDA and non-linear artificial neural networks performed significantly

better than the quadratic discriminant analysis. Khushaba et al. (2016b) conducted

an exhaustive study on the influence of wrist variation for six classes of hand mo-

tions. The accuracy of about 91% was achieved using the time-dependent spectral

feature extraction method. Adewuyi et al. (2017) assessed approaches for partial hand

amputees to control hand in multiple wrist positions without affecting classification

accuracy. An experiment was conducted for four hand motions at thirteen different

wrist positions. For developing a wrist independent scheme, the relation between

sEMG features and wrist position was modeled using the neural network from the

recorded wrist position data.
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2.8.3 Electrode Shift

Shifting of the electrode from its intended position can occur during multiple usage

cycles or even due to loading of the limb. Electrode displacement affects the clas-

sification accuracy. To overcome such a scenario robust features must be derived,

training has to be done, and some calibration must be carried out.

� Hargrove et al. (Hargrove et al., 2008) worked on the effect of electrode

displacements on pattern classification accuracy and stated that electrode dis-

placements adversely affect classification accuracy. They came up with the

solution that trains the system to recognize possible displacement locations,

thereby mitigating the effect.

� Young et al. (Young et al., 2012) investigated the optimal inter-electrode dis-

tance, channel configuration, and electromyography feature sets for myoelectric

pattern recognition in the presence of electrode shift. For reducing the system

sensitivity to electrode shift, they suggested larger inter-electrode distances and

a combination of longitudinal and transverse channels. The work proposes that

Time Domain Auto-Regressive (TDAR) feature set can be utilized to reduce

the effect of electrode shift.

2.8.4 Variation in Position of Limb

For daily activities, there will be variation in limb position. The sEMG patterns

obtained are different for different positions. The degradation of performance of

pattern recognition is observed when the limb is fixed in one position and classifier

is trained, but tested with other limb position. The effects can be minimized by

training the pattern recognition system with different position, multiple classifiers;

each trained for a single position, and use of accelerometers.

� Scheme et al. (Scheme et al., 2010) demonstrated that variations in limb

position will have a substantial impact on the robustness of myoelectric pattern

recognition.

� Fougner et al. (Fougner et al., 2011) proposed a solution to overcome the

effects. They solved the problem by collecting sEMG data and training the

classifier in multiple limb positions and by measuring the limb position with

accelerometers.

39



Most of the previous work focused on experiments with healthy subjects rather

than amputees. In this work, the method is tested on both healthy and amputee

subjects. Also previously, complicated process with more time delay was used. Taking

this into consideration, the work is directed towards minimization of force and wrist

position variation on PR.

2.9 Summary

In this chapter, background on basic concepts associated with sEMG signal genera-

tion, characteristics, noise, and measurements was explained. The different parts of

the pattern recognition system have been described with the literature review. The

detailed literature on various methods of pre-processing was presented along with

their limitations. Also, the factors affecting the clinical application of PR have been

discussed with the previous work. Based on the thorough literature review detailed

in this chapter, the objectives were defined and justified. The major concern during

the recording of the sEMG data is the noise contamination in the signal. This causes

major problems in the analysis since the noise bandwidth overlaps the frequency band

of the signal. In such scenarios, it is challenging to remove noise by using conven-

tional filters alone. The second problem is the limited attention to the factors that

influence the clinical translation of this myoelectric control. Multiple dynamic factors

can significantly degrade the accuracy of sEMG pattern recognition. The effect of

force variation and wrist orientation has been studied in isolation on the classification

accuracy of pattern recognition. This thesis attempts to address these issues by im-

plementing a novel pre-processing stage in the analysis of sEMG signal and designing

a more robust and viable sEMG pattern recognition system for upper limb prostheses

to mitigate the effect of force variation and wrist orientation with reduced compu-

tational time. The next two chapters will address the major objectives presented in

this chapter. It will be supported by detailed analysis and experimental results.
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Chapter 3

A Novel Pre-processing Procedure

for Enhanced Feature Extraction

and Characterization of sEMG

Signals

3.1 Introduction

The main challenges in pre-processing of sEMG signal are the limited tools that can

be used to minimize the noise such as power line interface, electrode noise, broadband

noise from the instrument, motion artifacts and white Gaussian noise (Phinyomark

et al., 2009c) and to enhance the feature. This chapter proposes a novel pre-processing

procedure for the sEMG signal, namely the Minimum Entropy Deconvolution Ad-

justed (MEDA) before feature extraction. Wiggins first introduced Minimum Entropy

Deconvolution (MED) in 1978 for seismic recordings. Geoff L. McDonald proposed

the convolution fix for MED for vibration fault detection (McDonald and Zhao, 2017).

MEDA differentiates the original sEMG signals from noise using higher-order statis-

tics such as kurtosis, which is the fourth moment of distribution. MEDA is designed

to find the filter coefficients that recover the output signal with a maximum value of

kurtosis while minimizing the low kurtosis noise components. This motivated the use

of MEDA for sEMG signals in this research work to enhance features and identify

patterns for efficient classification. Practical results demonstrate the feasibility of the
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approach with the mean percentage increase in classification accuracy of 20.5% across

seven subjects demonstrating the significance of MEDA in classification.

The work mainly focuses on the following aspects: 1) To study the classification

accuracy of sEMG feature extraction without and with the pre-processing step using

MEDA, 2) After pre-processing stage with MEDA, removing redundant features in

the classifier and finding the most stable feature combination with different classifiers,

3) Comparison of performance of MEDA with the conventional methods from the

literature.

The chapter begins with the data collection procedure. Next, conventional filtering

approaches for sEMG signal pre-processing from the literature are explained. Later,

a detailed description of the proposed method is given. Other stages involved in the

overall process of MEC, such as feature extraction and dimensionality reduction, are

then explained. The overall process of the proposed MEC is then validated on the

data collected in the laboratory. The results presented here are divided into two parts:

In the first part, conventional pre-processing methods are used on the data set, and

the one which performs the best amongst them in terms of the classification accuracy

is selected, and in the second part, the selected scheme is compared with the proposed

pre-processing method, and the effectiveness of the later is demonstrated.

3.2 Material and Data collection

Seven subjects, three males and four females, aged between 25 and 35 years par-

ticipated in the study. The subjects were normally limbed with no neurological or

muscular disorder. Before participating, all the subjects gave their written consent

to participate in this study and were briefed about the experiment. The required

ethical approval was obtained from the National Institute of Technology Karnataka,

Surathkal. To display and store signals a Virtual Instrument was developed in LAB-

VIEW (NI). To avoid the effect of different limb position on the generated sEMG

signals subjects were seated on an armchair, with their arm supported and fixed

at one position (the shoulder adducted and neutrally rotated, elbow flexed at 90◦ ,

forearm and wrist in the neutral position).

The sEMG data was recorded from flexor carpi radialis (channel 1) and extensor

carpi radialis (channel 2) of a subject by using two pairs of surface electrodes (3M red

dot Ag/AgCl) on the right forearm (Phinyomark et al., 2010). These muscle groups
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Eight classes of hand movements considered in this research, a) wrist flexion
b) wrist radial deviation c) hand close d) tripod e) wrist extension f)wrist ulnar deviation
g) cylindrical and h) key grip
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represent the most important location on the human forearm, and they largely con-

tribute to wrist movements (Mayor et al., 2017). Reducing the number of electrodes

simplifies the requirements for controlling prostheses without compromising on the

classification accuracy. To avoid crosstalk between the two muscles, an inter-electrode

distance of 20 mm was maintained for a 5 mm diameter electrode. The sEMG signals

collected from the electrodes were amplified with a gain of 1000. A 16 bit analog to

digital converter (National Instruments, PXIe-4300) was used to sample the signal at

2000 Hz. A bandpass filter with a frequency band of 20 Hz to 500 Hz was used to

extract the sEMG signal with an additional notch filter at 50 Hz to remove the power

line interference.

For the experiment, subjects were asked to perform eight different hand move-

ments: wrist flexion (FX), wrist radial deviation (WRD), hand close (HC), tripod

(TD), wrist extension (EX), wrist ulnar deviation (WUD), cylindrical (CL) and key

grip (KG) as shown in Figure 3.1. The subject performed each movement for a du-

ration of 3 s and a rest period of 5 to 8 s between each movement. Each action was

repeated five times. The movements were performed sequentially.

3.3 Methodology

3.3.1 Conventional filtering methods from the literature

3.3.1.1 Weiner filter

In Weiner filtering, according to the ratio between desired and actual signal spectrum,

the re-scaling of the Fourier coefficients is done. Since Weiner filter is a non- causal

filter, a priori Signal to Noise Ratio (SNR) is required to be estimated. Here, a

decision direct (DD) method is used for the estimation of priori SNR. Priori SNR

requires an estimation of posteriori SNR of previous and the current frame (Liu et al.,

2014, Ephraim and Malah, 1984).

Let the noisy sEMG signal be x(t), which is the sum of clean sEMG signal s(t)

that is not corrupted by noise and the noise n(t).

x(t) = s(t) + n(t) (3.1)

Let S(p, k), N(p, k), and X(p, k) denote the kth spectral component in a time
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frame p of the clean sEMG signal s(t), the noise n(t) and the noisy sEMG signal x(t)

respectively.

The important goal here is to find the estimate Ŝ(p, k). By the application of

spectral gain function G(p, k) to the noisy spectral component X(p, k), an estimate

of S(p, k) is obtained.

Ŝ(p, k) = G(p, k)X(p, k) (3.2)

The gain function G(p, k) minimizes the mean square error between the estimated

and desired spectral component. G(p, k) is a function of priori SNR and can be

expressed in terms of priori SNR ( ˆSNRprio(p, k)) as,

G(p, k) = ˆSNRprio(p, k) + 1 (3.3)

The priori SNR is calculated using decision direct (DD) method as,

ˆSNRprio(p, k) = β
|Ŝ(p− 1, k)|2

γ̂n(p, k)
+ (1− β)P [ ˆSNRpost(p, k)− 1] (3.4)

Where,

ˆSNRpost =
|X(p, k)|2

γ̂n(p, k)
(3.5)

P [] denotes the half wave rectification, Ŝ(p−1, k) is the estimated sEMG spectrum

at previous frame. The behavior of SNR estimator is controlled by the parameter β

which is typically set to 0.98.

γ̂n(p, k) is estimated during the rest period when no movement is made, it is the

noise Power Spectral density and is equal to E[|N(p, k)|2]; where E[] is the expectation

operator.

3.3.1.2 Spectral Subtraction (SS) Approach

The spectral estimator Ŝ(p, k) of the clean sEMG signal is obtained by subtracting an

estimate of the noise spectrum E[|N̂(p, k)|] from the noisy sEMG spectrum X(p, k).

During the rest period, (i.e. when no movement is made), the spectral information

of noise spectrum |N̂(p, k)| is obtained. Then the spectral error is estimated. The

magnitude averaging and residual noise reduction have been used to minimize the

error (Boll, 1979, Paliwal et al., 2010).
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|Ŝ(p, k)| = |X(p, k)| − |N̂(p, k)| (3.6)

Or

|Ŝ(p, k)| = |X(p, k)|G(p, k) (3.7)

Where,

G(p, k) = 1− N̂(p, k)

X(p, k)
(3.8)

Now the spectral error (ε) is reduced using,

ε = |Ŝ(p, k)| − |S(p, k)| (3.9)

3.3.1.3 Butterworth Filter

The filter is designed to have a frequency response as flat as possible in the passband

and rolls off towards zero in the stopband. Similar to all filters, the typical prototype

is the low-pass filter. The low-pass filter can be modified into a high-pass filter,

band-pass and band-stop filters.

The gain G(ω) of an N-order Butterworth low-pass filter is given in terms of the

transfer function as:

|H(ω)|2 =
1

1 + (ω/ωc)2N
(3.10)

where |H(ω)|2 is the square magnitude of the frequency response of the filter, ω

the angular frequency and ωc is the filter’s cutoff frequency.

The Butterworth frequency response |H(ω)|2 is obtained from H(s) by assuming

s = jω.

H(s)H(−s)|s=jω = |H(jω)|2 (3.11)

Consequently:

H(s)H(−s)|s=jω =
1

1 + (s/jωC)2N
(3.12)

The filter poles are located in the following points in s plane:

s = jωC(−1)1/2N = ωCe
jπ(2k+N−1)/2N , k = 0, 1, . . . , 2N − 1 (3.13)
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These poles form a symmetrical pattern of a circle with radius ωC . For stability,

the transfer function, H(s), is therefore chosen such that it contains only the poles in

the negative real half-plane of s. This low-pass filter is used as prototype for construc-

tion of others filter’s class by mathematical methods of frequency transformation.

3.3.2 Novel method used for pre-processing

MED was originally proposed by Ralph Wiggins in 1978 to aid extraction of re-

flectivity information in subterranean layers in seismic data (Wiggins, 1978). MED

was initially applied in the field of multisensor data fusion, pitch period estimation,

restoration of star field images, seismic signal processing, an ultrasonic inspection of

composite materials and pipes and machine fault diagnosis (McCormick and Nandi,

1998, Jiang et al., 2013). It was used by Endo and Randall in machine condition

monitoring field to detect gear tooth fault (Endo and Randall, 2007). MED opera-

tor suppresses frequencies over which the signal to noise ratio is low and emphasizes

dominant signals. MED iteratively selects an FIR filter to minimize the entropy of

filtered signal, thereby enhancing the kurtosis information in the signal. A higher

value of entropy associated with the signal indicates a lower SNR (McCormick and

Nandi, 1998).

3.3.2.1 Minimum Entropy Deconvolution (MED)

Here, a kurtosis norm is defined and then a FIR filter is designed such that the

filtered output sEMG signal reaches a maximum according to the norm. The signal

is assumed to be corrupted with noise and is expressed as:

~x = ~d+ ~e (3.14)

In equation (3.14), ~x ∈ RN is the final measured sEMG signal with noise, and ~d ∈ RN

is Original sEMG, and ~e ∈ RN is White Gaussian noise.

Generally, for sEMG signal, Kurtosis is large for ~d when compared to noise ~e.

Selection of FIR filter with coefficients ~f to maximize kurtosis leads to a filter design

that extracts high kurtosis sEMG, which minimizes the noise component.

An approximation ~y ∈ RN of the signal ~d is reconstructed by convolving the FIR
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filter ~f ∈ RL with the measured sEMG signal ~x.

~y = ~f ∗ ~x (3.15)

where ‘∗’ denotes convolution.

yk =
L∑
l=1

flxk−l+1, k = 1, 2, ..., N

where ‘L’ and ‘N ’ denote the filter length and input sample length respectively.

In matrix form:

~y = X̄T
0
~f, (3.16)

X̄0 =



x1 x2 x3 . . . . . . xN

0 x1 x2 . . . . . . xN−1

0 0 x1 . . . . . . xN−2

...
...

...
. . . · · · ...

0 0 0 . . . . . . xN−L+1


LbyN

The filtered signal ~y should approach the original sEMG ~d and this is found by

selecting filter ~f to minimize the noise effect ~f ∗~e −→ 0 and extracting original sEMG

signal ~f ∗ ~x ' ~d. For MED to work satisfactorily, the signal ~d is expected to have

very high kurtosis while ~e is of very low kurtosis.

To achieve this, an optimization problem is formulated with objective function

under assumed zero mean output ~y,

max
~f
kurtosis = max

~f

N∑
n=1

y4
n

(
N∑
n=1

y2
n)2

(3.17)

Taking derivative of above equation and equating it to zero,

~f =

N∑
n=1

y2
n

N∑
n=1

y4
n

(X̄0X̄
T
0 )−1X̄0[y3

1y
3
2 · · · y3

N ]T (3.18)
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Equation (3.18) requires an initial estimate of ~y and that is obtained by assuming

initial filter as centered initial difference filter ~f = [0, 0, · · · · · · , 1,−1, 0 · · · · · · , 0],

(3.18) is applied repeatedly to calculate ~f . The updated value of ~f is used to calculate

~y before each iteration. Termination is done when there is minimum change in filter

coefficients between iterations.

3.3.2.2 Minimum Entropy Deconvolution with convolution adjustment

(MEDA)

In order to avoid deconvolving a single impulse, causing disturbance at the start of

the output signal ~y, Geoff L. McDonald suggested a convolution fix (McDonald and

Zhao, 2017) to tackle this issue which is described below.

~y = ~f ∗ ~x (3.19)

~yk =
L∑
l=1

flxk+l−1, k = 1, 2, ..., N − L+ 1

In matrix form:

~y = XT
0
~f, (3.20)

X̄0 =



xL xL+1 xL+2 . . . . . . xN

xL−1 xL xL+1 . . . . . . xN−1

xL−2 xL−1 xL . . . . . . xN−2

...
...

...
. . . · · · ...

x1 x2 x3 . . . . . . xN−L+1


LbyN−L+1

Resulting in the MEDA iterative selection:

~f =

N−L∑
n=1

y2
n

N−L∑
n=1

y4
n

(X0X
T
0 )−1X0[y3

1y
3
2 · · · y3

N−L]T (3.21)

The above is solved iteratively similar to MED.
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Figure 3.2: Overall process of classification based on proposed MEDA method

3.3.3 Feature extraction

The proposed pre-processing step with MEDA was applied after sEMG data acquisi-

tion, and the resultant signal was used in the feature extraction process. The stages

involved in the overall process of classification is shown in Figure 3.2.

The technique of obtaining useful information from raw input data into a re-

duced representative set of features is called feature extraction. The success of sEMG

classification depends on the selection of appropriate sEMG features. Features are

computed from sEMG signal using windowing techniques to extract the temporal

characteristics and to minimize the spectral leakage. Windowing can be disjoint or

overlapping, and due to the lower computational cost and simplicity, disjoint window

scheme is employed in this work with a duration of 200 ms (Khushaba et al., 2016a).

Features in the analysis of sEMG signals can be divided into three groups namely

the time domain, the frequency domain and the time-frequency domain of which the

first two feature groups have been considered. Time domain features are directly

extracted from raw sEMG time series. Frequency domain features are obtained from

the Power Spectral density (PSD) of sEMG signal. Eighteen features used in this

study with their mathematical definition are presented in Table 3.1. In Table 3.1,

the first thirteen features are the time domain features and the remaining five are

the frequency domain features. The detailed definition for each feature is reported in

Appendix A.

3.3.4 Dimensionality reduction and Classification

The dimension of the feature set obtained after feature extraction is very large, which

increases the complexity of the classifier and also reduces the convergence of learning

error (Khushaba et al., 2009a). To reduce the computational complexity and enhance

generalization on unseen data, reducing the number of features to a minimum is very

important. Feature set dimensionality can be reduced using feature projection or
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Table 3.1: Time and frequency domain features along with mathematical definition

Feature extracted Abbr. Mathematical definition

Average Amplitude Change AAC AAC= 1
N

N−1∑
n=1

|xn+1 − xn|

Approximate entropy ApEn ApEn(m,r,N )=[Φm(r)− Φm+1(r)]

Φm(r)=(N −m+ 1)−1
N−m+1∑
n=1

log Cm
n (r)

Difference absolute standard deviation value DASDV DASDV=

√
1

N−1

N−1∑
n=1

(xn+1 − xn)2

Integrated EMG IEMG IEMG=
N∑
n=1

|xn|

Kurtosis Kurt Kurt=

(
1
N

N∑
n=1

[xn−x̄
σ

]4
)
− 3

Log detector LOG LOG=e

(
1
N

N∑
n=1

log |xn|
)

Mean absolute value MAV MAV= 1
N

N∑
n=1

|xn|

Root mean square RMS RMS=

√
1
N

N∑
n=1

|xn|2

Sample entropy SampEn SampEn(x,m,r)=−ln
(
Am(r)
Bm(r)

)
Simple square integral SSI SSI=

N∑
n=1

|xn|2

Variance VAR VAR= 1
N−1

N∑
n=1

|xn|2

Waveform length WL WL=
N−1∑
n=1

|xn+1 − xn|

Skewness Skew Skew=

(
1
N

N∑
n=1

[xn−x̄
σ

]3
)

Mean frequency MNF MNF=

M∑
j=1

fjPj

M∑
j=1

Pj

Median frequency MDF MDF=1
2

M∑
j=1

Pj

Mean power MNP MNP=

M∑
j=1

Pj

M

Spectral moment of order= 2 SM SM=
M∑
j=1

Pjf
2
j

Total power TTP TTP=
M∑
j=1

Pj

Let xn represent the nth sample of the sEMG signal with the length N . Pj is the
EMG power spectrum at frequency bin j. fj is the frequency of the sEMG power
spectrum at frequency bin j.M is the length of the frequency bin,m= maximum
epoch length ,r=tolerance,Cm

n (r)=correlation sum,Am(r) and Bm(r) are defined for
dimensions m+ 1 and m.
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feature selection. This chapter focuses on feature selection method which removes

the redundant features. Feature selection aims at (i) reducing the dimension, (ii)

eliminating irrelevant and redundant features, (iii) reducing the amount of data for

classification, and (iv) improving the classification accuracy (Khushaba et al., 2011).

The important aspects that need to be considered for the feature subset selection

process are the evaluation method and the search strategy. The evaluation method

includes filters and wrappers. On the other hand, a search strategy is needed to ex-

plore the feature space. In this study, we have used wrapper method based evaluation

with four different search strategies namely, Particle Swarm Optimisation (PSO), Best

First, Linear Forward Selection and Greedy Step Wise search. A brief description of

each of these methods is given below:

In a wrapper based approach, the feature subset selection algorithm searches for a

good subset of features using the classifier itself as a part of the evaluation function.

This approach requires a state space, a search engine, an initial state and termination

condition (refer Appendix B.1 for more details).

3.3.4.1 Greedy stepwise

It is a simple search strategy which considers local changes to the current feature

subset. The local change may be the addition or deletion of a single feature from

the subset. Feature subset is known as a forward selection if the algorithm considers

only additions to the feature subset, and backward elimination if it considers the only

deletion. Additionally, there is also bi-directional search which uses both addition and

deletion. By including all these variations, the method expands on the current node

and moves towards the child with the highest accuracy. The method terminates, when

no child improves over the current node. The disadvantage of this search method is

that it gets stuck in local maxima and plateau (Hall, 1999). The algorithm used here

is from Kohavi and John (1997) (refer Appendix B.1.1 for more details).

3.3.4.2 Best First

The method allows backtracking along the search path. By making local changes to

the current feature subset, best first moves through the search space. It can back-

track to a more promising previous subset and continue the search from there if the

path being explored looks less promising. The entire search space is explored, and
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hence a stopping criterion is to be defined. The search is terminated when there

is no improvement in the expansion of the node. This method is more robust than

the greedy stepwise. The disadvantage of this method is that a thorough search will

increase variance and thus reduce accuracy. The method is computationally costly to

explore the entire search space (Hall, 1999). The algorithm used here is from Kohavi

and John (1997) (refer Appendix B.1.2 for more details).

3.3.4.3 Linear Forward Selection

Here, the number of attributes expansions is reduced in each forward selection step.

The standard forward selection is modified to obtain efficient attribute selection and

to reduce the number of attribute extension in each forward step. The search method

ranks all the attributes and selects the top-ranked attributes which are employed in

the subsequent forward selection. The main objective of this approach is to take

away the irrelevant attributes so that it can focus on the relevant attributes. The

disadvantage of this method is that weakly relevant attributes that perform poorly

on their own are lost. The algorithm used in this chapter is from Gutlein et al. (2009)

(refer Appendix B.1.3 for more details).

3.3.4.4 Particle Swarm Optimization

PSO is an evolutionary computation technique which is based on the principle that

each solution is encoded as a particle with a position in search space. The algorithm

begins by creating the initial particles and assigning them initial velocities. The

particles move in the search space. Based on the experience of its own and neighboring

particles, each particle updates its velocity and position. The best position obtained

by the population thus far is called gbest, and the best previous position of the particle

is recorded as the personal best pbest. The algorithm searches optimal solutions by

updating the velocity and the position of each particle according to the equations given

in Moraglio et al. (2007). When the predefined criterion is met, the search is stopped.

The algorithm suffers from stagnation once particles have prematurely converged to

any particular region of the search space (Xue et al., 2013) (refer Appendix B.1.4 for

more details).

In the classification stage, the signal corresponding to each movement is recognized

and classified into different classes. The classification accuracy obtained from J-48,
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k-nearest neighbors (KNN), Naive Bayes and Linear Discriminant Analysis (LDA)

were used to assess the suitability of different sEMG features for classification of

hand movements. The classifiers were tested using ten-fold cross-validation (refer

Appendix B.2 for more details).

3.4 Results and Discussion on the previously used

filters from literature

The three filters described in Section 3.3.1 have been used to pre-process the two-

channel sEMG signals collected from the subjects. Then, the active segment of the

signal representing a movement is detected using the threshold, and the rest past

is removed. A rectangular window is applied to the active portions of the data of

200 ms length during feature extraction. Eighteen features in time and frequency

domain have been extracted from each channel to represent the sEMG activity. Thus,

the total number of extracted features is 36 features (18 feature/channel Ö × 2 =

36 features). Two schemes of experiments are employed. In the first scheme, the

comparison of filters is carried out without dimensionality reduction and for the second

set of experiment dimensionality reduction is applied to obtain the same classification

accuracy with the reduced number of features. The filter performance is compared by

using four classifiers with ten-fold cross validation. The justification behind employing

the ten-fold cross-validation is to make sure that there is no over-fitting in the results.

The involuntary background activities present in the signal can impose challenges

while implementing a myoelectric system. The Weiner filter can be used as a success-

ful tool in minimizing the involuntary background spikes and help in building more

accurate myoelectric controller.

3.4.1 Comparison of filters without dimensionality reduction

The achieved average classification accuracy for eight movements for seven subjects

is shown in the bar graph in Figure 3.3. The classification accuracy shown in the

figure is obtained using all 36 features. From the classification accuracy, some im-

portant inferences can be observed. A lower value of classification accuracy can be

attributed to the fact that a large set of movements were considered while extracting

signals from only two muscle groups. The accuracy could be enhanced in the future
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Figure 3.3: Column graph of average classification accuracy using four classifiers and three
filters

by selecting the optimum number of movements. From the bar graph, the maximum

classification accuracy of 75.36% was achieved using a Butterworth filter with LDA as

a classifier. SS filter obtained maximum classification accuracy using KNN classifier,

reaching 70.93%. Weiner filter achieved maximum accuracy of 68.97% with LDA as

the classifier. It can also be seen that for this experiment, LDA produced better ac-

curacy than other classifiers. The change in accuracy is due to various reasons. While

applying Weiner and SS filter, there must have been the removal of some important

components from the sEMG signal considering them as noise. It can be observed

from the bar graph that there were no noteworthy changes among the performances

of the filters.

3.4.2 Comparison of filters with dimensionality reduction

Figure 3.4 shows the classification accuracy for eight movements for seven subjects

after applying dimensionality reduction. The main aim here is to attain a similar

classification accuracy with the reduced features. It can be observed from the bar

graph in Figure 3.4 that the maximum classification accuracy was obtained using a

55



Figure 3.4: Column graph of average classification accuracy using four classifiers and three
filters after dimensionality reduction

Butterworth filter achieved a classification accuracy of 73.3% with KNN as a classifier.

Weiner filter achieved maximum accuracy of 69.7% using J-48 classifier. SS filter

attained an accuracy of 67.17 % with KNN classifier. The classifiers attained almost

comparable performance with different classifiers due to the robustness of the reduced

feature set.

Here, a greedy search method is used to search the minimum number of features

with the wrapper-based evaluator. The minimized set of features obtained from the

evaluator were then used for classification. The results are presented in Tables 3.2,

3.3 and 3.4.

In Tables 3.2, 3.3 and 3.4, it can observed that the Butterworth filter used only

8 features to obtain the same classification accuracy with KNN classifier. SS used

9 features, and Weiner used 7 features. This shows how dimensionality reduction

can help bring down the computational complexity without compromising on the

classification accuracy. The reduced computational complexity helps bring down the

delay in decision making for real-time control.

3.4.3 Confusion matrix

The confusion matrices for the three filters are shown in Figure 3.5. The classifier

that performs the best in terms of the accuracy is selected for each filter. From

the confusion matrix, the difference in accuracy for each movement can be observed.
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Classifier No of features per channel Classification Accuracy% (Std dev)
J-48 8 67.64 (4.1)
KNN 8 73.3 (2.9)
Naives Bayes 6 67.67 (5.3)
LDA 12 71.21 (5.8)

Table 3.2: Average classification accuracy after feature reduction with greedy stepwise
search method after applying Butterworth filter

Classifier No of features per channel Classification Accuracy% (Std dev)
J-48 7 64.36 (6.9)
KNN 9 67.17 (5.3)
Naives Bayes 8 57.73 (6.8)
LDA 13 61.63 (5.2)

Table 3.3: Average classification accuracy after feature reduction with greedy stepwise
search method after applying SS filter

Classifier No of features per channel Classification Accuracy% (Std dev)
J-48 7 69.69 (6.3)
KNN 8 65.04 (9.9)
Naives Bayes 6 66.88 (12.7)
LDA 10 66.44 (12.4)

Table 3.4: Average classification accuracy after feature reduction with greedy stepwise
search method after applying Weiner filter
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The difference in classification accuracy is due to the signals generated by muscles of

dissimilar limbs and the force-length relationship of the muscle. This causes changes

in signal shape, amplitude, frequency spectrum, and time scaling. The second factor

is the significant degrees of nonlinear overlapping among each class and also the

availability of only two channels.

3.4.4 Performance comparison in terms of processing time

The time taken for filtering is evaluated on a personal computer with 1.7 GHz In-

tel Core i5 CPU (RAM 4GB) with Matlab. The time taken by Butterworth filter,

Weiner filter, and SS filter is 38 ms, 48 ms, and 0.33 ms respectively. Rendering to

the computational time of distinctive filters, SS delivers a substantial savings in com-

putational cost of (38 − 0.33)/38 ∗ 100 = 99.13% when compared with Butterworth

filter and (48 − 0.33)/48 ∗ 100 = 99.31% when compared with Weiner filter. The

processing time consumed by the SS filter was least when compared to other filters.

So whenever the system requires less delay or processing time, it is advisable to use

the SS filter. Weiner filter is costly concerning the computational cost.

3.4.5 Discussion

This section gives a detailed discussion of the classification performance comparison

of the three filters. Butterworth filter obtained marginally high classification accuracy

when compared with the Weiner filter and SS filter. When it is required to detect

the onset of the movement corrupted by background noise, the Weiner filter could be

a better choice. But in terms of computational cost, SS filter is less expensive. The

work also studies the effect of feature selection on the accuracy, and a reduced set

of features are selected without compromising on the classification performance. The

confusion matrix is also observed for three filters for different class movements.

3.5 Results and Discussion on novel MEDA filter

Experimental evaluation is conducted on seven subjects, the sEMG data is divided

into 200 ms window, and features have been extracted from each window. The delay

is chosen to be 200 ms since the total delay in the sEMG system needs to be kept
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(a)

(b)

(c)

Figure 3.5: Average confusion matrix across seven subjects using a) Weiner filter and J48
classifier b) SS filter and KNN classifier and c) Butterworth and KNN classifier
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below 300 ms for real-time control (Khushaba et al., 2014). Total of 18 features per

channel is extracted in both time and frequency domain.

For MEDA parameters, the value of N is chosen to be equal to the window length.

For obtaining the filter length L, N is kept constant and filter length L is varied. The

value of L is chosen based on keeping the processing time to be less than 50 ms

(so that the total delay is less than 300ms). The processing time is calculated with

Matlab on a PC with 1.7 GHz Intel Core i5 CPU and 4GB RAM.

MATLAB software is used for signal processing and feature extraction step; then

the extracted data have been fed into Weka tool for dimensionality reduction and

classification.

The study is divided into three parts: (i) Demonstrating the advantage of the pre-

processing step using MEDA on improving the classification accuracy, (ii) Removing

redundant sEMG features and search the best subset of features and (iii) Comparing

the proposed scheme with the best results obtained in Section 3.4 from Butterworth

filter.

3.5.1 Impact of MEDA on classification accuracy

Experimental results are compared for eight different upper limb movements across

seven subjects with and without applying MEDA before feature extraction. Example

of the sEMG signals acquired from two channels with eight upper-limb movements

before and after applying MEDA is illustrated in Figure 3.6. The results of the clas-

sifier were evaluated using ten-fold cross-validation for each subject. The original

sEMG data was divided into 10 equal sub-data sets, single sub-data set will be re-

trained as testing data and remaining 9 sub-data sets were used to train the classifier

model in each fold and using each sub-data set once for training the whole procedure

is repeated 10 times. Here, classification accuracy is used as the main index to indi-

cate the impact of MEDA. Figure 3.7 shows the bar graph of average classification

accuracy across seven subjects for different classifiers with and without employing the

pre-processing step of MEDA.

From Figure 3.7 it is clear that MEDA generates greater discriminating infor-

mation. The high classification accuracy achieved using MEDA suggests that more

challenging problem can be addressed. From the figure, it is observed that the mean

percentage increase in classification accuracy was 14.80%, 7.72%, 7.25%, and 20.48%
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Figure 3.6: Noisy sEMG signal before applying MEDA (green colour) and de-noised sEMG
signal after applying MEDA (red colour) for eight different movements (a) wrist flexion b)
wrist radial deviation c) hand close d) tripod e) wrist extension f)wrist ulnar deviation g)
cylindrical and h) key grip) for channel 1 (a) and channel 2 (b)
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Figure 3.7: Bar plot of average classification accuracy across seven subjects for eight
upper limb movements using J-48, k-nearest neighbours (KNN), Naives Bayes and Linear
Discriminant Analysis (LDA) classifiers with and without MEDA using a window size of
200ms

Table 3.5: Classification accuracy and standard deviation of seven individual subjects
using LDA as a classifier with and without MEDA

SUBJECTS WITHOUT MEDA WITH MEDA
Accuracy%(Std dev) Accuracy%(Std dev)

Subject 1 75.94(6.48) 97.05(3.01)
Subject 2 82.66(6.81) 94.50(4.31)
Subject 3 82.66(6.81) 91.97(4.20)
Subject 4 59.66(6.90) 86.59(5.67)
Subject 5 60.65(5.86) 89.13(4.50)
Subject 6 68.90(8.01) 92.29(4.17)
Subject 7 68.92(6.46) 91.19(5.01)

respectively for J-48, KNN, Naive Bayes, and LDA classifiers. The result indicates

that LDA performed better than the rest of the classifier on this data. However, to

get such an improvement in accuracy, there was an additional increase in the compu-

tational burden of 35 ms due to the pre-processing. Table 3.5 shows the classification

accuracy using LDA as a classifier with and without MEDA for an individual sub-

ject. The variation in classification accuracy among subjects is due to the difference

in muscle anatomy. Changes in the performance may also be due to dissimilarity in

muscle contraction effort and muscle fatigue among the subjects.

Confusion matrix for two subjects using LDA is shown in Figure 3.8 since LDA
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(c) Subject 6 before MEDA
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Figure 3.8: Confusion matrix showing classwise accuracy for eight classes of hand move-
ments (wrist flexion (FX), wrist radial deviation (WRD), hand close (HC), tripod (TD),
wrist extension (EX), wrist ulnar deviation (WUD), cylindrical (CL) and key grip (KG))
for two subjects before and after MEDA using LDA as a classifier

performed slightly better than other classifiers. From the figure, it can be observed

that there were difficulties in separating hand movements before applying MEDA. The

low accuracy without MEDA is due to difficulty in separating the patterns for different

movements. Further, to observe the distribution of extracted features, scatter graph

is plotted as shown in Figure 3.9. It is clear from the figure that without MEDA, the

distribution of the features was overlapping, while with MEDA the data points were

well separated. This leads to good classification accuracy.

3.5.1.1 Average confusion matrix for the classification of eight hand move-

ments

For the investigation of different class separability of the proposed MEDA, the con-

fusion matrix across seven subjects was averaged. The average confusion matrix is
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Figure 3.9: Scatter plot of a pair of sEMG features for different hand movements before
and after applying MEDA for Subject 1 and Subject 6
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Figure 3.10: Average classification accuracy across seven subjects using LDA as a classifier
after applying MEDA for eight classes of hand movements (wrist flexion (FX), wrist radial
deviation (WRD), hand close (HC), tripod (TD), wrist extension (EX), wrist ulnar deviation
(WUD), cylindrical (CL) and key grip (KG))
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as shown in Figure 3.10 for LDA as a classifier. From the diagonal of the confusion

matrix, it can be observed that the classifiers were successful in classifying differ-

ent hand movements. However, there were difficulties in separating wrist extension

(EX), hand close (HC) and wrist ulnar deviation (WUD) from the other movements.

The misclassification could be due to the overlapping of patterns associated with the

movements and also the availability of only two channels.

The maximum classification accuracy with MEDA was ≈ 91% using LDA as a

classifier which seems acceptable for two sEMG channels in comparison to other work

from the literature. The results also suggest the success of classifying eight different

movements using two channels sEMG system.

3.5.2 Performance of MEDA with reduced feature set

The main objective in the second part is to find the smallest subset of features that

best interacts together and achieves high classification accuracies. Experimental re-

sults are compared using the wrapper method as an evaluator with the four classifiers.

The four search methods namely Particle Swarm Optimisation (PSO), best first, lin-

ear forward selection and greedy stepwise for each classifier were employed to search

the most important subset of features. The average classification accuracy of differ-

ent classifiers for different search strategy is plotted with the corresponding average

number of selected features per channel in Figure 3.11 across seven subjects. The

maximum and minimum standard deviation obtained was ±6% and ±3% respec-

tively.

The results from Figure 3.11 indicate that all classifiers achieved similar perfor-

mance due to the removal of redundant and irrelevant features using search methods

across classifiers. The desired number of selected features varied between four and

thirteen. It was observed that for achieving the same classification accuracy, PSO

used the highest number of features while the greedy stepwise used the least. The

minimal feature set was obtained using greedy stepwise search method with Naive

Bayes as a classifier, and the combination gave a classification accuracy of 88 ±6%.

The selected features were MNF, AAC, ApEn, and DASDV. These features were se-

lected because removal of these will result in huge performance deterioration of the

classifier.
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Figure 3.11: Average classification accuracy after feature reduction using with J-48, k-
nearest neighbours (KNN), Naives Bayes and Linear Discriminant Analysis (LDA) classifiers
with best first, greedy stepwise, PSO and Linear forward selection search method across
seven subjects for eight upper limb movements, after applying MEDA
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Figure 3.12: Average classification accuracy for eight upper limb movement with varying
window size using MEDA

3.5.3 Effect of window size on accuracy

The classification accuracy of eight movements in response to sEMG window size

variation was studied using Naive Bayes classifier on a single subject. Figure 3.12

shows the classification accuracy; all the window size used 36 features with MEDA as

a pre-processing step. It can be observed from the figure 3.12 that the classification

accuracy increased as the window size increased to an optimal value beyond which the

curve saturates. The window length of 200 ms was chosen for faster system response.

3.5.4 Performance Comparison with other noise reducing method

The performance of the proposed MEDA method is compared against 4th order But-

terworth bandpass filter (20 Hz to 500 Hz). Here the comparison is made with But-

terworth because the Butterworth filter had a marginally better performance with

respect to the Wiener and SS filter. Figure 3.13 shows the bar graph of average

classification accuracy across seven subjects for different classifiers with Butterworth

filter and MEDA. From the bar graph, it is observed that the performance of MEDA

is better than that of Butterworth and mean percentage increase in classification ac-
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Figure 3.13: Bar plot of average classification accuracy across seven subjects for eight
upper limb movements using J-48, k-nearest neighbors (KNN), Naive Bayes and Linear
Discriminant Analysis (LDA) classifiers for Butterworth (red) and MEDA (orange) using a
window size of 200 ms

curacy was 16%, 14%, 16%, and 16% respectively for J-48, KNN, Naive Bayes and

LDA classifiers.

The processing time taken for MEDA and Butterworth was calculated within

Matlab on a PC with 1.7 GHz Intel Core i5 CPU and 4 GB RAM. For a fixed window

length N , the time taken for Butterworth filter was 38 ms and for MEDA 35 ms. Thus,

MEDA can be preferred over Butterworth filter as it provides around 8% savings in

the computational cost, with an additional 16% increase in the classification accuracy.

3.6 Summary

In this chapter, a pre-processing method MEDA was proposed for sEMG application.

The results indicate the significance of MEDA in achieving improved classification ac-

curacy across subjects. The method recovers the output signal with a maximum value

of kurtosis, which in turn enhances the classification accuracy. The redundant sEMG

features were removed, and the best subset of features that characterize the different

movements was obtained. The performance of three commonly used pre-processing

method, namely Weiner, SS, and Butterworth filter was discussed. The performance

of MEDA was compared with the Butterworth filter since it performed better than

Weiner and SS filters. The results indicated the significance of the proposed MEDA
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in the context of PR based MEC.
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Chapter 4

Reducing the Effect of Force

Variation and Wrist Orientation on

Pattern Recognition of Myoelectric

Hand Prostheses Control

4.1 Introduction

PR of sEMG signals has been used to control prosthetic devices with the aid of ad-

vanced signal processing methods (Adewuyi et al., 2017). Though high classification

accuracy of around 98% has been reported in the literature, the practical deployment

of the prostheses has not taken place. This is due to the gap between research and

clinical study (Peng et al., 2013). EMG PR-based control has shown great promise in

predefined settings in laboratory conditions. For EMG PR-based control to be com-

mercially available, real-time factors which affect the performance have to be taken

into consideration (Adewuyi et al., 2016). Many of the physical constraints such as

wrist orientation, force variation, electrode shift, limb variation, etc., degrade the

performance of PR. The studies conducted in the laboratory will have the upper limb

typically in a single position, and classification accuracy thus reported may not be

conceived in practice. Hence the PR scheme has to be designed by considering these

factors (Earley and Hargrove, 2016). Two of the main factors that affects the clinical

application are force level variation and wrist orientation. Force level changes that
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can arise due to activities such as lifting of heavy objects, handling mechanical tools,

etc., which can occasionally happen (Shin et al., 2016). Biologically, most changes in

force are due to changes in the effort level. Amputees with functional wrist preserve

the ability to move the wrist and are essential for their routine activity. If the PR

system is not trained for such scenarios, it misclassifies the pattern and produces the

wrong control decisions. Therefore, this chapter intends to investigate the effect of

force level changes and wrist orientation on the classification accuracy of the PR.

Previous research to overcome the effect of force level variation used sophisticated

feature selection methods, which often required a higher degree of computation. The

classification methods are of three types: a) feature-based, b) sequence distance based,

and c) model-based. The present work proposes the use of the sequence classifica-

tion approach, which does not possess evident features and uses the complete data

sequence for the classification. The method has been widely used in handwriting

recognition, which inspired the present work (Huang et al., 2010). In a sequence

distance-based classification, the similarity between sequences is measured by a dis-

tance function, which defines the quality of the classification (Xing et al., 2010).

Dynamic time warping (DTW) calculates the similarity between two series using a

distance measure and has been used previously for the classification of hand move-

ments (AbdelMaseeh et al., 2015). The major advantage of using the DTW method

is a better performance with low computational time.

DTW is used to overcome force level variation in the first part, then the same

algorithm is used for developing a wrist independent scheme in the later section.

4.1.1 Study on Force Level Variation

In most of the previous works, the performance of the method was evaluated on in-

tact subjects rather than on amputees, and it is not known whether these methods

can be generalized to amputees since, after the amputation, the muscle structure may

change. Several methods were used to this end to overcome force level variation in the

EMG classification including time-dependent power spectrum descriptors (TD-PSD)

(Khushaba et al., 2016b), discrete Fourier transforms (He et al., 2015), time domain

feature set (Scheme and Englehart, 2011), reduced spectral moments (Vuskovic and

Du, 2005), a combination of time-domain and autoregressive model parameters (Os-

koei and Hu, 2007), and wavelet features (Al-Timemy et al., 2015). Previous work
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involved training from all the force levels, that the subject exerted during testing.

However, training at all force levels applies only to intact-limbed subjects. Training

must be done at a lower or medium force level, for robust applications in amputees.

This is to reduce the training time and more importantly, because research shows

that amputees are comfortable training in low or medium force levels, rather than at

a high force level (Nazarpour et al., 2013).

In recent literature, Khushaba et al. (2016b) made a thorough study on the im-

pact of force level variation and used the TD-PSD method to diminish the effect of

muscular contraction levels. The sEMG records from six classes of hand actions at

three force levels were considered, and the accuracy of up to 91% was attained. The

technique achieved better performance than previously used methods. The database

only contains data from intact-limbed subjects. Hence, the database from Al-Timemy

et al. (2015) is also used in the present study, which has data extracted from nine

amputee subjects executing six instructions of motions with three different force lev-

els. The method used by Al-Timemy et al. (2015) to overcome force level variation

for amputees was the same as used by Khushaba et al. (2016b).

The present research examines the practical problem of force level variation for

PR-based systems when used by intact-limbed subjects as well as amputees. In

the first database, the effectiveness of the DTW method is tested on intact-limbed

subjects in terms of classification accuracy. The following schemes are used to test

the performance of the DTW method: Scheme I wherein the training is done with a

part of the data pertaining to a single force level and tested on all possible force levels,

and Scheme II where both the training and testing data include all three force levels.

The work demonstrates the capability of DTW on accurate classification for varying

force levels and wrist orientations by deploying these two strategies. The work does

look upon efficient training strategies to reduce the errors in pattern recognition. The

suitability of the algorithm to real-time applications is also demonstrated.

In contrast to the earlier methods, which relied on computationally expensive

feature extraction and classification techniques, the proposed solution uses DTW, an

efficient method to achieve better performance. DTW has been widely used in speech

processing, gesture recognition, and even in pattern recognition of biomedical signals

(Mazandarani and Mohebbi, 2018). Adopting this simpler approach also reduces the

time required for making the decision, significantly bringing down the cost of the

hardware. Training only at a specific force level is considered for amputee subjects,
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as this is the closest to a practical situation. Also, the DTW method is compared

with the TD-PSD method regarding classification accuracy and computational cost.

The main contributions of the study are: 1) proposing DTW as an alternative to

the existing method for improving the robustness of a PR based myoelectric system

in the presence of force level variation; and 2) demonstrating an improvement in

classification accuracy when trained at a low force level with amputees in comparison

with the TD-PSD scheme (Khushaba et al., 2016b, Al-Timemy et al., 2015), and

with a reduced computational time. The results of the present study could help in

designing a more robust and viable sEMG pattern recognition system for upper limb

prostheses.

4.1.2 Study on the changes in Wrist Orientation

This study focuses on the classification performance of myoelectric controller at three

different orientations. This work also uses simple Dynamic Time Warping (DTW)

method to achieve high performance in terms of classification accuracy and less delay.

The database of the intact-limbed subjects is used here since the amputee database

did not have the data for varying wrist orientation. The classification of hand move-

ments is done by calculating the distance between two sequences and finding the

similarities between them. The primary objective of the study was to evaluate PR

system at three different wrist orientations using DTW technique. The above is tested

with two protocols: Protocol I : Training using the data generated from a particular

wrist orientation and testing it with the remaining data, and, Protocol II : Training

using data generated from all the possible wrist orientations and testing for all wrist

orientation. The study validates DTW for changeable wrist orientations by testing

the above two training protocols .

4.2 Methodology

Two databases were used to demonstrate the effectiveness of the DTW method. The

first database has sEMG signals from non-amputee subjects for six hand motions at

three force levels each, carried out at three different wrist orientations. The second

database is the amputee database for six hand motions, each at three force levels at

a single wrist orientation.
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4.2.1 DATASET I: Intact-Limbed Subjects

4.2.1.1 Subjects and Data Acquisition

In the present work, the database from Khushaba et al. (2016b) is utilized. The

database enables the comparison of the present work to the state-of-the-art to over-

come force level variations and changes in the wrist orientation. The database of

Khushaba et al. (2016b) consists of sEMG signals recorded from ten able-bodied sub-

jects, who had no previous familiarity with the myoelectric framework. The age group

varied between 20 to 30 years with forearm diameter of 26.6 ± 2.4 cm.

The sEMG signals were acquired from six sensors (Delsys DE 2.x series EMG sen-

sors). The electrodes (bipolar) used were non-invasive 2-slot adhesive skin interfaces

mounted on each of the sEMG sensors attached to the skin. A reference electrode

(Dermatrode reference electrode) was positioned near the wrist of each subject. The

six electrodes were placed at equal distances around the forearm of the subject. Then,

the sEMG signal was amplified with the gain of 1000 and band pass filtered between

20-450 Hz. The data was sampled at 4 kHz using a 12-bit ADC from National In-

struments (BNC-2090). The database also contained data from the accelerometers

attached to the wrist. However, this has not been included in the present study.

4.2.1.2 Experimental Protocol

The data collection strategy adopted in the work of Khushaba et al. (2016b) is briefly

described in this section for better clarity. The subjects have to undergo a preparatory

session before beginning the test. Six classes of movements were performed: a) hand

close (C1), b) hand open (C2), c) wrist extension (C3), d) wrist flexion (C4), e)

ulnar deviation (C5), and f) radial deviation (C6). The subjects repeated each of

these six hand motions at three different force levels, i.e., low, medium, and high.

Figure 4.1 shows a time series plot of an individual trial for varying force levels

when a hand close movement was performed. The database also contains the data

described above for three different forearm orientations (Orientation 1, Orientation 2,

and Orientation 3) as shown in Figure 4.2. Thus, the total number of trials performed

on a subject equals to 162 (3 forearm orientations × 6 movements × 3 force levels

× 3 trials/movement). Each trial lasted for 5s with a 10s break in between. The

raw sEMG signals were displayed on the screen to help the subject to generate the

movement with the necessary force level.
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Figure 4.1: Three force levels acquired from single channel sEMG signal for hand close
movement

Figure 4.2: Data collection at three forearm orientations at three force levels at each
movement
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4.2.2 DATASET II: Amputee Subjects

4.2.2.1 Subjects and Data Acquisition

The second database is taken from Al-Timemy et al. (2015) and consists of sEMG

signals recorded from nine amputees. The database was collected after getting ap-

proval from the local ethical committee. The age group varied between 20 and 57

years, in which the first seven subjects did not use prostheses, and the remaining two

used one for a brief duration. A detailed description of the dataset can be found in

Al-Timemy et al. (2015).

The Ag/AgCl electrodes (bipolar) (Tyco Healthcare, Germany) connected to a

differential amplifier, placed around the left stump were used to acquire sEMG sig-

nals from eight channels. The electrode locations can be seen in Al-Timemy et al.

(2015). The European recommendations (SENIAM) for the EMG were followed for

the placement of the surface electrodes, and to mark the electrode locations, the elbow

joint was used as a reference. The channels were connected to differential amplifiers

with a gain factor of 1000 per channel and band pass filtered between 20-450 Hz. Fi-

nally, a custom-built multi-channel sEMG acquisition system acquired the signal at

a sampling rate of 2 kHz using a 16-bit ADC from National Instruments (USB-6210).

4.2.2.2 Experimental Protocol

Six movements were performed: a) thumb flexion (P1), b) index flexion (P2), c) fine

pinch (P3), d) tripod grip (P4), e) hook grip (P5), and f) spherical grip (P6). The

amputees were asked to look at the signals on the screen to produce the required force

level. They were given time to familiarize themselves with the different force levels.

The forces at lower and higher levels were recorded than the normal force with which

the prosthetic works. This was simulated since the force level changes during daily life

usage. The sEMG data was recorded from the amputated hand. The amputees used

their intact hand to generate the movement with the required force level. The signal

was displayed in LABVIEW (National Instruments) to help the amputees produce

the required force level. The amputees produced three force levels (i.e., low, medium,

and high) for each of the six movements. Five to eight trials were recorded for each

force level (Al-Timemy et al., 2015), for every amputee.
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4.2.3 System Overview

Figure 4.3: The overall framework of the suggested PR system

The information flow is shown in Figure 4.3. The blocks are explained individually

in the following sections.

4.2.3.1 Pre-processing, Segmentation, and Feature Extraction

MATLAB software was used to perform the analysis. The recorded sEMG signal was

sent to the pre-processing stage, where the noise was removed. The sEMG signals

were filtered between 20-450 Hz using a fourth-order Butterworth filter to eliminate

the effect of crosstalk and artifacts caused due to electrode movement. Also, a 50 Hz

notch filter was used to remove the power line interference.
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Two approaches were tested regarding the data segmentation, mainly to check

their suitability for real-time decision-making, one that does not use a windowing

scheme and takes the entire 5 s episode during a trial, and the other that uses a

disjoint window of size 200 ms. The motivation behind the present study is to see

the effect of the smaller window size on decision accuracy. The smaller window size

also means that the time to make a decision is reduced significantly in real-time.

The well-known root mean square (RMS) value of the signal for a duration of

50 ms was used as the only feature in the present study. The RMS can measure

the state of muscle activity, which represents the notable amplitude change of the

sEMG signal widely used as a feature and also as a means to reduce the noise in the

characterization of the sEMG signals.

4.2.3.2 Dynamic Time Warping (DTW)

The DTW provides a nonlinear alignment in the two-time series by calculating the

distance more wisely. The best alignment between two-time sequence is considered.

The two-time sequences are the sEMG data; one is the test data, and the other is

the template, which is already stored. The users cannot keep their rhythm constant

when they perform the same movement (e.g., hand close). The same movement can

be performed at different force levels (low, medium, and high). Due to this, there

will be a variation of patterns and some distortion, which is unavoidable. This results

in pattern variations and distortions. DTW can be used to improve the performance

of PR by permitting the transformation of the time series to identify similar profiles

affected by distortion (Huang et al., 2010).

Consider computing the similarity between two arbitrary time series data as shown

in Figure 4.4. In Figure 4.4(b), the Euclidean distance is used to measure the similar-

ity. The Euclidean distance becomes misleading whenever there is a small distortion

in the time axis. The distortion due to varying force levels is addressed in this work.

It can observed in Figure 4.4(b) that although the two sequences have the same wave-

form, they are not well aligned in the time axis. Figure 4.4(a) represents the two-time

series that are dissimilar in the Euclidean distance. To align them in the time axis, the

DTW algorithm provides a nonlinear mapping resulting in Figure 4.4(d). In the Eu-

clidean distance, the two-time series have approximately the same overall waveforms

but are not close to each other. The DTW warps the one-time series nonlinearity

to calculate the distance with the other time series more wisely [Figure 4.4(c) and
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Figure 4.4: (a) In Eucledean distance, the two time series are not similar. (b) The
allignment in time axis is not well; altough they have same overall waveforms. (c) After
DTW a refined distance measure is calculated. (d) Nonlinear alignment is provided by
DTW for the two time series

Figure 4.4(d)].

Consider two sEMG signals (training template and test signal) to be compared,

A and B of length n, n ∈ N . Let A= {a1, a2, a3,..., an } and B= {b1, b2, b3,...,

bn }. The DTW aligns A and B by using the following two steps (Senin, 2008, Vial

et al., 2009):

Step 1 : Distance matrix C is constructed by pair-wise distance between A and

B. Consider matrix C with dimension n× n, where, the (ith, jth) element of matrix

contains the distance dij.

C ∈ Rn−by−n : dij = ‖ai − bj‖, i ∈ [1 : n], j ∈ [1 : n] (4.1)

This distance matrix C is called the local cost matrix for the sequence A and B.

Step 2 : After the local cost matrix is constructed, a warping path that defines

the mapping between A and B is found. Let W represents the warping path. The

kth element of W is defined as wk = (i, j). Therefore, we have:

W = w1, w2, w3. . . .., wk.., wK , n ≤ K ≤ 2n− 1 (4.2)
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The warping path W must satisfy the following criteria: 1) Boundary condition:

w1 = (1, 1) and wK = (n, n). The starting and ending point of the warping path

must be diagonally opposite to the cost matrix; 2) Monotonicity condition: Given

wk = (i, j), then wk−1 = (i
′
, j

′
), where, i − i′ >= 0 and j − j ′ >= 0. This makes

the points in W to preserve the time-ordering; and 3) Continuity condition: Given

wk = (i, j), then wk−1 = (i
′
, j

′
), where, i− i′ <= 1 and j − j ′ <= 1. This makes the

allowable step in the warping path to be restricted to the adjacent cells.

Several warping paths fulfill the above conditions. But the path which minimizes

the warping cost is of interest.

DTW (A,B) = min

(√√√√ K∑
k=1

wk

)
(4.3)

Dynamic warping is used to find the path with minimum cost. The warp path λ(i, j) is

obtained by the sum of the distance d(i, j) found in the current cell and the minimum

of the cumulative distances of the adjacent elements.

λ(i, j) = d(ai, bj) +min
{
λ(i− 1, j − 1), λ(i− 1, j), λ(i, j − 1)

}
(4.4)

To sum up, first, the cost matrix is filled one column at a time from the left to

the right from the bottom. When the cost matrix is built, a warped path must be

found starting from λ(n, n) to λ(1, 1). The warping path is found by greedy search

as described in (4.4). The smallest warping cost performs the matching of the two

signals.

The template here is the training data from the first two trials, and the length

of the template is the length of the trials which is the same for all cases. After

creating the template, the DTW algorithm is applied to the test data to find the

matching time points in the template. The distance between the sEMG signals for

the performed hand movement template and the trained template is calculated. The

hand movement is identified with the template of the smallest distance.

The example for hand close (C1) movement recognition is illustrated in Figure 4.5.

The sEMG signals for hand close movement is plotted in the left Figure 4.5(a) with

all six sEMG channels, which match the six forearm muscles. Then, the sEMG signal

RMS feature is extracted, which is represented as a continuous line [Figure 4.5(b)].

A comparison is made with the six templates, which are the training templates of
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Figure 4.5: An example of hand movement recognition. (a) After filtering, the sEMG
signal for hand close movement (b) Feature extraction is done by taking the RMS which is
represented in continious line (c) Comparison is done with all the templates (dotted line),
the system recognizes the hand movement corresponding to the minimum distance. The
x axis represnts the time in seconds which is of 5 s duration. The y axis represnts the
(a) amplitude of sEMG signal in milli-Volts; which ranges between -0.8 mV and +0.8 mV
(b)RMS value of the raw sEMG signal in (a) which ranges between 0 and 0.15.

82



the DTW [Figure 4.5(c)]. The intended movement is identified using the distance

measure calculated by the DTW. The comparison is made on the right side as shown

in Figure 4.5(c); the template for six hand movements is represented in the dotted

line. The calculated distance between the training template and the test template

is shown above the plots in Figure 4.5(c). The least distance corresponds to the

performed hand movements, which is C1 in this example.

The post-processing is done to give this decision to an external prostheses hand

from the decision generated using DTW. Classification accuracy is utilized to calculate

the hand movement identification performance.

4.2.4 Data Analysis

4.2.4.1 DATASET I: Intact Limbed Subjects

The two schemes, as listed in Section 4.1, are employed for testing the execution of

the framework proposed in Figure 4.3. The data from two out of the three trials

of every subject is used to produce the training set, and the third trial is used for

validation of the two schemes. As mentioned in Section 4.2 (i.e., 4.2.1 ), the effect

of taking a shorter window on the classification performance is also studied here to

check its feasibility for real-time implementation.

4.2.4.2 DATASET II: Amputee Subjects

In the case of an amputee practically using the prostheses, training should be done

at a single force level. It is difficult for amputees to train data at a high force level

due to fatigue, which may produce tremors on some occasions (Al-Timemy et al.,

2015, Nazarpour et al., 2013). Hence for the amputee database, only training at a

single force level is evaluated. In the present study, the first three trials were used for

training, and the remainder (two to five trials) were used for testing.

4.2.5 Statistical Test

To test the statistical significance of the achieved results, one-way analysis of variance

(ANOVA) was utilized. Also, the well-known two-way ANOVA was used, as multiple

factors needed to be tested. An additional significance test known as the t-test was

also used. The significance level was set to 0.05 for all the three tests.
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4.3 Results on the study of force level variations

4.3.1 Experiments on DATASET I

In this section, the two training schemes briefly mentioned in Section 4.1 will be used

and their performance with the DTW will be analyzed. The classification accuracy

presented is averaged across ten subjects.

4.3.1.1 Experimental Scheme I : Training the DTW template on the part

of the data pertaining to a single force level and testing on all

possible force levels

The average classification accuracies for ten subjects are shown in Figure 4.6, where

Scheme I is adopted. Figure 4.6 shows the results for all three orientations. The error

bars represent the standard deviation across ten subjects. The following observations

can be made from Figure 4.6 for all three possible forearm orientations: (i) there is

a significant impact on the performance of the PR system when the subject executes

unseen force levels. One-way ANOVA was applied to validate the statistical signif-

icance of the classification scores for the three force levels after DTW, which gave

p = 0.016 at orientation 1, p = 0.0024 at orientation 2, and p = 0.27 at orientation 3.

There was a significant effect of force level variation on the classification accuracy at

orientation 1 and orientation 2 (p < 0.05), and no significant impact at orientation

3; (ii) the trend is similar across all the ten subjects since the error bar lies within

±10%. The two-way ANOVA found no significant difference across the ten subjects

(p = 0.14), and (iii) the effect of windowing (i.e., taking 200 ms data segments) is

not significant on the performance of the PR system. To see the effect of window-

ing, the two-way ANOVA was applied. The values of p were 0.88, 0.74, and 0.82 at

orientations 1, 2 and 3. There was no significant effect with and without windowing.

From Figure 4.6, the maximum classification accuracy was obtained at forearm

orientation 2 when trained at a low force level (83.3%) and also at medium force level

(82.7%). Relatively lower accuracy was obtained when trained at a high force level.

From this, it can be concluded that when the DTW template is trained with

a single level of force, the classification accuracy is relatively poor and affects the

performance of the PR system.

Figure 4.7 shows the average confusion matrix for the ten subjects with experimen-
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(a)

(b)

(c)

Figure 4.6: Average classification accuracy with Scheme I obtained across ten subjects
for six hand motions at orientation 1 (a), orientation 2 (b) and orientation 3 (c)
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Figure 4.7: Average confusion matrix with Scheme I obtained across ten subjects for
six hand movements (hand close (C1), hand open (C2), wrist extension (C3), wrist flexion
(C4), ulnar deviation (C5), and radial deviation (C6)) at orientation 2
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tal Scheme I at orientation 2 when training with low force. The average classification

accuracy was 83.3%. Low classification accuracies were observed for hand close (C1),

hand open (C2), and wrist extension (C4) movements (< 90%). This will be further

discussed further in the next section.

4.3.1.2 Experimental Scheme II: Training the DTW template with all

three levels of force and testing it with all unseen force levels

Figure 4.8: Average classification accuracy with Scheme II obtained across ten subjects
for six hand motions from three different orientations

Figure 4.8 shows the average classification accuracy of the PR system when Scheme

II is deployed. Similar to Figure 4.6, the following can be observed: (i) the accuracy

is significantly not affected when a shorter window of 200 ms is used and the results

are comparable with the case where the entire 5s data is used as the training and

testing template. One-way ANOVA was applied to see the effect of windowing at

each orientation. At orientations 1, 2, and 3, the values of p were 0.82, 0.22, and

0.46 respectively. There was no significant effect of windowing; and (ii) the results

are consistent across the ten subjects. The one-way ANOVA showed that there is no

significant difference across the ten subjects since the value of p = 0.18. However,

it can be seen that in contrast to Scheme I (Figure 4.6), the accuracy has improved

significantly owing to a wider training set and the results have become much more

consistent with only a ±5% standard deviation. To validate this, one-way ANOVA

was used. The values of p at each orientation (1, 2, and 3) was 0.0003, 0.0002,
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and 0.0001 respectively. This indicated that there is a significant change in the

classification accuracy in Scheme II when compared with Scheme I.

When deploying Scheme II, the average accuracy was always higher than 90%.

Specifically, for orientation 2, it was as high as 98.3%, even when using a shorter 200

ms window. This is a significant improvement compared with the earlier reported

works in this area.

This indicates the usability of the DTW for the PR system trained with all the

force levels based on the analysis of the sEMG signals. From this, it can be concluded

that training should be from all the force levels to increase the robustness of the sEMG

PR system. This finding agrees with the work of Al-Timemy et al. (2015).

The DTW method was compared with the TD-PSD method by Khushaba et al.

(2016b). The results of the evaluation are given in Table 4.1.

Table 4.1: Comparison of average classification accuracy for the TD-PSD method and the
DTW method for DATASET I

Method Classification Reference
accuracy %

Time-Dependent Power 93 (Khushaba et al., 2016b)
Spectrum Descriptors

Dynamic Time Warping 98.3 Present study

The average confusion matrix for the ten subjects with the experimental Scheme

II at orientation 2 is shown in Figure 4.9. From the confusion matrix, it can be

observed that the DTW method was successful in classifying the hand motions of

all classes with high accuracies (> 90%). The movements hand close (C1), hand

open (C2), wrist flexion (C4), and ulnar deviation (C5) were classified with a 100%

accuracy.

4.3.2 Experiments on DATASET II

4.3.2.1 Experimental Scheme I: Training the DTW template on the part

of the data pertaining to a single force level and testing on two

unseen force levels

To test the generalization ability of the DTW method when implementing the same

movement at different force levels, the data from an unseen force level was used for

validation. Here, the windowing scheme with a 200 ms window is employed for the
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Figure 4.9: Average confusion matrix with Scheme II obtained across ten subjects for
six hand movements (hand close (C1), hand open (C2), wrist extension (C3), wrist flexion
(C4), ulnar deviation (C5), and radial deviation (C6)) at orientation 2
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validation of the DTW method for the amputee study. The main intention in choosing

a 200 ms window is to keep the delay below 300 ms to achieve real-time control. For

validating the method, the same scheme as Al-Timemy et al. (2015) was used in

which the training data is acquired from a single force level and the testing data is

taken from unseen force levels. Here, the comparison is made with the state-of-the-art

TD-PSD method on the same database.

Table 4.2: Average classification accuracy (and the standard deviation in %) for nine
amputees when trained with single force level and tested with unseen force level for the
TD-PSD method and the DTW method with average processing time

Method Low Medium High Processing Rectangular
Time (ms) Window (ms)

TD-PSD 50 ±10 70 ±8 60 ±10 1.9 200
DTW 60 ±9 70 ±8 60 ±7 1.2 200

The average classification accuracy for nine amputees using Scheme I is shown in

Table 4.2 along with the standard deviation. It can be seen that there is a difference

in the accuracy obtained for individual amputees, which may be due to the difference

in their amputation level and the time since amputation. As it is evident from the

table, even though the accuracy is comparable with the TD-PSD while training the

DTW with medium or high force levels, the proposed method achieved a 10% increase

in classification accuracy when trained with a low force level. This was confirmed by

the t-test with a p value of 0.03, which indicates that there is a significant difference.

This is significant since amputees are comfortable training at lower or medium force

levels (Al-Timemy et al., 2015, Nazarpour et al., 2013). Training at a higher force

level is difficult for amputees.

The proposed method has been compared with the TD-PSD method on a per-

sonal computer with 1.7 GHz Intel Core i5 CPU (4GB RAM) using MATLAB. The

processing time required for a 200 ms rectangular window is shown in Table 4.2. The

DTW obtained a lower processing time and classification error when compared with

the TD-PSD method.

The following can be inferred from the reported results: Firstly, there is a defi-

nite improvement in the classification results when using DTW trained at lower force

levels in comparison with TD-PSD. A t-test was conducted for analyzing the statis-

tical differences between the results achieved using DTW versus TD-PSD for nine

amputees, each performing six movements at three force levels. There is a significant
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improvement in classification accuracy when trained at a lower force level using DTW

when compared to TD-PSD (p = 0.03). Secondly, the classification accuracy of both

DTW and TD-PSD remained the same when trained at medium and higher force

levels (p = 1). Thirdly, it is also evident that TD-PSD is more expensive in terms of

computational cost than the DTW method.

4.4 Discussion on the study of force level varia-

tions

The main advantage of using the DTW method is that it can overcome the force

level variability that affects the classification. Apart from the DTW method, many

techniques have been used in the literature, most of them being complex for real-

time implementation. In the present study, two datasets were used. In the first

database, the performance of the DTW method was validated using two schemes and

then compared with the previously used TD-PSD from the literature for non-amputee

subjects. Since the database of Khushaba et al. (2016b) did not have amputee subject

data, the database from Al-Timemy et al. (2015) was used to validate the DTW

method for amputee subjects.

4.4.1 DATASET I: Intact-Limbed Subjects

The performance of the EMG PR should not vary for various force levels for practical

usage. For this, the impact of force level variations on the myoelectric PR system

has been studied. Recent literature reports multiple studies to tackle such issues

with complex feature selection processes. In contrast, the aim in the present study

is to use a simpler and computationally more efficient PR system, which can be

deployed in real-time without compromising the accuracy. To check the utility of

the proposed PR system, the classification accuracy was evaluated on ten individuals

performing six hand movements at three different force levels, each at three different

hand orientations. The effect of using shorter 200 ms windows on decision-making was

also studied. The results indicate that the DTW method is less affected at different

force levels and performs well as a PR scheme even when shorter data segments are

available for decision-making. This significantly reduces the time to decision, making

it a potential candidate for creating a robust, real-time PR system.

91



4.4.1.1 Impact of training methods on the performance of PR based my-

oelectric control under force level variation

In the experimental Scheme I, the performance of the DTW method was checked

when using the data from one of the three force levels as the training template. The

performance was low as seen in Figure 4.6. This finding agrees with the earlier work

of Khushaba et al. (2016b). Low classification accuracy makes the training strategy

adopted in Scheme I less suitable for the application. The low classification accuracy

attained at individual force levels indicates that more information from other force

levels should be included to improve the performance.

Additionally, it was observed that the performance was slightly better when low

force or medium force was used instead of high force as the training template. This is

due to the difficulty in producing a high force level when compared with generating

low and medium force levels. Maintaining a high force is difficult for a substantial

amount of time is difficult, and it causes fatigue.

An examination of the confusion matrix in Figure 4.7, when adopting Scheme

I, reveals that the classification accuracy associated with the movements hand close

(C1), hand open (C2), and wrist flexion (C4) were poor with respect to the other

movements. The movements with lower error rates were wrist extension (C3),ulnar

deviation (C5), and radial deviation (C6). The misclassification might be because of

the variability of the force level and can be further improved by proper training.

Experimental Scheme II was employed to overcome the effect of force level vari-

ation, which uses all the three force levels to generate the training template. When

adopting Scheme II, better performance was expected and is shown in Figure 4.8.

The result shows a clear improvement in the DTW based PR system performance

when deploying Scheme II obtaining an accuracy of 98.2%. This outcome of using

the DTW method trained with all the force levels makes it suitable for real-time

application.

The average confusion matrix across the ten subjects was calculated and is shown

in Figure 4.9 to get a better understanding of the accuracy associated with each

movement. It can be seen that four out of the six movements obtained 100% accuracy.

92



4.4.2 DATASET II: Amputee Subjects

The performance of the DTW method is studied under varying force level conditions

and is found to be suitable for robust application. The DTW has been before for

sEMG hand movement classification. The DTW method has never previously been

investigated under force level variation on both intact and amputee subjects.

Force variation is one of the major obstacles for the practical implementation of

the prostheses. The first database, which has data from ten intact-limbed subjects,

was used to test the baseline performance of DTW under varying effort levels. The

algorithm is further tested on amputee subjects. It performed better than the re-

cently used TD-PSD method in terms of both accuracy and processing time. When

considering training at a single force level for amputees, the results suggest that the

DTW method provides a more dependable means of control than TD-PSD for six

movements.

In the TD-PSD method, the error rates for lower force are much higher than the

medium and high force levels. However, training an amputee at low and medium

force level is relatively easy when compared with a high force level, since training

at a higher force level requires a lot of effort and produces tremors in some cases

(Al-Timemy et al., 2015, Nazarpour et al., 2013). This explains the importance of

training at low and medium force levels rather than a high force level. With the

suggested DTW method, as in Table 4.2, a 10% increase in classification accuracy

was obtained when compared with the TD-PSD method with additional savings in

computational cost making it an interesting alternative to the previously used PR

schemes.

4.5 Results on the study of wrist orientation changes

The two training protocols are tested with the DTW algorithm to verify the suitability.

The classification accuracy reported is averaged across ten subjects.
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Figure 4.10: Average classification accuracy with Training Protocol I obtained across ten
subjects for six hand motions

4.5.1 Training Protocol I : Training the DTW template with

the data generated at single wrist orientation and test-

ing with the remaining two wrist orientations

Figure 4.10 shows the average classification accuracy across ten subjects while im-

plementing Training Protocol I. Error bars denote the standard deviation. From the

figure, it can be observed that the classification accuracy while using the training

data pertaining to any of the three orientation was almost the same which is quite

poor. The error bar lies between ±15%.

Further, it can be observed that the classification accuracy obtained is low. This

is due to insufficient training data. The average accuracies obtained when trained at

wrist orientations 1, 2 and 3 were 62%, 60% and 58% with windowing; and 60%, 59%

and 55% without windowing respectively. To analyze the effect of windowing, a one-

way ANOVA was applied to validate the statistical significance. From the statistical

results, the values of p = 0.79 at orientation 1, p = 0.9 at orientation 2 and p = 0.69

at orientation 3 were obtained. Since the values of p were greater than 0.05 at all

orientations, there was no significant effect with and without windowing.

The above results show that DTW accuracy is nearly the same across all wrist

orientations. Further, the DTW must be trained with more data to obtain higher
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accuracy.

4.5.2 Training Protocol II : Training the DTW template with

the data generated at all wrist orientations and testing

with unseen data from all orientations

Figure 4.11: Average classification accuracy with Training Protocol II obtained across
ten subjects for six hand motions

When Training Protocol II is implemented, the increase in accuracy is shown

in Figure 4.11. From the column graph, it can be observed that the accuracy is

comparable to with and without windowing. The error bar has reduced to ± 5%

which indicates that the results are consistent across trials and the classification

accuracy has improved significantly by incorporating training data from the entire

sampling space.

The maximum accuracy of 93.33% observed in this work is marginally higher

than the earlier study on the same database as shown in Table 4.3. To see the

effect of windowing, a one-way ANOVA was performed which resulted in a p value of

0.44 indicating that there is no significant effect of windowing and a shorter window

duration of 200 ms is enough to do accurate classification.

The improved classification accuracy recommends the use of DTW trained at all

wrist orientations for PR of EMG signals. The Training Protocol II agrees with the
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Table 4.3: Average classification accuracy (%) for ten subjects with Training Protocol II,
comparing TD-PSD method with the proposed method

Method Classification Reference
accuracy %

Time-Dependent Power 92 Khushaba et al. (2016b)
Spectrum Descriptors

Dynamic Time Warping 93.3 Present study

work of Khushaba et al. (2016b).

4.5.3 Processing time

The time taken by DTW for processing the data and generating the output was

calculated on a PC (1.7 GHz Intel Core i5 CPU, 4 GB RAM) in Matlab when trained

with all wrist orientations. The time taken for generating a decision for 200 ms data

is shown in Table 4.4. Since the total time taken for decision is less than 300 ms;

DTW algorithm becomes a likely candidate for real-time implementation.

Table 4.4: Avearge processing time (ms) for ten intact subjects for TD-PSD method and
DTW method for generating decision

Method Time Rectangular
(ms) Window (ms)

Time-Dependent Power 1.9 200
Spectrum Descriptors

Dynamic Time Warping 1.2 200

4.5.4 Confusion Matrix

The average confusion matrix for ten subjects is shown in Figure 4.12 for Training

Protocol II. Confusion matrix demonstrates the applicability of the DTW algorithm

in effectively classifying hand motions (>85%). The hand motions C2, C3, C4, and

C6 were classified with accuracy greater than 95%. A marginally low classification

was observed in case of hand motions C1 and C5.

Figure 4.12 (b) shows the classification in instances for Training Protocol II. Here,

the first and second trials of Orientation 1, 2 and 3 were used as training templates.

For a windowing scheme, a total of 27,000 windowed sequences of 200 ms were used

96



Figure 4.12: (a) Average confusion matrix with Training Protocol II obtained across
ten subjects for six hand movements (C1−C6) in percentage and (b) in terms of classified
instances.
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as training templates. The rest that is the third trial from Orientation 1, 2 and 3

were used as test templates. This gives a total of 13,500 windowed sequences of 200

ms as test templates. For each movement, 2,250 (13,500/6) windowed sequences were

used as test templates.

4.6 Discussion on the study of wrist orientation

changes

During the real-time application of prostheses, the PR accuracy should not degrade

when operated in multiple wrist orientations. The main aim of this work was to

diminish the effect of wrist orientation on PR of the myoelectric controller to facili-

tate the control of prostheses. Earlier studies conducted to overcome this issue used

computationally complex algorithms which were difficult to implement in real-time.

The main aim here was to use a simple and efficient wrist independent algorithm.

To verify this, an experiment was conducted on ten subjects performing six hand

motions at three different wrist orientations. From the results, it is confirmed that

DTW is robust against wrist orientation variation. For the real-time application, the

possibility of using shorter windowing time of 200 ms is verified using DTW.

4.6.1 Performance of proposed method under different wrist

orientation for the two training protocols

The performance of the DTW algorithm was tested using one of the wrist orientations

as the training template and the remaining two wrist orientations as testing templates

(Training Protocol I ). From Figure 4.10, it can be observed that the classification

accuracy remained the same at all wrist orientations. It can also be noted that the

classification accuracy was low, which directs for the inclusion of more training data

from the other wrist orientations. In this way, the Training Protocol II was imple-

mented by training the DTW with data from all wrist orientations. From Figure 4.11,

significant improvements in classification accuracy was seen. Compared to training

the wrist at one single position, the classification accuracy was considerably increased

through training at all wrist orientations. The main reason behind this is that the

training data contained patterns which closely matched the test data. This leads us
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to a conclusion of using the DTW method trained in all wrist orientations to develop

a wrist independent PR scheme.

To check the classification accuracy of each movement individually, the confu-

sion matrix is evaluated and presented in Figure 4.12. The movements C1 and C5

were classified with less accuracy when compared to the rest of the hand motions.

This is because the wrist variation creates shortening and lengthening of limb mus-

cles creating overlapping patterns across different classes of movements. The muscle

shortening affects the time and frequency measure of EMG signal along with the am-

plitude (Roman-Liu and Bartuzi, 2013). To overcome this effect, further training is

required with data generated from these scenarios.

It was also observed that the DTW algorithm can make an accurate prediction

even while using shorter window length showing its suitability in real-time applica-

tions. The previously used methods in the literature were complex with high compu-

tational cost, which will introduce a delay into the system and affect the implemen-

tation of real-time control. The DTW method was compared with TD-PSD method

proposed by Khushaba et al. (2016b). The results of the evaluation are given in Ta-

ble 4.3. DTW also presented much lower processing time requirements than that of

TD-PSD which additionally proves the impact of DTW method for overcoming wrist

variation effect.

4.7 Conclusion

This work investigated the performance of the PR system for upper limb myoelectric

control in the presence of force variation and wrist orientation variation separately.

DTW is proposed as a computationally cheap and accurate method for the PR sys-

tem in place of otherwise complex methods used previously in the literature. Thus

the significance and novelty of the study lie in the affordable real-time solutions for

upper limb prostheses. The study suggests a possible training strategy along with the

DTW scheme to mitigate such movement artifacts. The study shows that the clas-

sification accuracy can be improved by including training data from multiple wrist

orientations and force levels. These results are of significant interest in the biomed-

ical signal processing domain since they help the amputees with functional wrist to

control prosthesis efficiently. The DTW method achieved lower classification error

with reduced computational time compared to the state-of-the-art TD-PSD method
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and hence can be a possible alternative for the clinical implementation of PR based

myoelectric prostheses.
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Chapter 5

Summary and Future scope

This chapter provides the summary of the major findings of the thesis. Based on

the research carried out in this thesis, the recommendations for future research are

suggested.

5.1 Summary

In this thesis, two methods have been proposed for improvement of the performance

of sEMG based MEC. This section gives a detailed summary of the thesis.

Novel Pre-processing method: In the analysis of sEMG signals, the challenge

lies in the suppression of noise associated with the measurement and signal condi-

tioning. The work presents a novel pre-processing step, namely Minimum Entropy

Deconvolution Adjusted (MEDA), to enhance the signal for feature extraction re-

sulting in better characterization of different upper limb motions. MEDA method is

based on finding the set of filter coefficients under the condition of maximal kurtosis.

The proposed method has been validated on sEMG dataset collected from seven sub-

jects performing eight classes of hand movements with only two pairs of electrodes

recorded from flexor carpi radialis and extensor carpi radialis on the forearm. The

performance of the MEDA is then compared across four classifiers. Practical results

indicate that MEDA can significantly enhance classification accuracy. The results

demonstrate the effectiveness of the proposed method. The MEDA was compared

against the traditional used pre-processing methods. It has been observed that the

MEDA, in terms of the classification accuracy and processing time, can outperform

such methods from the literature.
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Method to overcome force level variation and wrist orientation: Regard-

less of the extensive research, attention towards the Pattern Recognition (PR) based

myoelectric control of the upper limb prostheses, the factors which affect its clinical

application has not received the same attention. The primary goal is to provide am-

putees with prostheses which have an accurate PR based myoelectric controller. In

practice, the vital factors affecting the limited performance of the PR based Elec-

tromyography (EMG) controlled prostheses are changes in the force levels and wrist

orientation. These effects create different sEMG patterns, even when the amputee

makes the same movement. The main aim of the PR based myoelectric controller is to

control the prostheses in a precise way, irrespective of the force level and wrist orienta-

tion at which the movement is made. In order to study the performance of the sEMG

based PR classification accuracy under such variations, many methods have been pro-

posed recently. The Time-Dependent Power Spectrum Descriptors (TD-PSD) method

is seen to outperform the previous approaches regarding both classification accuracy

and computational time. For decreasing the effect of force level and wrist variation on

EMG pattern recognition, this work proposes to use a time domain implementation

of the Dynamic Time Warping (DTW).

For force level variation, the DTW method is validated on two databases and com-

pared with the previously used TD-PSD method to verify its improved performance

in a real-life scenario. The first database, which has data from ten intact-limbed

subjects, was used to test the usability of the DTW initially resulting in an average

classification accuracy of more than 90%. With this encouraging result from the first

database, the next database that has data from nine upper limb amputees recorded

at three levels of forces (low, medium, and high) for six different hand grips has been

used. The proposed scheme with the DTW achieved a significant 10% improvement

in classification accuracy when trained at low force level when compared to the tra-

ditional TD-PSD method. This result is significant since for an amputee training at

lower and medium force levels is comfortable when compared to training at a high

force level. In the thesis, the DTW scheme has been deployed on data with varying

wrist orientation to see it’s robustness. The first database with intact-bodied subjects

used for force level studies also has data for varying wrist orientation and is utilized

in this study. The performance of the DTW scheme as a PR system is validated using

two training methods; with classification accuracy as a performance measure on data

taken from the database of ten intact subjects for six hand motions carried out at
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three different wrist orientations. On the database, an average classification accuracy

of about 93.3% was obtained while trained using sEMG data from all possible wrist

positions. The results from both the studies indicate that the performance of the

DTW method has improved significantly when compared with the TD-PSD method

in terms of classification accuracy and processing time.

5.2 Future scope

Based on the research carried out in this thesis, the recommendations for future

research are as follows:

� Examine the online performance of PR systems with transradial amputees. The

experiment carried out checked the performance of healthy subjects and used a

database of amputees for PR. Further, there is a need for examination of PR

with amputees

� The possibility of incorporating additional sensor data (say hand acceleration)

as a surrogate for the sEMG sensor data should be investigated to bring down

the cost of such systems. The cost of the sEMG sensor is high, by replacing

some of the sEMG sensors with other sensors such as force or accelerometer will

further reduce the cost of the system, thus making it affordable for amputees

� Investigation on the PR performance while both the force level and wrist orien-

tation are changed simultaneously. The work performed in this thesis studied

the effect individually. Future work needs to examine the impact on PR by

taking the two variations together.

� Studying PR performance by examining the sEMG data recorded over many

days. The investigation carried out in this work evaluated the performance of

sEMG signal on a particular day. For reproducibility of the results, reiterat-

ing over many days is very important. The change in performance should be

examined in the future
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Appendix A

Definition of variables

� Average amplitude change (AAC): AAC is the mean value of the absolute

difference between two consecutive samples.

� Approximate entropy (ApEn): ApEn is a method used to calculate the

amount of regularity and the randomness of fluctuations over time-series data.

� Difference absolute standard deviation value (DASDV): DASDV looks

similar to the RMS feature; it is a standard deviation value of the wavelength.

� Integrated EMG (IEMG): IEMG is used as a preliminary detection rate and

is associated with the trigger point of the sEMG signal sequence. It is the sum

of the absolute values of each sample of sEMG.

� Kurtosis (Kurt): Kurt is a statistical measure that is used to quantify the

shape of the distribution.

� Log detector (LOG): This provides an approximation of the strength of mus-

cle contraction force. However, its definition is changed based on the logarithm

and log detector feature.

� Mean absolute value (MAV): MAV is an average of the absolute value of

the sEMG signal amplitude in a segment.

� Root mean square (RMS): RMS is modeled as an amplitude modulated

Gaussian random process, which is related to constant force and contraction

without fatigue. It is similar to the calculation of the standard deviation

method.
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� Sample entropy (SampEn): SampEn is the refinement of ApEn to reduce the

bias induced by self-matching. It is independent of the length of the recording

and displays relative consistency under various circumstances.

� Simple square integral (SSI): SSI is a summation of square values of the

sEMG signal amplitude. It uses the energy of the sEMG signal as a feature.

� Variance (VAR): It is the average of square values of the deviation of that

variable.

� Waveform length (WL): It is simply the cumulative length of the EMG

waveform over the time segment. It provides information about the complexity

of the waveform in each segment.

� Skewness (Skew): Skew is the measure of symmetry, or more precisely, the

lack of symmetry.

� Mean frequency (MNF): MNF is calculated as the sum of the product of

the sEMG power spectrum and the frequency divided by the total sum of the

spectrum intensity.

� Median frequency (MDF): MDF is the frequency at which the spectrum is

divided into two regions with equal amplitude. It is the total power average.

� Mean power (MNP): MNP is the average power of the sEMG power spec-

trum.

� Spectral moment (SM): SM is an alternative statistical analysis way to ex-

tract features from the sEMG power spectrum.

� Total power (TTP): TTP is the total of the sEMG power spectrum.
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Appendix B

Description of Dimensionality

Reduction and Classification

Methods

B.1 Wrapper based Dimensionality Reduction

The wrapper approach conducts a search in the space of possible parameters. A search

requires a state space, an initial state, a termination condition, and a search engine.

The goal of the search is to find the state with the highest evaluation. The evaluation

function used is cross-validation repeated multiple times (Kohavi and John, 1997).

The following summary shows the instantiation of the search problem:

Initial state: The empty set of features (0,0,0.. ,0)

Evaluation: Five-fold cross-validation repeated multiple times with a small penalty

(0.1%) for every feature

Search algorithm: Particle Swarm Optimisation (PSO), Best First, Linear Forward

Selection and Greedy Step Wise search

Termination condition: Algorithm dependent

B.1.1 Greedy Step Wise

The algorithm expands on the current node and moves towards the child with the

highest accuracy. The method terminates, when no child improves over the current

node. The algorithm performs a greedy forward or backward search through the space
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of attribute subsets. This may start with no/all attributes or from an arbitrary point

in the space, stops when the addition/deletion of any remaining attributes results in

a decrease in evaluation.

The algorithm is as follows (Kohavi and John, 1997):

1. Let v ← initial state.

2. Expand v : apply all operators to v, giving v’s children.

3. Apply the evaluation function f to each child w of v.

4. Let v′ = the child w with highest evaluation f(w).

5. If f (v′) > f(v) then v ← v′; goto 2.

6. Return v.

B.1.2 Best First Search

The algorithm selects the most promising node that has not already been expanded.

Setting the number of consecutive non-improving nodes allowed controls the level of

backtracking done. Best first may start with the empty set of attributes and search

forward, or start with the full set of attributes and search backward, or start at

any point and search in both directions (by considering all possible single attribute

additions and deletions at a given point). In this research the forward setting was

used.

In the last k expansion, if an improved node is not found then the search is

terminated. An improved node is defined as a node with an accuracy estimation at

least ε higher than the best one found so far. In the following experiments, k was set

to five and ε was 0.1%.

The algorithm is as follows (Kohavi and John, 1997):

1. Put the initial state on the OPEN list, CLOSED list ← ∅, BEST ← initial state.

2. Let v = arg max w∈OPENf(w) (get the state from OPEN with maximal f(w) ).

3. Remove v from OPEN, add v to CLOSED.

4. If f(v)− ε > f(BEST), then BEST ← t.

5. Expand v : apply all operators to v, giving v′s children.

6. For each child not in the CLOSED or OPEN list, evaluate and add to the OPEN

list.

7. If BEST changed in the last k expansions, goto 2.

8. Return BEST.
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B.1.3 Linear Forward Selection (LFS)

LFS is a technique to reduce the number of attributes expansions in each forward

selection step. To reduce the number of subset evaluations, there are two steps 1)

initially all attributes are ranked with the wrapper. 2) Algorithm builds N attribute

subsets: the first set is the top-ranked attribute, followed by the two top-ranked

attributes, the three top-ranked attributes, and so on. These subsets are evaluated

using the wrapper.

Linear Forward Selection (D,R, k) denotes a forward selection with a limited

number of k attributes, based on the ranking R, Linear Forward Selection To Size(...)

uses a given subset size as termination criterion and outputs a subset of that size,

evaluate (S,D1, D2) delivers the accuracy of the classifier on the data D2, trained on

the data D1, using only the attributes in S.

The algorithm is as follows (Gutlein et al., 2009):

1. Perform m-fold cross-validation split on data D:

2. D →
(
D

(1)
Train , D

(1)
Test

)
,
(
D

(2)
Train , D

(2)
Test

)
, . . .

(
D

(m)
Train , D

(m)
Test

)
3.

4. STEP 1: COMPUTE OPT-SIZE

5. for all folds i = 1 to m do

6. Generate ranking R
D

(i)
Train

(a) on training data D
(i)
Train

7. Si = Linear Forward Selection
(
D

(i)
Train , R

(i)
DTrain

, k
)

8. proceed all i forward selections until |Si| = max1 ≤ i ≤ m |Si|
9.

10. for all folds i = 1 to m do

11. for all subsets S ′i = Si and preceding subsets of Si do

12. scores; = evaluate
(
S ′i, D

(i)
Train , D

(i)
Test

)
13. avgScoren = mean score for subset size n

14. optSize = subset size n with max avgScore n

15.

16. STEP 2 : FORW.-SELECTION UP TO OPT.-SIZE

17. Generate ranking RD on data D

18. S=Linear Forward Selection To Size(D, optSize, RD, k )
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19. return S

B.1.4 Particle Swarm Optimization (PSO)

PSO starts with the random initialization of a population of particles. Particles move

in the search space to search for the optimal solution by updating the position of

each particle based on the experience of its own and its neighboring particles. PSO

searches for the optimal solution by updating the position and the velocity.

The algorithm is as follows (Moraglio et al., 2007):

1. for all particle i do

2. initialize position xi and velocity vi

3. end for

4. while stop criteria not met do

5. for all particle i do

6. set personal best x̂i as best position found so far by the particle

7. set global best ĝ as best position found so far by the whole swarm

8. end for

9. for all particle i do

10. update velocity using equation

vi(t+ 1) = ωvi(t) + φ1U(0, 1) (ĝ(t)− xi(t)) + φ2U(0, 1) (x̂i(t)− xi(t))
where t denotes the iteration in the evolutionary process. ω is inertia weight. φ1 and

φ2 are acceleration constants. U is the random variable distributed in [0,1].

11. update position using equation

xi(t+ 1) = xi(t) + vi(t+ 1)

12. end for

13. end while

B.2 Classifiers

B.2.1 Naive Bayes

The classifier works on Bayes theorem. Bayes Theorem finds the probability of an

event occurring given the probability of another event that has already occurred.

Bayes theorem is stated mathematically as the following equation (John and Langley,

1995):
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P (A|B) =
P (B|A)P (A)

P (B)
(B.1)

From Bayes theorem, the probability of the occurrence of A can be calculated,

given that B has occurred. A is the hypothesis and B is the evidence. The assumption

made here is that presence of one particular feature does not affect the other.

Consider y is class variable and X is a dependent feature vector (of size n) where:

X = (x1, x2, x3, . . . ., xn)

Applying Bayes’ theorem.

P (y|X) =
P (X|y)P (y)

P (X)
(B.2)

The joint distribution is decomposed as:

P (y|x1, . . . , xn) =
P (x1|y)P (x2|y) . . . P (xn|y)P (y)

P (x1)P (x2) . . . P (xn)
(B.3)

Which can be expressed as:

P (y|x1, . . . , xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1)P (x2) . . . P (xn)
(B.4)

Since, the denominator remains constant for a given input:

P (y|x1, . . . , xn) ∝ P (y)
n∏
i=1

P (xi|y) (B.5)

In order to create a classification model, we find the probability of given set of

inputs for all possible values of the class variable y and pick up the output with max-

imum probability. This can be expressed mathematically as:

y = argmaxy P (y)
n∏
i=1

P (xi|y) (B.6)

B.2.2 J-48

J-48 begins with a set of features, and create a tree data structure that can be used

to classify new features. Each internal node of a decision tree contains a test, the

result of which is used to decide what branch to follow from that node.

J-48 builds decision trees from a set of training data using the concept of informa-
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tion entropy. The training data is a set S = s1, s2, s3. . . of already classified samples.

Each sample si consists of a p-dimensional vector (x1, x2, x3. . . xj), where xj represent

attribute values or features of the sample.

At each node of the tree, J48 chooses the attribute of the data that most effectively

splits its set of samples into subsets enriched in one class or the other. The splitting

criterion is the normalized information gain (difference in entropy). The attribute

with the highest normalized information gain is chosen to make the decision. The

J48 algorithm then recurses on the partitioned sublists.

This algorithm has a few base cases:

1) All the samples in the list belong to the same class. When this happens, it simply

creates a leaf node for the decision tree saying to choose that class.

2) None of the features provide any information gain. In this case, J-48 creates a

decision node higher up the tree using the expected value of the class.

3) Instance of previously-unseen class encountered. Again, J-48 creates a decision

node higher up the tree using the expected value.

The general algorithm for building decision trees is (Quinlan, 1993):

1. Check for the above base cases.

2. For each attribute a, find the normalized information gain ratio from splitting on

a.

3. Let abest be the attribute with the highest normalized information gain.

4. Create a decision node that splits on abest.

5. Recur on the sublists obtained by splitting on abest, and add those nodes as

children of node.

B.2.3 Linear Discriminant Analysis (LDA)

This method projects a dataset onto a lower-dimensional space with good class- sep-

arability to avoid over-fitting, and to reduce computational costs. LDA is often to

project a feature space (a dataset n-dimensional samples) into a smaller subspace

(where k ≤ n-1 ), while maintaining the class-discriminatory information. The goal

of LDA as supervised algorithm is to find the feature subspace that optimizes class

separability.

The general algorithm for LDA is (Quinlan, 1993):
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1. Compute the d-dimensional mean vectors for the different classes from the dataset.

2. Compute the scatter matrices (in-between-class and within-class scatter matrix).

3. Compute the eigen vectors (e1, e2, ..., ed) and corresponding eigen values (λ1, λ2, ...λd)

for the scatter matrices.

4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors with

the largest eigenvalues to form a d × k dimensional matrix W (where every column

represents an eigenvector).

5. Use this d×k eigenvector matrix to transform the samples onto the new subspace.

This can be summarized by the matrix multiplication:Y = X × W , where X is a

d×d dimensional matrix representing the n samples, and y are the transformed n×k
dimensional samples in the new subspace.

B.2.4 k-Nearest Neighbors (kNN)

The kNN algorithm assumes similar things are near to each other. The algorithm

captures the idea of similarity (sometimes called distance, proximity, or closeness) by

calculating the distance between points on a graph.

The general algorithm for kNN is (Quinlan, 1993):

1. Load the data

2. Initialize the value of k

3. For getting the predicted class, iterate from 1 to total number of training data

points

3.1) Calculate the distance between test data and each row of training data. We have

used Euclidean distance as our distance metric since it’s the most popular method.

The other metrics that can be used are Chebyshev, cosine, etc.

3.2) Sort the calculated distances in ascending order based on distance values

3.3) Get top k rows from the sorted array

3.4) Get the most frequent class of these rows

3.5) Return the predicted class
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