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ABSTRACT

In this study various artificial intelligence techniques have been compared for 

assessment and prediction of water quality in various zones of municipal distribution 

system using six physico-chemical characteristics viz. pH, alkalinity, hardness, 

dissolved oxygen (DO), total solids (TS) and most probable number (MPN). Fuzzy 

expert system, artificial neural network (ANN) and adaptive neuro fuzzy inference 

system (ANFIS) were used for the comparative study. The proposed expert system 

includes a fuzzy model consisting of IF-THEN rules to determine WQI based on 

water quality characteristics. The fuzzy models are developed using triangular and 

trapezoidal membership functions with centroid, bisector and mean of maxima 

(MOM) methods for defuzzification. In ANN method the cascade feed forward back 

propagation (CFBP) and feed forward back propagation (FFBP) algorithms were 

compared for prediction of water quality in the municipal distribution system. The 

comparative study was carried out by varying the number of neuron (1-10) in the 

hidden layer, by changing length of training dataset and by changing transfer 

function. ANFIS models are developed by using triangular, trapezoidal, bell and 

Gaussian membership function. Further, these artificial intelligence techniques are 

compared with multiple linear regression technique, which is the commonly used 

statistical technique for modelling water quality variables. The study revealed that 

artificial neural network (ANN) outperforms other modelling techniques and is a 

robust tool for understanding the poorly defined relations between water quality 

variables and  water quality index (WQI) in municipal distribution system. This tool 

could be of great help to the distribution system operator and manager to find change 

in WQI with changes in water quality varibles. 

Keywords: Water distribution system, Water quality index, Fuzzy logic, ANN, 

ANFIS, Neurons.
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CHAPTER 1

INTRODUCTION

1.0 GENERAL 

 Safe water is a precondition for health and development and a basic human 

right, yet it is still denied to hundreds of millions of people throughout the developing 

world. Water related diseases caused by unsafe water supplies coupled with poor 

sanitation and hygiene cause around 3.4 million deaths every year, mostly among 

children. Despite continuing efforts by governments, civil society and the 

international community, over a billion of people still do not have access to improved 

water sources. Water distribution system plays a vital role in presenting a desirable 

life quality to the public. The welfare level of a country is measured with the amount 

of water consumption for each person and the quality of the provided water (Kumar et 

al., 2009). Now a days, scarcity of water is a limiting factor for sustainable growth. 

Therefore preserving its availability and quality is a key issue (Uricchio et al., 2004). 

The quality of water is the most important environmental, social and political issue at 

the global level.

1.1 FAILURE OF WATER QUALITY IN THE DISTRIBUTION SYSTEM 

A typical modern water supply system comprises the water source (aquifer or 

surface water source including the catchment basin), treatment plants, transmission 

mains, and the distribution system which includes pipes and distribution tanks. While 

water quality can be compromised at any component, failure at the distribution level 

can be extremely critical because it is closest to the point of delivery and the residual 

disinfectant may not be sufficient to restrict the regrowth of microorganisms or to 

give protection against other contamination processes. Kleiner (1998) classified water 

quality failure, that compromise either the safety or the aesthetics of water in 

distribution networks into the following major categories: 

• Intrusion of contaminants into the distribution system through system components 

whose integrity was compromised or through misuse or cross-connection or 

intentional introduction of harmful substances in the water distribution system; 



2

• Regrowth of microorganisms in the distribution network; 

• Microbial (and/or chemical) breakthroughs and by-products and residual chemicals 

from the water treatment plant; 

• Leaching of chemicals and corrosion products from system components into the 

water; 

• Permeation of organic compounds from the soil through system components into the 

water supplies. 

Intrusion of contaminants into the water distribution system can occur through 

storage tanks (animals, dust carrying bacteria, infiltration) and pipes. Intrusion of 

contaminants through water mains may occur during maintenance and repair events, 

through broken pipes and gaskets, and cross-connections (Geldreich, 1990). 

Whenever the water pressure in a pipe is very low or negative, the risk of 

contamination through back flow or through leaky pipes increases. This can happen 

when the pipe is de-pressurized for repair or when the pipe is used for fire 

extinguishing or during transient pressures. Low or negative pressures, coupled with 

unprotected cross- connections and/or contaminated soils, and/or leaky sewers in the 

pipe vicinity create a high risk of contaminant intrusion especially if the pipe is 

deteriorated with cracks and pinholes. 

Growth of biofilm in the distribution system leads to deterioration of water 

quality. Biofilm is a deposit consisting of microorganisms, microbial products and 

detritus at the surface of pipes or tanks. Bacteria can enter from the treatment plant 

into the distribution system because it is virtually difficult to design a treatment plant 

with 100% efficiency. Moreover, its efficiency decreases over the period of time. 

Under favourable conditions, such as nutrient supply (e.g., organic carbon) in the 

water and long residence time, these bacteria can attach themselves to surfaces, 

rejuvenate and grow in storage tanks and on rough inner surfaces of water mains. The 

regrowth of organisms in the distribution system results in an increased chlorine 

demand, which has two adverse effects: (a) a reduction in the level of free available 

chlorine may hinder the system’s ability to contend with local occurrences of 

contamination (US EPA, 1999), and (b) an increased level of disinfection to satisfy 

the chlorine demand of biofilm results in higher concentrations of disinfection by-

products (DBPs). Disinfection is used to inactivate or kill pathogens. Chlorine has 
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been highly successful in reducing the incidences of waterborne infections in human 

beings, but harmful DBPs are formed in the presence of Natural Organic Matter 

(NOM) and bromide (from the source water) during chlorination. Other commonly 

used disinfectants are chloramines (combined chlorine), chlorine di-oxide and ozone. 

Ozone reacts with NOM and produces aldehydes, ketones and inorganic by-products. 

Ozone and chlorine di-oxide in the presence of bromide ion produce bromate and 

chlorate (and chlorite), respectively, which may have adverse effects on human health 

(US EPA, 1999). 

Corrosion giving rise to red water, which is one of the most common causes of 

water quality failure and leads to loss of aesthetics rather than a hazard to human 

health. Internal corrosion of metallic pipes and plumbing devices increases the 

concentration of metal compounds in the water. Different metals go through different 

corrosion processes, but in general low pH water, high dissolved oxygen, high 

temperature, and high levels of dissolved solids increase corrosion rates. Heavy 

metals such as lead and cadmium may leach into the water from pipes, causing 

significant health effects. Secondary metals such as copper (from home plumbing), 

iron (distribution pipes) and zinc (galvanized pipes) may leach into water and cause 

taste, odour and colour problems in addition to minor health related risks (Kleiner, 

1998). 

Permeation is a phenomenon in which contaminants (notably hydrocarbons) 

migrate through the pipe (plastic) wall. Three stages are observed in permeation 

phenomenon: (a) organic chemicals present in the soil partition between the soil and 

plastic wall, (b) the chemicals defuse through the pipe wall, and (c) the chemicals 

partition between the pipe wall and the water inside the pipe (Kleiner, 1998). In 

general, the risk of contamination through permeation is relatively small as compared 

to other mechanisms. 

1.2 WATER QUALITY MONITORING

Water quality is generally defined by a collection of upper and lower limits on 

selected possible contaminants in water (Maier, 1999). Water quality indicators 

(parameters or classes) can be classified into three broad categories: physical, 

chemical and biological contaminants. Within each class, a number of quality 
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variables are considered. The acceptability of water quality for its intended use 

depends on the magnitude of these indicators (Swamee and Tyagi, 2000) and it is 

often governed by regulations. A water quality failure (WQF) event is often defined 

as an excess of one or more water quality indicators from specific regulations, or in 

the absence of regulations, exceeds the guidelines or self-imposed customer-driven 

limits. 

As stated earlier, the physical, chemical and biological processes occurring in 

water distribution pipes are numerous and complex. A wealth of literature is available, 

describing the overall water quality represented by an aggregate index using various 

statistical and mathematical techniques. Sinha et al. (1994) combined pH, chloride 

concentration, turbidity, residual chlorine, conductivity and most probable number 

(MPN) into a single water quality index (0-100) through a weightage technique to 

represent an overall water quality at various nodes in the distribution system. Sadiq et 

al. (2004) suggested a framework for the analysis of aggregative risk associated with 

water quality failure in the distribution system. To monitor the quality of water in the 

distribution system, physical, chemical and biological parameters are recorded from 

routine grab sampling, followed by an analysis in the laboratory or using portable kits 

in the field. Regular monitoring programs help to identify a Water Quality Failure 

(WQF) if water quality indicators exceed regulatory regimes. 

1.3 NEED OF ARTIFICIAL INTELLIGENCE FOR WATER QUALITY IN          

MUNICIPAL DISTRIBUTION SYSTEM

Water distribution system plays a vital role in presenting a desirable quality of life to 

the public. A typical modern water supply system comprises the water source (aquifer 

or surface water source), transmission mains, treatment plant and distribution 

network. The water quality varies temporally and spatially at source, treatment plant 

and in the distribution network. The water quality in the distribution system 

deteriorates due to pipe age, corrosion of pipe material, intrusion of contaminants 

through leakage and cross connections, leaching of pipe material, formation of 

biofilm in the pipes (Kiéné et al., 1998) etc. and hence many uncertainties are 

involved till the water reaches to users tap.  A number of numerical models have been 

proposed to evaluate the changes of water quality within water distribution systems 
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due to the above causes (Liou and Kroon, 1987; Males et al., 1987; Rossmann, 2000; 

Pirozzi et al., 2002; Osfeld, 2005; Woolschlager et al., 2005). The predictive 

capability of such models have also been used, in recent years, both to reduce, to a 

strict minimum, the quantities of chlorine normally placed on the water distribution 

systems for preserving human health (Cozzolino et al., 2005; Gao et al., 2010), and to 

reduce the risk of contamination resulting from accidental phenomena or intentional 

attacks (Cozzolino et al., 2006; Cozzolino et al., 2011; Nyende-Byakika et al., 2012). 

Unfortunately, sometimes it is not possible to reconstruct all the data and information 

necessary for the numerical simulation of changes that specific water quality indices 

suffer from the sources up to the various users. As a consequence, other kinds of 

approaches have to be used to assess the water quality characteristics within 

municipal water distribution systems. 

Water quality index is a risk communication tool used to describe the status of 

water by translating a large amount of non-commensurate data into a single value 

(Ott, 1978). Swamee and Tyagi (2000) have discussed in detail the pros and cons of 

different techniques and approaches available for evaluating the overall index of 

water quality.  A significant amount of literature is available on the evaluation and 

management of water systems using WQI. For this purpose, physical, chemical, and 

biological water quality indicators (sub-indices) are aggregated in a ‘meaningful’ way 

using various statistical and mathematical techniques (Ott, 1978). These aggregation 

approaches generally include logical operators (e.g., minimum, maximum), averaging 

operators (e.g., arithmetic average, weighted average, geometric mean, weighted 

product), and many others like simple addition, root sum power, root sum-square and 

multiplicative forms. (Somlikova and Wachowiak, 2001; Silvert, 2000; Sinha et al., 

1994; Ott, 1978). Swamee and Tyagi (2000) have discussed advantages and 

shortcomings of different aggregation techniques available for the evaluation of WQI. 

In the aggregation process, recognition of two potential pitfalls, namely exaggeration 

and eclipsing, is important. Exaggeration occurs when all water quality indicators 

individually possess lower value i.e. lower than the maximum permissible values, yet 

the WQI comes out very high. Eclipsing is the reverse phenomenon, where one or 

more of the water quality indicators are of relatively high value, yet the estimated 

WQI comes out as unacceptably low. These phenomena are typically affected by the 
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method of aggregation; therefore the challenge is to determine the best aggregation 

method that will simultaneously reduce both exaggeration and eclipsing. 

The decision on the assessment of water quality implies that the water quality 

is desirable, acceptable, not acceptable, good or bad. These decision variables are 

linguistic in nature. These linguistic variables are invariably imprecise in nature 

indicating uncertainties involved. Various methods are discussed in the literature on 

water quality and decision making. But most of the reports on the water quality reveal 

that deterministic approach in decision making by comparing values of water quality 

parameters with prescribed limits provided by different regulatory bodies is used 

without considering uncertainties at various steps (Dahiya et al., 2007). One way of 

avoiding the difficulty in uncertainty handling in water quality assessment is to 

introduce a margin of safety or degree of precaution before applying a single value to 

drinking water quality standards. The same technique was also used by other 

researchers in the field of environmental engineering (Kumar et al., 2009). The 

regulatory limits for various pollutants/contaminants in drinking water proposed by 

various regulatory bodies have several limitations due to variation in intake of water 

by individuals during different seasons throughout the year. Prescribed criteria from 

any regulatory body contain uncertainties, as these are the extrapolated values from 

the data either from animal experiments or epidemiological studies (Dahiya et al., 

2007). Conventional water quality regulations contain quality classes which are crisp 

sets and limits between different classes that have inherent imprecision (Silvert, 

2000). Traditional methods of water quality classification use crisp set and the 

concentration values which are close or far from the limits and are considered in same 

class. Secondly, the various water quality parameters are, usually in different quality 

classes and this may confuse a non-expert on this subject. Using fuzzy logic, firstly 

quality limits of traditional classification were considered into continuous form. 

Therefore, the evaluation sensitivity of concentration increased. Secondly, the quality 

classes were combined to get one value, which represents quality classes of all 

parameters (Icaga, 2007).

Although, parametric statistical and deterministic models have been the 

traditional approaches for modelling the water quality, these require vast information 

on various sub-processes in order to arrive at the end results. In recent years several 
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studies have been conducted on water quality forecast models (Chen et al., 2003). 

However, a large number of factors affecting the water quality have a complicated 

nonlinear relation with the linguistic variables; traditional data processing methods are 

no longer good enough for solving the problem (Singh et al., 2009). This opens a new 

avenue for the application of artificial intelligence rather than probabilistic or 

statistical techniques. Various empirical formulae are used by the researchers to 

calculate WQI for ground and surface water quality assessment. There is no such 

empirical formula for assessment of water quality in the municipal distribution 

system.

1.4 THESIS OUTLINE

This thesis is organised as follows: 

Chapter 2 describes the various studies conducted to assess and predict the water 

quality for surface and ground water sources. It also includes the prediction studies on 

water distribution system and the objectives of research work. 

Chapter 3 provides information about the various techniques of artificial intelligence 

used in this research work. Chapter 4 includes methodology adopted, information 

regarding study area, data collection and water quality analysis to find out Water 

Quality Index in various zones of municipal distribution system. 

Chapter 5 includes the findings of various techniques of artificial intelligence and 

comparison of results obtained by Fuzzy Logic (FL), Artificial Neural Network 

(ANN), Adaptive Neuro Inference System (ANFIS) and Multiple Linear Regression 

(MLR). 

Chapter 6 includes concluding remarks of study conducted for assessment of water 

quality in municipal distribution system.
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CHAPTER 2

LITERATURE REVIEW AND OBJECTIVES

2.0 GENERAL 

The quality of water in the municipal distribution system is a subject of 

ongoing concern. Deterioration of water quality in the distribution system has initiated 

serious management efforts in many countries. Most ecological and water related 

decisions are difficult to make without careful modelling, prediction and analysis of 

water quality. Accurate predictions of future phenomena are the lifeblood of optimal 

water quality management in the municipal distribution system. Computer science 

and statistics have improved modelling approaches. Traditional methods hardly 

address the non-linearity, uncertainty, subjectivity, and complexity of the cause-effect 

relationship between water quality variables and water quality status. This chapter 

includes various techniques of artificial intelligence used in the past for prediction and 

assessment of water quality.

2.1 ARTIFICIAL INTELLIGENCE FOR GROUNDWATER QUALITY 

Monitoring of groundwater quality and qualitative decision making on the 

basis of data is a challenge for environmental engineers and hydrologists as every step 

from sampling to analysis contains uncertainties. The regulatory limits for various 

pollutants/contaminants in drinking water proposed by various regulatory bodies have 

several limitations due to variation in intake of water by individuals during various 

seasons throughout the year. Prescribed criteria from any regulatory body contain 

uncertainties as these are the extrapolated values from the data either from animal 

experiments or epidemiological studies (Dahiya et al., 2007). The Artificial Neural 

Network (ANN) method is regarded as a potentially useful tool for modeling complex 

non-linear system, whereas Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference 

System (ANFIS) are useful in the cases wherein uncertainties and imprecision is 

involved (Yan et al., 2010). 
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2.1.1 Prediction of Ground Water Quality 

In most Mediterranean and Asian countries groundwater is the primary 

resource for drinking and irrigation. Scarcity of water is the limiting factor for 

sustainable growth. Therefore preserving its availability and quality is a key issue. 

Furthermore, excessive groundwater withdrawal is a risk factor, because it causes sea 

water intrusion phenomena resulting in progressive groundwater salinisation 

(Uricchio et al., 2004). 

 Holger and Dandy (2000) presented a review of modelling issues and 

applications on neural networks for forecasting and prediction of water resource 

variables. In their paper, the steps that should be followed in the development of such 

models are outlined. These include the choice of performance criteria, the division 

and pre-processing of the available data, the determination of appropriate model 

inputs and network architecture, optimization of the connection weights (training) and 

model validation. The vast majority of the networks were trained using the back-

propagation algorithm.

Kuo et al. (2004) attempted to forecast the groundwater quality in the 

Blackfoot disease area, Taiwan. The groundwater quality in this area varies due to 

seawater intrusion and arsenic pollutants. Three types of ANN models were 

established to evaluate learning performance of the training model. Model ‘A’ 

includes five concentration parameters viz. Electrical conductivity (EC), chloride (Cl), 

sulphate (SO4), phosphate (K) and magnesium (Mg) as input variables to determine 

seawater intrusion and three variables viz. Alkalinity,  total organic carbon (TOC) and 

arsenic (AS)  to determine arsenic pollutants, respectively, where as model B and C 

used only one concentration parameter from each. Model C used two season data for 

training, where as models A and B used data from one season for training. The study 

revealed that model C outperforms model A and B and can describe complex 

variation of groundwater quality and be used to perform reliable forecasting. Shamim 

et al. (2004) conducted a study on use of ANN model for forecasting ground water 

contamination due to heavy metals. ANN model was used for predicting the 

concentration of iron (Fe), copper (cu) and lead (Pb) in ground water. The model was 

applied to real data from groundwater in Faisalabad, the largest industrial city of 

Pakistan. The city has more than 8000 big and small industrial units. The data for both 
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the lined and unlined channel was obtained from Pakistan Council of Research in 

Water Resources. The predicted concentration showed good correlation with observed 

concentrations. Coppola et al. (2005) compared ANN algorithm and linear regression 

for predicting specific conductance in an unconfined coastal aquifer located near a 

high capacity municipal supply well. Initial specific conductance, total precipitation, 

mean daily temperature and total pumping extraction were used as input variables. 

The specific conductance was considered as output variable. The study revealed that 

ANN algorithm outperforms linear regression model and showed good correlation 

with actual measured values. The absolute mean prediction error achieved by ANN 

algorithm was 1.1%.  Khandelwal and Singh (2005) compared multivariate regression 

analysis (MVRA) and ANN model for prediction of sulphate, chloride, chemical 

oxygen demand (COD), total dissolved solids (TDS) and total suspended solids (TSS) 

in mine water. The study was conducted by using pH, temperature and hardness as 

input variables. The study showed that predictions by ANN models are very 

satisfactory as compared to MVRA, and seem to be a good alternative for pollutants 

prediction in mine water.

Tumez et al. (2006) used ANFIS model for predicting electrical conductivity 

by using concentration of positively charged ions (Na, Ca, Mg, K) as input variables. 

The study revealed that ANFIS model outperforms traditional methods of modeling 

electrical conductivity based on dissolved solids in water, even though ANFIS uses 

less information. Spatial and temporal quality distribution is an important factor in 

groundwater management. Due to sampling sites deficit, high cost and time limit, 

spatial and temporal distribution modeling of aquifer contaminants is needed. 

Farahmand et al. (2010) compared kriging, ANN and ANFIS models for prediction of 

electrical conductivity and chloride. The electrical conductivity and chloride are two 

important indicators for ground water quality assessment. In kriging method, for 

spatial and temporal quality parameters, spherical model was the dominant type of 

model that fitted the data. Different artificial neural networks were developed and 

hidden layer structure with four neurons was observed as the most efficient structure. 

ANFIS models were developed by using gaussian, bell, and trapezoidal shaped 

membership functions. The study showed that ANFIS model performed better as 

compared to kriging and ANN models. ANFIS model with bell shaped membership 
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function was observed as the best fitting model for estimation of electrical 

conductivity and chloride.

Banerjee et al. (2011) compared ANN and saturated unsaturated transport 

(SUTRA) models for estimating safe pumping rate to maintain groundwater salinity 

in Kavaratti Island on West cost of India. Feed forward ANN algorithm was used for 

forecasting the salinity under varying pumping rates (8000-50000 lit/day). The study 

revealed that ANN predictions are more accurate than SUTRA model and it was also 

found that the pumping rate should be below 13000 lit /day to stabilize groundwater 

salinity within 2.5%. Zare et al. (2011) conducted the study to find the ability of ANN 

model to forecast groundwater nitrate of Arak aquifer, Iran. In this study ANN and 

linear regression (LR) methods were compared to predict concentration of nitrate in 

groundwater. The study showed that using the measured parameters is convenient to 

model nitrate concentration with acceptable and appropriate accuracy and ANN and 

LR methods are able to predict nitrate concentration at the desirable level of accuracy. 

Comparison of ANN analysis with LR model showed that ANN requires fewer 

parameters with more accuracy in comparison to LR models.

2.1.2 Assessment of Groundwater Quality 

The groundwater quality analysis involves variables such as acceptable, 

desirable and non-acceptable, which are linguistic in nature. Dahiya et al. (2007) used 

fuzzy synthetic evaluation approach to get the certainty value of linguistic variables 

such as desirable, acceptable and not acceptable, which are generally used for water 

quality analysis. They analysed the groundwater quality of Atelli block, Haryana, 

India. The study revealed that, out of 42 samples collected, 4 samples are in desirable 

category with certainty value 35-38%, 23 samples are in acceptable category with 

degree of certainty 37-75% and remaining 15 samples are in not acceptable category 

with degree of certainty 44-100%. Similar methodology was adopted by Kumar et al. 

(2009) for assessment of ground water quality of a Riyamanglam zone of Tichirapalli, 

to get certainty values of linguistic variables. The study revealed that out of 30 

samples collected, 4 samples comes in desirable class with certainty level of 

minimum 8% and maximum 78%, 14 samples are classified in acceptance category 
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with certainty level of 50% and rest 13 samples are in not acceptable class with 

certainty level of 100 %. 

Nonpoint source pollutants (fertilizers), irrespective of their origin, are 

transported overland and through the soil by precipitation and excess irrigation water 

(Novotny, 2005). Muhammetoglu and Yardimci (2006) used fuzzy logic approach to 

assess the groundwater pollution below agricultural field. The data collected from 

Kumluca plain of Turkey was used to develop the model. Water pollution index 

(WPI) was developed using nitrate, nitrite, orthophosphate and seepage index as input 

variables. Defuzzification was carried out using centre of maxima (COM) and mean 

of maxima (MOM) methods. The study revealed that there is good agreement 

between fuzzy results and monitored field results. Rai (2008) developed Fuzzy Water 

Quality Index (FWQI) for ground water classification of Kolkata city. The water 

quality parameters such as temperature, BOD, pH, nitrate and coliform were taken as 

input variables, where as FWQI was taken as output variable. The study revealed that 

fuzzy approach relates certainty value to the linguistic terms and the ground water 

quality in Kolkata city is good with a certainty value of 92% except at Haldia station, 

which is nearer to Indian Oil Company (IOC) refinery. 

2.2 ARTIFICIAL INTELLIGENCE FOR SURFACE WATER QUALITY 

Surface water quality impairment is often a trigger for conflict in a watershed, 

simply because degraded water quality means that desired uses are not possible or are 

not safe. Unfortunately the developmental activities that have taken place throughout 

the country gave a bad impact to the environment, especially about water quality. This 

has become a sensitive issue, which not only affects human health, but also the entire 

environment. The developmental activities not only affect the water quality, but also 

the aquatic lives that live in it. The management of surface water quality is a major 

environmental challenge. One of the major challenges is in determining point and 

non-point sources of pollutants. The discharge of industrial and municipal wastewater 

can be considered a constant polluting source. Most acceptable ecological and social 

decisions are difficult to make without careful modelling, prediction and analysis of 

surface water quality for typical development scenarios. Water quality prediction 
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enables a manager to choose an option that satisfies large number of identified 

conditions. 

2.2.1 Classification of Surface Water Quality 

Traditional classification methods of the water quality parameters use crisp 

set, and the concentrations values which are close or far from the limits are considered 

in same classes. Moreover, usually, several parameters are considered in quality 

determination; therefore, differences of the classes of the parameters may be vague, 

especially, in public consideration. Fuzzy synthetic evaluation which generally uses a 

numerical scale to represent water quality and provides an alternative methodology 

for aggregating the values of the parameters to various quality features have been 

studied and used in environmental quality evaluation since the 1990s (Ludwig and 

Tulbure,1996; Liou et al., 2003; Liou and Lo, 2005). Lu and Lo (2002) developed a 

multivariable tropic state indexing method, for diagnosing water quality and evaluated 

this method using fuzzy synthetic evaluation. Batisha (2003) conducted an 

investigation on water quality classification using multi-layer perceptron ANNs. The 

classification of water quality data is a typical pattern recognition problem that poses 

many difficulties. Traditional methods for classifying high volumes of such data into 

large numbers of classes based on statistical parametric methods often do not give 

sufficient descriptive accuracy for discriminating the number of classes required.  The 

study revealed that multilayer perceptron neural networks offers a good classification 

method and competes well with the traditional techniques used in statistical 

parametric methods. 

Adriaenssens et al. (2004) used fuzzy logic for decision support in ecosystem 

management. The study revealed that the fuzzy logic seems to be very promising in 

domains such as sustainability, environmental assessment and predictive models. 

Zhou et al. (2006) conducted study using Particle Swarm Optimization (PSO) based 

neural network for water quality classification and prediction. The data investigated 

from Yangtze river (China) was used for the study. The water quality parameters such 

as pH, DO, salts of permanganic acid (CODMn) and ammonical nitrogen (NH3-N) 

were used for water quality classification and prediction.  In this study, results 

obtained by PSO based neural network model were compared with observed field 
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results and results obtained by time series forecasting model. The study revealed that 

PSO based neural network is a robust algorithm and could be extended to other real 

world pattern classification and prediction applications.

Icaga (2007) used fuzzy evaluation for water quality classification. The 

traditional classification methods of water quality parameters use crisp set, and the 

concentration values which are close or far from the limits are considered in same 

class. In this fuzzy model, traditional quality classes are transformed into continuous 

form and then the concentration values of different water quality parameters are 

summed into fuzzy rules, finally, defuzzification of these summed values develops 

water quality index. This developed water quality index was used for surface water 

quality classification. Yan et al. (2010) compared ANFIS and ANN models for 

classifying water quality status of river. Several physical and inorganic chemical 

indicators including DO, COD and ammonia-nitrogen were used for classification. A 

data set (nine weeks, total 845 observations) was collected from 100 monitoring 

stations in all major river basins in China and used for training and validating the 

model. The study revealed that 89.59% of the data was correctly classified by using 

ANFIS model. This performance was more competitive as compared to artificial 

neural networks. It was also observed that the ANFIS model with Gaussian 

membership function performed better as compared with other membership functions 

for water quality classification.

 2.2.2 Prediction of Surface Water Quality 

In recent years, ANNs have been used intensively for prediction and 

forecasting in a number of water-related areas, including water resource study (Liong 

et al. 1999, Muttil and Chau 2006, El-Shafie et al. 2008), oceanography 

(Makarynskyy 2004), and environmental science and river water quality (Grubert 

2003). Rounds (2002) compared ANN and linear regression model for estimation of 

the daily mean and hourly concentrations of DO in the Tualatin River at the Oswego 

Dam, Portland, USA. The ANN and LR models were constructed using the data 

collected during May-October of 1991-2000. In this study physical and 

meteorological parameters were used as input variables viz. stream-flow, ambient air 

temperature, solar rays and precipitation. The study revealed that linear regression 
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models fail to understand the long-term patterns in the DO data, providing weak 

correlation results. However, the developed neural network models were successful in 

predicting patterns in the DO data sets on daily, weekly, and seasonal period scales.

Juahir et al. (2004) used ANN model for estimating water quality index (WQI) 

in the Langat River Basin, Malaysia. In this study the modeling data was divided into 

two sets. For the first set, ANNs were trained, tested and validated using six 

independent water quality variables as input parameters viz. DO, BOD, COD, pH, 

suspended solids and ammoniacal-nitrate. Consequently, multiple linear regression 

(MLR) was applied to eliminate independent variables that exhibit the lowest 

contribution in variance. Independent variables that accounted for approximately 71% 

of the variance in WQI are DO, BOD, suspended solids and ammoniacal-nitrate. The 

COD and pH contributed only 8% and 2% to the variance, respectively. Thus, in the 

second data set, only four independent variables were used to train, test and validate 

the ANNs. The study showed that the correlation coefficient obtained in estimating 

WQI given by six independent variables is 0.92, which is slightly better than 

correlation coefficient given by four independent variables (0.91). This demonstrates 

that ANN is capable of estimating WQI with acceptable accuracy when it is trained by 

eliminating few input variables which contributes less in estimating WQI. 

Altunkaynak et al. (2005) used Takagi–Sugeno (T-S) fuzzy model for prediction of 

DO at two stations located in Golden Horn, China. The T-S fuzzy model was used to 

predict DO concentration of the next month from DO concentrations of the last two 

antecedent months. 

Schmid and Koskiaho (2006) used multi layer perceptron (MLP) type of ANN 

model for forecasting DO in the Finnish free water surface wetland at Hovi, Finland. 

Yeon et al. (2008) compared ANN and ANFIS models using time series data for 

forecasting DO and total organic carbon (TOC) concentration in the Pyeongchang 

river, South Korea. The ANN and ANFIS models have shown good results for the 

simulation of TOC, whereas neural network model has shown better results than 

ANFIS model for forecasting DO. He and He (2008) used ANN model for predicting 

faecal indicator bacteria (FIB) at several seashores, altered stations and changed 

periods in base-flow or heavy-rains circumstances. The model was developed using 

temperature, electrical conductivity, pH, turbidity, water outlets flow, rainfall, and 
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time lapse after heavy rains as input variables. The prediction results after testing the 

model with different data sets showed that the developed ANN model is a robust tool 

for predicting count of faecal indicator bacteria. Palani et al. (2008) developed ANN 

models for predicting salinity, water temperature, DO and Chlorophyll-a  

concentrations in Singapore coastal waters. The study was carried out using fourteen 

input variables viz. temperature, salinity, pH, secchi depth (SD), DO, ammonium 

(NH4), nitrite (NO2), nitrate (NO3), total nitrogen (TN), phosphate (PO4),  total 

phosphorus (TP), nitrate nitrogen (NO2 + NO3), dissolved inorganic nitrogen (DIN = 

NH4 + NO2 + NO3), organic nitrogen (ON = TN―DIN), and organic phosphorous 

(OP = TP ―PO4). The study revealed that ANN architecture  with back propagation 

algorithm with three hidden layers with sigmoidal activation functions (Ward Net) is 

better architecture for the temperature and salinity prediction whereas the general 

regression neural network (GRNN)  is better for DO and Chlorophyll-a Prediction. 

Huiqun and Ling (2008) compared fuzzy inference system and ANN model for 

predicting BOD, total nitrogen (TN) and total Phosphorus (TP) in Dongchang Lake, 

Liaocheng, China. The study revealed that performance of ANN model is better than 

fuzzy model for prediction of BOD, TN and TP. 

Feed forward neural network with back propagation learning algorithm was 

used by Singh et al. (2009) for forecasting DO and BOD concentration in Gomati 

River, India. This study was carried using pH, total solids, total alkalinity, total 

hardness, chloride, phosphate, potassium, sodium, ammonium nitrogen, nitrate 

nitrogen and COD as input variables. Dogan et al. (2009) carried out a study to 

investigate the ability of ANN model to improve the accuracy of BOD estimation. 

ANN model was optimized for number of hidden layers and number of neurons in the 

hidden layer. The study revealed that ANN architecture having one hidden layer with 

three neurons gives the best predictions for BOD estimation.  Najah et al. (2009) 

predicted WQI at Johar river surface waters using ANN model. The study was 

conducted for prediction of total dissolved solids, electrical conductivity and turbidity. 

The study showed that the ANN predictions show less than 10% mean error. 

Sundarambal et al. (2009) developed ANN model for predicting weekly DO 

concentration in Singapore seawater. The study was conducted by using water 

temperature, salinity, pH, secchi depth (SD), Chlorophyll-a as input variables and DO 
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as output variable. The results showed that the neural network models are more 

accurate at simulating the dissolved oxygen of very complex seawater. Talib et al. 

(2009) used ANN model for one month ahead forecasting of water quality using BOD 

as a water quality indicator. Testing for BOD is a time consuming task as it takes five 

days from data collection to analysing with lengthy incubation of samples (referred to 

as BOD5). The hyperbolic tangent transfer function was selected for input and output, 

with sum of squares as an output error function. Eight water quality parameters were 

used as input variables viz. temperature, pH, salinity, nitrate, phosphate, turbidity, 

dissolved solids and E-coli with an output of month lag BOD. The study revealed that 

ANN could reasonably forecast one month ahead BOD in terms of timing and 

magnitude. Study also revealed that phosphate is the most important input variable for 

BOD prediction. 

Najah et al. (2011) used multi-layer perceptron neural network (MLP-NN) for 

predicting DO at Johor river basin, Malaysia. Five water quality parameters were used 

for modelling viz. Temperature, pH, electrical conductivity, nitrate and ammonia 

nitrogen. In this study, two scenarios were introduced; the first scenario was to 

establish the prediction model for DO at each station based on five input parameters, 

while the second scenario was to establish the prediction model for DO based on the 

five input parameters and DO predicted at previous station (upstream). To evaluate 

the effect of input parameters on the model, the sensitivity analysis was carried out. It 

was found that the most effective inputs were oxygen-containing (NO3) and oxygen 

demand (NH3-NL). On the other hand, temperature and pH were found to be the least 

effective parameters, whereas electrical conductivity contributed the lowest to the 

proposed model. The study showed that results for second scenario were more 

adequate than the first scenario, with a significant improvement for all stations. 

Determining COD requires costly analysis which places a financial burden on the 

national water quality monitoring network. 

Najah et al. (2011) compared multi-layer perceptron neural networks (MLP-

ANN), ensemble neural networks (E-ANN) and support vector machine (SVM) to 

predict concentration of DO, BOD and COD in Johor river, Malaysia. The study 

revealed that support vector machine performed better as compared to multilayer 

perceptron neural network and ensemble neural network. The error in prediction was 
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less than 5% for support vector machine technique of artificial intelligence. Soliman 

et al. (2011) used ANN model for the prediction of the COD in the Rosetta Branch, in 

the north-west of the Nile Delta, Egypt. The study was conducted by using BOD, DO 

and water temperature as the input variables. The study showed that the % error 

between the actual and predicted values varied from to 0 to 14%.  Sarani et al. (2011) 

compared artificial neural network and multivariate linear regression model for 

prediction of sodium adsorption ratio (SAR). The study was conducted by using 

chloride, conductivity, alkalinity and total dissolved solids as input parameters. The 

study showed that ANN performs better for prediction of sodium adsorption ratio.

 Gazzaz et al. (2012) conducted a study to describe design and application of 

feed-forward three-layer perceptron neural network model for computing the water 

quality index for Kinta River, Malaysia. The study was conducted using twenty three 

input variables viz. temperature; turbidity; conductivity;  pH;  suspended solids, 

dissolved solids, total solids, ammonia nitrogen , DO, BOD, COD, sodium, 

potassium, calcium, magnesium, nitrate nitrogen, chloride, phosphate phosphorous, 

arsenic, zinc, iron, counts of the Escherichia coli bacteria and counts of the total 

coliform bacteria.  The study showed that the optimal network architecture was 23-

34-1 and that the best WQI predictions were associated with the quick propagation 

(QP) training algorithm; a learning rate of 0.06; and a QP coefficient of 1.75. The 

approach used in this study offers useful and powerful alternative to WQI 

computation and prediction, especially in the case of WQI calculation methods which 

involve lengthy computations and use of various sub-index formulae for each value, 

or range of values, of the constituent water quality variables.

Kisi et al. (2012) compared radial basis neural network (RBNN) and ANFIS models 

for predicting DO concentration. The study was conducted by using four input 

variables viz. pH, discharge, temperature, and electrical conductivity. The study 

showed that the RBNN model with three inputs (viz. temperature, pH, and electrical 

conductivity) was found to be slightly better than the ANFIS model with only 

temperature as input variable. The results showed that the temperature is the most 

effective parameter to estimate DO concentration and ANFIS model can be 

successfully used for prediction of DO if only temperature data is available. 

Areerachakal (2012) compared the predictive ability of ANFIS and ANN models to 
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estimate the BOD on data from 11 sampling sites of Saen Saep canal in Bangkok, 

Thailand. The five parameters of water quality viz. DO, COD, ammonia nitrogen, 

nitrate nitrogen and total coliform bacteria were used as the input variables for the 

development models. The study revealed that the ANN model performs better as 

compared to ANFIS model and provides a higher correlation coefficient (R=0.73) and 

a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model. 

The data arising from monitoring stations and experiments may be polluted by 

noise signals owing to systematic errors and random errors. This noisy data make the 

prediction task relatively difficult. To overcome this difficulty Ahmad et al. (2012) 

have used an augmented wavelet de-noising technique with neuro fuzzy inference 

system (WDT-ANFIS). The study was carried out for prediction of DO, BOD and 

COD. Two scenarios were introduced in this study viz.  first scenario was to construct 

prediction model for water quality parameters at each station, while the second 

scenario was to construct prediction model based on value of same parameter at 

previous station (upstream) and both were based on twelve input parameters. The 

study revealed that the second scenario performed more adequately than the scenario 

first with significant improvement ranging from 0.5% -3%.

Heydari   et al. (2013) used ANN models for predicting the monthly values of 

DO and specific conductance for a Delaware river at a station located at Pennsylvania 

site of the U.S. The study was conducted by using combinations of pH and 

temperature, pH and discharge, temperature and discharge, pH, temperature and 

discharge as input variables. The monthly data of four water quality parameters for 

the time period 1995-2006 was selected for this analysis. In developing the ANN 

model for prediction of DO and specific conductance, configuration 4-5-1 and 4-6-1 

yielded optimal with 5 and 6 neurons in hidden layer respectively. The study showed 

that DO and specific conductance in the Delaware river can be predicted with 

acceptable accuracy from a small set of physical and meteorological measurements. 

Emamgholizadeh et al. (2013) compared multilayer perceptron (MLP), radial basis 

neural network (RBNN) and ANFIS for forecasting BOD, DO and COD in Karoon 

river, Iran. Nine input parameters were used for the analysis viz. Electrical 

conductivity, turbidity, pH, calcium, Magnesium, sodium, phosphate, nitrate and 

nitrite. The study showed that the computed values of COD, BOD and DO using both 
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ANN and ANFIS were in close agreement with their respective measured values. The 

sensitivity analysis was carried out to determine the relative importance of 

contribution of the input variables. The results showed that the phosphate is the most 

effective parameter for prediction of BOD, DO and COD.

2.2.3 Assessment of Surface Water Quality 

Chang et al. (2001) used fuzzy synthetic evaluation technique to assess water 

quality condition in comparison with the output generated by conventional procedure 

such as water quality index. The study was based on a set of data collected at several 

sampling stations of the Tseng-Wen river system in Taiwan. The fuzzy water quality 

index (FWQI) was developed by considering pH, DO, BOD, COD, suspended solids, 

ammonia nitrogen and chloride as input variables. The study revealed that the fuzzy 

synthetic technique successfully harmonizes inherent discrepancies, complex 

conditions and uncertainties involved in water quality assessment. Haiyan (2002) used 

various methods which could be divided into five general categories to assess 

environmental quality. These categories are: (1) expert assessment; (2) index 

assessment; (3) economic analytical method; (4) operational assessment and (5) fuzzy 

comprehensive assessment. In the study, the fuzzy comprehensive assessment was 

applied to assess the quality of air, water and soil in Zhuzhou City, Hunan Province, 

China, based on the monitoring data of 1997 and National Environmental Quality 

Standards of China. The assessment procedure comprises five steps: (1) select 

assessment parameters and establish assessment criteria; (2) establish membership 

functions of each assessment parameter to assessment criteria at each level; (3) 

substitute the monitoring data of each assessment parameter at each monitoring site 

and national standards into the membership functions; (4) allocate the weights of each 

assessment parameter at each monitoring site to get a weight matrix; (5) carry out the 

fuzzy algorithm.

 Zaheer and Bai (2003) made a study on an application of ANN for water quality 

management. The study was conducted for river Hanjiang (China) to evaluate the 

effects of waste load from various kinds of domestic and industrial sources on water 

environment. The study revealed that ANN is useful tool for evaluating relative 

effects of pollutants in river system during decision making process.Panda et al. 
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(2004) reported that monitoring of water quality in lakes using usual water sampling 

and laboratory analysis is very costly and waste of time. Using artificial neural 

networks to predict the water quality with measurable data has a potential to make the 

water quality determination procedure cost-effective, fast and realistic. The radial 

basis function neural network (RBFNN) model was used to predict the concentrations 

of chlorophyll-a and suspended matter in the lake water. Shen et al. (2005) 

investigated the status of combined heavy metal and organo-chlorine pesticide 

pollution and evaluated the soil environmental quality of the Taihu lake watershed 

using a fuzzy comprehensive assessment. The evaluation was carried out in six steps 

such as (1) selecting of assessment parameters, (2) establishing the membership 

functions, (3) calculating the membership function matrix, (4) calculating the weights 

matrix, (5) determination of the fuzzy algorithm and (6) statistical treatment of data. 

The study revealed that the fuzzy comprehensive assessment method provides a 

scientific basis for analyzing and evaluating the environmental quality of soil. Prato 

(2005) proposed a fuzzy logic approach for evaluating ecosystem sustainability, and 

stated that the fuzzy logic approach is more appropriate than the conventional crisp 

sets approach to evaluating the strong sustainability of an ecosystem.

Deshpande and Raje (2006) used fuzzy description to assess the water quality 

of river, Ganga, for bathing purpose. The study was carried by using coliform, DO, 

BOD, pH and turbidity as input variables. The study revealed that the quality of water 

in Ganga River at Varanasi for bathing is acceptable with certainty value of 0.98. Bai 

et al. (2009) developed Fuzzy Water Quality Index (FWQI) by using DO, BOD, 

COD, pH, suspended solids and ammonia nitrogen as input variables to analyse the 

quality of semenith river, Malaysia. The results obtained provides better quality index 

with 90% perfection. Lermontov et al. (2009) compared the FWQI with WQI Obj., 

WQI Sub., WQI PAL, WQI min. and WQI CETB. The study revealed that the proposed 

FWQI seems to be reliable and consistent with traditional methods.

2.3 ARTIFICIAL INTELLIGENCE FOR PREDICTING MISSING VALUES

Diamantopoulou et al. (2005) developed ANN models for predicting the 

monthly missing values of the six water quality parameters viz. nitrates, specific 

conductivity, DO, sodium, calcium and magnesium at the Axioupolis station, of 
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Axios River, Greece. The monthly data of these six water quality parameters and 

discharge (Q), at the Axioupolis station, for the time period 1980-1994 was selected 

for this analysis. The training of neural networks was carried out by the cascade 

correlation algorithm which is a feed-forward and supervised algorithm. Kalman’s 

learning rule was used to modify the artificial neural networks weights. The networks 

were designed by putting weights between neurons, by using the hyperbolic-tangent 

function of training. The number of neurons in the hidden layer was determined based 

on the maximum value of coefficient of correlation.  The study revealed that ANN 

models can be used for the prediction of water quality parameters and for finding the 

missing values of time series of water quality parameters. 

Diamantopoulou et al. (2005) have developed ANN models to fill the monthly 

missing values of three water quality parameters viz. nitrates, specific conductivity 

and DO, at the Sidirokastro station of Strymon river, Greece. The monthly data of 

thirteen water quality parameters viz. nitrates, specific conductivity, DO, water 

temperature, sulphates, sodium, potassium, magnesium, calcium, total phosphorus, 

pH, chlorides, bicarbonates, ammonia and discharge (Q) , at the Sidirokastro station 

of Strymon river, for the time period 1980-1990 were selected for this analysis. For 

neural network construction, monthly data randomly partitioned into training (90% of 

total data) and testing (10% of all data sets), were used. The study showed that the 

neural network models can be used for the prediction of water quality parameters and 

allow the filling of the missing values of time series of water quality parameters.

2.4 ARTIFICIAL INTELLIGENCE FOR DISTRIBUTION SYSTEM 

Deterioration rate of cast iron pipes, used in the distribution system was 

predicted by Najjaran et al. (2004) using fuzzy inference system. The fuzzy inference 

system was developed by considering soil resistivity, redox potential, pH, sulphide 

and percentage (%) of fine clay as input variables and corrosivity potential as output 

variable. The study revealed that corrosivity potential reasonably correlates with the 

deterioration rate. Christodoulou et al. (2006) used an integrated GIS-based decision 

support system for determining  relationships between water main break rates and 

influential risk factors such as a pipe’s age, diameter and material, the corrosivity of the 

soil, the operating pressure and temperature, possible external loads (including highway 
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traffic) and prior pipe breaks. ANN model was developed to find water main break 

rates and life cycle for each of the individual pipes in the network by using number of 

previously observed breaks, material type, length and diameter of each pipe as input 

variables. Using fuzzy logic prioritization was done. GIS was used to represent the 

results in a convenient manner so that pipe managers can take a suitable decision.

Achim et al. (2007) compared shifted time power model (STPM), shifted time 

exponential model (STEM) and ANN model for prediction of pipeline failure using a 

large database which is neither complete nor fully accurate (noisy). The STPM and 

STEM are the statistical methods. The shifted time power model gives results in total 

number of failures and the shifted time exponential model gives results in number of 

failures per year. These models are based on age and failure histories and used a 

shifted time parameter and a variable rate parameter. The study revealed that ANN 

outperforms the statistical models, where databases are relatively large and noisy. 

Tabesh et al. (2009) compared ANN, ANFIS and multivariate regression 

models   for predicting pipe failure rate (number of accidents per year per unit length). 

The study was conducted by using length, diameter, age, pressure and depth of burial 

of pipe as an input variables and the output was the failure rate.  In this study eighty 

percent of the data was used for training of the network, 15% for testing and 5% for 

verification of the result in the ANN model. These three models were applied to a real 

case study involving a large water distribution network in Iran and the results of 

model predictions were compared with measured pipe failure data. The results 

showed that the outcomes of artificial neural network model are more realistic and 

accurate in the prediction of pipe failure rates and evaluation of mechanical reliability 

in water distribution networks.

Ho et al. (2010) developed a methodology to assess water leakage and to 

prioritize pipeline replacement based on the integration of a seismic-based ANN 

model and geographic information system (GIS). The pipeline break-event data was 

collected from the Taiwan water corporation pipeline leakage repair management 

system. Pipe diameter, pipe material and the number of magnitude-3+ earthquakes 

were used as the input factors and the number of monthly breaks was used as the 

prediction output for ANN model development. This study was the first attempt to 
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consider earthquake data in the break-event ANN prediction model. Spatial 

distribution of the pipeline break-event data was analyzed and visualized by GIS. 

Using this, the users can easily figure out the hotspots of the leakage areas. A north 

eastern township in Taiwan, frequently affected by earthquakes, was chosen as the 

case study.  The study revealed that GIS-based hybrid artificial neural network model 

is more effective as compared to traditional processes for prioritizing the order of pipe 

replacement in a water distribution network.

 Jafar et al. (2010) used ANN to predict the failure rate and estimate the 

optimal replacement time for the individual pipes in an urban water distribution 

system. The multilayer feed forward neural network was used for the study. The study 

was conducted using three indicators viz. physical (materials, length, diameter, 

thickness, and age), environmental (type of soil, location in the street) and operational 

(pressure and protection) as input variables. The influence of the input indicators on 

the failure of the water network was analysed by statistica and sensitivity analysis 

software. This analysis showed that the number of previous failures has a major 

influence on the occurrence of new failures (a pipe which has suffered from failure 

presents a high risk of future failure). The influence of the length, diameter and age of 

the mains was also significant, while the location, type of material and variation of the 

pressure have a moderate influence on failure. Finally the thickness and the type of 

soil have a low impact on failure; consequently they can be neglected. On the basis of 

these results, six models were constructed. They are classified according to the input 

indicators: three stratifications of material (plastic ``PLA'', cement ``AMC'', metallic 

``FER'' ``ductile or cast iron''), two stratifications of the number of failures (low, 

high), and a global model ``GLO'' (all data). This study showed that the ANN model 

could be effectively used to assist decision-makers in the elaboration of an optimal 

strategy for investment in maintenance and rehabilitation of an urban water network.

Bubtiena et al. (2011) used ANN model for predicting the pipe breaks. The 

model was applied to real world water distribution system of Benghazi city, Libya. In 

this study multilayer feed forward back propagation algorithm with two hidden layers 

having five and two neurons in the respective hidden layers was used for modelling. 

The tansigmoidal activation function was used in first hidden layer, logsigmoidal in 
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second hidden layer and purelinear in activation function for the output layer. The 

results showed that ANN model predictions shows good correlation with observed 

data having error of 3% during training and less than 10% during testing.

2.5 OBJECTIVES OF RESEARCH WORK 

A review of literature indicated that several studies have been conducted on prediction 

and assessment of groundwater and surface water quality using artificial intelligence 

but the number of attempts of artificial intelligence for water quality in the 

distribution system is very limited in literature. It is necessary to conduct a study 

wherein various techniques of artificial intelligence for water quality prediction and 

assessment in the distribution system can be compared on a single platform with 

reference to influencing parameters.

In this study it was proposed to compare various techniques of artificial intelligence 

and commonly existing statistical technique i.e. Multiple Linear Regression (MLR) 

technique for predicting and assessing water quality in the distribution system and 

validating the same with observed water quality. Following works were proposed to 

be carried out 

1) To predict and assess the water quality in the distribution system using fuzzy 

inference system at various locations in the city.

2) To check the suitability of ANN models for water quality prediction, assessment 

and to find the best fitting ANN model.

3) To check suitability of hybrid neuro fuzzy inference system for forecasting and 

assessing water quality at various locations.

4) Use of multiple linear regression technique for water quality prediction and 

assessment.

5)   Validating the above results with field results.
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CHAPTER 3

BASICS OF ARTIFICIAL INTELLIGIENCE 

3.0 GENERAL 

Artificial intelligence techniques such as fuzzy logic (FL), artificial neural 

network (ANN) and adaptive neuro fuzzy inference system (ANFIS) have been used 

as efficient alternative tools for modeling of complex water resources systems and 

widely used for forecasting. Fuzzy logic is a system consisting of three conceptual 

components, including (1) a rule-base, containing a selection of fuzzy if-then rules; 

(2) a data-base, defining the membership functions used in the fuzzy rules and (3) an 

inference system, performing the inference procedure upon the rules to derive an 

output (Zhang, 2009). Fuzzy logic models focus on the use of heuristics in the system 

description. The models can be seen as logical models that use if-then rules to 

establish qualitative and quantitative relationships among variables. Their rule-based 

nature allows the use of information expressed in the form of natural language 

statements, making the model transparent for interpretation (Vernieuwe et al., 2005). 

ANN has the ability to learn from input and output pairs and adapt to it in an 

interactive manner. ANFIS method, which integrates ANN and FL was proposed by 

Jang (1993). ANFIS has the potential to capture the benefits of both the methods in a 

single framework. ANFIS eliminates the basic problem in fuzzy system design 

(defining the membership function parameters and obtaining a set of fuzzy if-then 

rules) by effectively using the learning capability of ANN for automatic fuzzy if-then 

rule generation and parameter optimization (Nayak et al., 2004). 

3.1 BASICS OF FUZZY LOGIC 

Fuzzy control system is commonly defined as a system which emulates a 

human expert. A fuzzy controller consists of three operations: fuzzification, inference 

and defuzzification as shown in Fig. 3.1. In fuzzy logic system, the knowledge of the 

human is put in the form of a set of fuzzy linguistic rules. These rules would produce 

approximate decisions, just as a human would. The human expert observes quantities 
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by observing the inputs, and leads to a decision or output using his judgment. The 

human expert can be replaced by a combination of a fuzzy rule-based system (FRBS) 

and a block called as defuzzifier. The inputs are fed into the fuzzy rule based system, 

where physical quantities are represented into linguistic variables with appropriate 

membership functions. These linguistic variables are then used in a set of fuzzy rules 

within an inference engine, resulting in a new set of fuzzy linguistic variables. In 

defuzzification stage, the variables are combined and changed to a crisp output which 

represents an approximation to actual output.

Fig. 3.1 Fuzzy Logic Control System

3.1.1 Fuzzy Sets

A fuzzy set is represented by a membership function defined on the universe 

of discourse. The universe of discourse is the space where the fuzzy variables are 

defined. The membership function gives the grade, or degree, of membership (μ) 

within the set, of any element of the universe of discourse. The membership function 

maps the elements of the universe onto numerical values in the interval [0, 1]. A 

membership function value of zero implies that the corresponding element is 

definitely not an element of the fuzzy set, while a value of unit means that the element 

fully belongs to the set. A grade of membership in between corresponds to the fuzzy 

membership to set (Zrilic et al., 2000).

3.1.2 Fuzzification

Fuzzification is the process of decomposing a system input and/or output into 

one or more fuzzy sets. A fuzzy set is defined in terms of a membership function 

which maps the domain of interest, e.g. concentrations, onto the interval [0, 1]. The 

shape of the curves shows the membership function for each set. In this study the 
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trapezoidal and triangular membership functions were assigned to each subset. Many 

types of curves can be used, but triangular or trapezoidal shaped membership 

functions are the most common. Fuzzy sets span a region of input (or output) value 

graphed with the membership. Any particular input is interpreted from this fuzzy set 

and a degree of membership is interpreted. The membership functions should overlap 

to allow smooth mapping of the system. The process of fuzzification allows the 

system inputs and outputs to be expressed in linguistic terms so that rules can be 

applied in a simple manner to express a complex system.

3.1.3 Defuzzification

After fuzzy reasoning we get output in the form of fuzzy sets which needs to 

be translated into a crisp value. The objective is to derive a single crisp numeric value 

that best represents the inferred fuzzy values of the linguistic output variable. 

Defuzzification is such inverse transformation which maps the output from the fuzzy 

domain back into the crisp domain. Some defuzzification methods tend to produce an 

integral output considering all the elements of the resulting fuzzy set with the 

corresponding weights. Other methods take into account just the elements 

corresponding to the maximum points of the resulting membership functions 

(Rondeau et al., 1997). 

3.2 BASICS OF ARTIFICIAL NEURAL NETWORK (ANN)

Neural networks have been successfully used across an extraordinary range of 

problem domains, in areas as diverse as finance, medicine, engineering, geology, 

physics and biology. The excitement stems from the fact that these networks are 

attempts to model the capabilities of the human brain. From a statistical perspective 

neural networks are interesting because of their potential use in prediction and 

classification problems. Artificial neural networks (ANNs) are non-linear data driven 

self-adaptive approach as opposed to the traditional model based methods. They are 

powerful tools for modeling, especially when the underlying data relationship is 

unknown. ANNs can identify and learn correlated patterns between input data sets 

and corresponding target values. After training, ANNs can be used to predict the 

outcome of new independent input data. ANNs imitate the learning process of the 

human brain and can process problems involving non-linear and complex data even if 
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the data is imprecise and noisy. Thus they are ideally suited for the modeling of 

agricultural data which is known to be complex and often non-linear.

A very important feature of these networks is their adaptive nature, where 

"learning by example" replaces "programming" in solving problems. This feature 

makes such computational models very appealing in application domains where one 

has little or incomplete understanding of the problem to be solved but where training 

data is readily available. These networks are "neural" in the sense that they may have 

been inspired by neuroscience but not necessarily because they are faithful models of 

biological neural or cognitive phenomena. In fact majority of the network are more 

closely related to traditional mathematical and/or statistical models such as non-

parametric pattern classifiers, clustering algorithms, nonlinear filters, and statistical 

regression models than they are to neurobiology models.

3.2.1 Characteristics of Artificial Neural Network

• The NNs exhibit mapping capabilities, that is, they can map input patterns to their 

associated output patterns.

• The NNs learn by examples. Thus, NN architectures can be trained with known 

examples of a problem before they are tested for their “inference” capability on 

unknown instances of the problem. They can, therefore, identify new objects 

previously untrained.

• The NNs possess the capability to generalize. Thus, they can predict new outcomes 

from past trends.

• The NNs are robust systems and are fault tolerant. They can, therefore, recall frill 

patterns from incomplete, partial or noisy patterns.

• The NNs can process information in parallel, at high speed, and in a distributed 

manner.

3.2.2 Working of Artificial Neural Networks

The terminology of artificial neural networks has developed from a biological 

model of the brain. A neural network consists of a set of connected cells. The neurons 

receive impulses from either input cells or other neurons and perform some kind of 

transformation of the input and transmit the outcome to other neurons or to output 

cells. The neural networks are built from layers of neurons connected so that one layer 
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receives input from the preceding layer of neurons and passes the output on to the 

subsequent layer.

A neuron is a real function of the input vector (yj.....yk). The output is obtained as per 

equation 3.1. 

              (3.1)f(x) = fai + [∑k

n
Wij × Yj]    

Where f is a function, typically the sigmoid (logistic or tangent hyperbolic) function. 

A graphical presentation of neuron is shown in the Fig.3.2. 

Fig. 3.2 Structure of Neuron

Mathematically a neural network is a function consisting of compositions of 

weighted sums of the functions corresponding to the neurons. Feed-forward networks 

are especially useful in function approximation when a set of inputs and outputs is all 

that is known of the system. Feed-forward networks have their neurons arranged in 

layers. These layers have connections to the layers either side, as shown in Fig. 3.3. 

This figure shows a network with p inputs and s outputs. 

 
Fig. 3.3 Feed-Forward Back Propagation Neural Network Architecture
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There are two layers of hidden neurons, 1 and 2, with q and r neurons in each, 

respectively. In designing a feed forward neural network, it is necessary to determine 

heuristically the combinations of the number of hidden layers and the number of 

neurons in each to obtain the optimum combination. Common notation for the number 

of layers in a network is described as being the number of hidden layers plus the 

output layer, since these are the layers that process the information (Sobhani et al., 

2010).

3.2.3 Training Algorithms 

a) Feed-Forward Back Propagation (FFBP) Algorithm

For feed forward ANN’s, the error back propagation algorithm with the 

gradient descent update rule is most commonly employed. It is the most popular 

algorithm used for training ANNs.  It has got two steps. In the first step each input 

pattern of the training data set is passed through the network from the input layer to 

the output layer. The Feed Forward Back Propagation (FFBP) Architecture used for 

this study is shown in Fig.3.4. The network output is compared with the desired target 

output and in the second step an error is computed and is propagated back towards the 

input layer with the weights being modified.

Fig. 3.4 Feed-Forward Back Propagation Architecture 

E=∑p p=1(Y observed –Y predicted)                        

(3.2)
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Where, E = Error, which is propagated back towards the input layer to adjust the 

weight

Y observed = Observed output

Y predicted = Predicted output

p = Number of output nodes

P = Number of training patterns

Back propagation uses the ∆ (delta) rule to adjust the connectivity weights. 

During training, weights need continuous adjustment from iteration t to t+1.The 

adjustment W t+1, which is required in iteration (t+1), is assumed linearly related to 

the negative gradient of Error (E) with weight (w)  in iteration t. The constant of 

proportionality in this linear relation is known as the learning rate (h). Mathematically 

this relation can be expressed as follows

∆ W (t+1) = h w=w (t)                (3.3) ( -
∂E

∂W)
Using the equation the weight W t+1can be expressed as

W (t+1) =W (t) - h w=w (t)                (3.4)( ∂E

∂W)
For improving the convergence the following modification is of equation is used.

W (t+1) =W (t) - h w=w (t) + µ ∆W (t)           (3.5)( ∂E

∂W)
Where, (µ) is the momentum factor as it imparts the momentum to the rate of 

convergence (Hornik et al., 1989).

b) Cascade Forward Back Propagation (CFBP) Algorithm

 The CFBP algorithm is the basis of a conceptual design for accelerating 

learning in artificial neural networks developed by Fahlman and Lehiere (1990). It is 

so named because it combines features of the back-propagation and cascade-

correlation algorithms. Like other algorithms for learning in artificial neural networks, 

the CFBP algorithm (Fig.3.5) specifies an iterative process for adjusting the weights 

of synaptic connections by descent along the gradient of an error measure in the 

vector space of synaptic-connection weights. The error measure is usually a quadratic 
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function of the differences between the actual and the correct outputs. CFBP models 

are similar to feed-forward networks, but include a weight connection from the input 

to each layer and from each layer to the successive layers.

Fig. 3.5 Cascade Forward Back Propagation Architecture

There are two common criteria to stop training a network: (1) training cycles 

(epochs); and (2) desired errors. Dawson and Wilby (2001) suggested typical 

application of 20,000 to 100,000 training cycles (epochs) to train the network when 

steepest descent method is used. The other criterion is to limit the difference between 

desired output and output calculated by the network. The training process may be 

brought to halt using either the worst error difference after complete presentation of 

all input output patterns, or the root mean square error summed over all patterns. In 

practice, it is sometimes necessary to apply or compare both approaches to ensure the 

capability of the trained network in generalizing on the tested samples and 

application. The errors of tested samples is generally higher than the error of training 

sample as the network is trained to reduce the latter, not the former. However, the 

over-trained network would occasionally result in over fitting. Over fitting means the 

network can converge and yield a minimum or desired error in training samples but it 

cannot generalize well when validated with testing sample. The weights that produce 

the lowest error on the test sample would be used for the model.

3.3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

ANFIS proposed by Jang (1993) can construct an input–output mapping based 

on a given initial fuzzy system and available input–output data pairs by using a 
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learning procedure. The adaptive network simulates a fuzzy inference system 

represented by the fuzzy if–then rules. The hybrid network of ANFIS system is 

functionally equivalent to Sugeno’s inference mechanism (Fuller, 1999).

3.3.1 Architecture of ANFIS Model

The architecture of an ANFIS model with two input variables is shown in 

Fig.3.6. Suppose that the rule base of ANFIS contains two fuzzy IF–THEN rules of 

Takagi and Sugeno’s type as follows: 

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1,

Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

Fuzzy reasoning is illustrated and also the corresponding equivalent ANFIS 

architecture is shown in Fig. 3.6. The functions of each layer are described as follows: 

Layer 1 – Every node i in this layer is a square node with a node function. Then the 

framework of ANFIS will be able to build as shown in Fig.3.7. The node function in 

each layer can be described as follows:

Fig. 3.6 Schematic Diagram of ANFIS Architecture

Layer1. Each node in this layer is an adjustable node, indicated by square node, with 

node function as

           (3.6)O1
i = μAi(X),     i = 1,2

           (3.7)O1
i = μBi - 2(Y),     i = 3,4
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Where, x (or y) is the input of node, Ai (or Bi) is the linguistic variable. The 

membership function (µ) generally adopts bell-shape with maximum and minimum 

equal to 1 and 0, respectively.

              (3.8)μAi(X) =
1

1 + {((X -
Ci

ai
)2)}bi

Where, {ai, bi, ci} stands for the parameter set. If we change the values of these 

parameters set, the bell-shape function will be changed in accordance. Meanwhile, the 

membership functions are also different in linguistic label A. In this layer, the 

parameters are called as premise parameters.

Layer2. Each node in this layer is a fixed node, indicated by circle node, with node 

function to be multiplied by input signals to serve as output signal

               (3.9)O2
i = wi = μAi(X) * μBi(Y),     i = 1,2                    

The output signal wi means the firing strength of a rule.

Layer3. Each node in this layer is a fixed node, indicated by circle node, in order to 

normalize firing strength with node function we must calculate the ratio of this node 

firing strength to the sum of w1+w2

The firing strength is:

        (3.10)  O3
i = wi =

wi

w1 + w2
      l = 1,2,

Layer4. Each node in this layer is an adjustable node, indicated by square node, with 

node function as

y+         (3.11)O4
i = wifi = wl(pix + qi ri),    i = 1,2,    

 where,  is the output of Layer 3, {pi, qi, ri} is parameter set which is referred as the wl

consequent parameters.

Layer5. Each node in this layer is a fixed node, indicated by circle node, with node 

function to compute the overall output by

        (3.12)O5
i = ∑2

i = 1
wifi =

∑2

i = 1
wi

w1 + w2
,    i = 1,2,
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Explicitly, this layer sums the node’s output in the previous layer to be the output of 

the whole network. From the frame works of ANFIS, it is observed that if the 

parameters in the premise part are fixed, the output of the whole network system will 

be the linear combination of the consequent parameters i.e.

        (3.13) f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2

based on this characteristic, the node outputs go forward till layer 4, the resulting 

parameters can be identified by the least square method in the forward learning.

On the other hand, the error signal goes backward till layer 1, the premise 

parameters can be updated by the gradient descent method in the backward learning. 

This learning procedure is referred as hybrid-learning. The merit of hybrid-learning 

procedure is to obtain the optimal premise parameters and consequent parameters in 

the learning process (Sobhani et al., 2010). 

Fig. 3.7 Reasoning Scheme of ANFIS

3.4 BASICS OF MULTIPLE LINEAR REGRESSION (MLR) TECHNIQUE

Multiple linear regression determines the relationship between two or more 

independent variables and a dependent variable by fitting a linear equation to 

observed data. Every value of the independent variable is associated with a value of 

the dependent variable. The general purpose of Multiple Linear Regression (MLR) is 

to learn more about the relationship between several independent or predictor 

variables and a dependent or criterion variable. The Multiple Linear Regression 

(MLR) equation takes the form 
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Y=β0+β1X1+β2X2+β3X3+β4X4+β5X5+ ------- + βnXn            (3.14)

 Where Y represents target result, X1, X2, X3, X4, X5, --- Xn represents quality 

characteristics of input variables. The term linear is used because equation is linear 

function of the unknown parameter β1, β2, β3, β4 and β5 are often called as partial 

regression coefficients. The term β0 represents intercept.
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CHAPTER 4

MATERIALS AND METHODS

4.0 GENERAL

The assessment of water quality in the municipal distribution system was 

carried out by finding Water Quality Index (WQI) in various zones of municipal 

distribution system. The Water Quality Index in various zones of the distribution 

system was calculated by considering six water quality parameters viz. pH, alkalinity, 

hardness, total solids, DO and MPN. The weighted index method was used to 

calculate water quality index. The prediction of water quality index was carried out by 

using various artificial intelligence techniques and multiple regression technique. The 

best fitting model was selected based on modelling performance criterions. The 

details of methodology followed, water quality data collection, calculation of WQI 

and modelling performance criterions are mentioned in the following sections of this 

chapter.

4.1 METHODOLOGY
A five step work methodology has been adopted for the study. Fig.4.1 shows 

the overview of methodology used in this study. MATLAB®7.10, Release14 has 

been used to develop Fuzzy, ANFIS and ANN models. 

Fig. 4.1 Overview of the Methodology
4.2 DATA COLLECTION AND PREPROCESSING
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The municipal water distribution system of Solapur, India, is taken as a case 

study for prediction and assessment of water quality in the distribution system. 

Solapur relies mainly on surface water supply for drinking, industrial and other 

domestic purposes. There are three sources of surface water supply: (1) Ujjani Dam 

Reservoir about 100 km west of the city, (2) Bhima River at village Takli about 30 

km south of the city and (3) Ekrukh Tank near village Hipparga about 3 km north of 

main city. Arrangements have been made for direct supply of 90 million liters per day 

(MLD) of water to Solapur from Ujjani Dam, which is basically a hydro-electric-

cum-irrigation project. Bhima river scheme at Takli is designed to supply about 120 

MLD of water; it collects the released water from Ujjani Dam. Ekrukh Tank, 

constructed for irrigation purposes in 1871, can supply up to 27 MLD of water. There 

are three water treatment plants (water works) for these three water sources. To meet 

the fluctuations in the demand of water, the water from Ujjani Dam and Ekrukh Tank 

is mixed at Bhavani Peth water works and the water from all three water sources is 

mixed at Hill Service Reservoir, Jule Solapur. Fig.4.2 shows the location details of 

these three sources of water. The water quality at these three sources varies spatially 

and temporally. There is no fixed proportion of mixing of water at Bhavani Peth and 

Hill Service reservoir due to which, the resulting water quality is difficult to predict. 

The water is distributed to Solapur city by dividing it into twenty nine zones, 

the location details of which are shown in Fig.4.2. The zone details are mentioned in 

Table 4.1. When water from these two mixing stations is distributed through network 

of pipes to various zones, the water quality in the distribution system deteriorates due 

to pipe age, corrosion of pipe material, intrusion of contaminants through leakage and 

cross connections, leaching of pipe material, formation of biofilm in the pipes etc., 

and hence many uncertainties are involved till the water reaches the consumers tap. 

The zone wise water quality data for year 2008, 2009 and 2010 was collected from 

Solapur Municipal Corporation, Solapur. The samples were collected monthly from 

all twenty nine zones and then physico-chemical properties of water Such as pH, 

dissolved oxygen, total alkalinity, total Hardness, total solids and most probable 

number were analysed as per standard method (APHA, 2005).
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Fig. 4.2 Location Details of Water Sources
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Table 4.1 Zone and Water Tank Location Details

Zone No. Water Tank Water Supply Area

1 Kasturba  Budhwar Peth

Budhwar Peth, Balives Chowk area, Budhle 
lane,  Sarda Plot, Samrat Chowk, Bhavani Peth 
,Maratha Vasti, Tuljapur Ves, Kashi Kapde 
lane, Hanuman Nagar, Namdev Nagar, Homkar 
Nagar, Mantri Chandak Nagar, Sahir Vasti, 
Mukund Nagar, Ravji Sakharam Prashala.

2 Percival Area Near
Parishad

South Kasba, North Kasba, Murarji Peth, Navi 
Peth, Datt Chowk, Mullababa Tekdi, Ramlal 
Chowk, Juni Mill Chawl, Zunje Lane, Tole 
Lane, Gavandi Area, Bakshi Lane, Mahalaxmi 
Milk Dairy till Panjrapol Chowk.

3
Siddheshwar Zilla

Parishad Compound 
Area

Vijapur Ves, Foujdar Chawdi, Old Vitthal 
Mandir Area, Patva lane, Tilak Chowk Area, 
Mallikarjun Temple Area.

4 High-level Civil 
hospital

Shanivar Peth, Telangi Pacha Peth, Rahul 
Gandhi Slum area, Jamkhandi Bridge, Rajendra 
Chowk, Jodbasavanna Chowk, Kanna Chowk, 
Sakhar Peth, Ganesh Peth, Budhwar Market, 
Vijapur Ves till Kontam Chowk and Kumbhar 
Ves, Manik Chowk, Madhla Maruti Area, 
Shukurwar Peth, Jodbhavi Peth Area, Tilak 
Chowk Area, Guruwar Peth Area.

5 D.S.P Raised Area

Gandhinagar Area, Saat rasta Solapur Society, 
Gurunanak Nagar Chowk Area, Moulali 
Chowk, Qureshi lane, Darasha Hospital, Chuna 
Bhatti Area (Limestone Kiln Area) till Huma 
Hotel, Kumtha Naka Area, Milk Dairy.

6 D.S.P Lowered Area

Modi, Shoba Nagar, Saat Rasta Area, Soni 
Nagar, Morya Society, Revan Siddheshwar 
Nagar, Yetiraj Hotel till Modi police Station, 
Chintalwar Vasti, Pankha Vihir, Municipal 
Colony, Akanksha Society, Uplap Vasti, 
Shindhi Khana.

7 Jule Solapur Raised 
Area

Jule Solapur Area, Mhada Colony, Dhonde 
Nagar,  Waman Nagar, Dnyaneshwar Nagar, 
Kalyan Nagar, Kinara Hotel, ESI Hospital, 
Antrolikar Nagar.

8 Avanti Nagar Water 
Tank

Avanti Nagar, Abhimanshri, Hande Plot, Mote 
Vasti, Jai Malhar Chowk, Prabhakar Maharaj 
Road, Mahesh Society, Bhagwati Society, 
S.T.Stand Area, Satyam Shivam Society.

9
Ujjani Main Line 

Mariaai
Chowk

Mariaai Chowk, Damani Nagar, Thobde Vasti, 
Gavali Vasti, Bhaiyya Chowk, Degaon 
Deshmukh Patil Vasti, Amrai Shete Vasti, 
Pratiksha Colony, Habbu Vasti, Mithila Nagar, 
Ashirwad Nagar, Lakshmi Vishnu Chawl, 
Dongaon Road Area.
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Table 4.1 Zone and Water Tank Location Details (Continued…….)

Zone No. Water Tank Water Supply Area

10 Indira Nagar Statue
Indira Nagar, Garibi Hatao Slums, Koli Samaj 
Society, Iranna Vasti, Utkarsh Nagar, Bhushan 
Nagar and other areas.

11 Bale Village Ujjani
Crossroad

Bale Kegaon, Ambika Nagar, Barshi Road 
Area.

12 D.S.P Raised Area

Area behind Taluka police Station, Ambedkar 
Nagar, Vikas Nagar, Shikshak Society, Bharat 
Society, Gurunanak Nagar, Shandar Chowk, 
Shastri Nagar Slum Area, Keshav Nagar, 
Pandurang Vasti, Panchasheel Takshasheel 
Nagar.

13 Nehru Nagar Water Tank

Sundaram Nagar, Anand Nagar, Nirapam 
Society, Ashok Nagar, Nehru Nagar, 
S.T.Colony, Bennur Nagar, Mahalaxmi Nagar,
Chatrapati Society, 22 Society Vijapur Road 
Area.

14 High Level Railway line, Duffrin chowk, Employment 
Chowk Area, Railway Station Area.

15 High Level Round Tank Bedarpool, Patrakar Nagar, Lodhi Lane Area.

16 Aditya Nagar
Sonamata Nagar, Mashal Vasti, Dwarka Nagar, 
Sushil Nagar, Kamala Nagar, Brhamachaitanya 
Nagar, Aditya Nagar, Nirmiti Vihar, Jai-Jui 
Nagar, Siddheshwar Nagar, Indira Nagar Area

17 Settlement Salgar Vasti
Water Tank

Railway line, Duffrin chowk, Employment 
Chowk Area, Railway Station Area.

18 Dayanand Water Tank
Bhavanipeth, Ghongde Vasti, Indira Resident, 
Satpute Vasti, Jodbhavi peth, Netaji Nagar, 
Maddi Vasti.

19 Mehtab Nagar Tank Shelgi Village, Ramdev Nagar, Amarnath 
Nagar and Area, Vidi Gharkul Area.

20 Jule Solapur Lokmanya Nagar, Mantri Chandak Nagar, 
Industrial Estate, Nai Zindagi Area.

21 Mitragotri Gentyal Tank M.I.D.C Area, Neelam Nagar, Akashwani Area, 
Vinayak Nagar, Sunil Nagar, Asha Nagar.

22 Percival Area Near
Parishad

Vidi Gharkul A.B.C Group, Sagar Chowk, 
Rangraj Nagar, Rajeshwar Nagar, 
Sangameshwar Nagar.

23 Mitragotri Tank
Satyasai Nagar, Ashok Chowk, Sant Tukaram 
Chowk, Pacha Peth, Bapuji Nagar,Jawahar 
Nagar, Area Near Pathrut Chowk, Madhav 
Nagar, Kumtha Naka, Hudko.
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Table 4.1 Zone and Water Tank Location Details (Continued…….)

Zone 
No. Water Tank Water Supply Area

24 Sadhu Waswani175 H.P
Karnik Nagar, Ekta Nagar, Padma Nagar, 
Saibaba Chowk, Satter Foot Road Area, 
Kamtam Nagar, Paccha Peth.

25 Sadhu Waswani75 H.P 
Pump

Extended Area Near Kumtha Naka, 
Huccheshwar Math Area, Swagat Nagar, 1,2 
Krushna Society, Balaji society, Hanuman
Nagar, Tai Chowk.

26 Bhadravati Tank
Bhadravati Peth, Datta Nagar, Ravivar Peth, 
Jodbhavi Peth, Jodbassavanna Chowk, Daji 
Peth, Joshi Area, Kavita Nagar,

27 High Level 150 H.P.
Pump

Gawai Peth, Market Yard 256 Area, Shanti 
Nagar.

28 Jule Solapur

Gandhinagar 1 to 6 , Vidi Gharkul, Rangrj 
Nagar, Mahesh Nagar, A.B. Group, 
Venkatesh Nagar, Vajreshwar Nagar, Shewta 
Nagar, Kalpana Nagar, Konda Nagar, Yatiraj 
Nagar.

29 Low Level Round Tank
Hotgi Road, Hatture Area, Majrewadi Area.
Lodhi Lane Area, Amarnath Nagar and Nai 
Zindagi Area.

4.2.1 Water Quality Index (WQI) 

The Water Quality Index (WQI) was calculated for each month by using 

weighted index method and by considering six physico–chemical characteristics viz. 

pH, DO, alkalinity, hardness, total solids and MPN. Tables 4.2-4.30 show the 

physico-chemical characteristics of water and the calculated water quality indices 

(WQI) in various zones of city.

WQI = ∑               (4.1)                                                        
Wiqi

Wi

Where, qi = Quality rating for the i water quality parameters (i = 1, 2, 3 ---------)   

           wi = Unit weight of water quality.
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Table 4.2 Physicochemical Characteristics of Water for Zone One

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l

DO in 
mg/l

TS in 
mg/l

MPN 
/100ml WQI

Jan.2008 7.36 176 228 3.84 402.4 0 90.8
Feb. 2008 7.26 132 148 6.6 648.7 0 94
Mar.2008 7.68 144 180 5.96 743 11 30.4
Apr.2008 7.85 152 168 6.28 613.8 0 93
May 2008 7.39 164 172 5.96 702.3 0 90.4
Jun. 2008 7.35 156 208 4.68 730.6 0 88
Jul. 2008 7.38 172 204 4.36 750.7 14 28

Aug. 2008 7.28 168 208 6.92 420.3 0 95.6
Sep.2008 7.79 160 212 6.28 424.2 21 35.6
Oct.2008 7.71 164 192 8.2 741.5 0 92.8
Nov.2008 7.35 156 196 8.52 670.2 0 95.4
Dec.2008 7.28 164 188 7.88 634.4 0 95.4
Jan. 2009 7.79 172 192 6.28 650.4 0 93
Feb. 2009 7.79 172 192 6.28 650.4 0 93
Mar. 2009 7.35 152 212 6.28 692.3 0 93
Apr. 2009 6.25 140 188 6.6 692.3 0 84
May 2009 6.83 192 192 6.28 831.1 0 88.6
Jun. 2009 6.89 160 196 6.92 678.7 0 91.2
Jul. 2009 6.45 152 192 5 748.2 8 43

Aug. 2009 7.5 232 196 7.24 797.2 9 56.8
Sep. 2009 7.32 144 192 8.12 500 11 95.4
Oct. 2009 6.35 156 196 5.32 525.6 0 84
Nov. 2009 7.12 160 192 6.28 521.2 5 69
Dec. 2009 7.1 164 184 6.92 518.1 0 93
Jan. 2010 7.1 156 188 6.92 520.4 20 33
Feb. 2010 6.83 160 188 4.68 518.7 0 88.8
Mar. 2010 6.69 148 192 5 510.5 0 88.8
Apr. 2010 7.44 156 192 6.28 505.6 0 93
May 2010 7.48 158 184 7.56 622.1 0 95.4
Jun. 2010 7.32 180 192 4.68 524.6 0 90.6
Jul. 2010 6.9 156 204 5.4 675.2 0 91.2

Aug. 2010 7.82 134 210 6.2 775.3 0 93
Sep. 2010 7.68 200 188 6.92 426.2 0 95.6
Oct. 2010 7.42 182 194 4.68 854.2 14 28
Nov. 2010 7.28 164 212 7.56 653.2 21 35.4
Dec. 2010 7.56 172 204 7.88 745.2 0 92.8
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Table 4.3 Physicochemical Characteristics of Water for Zone Two

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l

DO in 
mg/l

TS in 
mg/l

MPN 
/100ml WQI

Jan.2008 6.98 164 200 4.68 684.2 17 30.6
Feb. 2008 7.96 108 200 6.92 689.9 11 32
Mar.2008 8 408 432 5.64 385.4 21 35.6
Apr.2008 7.87 168 212 7.56 536.2 11 35.4
May 2008 7.32 172 208 5.64 725 8 54.4
Jun. 2008 7.48 168 212 6.28 674.8 0 93
Jul. 2008 7.13 164 208 5.64 767.9 21 30.4

Aug. 2008 7.33 160 212 6.28 650.2 21 33
Sep.2008 8.18 156 204 6.28 996 21 27.8
Oct.2008 7.69 168 208 5 585 17 30.6
Nov.2008 7.86 148 192 7.56 604.2 17 35.4
Dec.2008 7.33 172 196 5.64 840.6 14 30.4
Jan. 2009 8.18 160 204 6.6 589.7 14 33
Feb. 2009 8.18 160 204 6.6 589.7 21 33
Mar. 2009 7.35 168 208 6.92 521.5 14 33
Apr. 2009 7.49 164 172 6.28 581.8 2 81
May 2009 7.49 372 180 5.64 551.8 21 33
Jun. 2009 7.55 168 176 6.6 590.2 20 33
Jul. 2009 7.56 160 172 5.64 566.3 17 33

Aug. 2009 7.6 136 176 6.28 572.3 21 33
Sep. 2009 7.96 164 172 5.96 652.8 21 33
Oct. 2009 7.56 164 180 5.32 663.9 11 33
Nov. 2009 7.65 172 196 5.64 652.1 21 33
Dec. 2009 7.55 148 196 5.96 647.2 21 33
Jan. 2010 7.71 164 192 6.28 654.7 21 33
Feb. 2010 7.63 152 192 5.32 670.2 21 33
Mar. 2010 7.7 156 184 5.64 657.8 20 30.6
Apr. 2010 7.79 164 204 5 680.2 20 33
May 2010 7.35 166 172 6.2 666.2 17 33
Jun. 2010 7.62 172 196 6.4 746.2 21 30.4
Jul. 2010 7.84 148 208 5.4 852.3 17 30.4

Aug. 2010 7.62 152 192 6.2 954.3 21 25.4
Sep. 2010 7.15 160 200 4.2 523.3 21 35.4
Oct. 2010 7.95 172 164 7.52 875.4 21 30.4
Nov. 2010 7.23 156 174 5.2 698.5 21 33
Dec. 2010 7.46 160 196 6.6 745.6 11 30.4
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Table 4.4 Physicochemical Characteristics of Water for Zone Three

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 6.58 184 208 3.4 602.6 0 82.8
Feb. 2008 7.85 160 192 8.84 616.1 0 95.4
Mar.2008 8 408 432 5.64 385.4 21 34.6
Apr.2008 7.39 164 212 7.24 716.9 9 56.8
May 2008 7.53 148 216 5.64 648.7 14 33
Jun. 2008 7.13 160 212 5 467.1 7 69.2
Jul. 2008 7.15 164 204 6.6 609.4 0 93

Aug. 2008 7.49 168 212 7.56 688.3 0 95.4
Sep.2008 7.74 152 208 5.64 670.3 0 93
Oct.2008 7.7 156 216 5.64 750.9 20 30.4
Nov.2008 7.73 180 216 9.48 774.4 0 92.8
Dec.2008 7.49 164 212 6.6 854 0 90.4
Jan. 2009 7.74 156 220 7.24 793.2 11 32.8
Feb. 2009 7.74 156 220 7.24 793.2 0 92.8
Mar. 2009 7.35 160 212 7.24 825.1 0 92.8
Apr. 2009 7.79 168 204 7.24 821.9 0 92.8
May 2009 7.38 148 204 6.92 848.6 0 90.4
Jun. 2009 7.46 168 196 5.32 716.4 21 30.4
Jul. 2009 7.78 136 196 5 840.4 0 88

Aug. 2009 7.74 116 208 7.88 823.6 0 92.8
Sep. 2009 7.69 148 212 6.28 810.5 0 90.4
Oct. 2009 7.55 140 204 5.32 830.3 0 90.4
Nov. 2009 7.89 152 212 6.28 813.4 2 78.4
Dec. 2009 7.85 168 216 7.24 862.8 0 92.8
Jan. 2010 7.34 152 208 5.32 807.8 0 90.4
Feb. 2010 7.46 144 204 6.28 804.1 0 90.4
Mar. 2010 7.73 160 196 4.04 871.2 0 88
Apr. 2010 7.39 160 196 5.64 880.7 0 90.4
May 2010 7.56 164 196 6.24 666.2 14 33
Jun. 2010 7.23 172 212 7.24 744.2 0 92.8
Jul. 2010 7.54 168 204 5.32 670.25 0 93

Aug. 2010 7.94 152 192 6.6 856.3 0 90.4
Sep. 2010 7.53 184 216 8.56 784.2 17 32.8
Oct. 2010 7.64 172 196 6.2 847.3 0 90.4
Nov. 2010 7.72 168 204 6.92 985.6 0 87.8
Dec. 2010 7.81 140 212 7.88 652.3 0 95.4
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Table 4.5 Physicochemical Characteristics of Water for Zone Four

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.3 180 210 4.5 600 14 30.6
Feb. 2008 7.67 180 188 7.88 680.7 21 35.4
Mar.2008 7.43 168 188 7.24 630.25 14 32.8
Apr.2008 7.45 176 188 7.88 708.3 0 95.4
May 2008 7.51 160 196 5.32 689.9 11 35.6
Jun. 2008 7.58 172 196 5.32 447.1 0 90.4
Jul. 2008 7.63 176 188 6.28 765.6 14 30.4

Aug. 2008 7.58 164 196 5.64 750.1 21 33
Sep.2008 7.84 168 220 6.92 695.9 0 90.4
Oct.2008 7.43 160 232 8.2 728.4 11 32.8
Nov.2008 7.86 180 236 6.6 836.4 8 57
Dec.2008 7.58 176 196 6.28 541.1 11 30.4
Jan. 2009 7.84 172 188 8.2 828.1 0 92.8
Feb. 2009 7.84 172 188 8.2 828.1 2 83.4
Mar. 2009 7.35 176 192 5.96 681.7 0 90.4
Apr. 2009 7.71 116 180 7.88 707.6 4 83.4
May 2009 7.99 176 184 6.28 692.1 8 54.4
Jun. 2009 7.33 156 172 5 718.3 0 88
Jul. 2009 7.56 152 172 6.92 700.3 21 33

Aug. 2009 7.59 192 172 5.96 688.3 11 35.6
Sep. 2009 7.83 160 176 6.6 486.5 14 33
Oct. 2009 7.36 152 176 6.28 478.8 14 33
Nov. 2009 7.26 180 180 5 471.2 14 30.6
Dec. 2009 7.39 156 196 6.28 474.5 21 33
Jan. 2010 7.44 168 204 5.64 478.1 5 69
Feb. 2010 7.33 144 208 4.68 470.6 0 90.6
Mar. 2010 7.45 160 212 8.2 482.4 0 95.4
Apr. 2010 7.48 148 204 6.92 892.2 0 90.4
May 2010 7.4 162 172 4.5 702.36 21 28
Jun. 2010 7.84 172 180 5.4 854.2 17 30.4
Jul. 2010 7.62 182 196 6.28 547.3 0 93

Aug. 2010 7.95 194 236 4.2 852.3 17 28
Sep. 2010 7.82 174 220 8.2 693.2 11 32.8
Oct. 2010 7.99 156 196 5.32 756.1 11 30.4
Nov. 2010 7.62 168 192 6.6 853.6 17 30.4
Dec. 2010 7.48 134 208 6.28 852.3 0 90.4
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Table 4.6 Physicochemical Characteristics of Water for Zone Five

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.42 160 212 5.96 689.6 0 93
Feb. 2008 7.89 176 216 6.28 650.4 0 93
Mar.2008 7.68 144 208 7.56 654.5 0 95.4
Apr.2008 7.6 164 236 6.6 722.2 0 90.4
May 2008 7.83 168 212 5.64 616.1 0 93
Jun. 2008 7.58 156 224 5 461.2 0 93.2
Jul. 2008 7.48 148 216 6.28 690.1 0 93

Aug. 2008 6.89 156 220 6.28 730.1 0 90.4
Sep.2008 7.67 164 228 7.56 770.7 0 92.8
Oct.2008 7.56 168 208 6.92 779.5 0 90.4
Nov.2008 7.84 156 240 8.52 806.4 0 92.8
Dec.2008 6.89 148 224 8.2 740.3 0 92.8
Jan. 2009 7.67 160 212 5.96 877.9 0 90.4
Feb. 2009 7.67 160 212 5.96 877.9 0 90.4
Mar. 2009 7.35 168 212 6.6 750.8 0 90.4
Apr. 2009 7.61 156 204 6.28 715.4 0 90.4
May 2009 7.56 160 196 7.88 750.1 0 90.4
Jun. 2009 7.47 180 188 5.32 720.3 0 90.4
Jul. 2009 7.62 160 188 7.88 740.1 0 90.4

Aug. 2009 7.7 144 184 6.28 754.8 21 30.4
Sep. 2009 7.78 144 188 5 923.4 0 87.8
Oct. 2009 7.52 156 192 5.96 936.2 0 87.8
Nov. 2009 7.59 160 188 5.64 721.4 0 90.4
Dec. 2009 7.63 144 184 5.64 926.3 0 90.4
Jan. 2010 7.4 176 188 5 941.4 0 87.8
Feb. 2010 7.47 164 192 4.04 937.8 0 87.8
Mar. 2010 7.48 164 188 4.36 948.6 0 87.8
Apr. 2010 7.55 168 188 6.28 957.8 0 87.8
May 2010 7.56 164 192 5.4 756.2 0 90.4
Jun. 2010 7.84 156 204 6.2 856 0 90.4
Jul. 2010 7.35 174 188 7.84 658.2 0 93

Aug. 2010 7.94 196 164 6.6 542 21 33
Sep. 2010 7.85 188 184 5.96 523.5 0 93
Oct. 2010 7.14 160 192 8.2 658.8 0 93
Nov. 2010 7.26 158 212 8.5 756.8 0 90.4
Dec. 2010 7.85 194 196 5.32 893.4 14 27.8
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Table 4.7 Physicochemical Characteristics of Water for Zone Six

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.48 168 212 4.68 671.1 0 90.6
Feb. 2008 7.82 88 200 6.92 589.7 0 93
Mar.2008 7.71 152 200 7.24 640.1 0 95.4
Apr.2008 7.72 180 200 5.64 709.5 0 90.4
May 2008 7.84 156 204 5.96 680.7 0 93
Jun. 2008 7.35 148 224 6.28 755.1 0 90.4
Jul. 2008 7.38 164 212 7.24 686.9 0 95.4

Aug. 2008 7.28 160 228 5.64 750 0 90.4
Sep.2008 7.96 152 208 6.28 700.5 0 90.4
Oct.2008 8 160 208 6.28 687.8 0 93
Nov.2008 7.92 164 232 7.56 789.5 0 92.8
Dec.2008 7.28 160 216 4.04 841.7 0 88
Jan. 2009 7.96 152 208 6.28 825.9 17 30.4
Feb. 2009 7.96 152 208 6.28 825.9 0 90.4
Mar. 2009 7.35 148 212 6.92 785 0 90.4
Apr. 2009 7.72 172 196 5.64 785 0 90.4
May 2009 7.67 164 192 5.64 742.3 0 90.4
Jun. 2009 7.69 156 196 5.64 719.1 0 90.4
Jul. 2009 7.71 144 196 6.28 730.4 11 30.4

Aug. 2009 7.73 188 192 7.24 730.9 0 92.8
Sep. 2009 7.94 168 196 7.24 813 0 92.8
Oct. 2009 7.26 160 192 5.32 788.2 0 90.4
Nov. 2009 7.89 156 184 5 814.6 0 88
Dec. 2009 7.56 152 196 7.24 807.2 0 92.8
Jan. 2010 7.44 148 192 4.68 820.2 0 88
Feb. 2010 7.69 160 196 3.4 824.6 0 85.6
Mar. 2010 7.56 152 184 5.96 830.4 0 90.4
Apr. 2010 7.46 172 204 5.64 880.8 0 90.4
May 2010 7.56 156 192 6.2 765.3 0 90.4
Jun. 2010 7.86 162 208 5.4 695.5 21 33
Jul. 2010 7.64 188 212 7.25 562.31 0 95.4

Aug. 2010 7.15 196 192 7.32 964.8 0 90.2
Sep. 2010 7.95 152 228 7.25 672.3 17 35.4
Oct. 2010 7.63 162 200 4.06 865.2 0 88
Nov. 2010 7.72 148 182 4.64 746.9 0 88
Dec. 2010 7.62 152 212 5.62 856.2 0 90.4
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Table 4.8 Physicochemical Characteristics of Water for Zone Seven

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.7 180 236 6.6 814.1 0 90.4
Feb. 2008 7.87 168 200 6.6 793.2 0 90.4
Mar.2008 7.69 160 220 7.24 792 0 92.8
Apr.2008 7.71 164 224 6.28 615.6 0 93
May 2008 7.49 160 212 5 686.9 0 90.6
Jun. 2008 7.49 168 208 5.96 700.1 0 90.4
Jul. 2008 7.65 168 204 6.92 702.3 0 90.4

Aug. 2008 7.63 164 208 6.6 796.1 0 90.4
Sep.2008 7.69 164 216 5.96 650.8 0 93
Oct.2008 7.78 168 208 6.6 499.9 0 95.6
Nov.2008 7.85 156 208 7.24 479.1 0 98
Dec.2008 7.69 168 196 6.28 450.5 0 95.6
Jan. 2009 7.69 160 192 7.24 447.9 0 98
Feb. 2009 7.69 160 192 7.24 479.1 0 98
Mar. 2009 7.35 168 188 5.96 450.5 0 95.6
Apr. 2009 7.89 156 192 6.28 447.9 0 95.6
May 2009 7.85 152 188 6.6 681.7 0 93
Jun. 2009 7.88 168 184 5.96 707.6 0 90.4
Jul. 2009 7.34 140 188 5.64 756.3 0 90.4

Aug. 2009 7.45 164 184 6.92 856.32 0 90.4
Sep. 2009 7.44 164 188 6.28 730.1 0 90.4
Oct. 2009 7.56 164 188 5.32 770.7 0 90.4
Nov. 2009 7.99 164 188 6.92 779.5 0 90.4
Dec. 2009 7.95 160 192 6.28 806.4 0 90.4
Jan. 2010 7.79 168 196 5 740.3 0 88
Feb. 2010 7.88 156 204 5 877.9 0 88
Mar. 2010 7.63 144 184 5.64 689.9 0 90.4
Apr. 2010 7.81 160 212 6.28 447.1 0 95.6
May 2010 7.68 156 224 6.2 765.6 14 30.4
Jun. 2010 7.74 152 192 7.24 750.1 0 92.8
Jul. 2010 7.98 160 196 5.4 695.9 0 93

Aug. 2010 7.85 152 188 6.42 728.4 0 90.4
Sep. 2010 7.83 168 208 5.84 836.4 0 90.4
Oct. 2010 7.74 156 196 6.4 541.1 0 93
Nov. 2010 7.93 196 184 7.26 828.1 0 92.8
Dec. 2010 7.52 180 216 8.45 828.1 0 92.8
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Table 4.9 Physicochemical Characteristics of Water for Zone Eight

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.7 200 212 4.36 685.9 0 90.6
Feb. 2008 7.86 192 200 5.96 828.1 0 90.4
Mar.2008 7.7 180 212 5.32 701.3 0 90.4
Apr.2008 7.91 168 200 5.64 410.5 0 95.6
May 2008 7.81 160 220 6.28 381.2 0 95.6
Jun. 2008 7.85 164 164 5.32 630.2 0 93
Jul. 2008 7.88 152 172 6.28 770.6 14 30.4

Aug. 2008 7.89 172 164 7.88 670 0 95.4
Sep.2008 7.83 168 208 6.6 649 0 93
Oct.2008 7.95 160 212 6.92 430.4 0 95.6
Nov.2008 7.38 164 192 8.2 635.6 0 95.4
Dec.2008 7.89 148 204 6.92 643.6 17 33
Jan. 2009 7.83 160 208 6.92 655.7 8 57
Feb. 2009 7.83 160 208 6.92 655.7 0 93
Mar. 2009 7.35 172 212 7.24 450.78 0 98
Apr. 2009 7.82 172 204 6.92 406.8 0 95.6
May 2009 7.39 124 196 6.92 419.8 0 95.6
Jun. 2009 7.6 136 192 6.28 417.3 0 95.6
Jul. 2009 7.44 156 196 6.6 426.5 0 95.6

Aug. 2009 7.48 160 180 5.96 433.1 0 95.6
Sep. 2009 7.98 172 196 5.64 499.9 0 95.6
Oct. 2009 7.26 148 184 3.4 479.1 0 90.8
Nov. 2009 7.32 168 188 6.28 450.5 0 95.6
Dec. 2009 7.36 144 188 6.92 447.9 0 95.6
Jan. 2010 7.39 144 196 6.28 501.4 0 93
Feb. 2010 7.6 168 212 6.92 505.3 0 93
Mar. 2010 7.83 156 208 5 509.1 0 90.6
Apr. 2010 7.3 164 196 5.32 498.1 0 95.6
May 2010 7.56 168 212 6.2 648.2 0 93
Jun. 2010 7.45 160 204 4.6 759.3 21 28
Jul. 2010 7.35 156 172 6.26 563.2 0 93

Aug. 2010 7.85 172 164 7.24 864.2 0 92.8
Sep. 2010 7.45 152 208 6.28 986.3 0 87.8
Oct. 2010 7.96 164 172 6.6 526.2 0 93
Nov. 2010 7.12 156 184 5.84 786.2 0 90.4
Dec. 2010 7.65 168 196 6.92 865.3 0 90.4
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Table 4.10 Physicochemical Characteristics of Water for Zone Nine

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.89 200 212 5 702.12 0 88
Feb. 2008 7.95 140 208 1.48 877.9 0 80.8
Mar.2008 7.43 168 208 5.32 727.9 0 90.4
Apr.2008 7.97 172 208 5.96 631.4 0 93
May 2008 7.57 164 208 5.64 387.1 0 95.6
Jun. 2008 7.68 176 204 5.64 751.8 0 90.4
Jul. 2008 7.54 184 216 6.28 734.7 0 90.4

Aug. 2008 7.58 168 208 7.24 694.1 0 95.4
Sep.2008 7.78 172 208 7.24 593.4 0 95.4
Oct.2008 7.68 172 204 4.04 589 0 90.6
Nov.2008 7.82 156 204 7.88 654.5 0 95.4
Dec.2008 7.58 180 208 6.6 674.2 0 93
Jan. 2009 7.78 164 216 6.28 616.2 0 93
Feb. 2009 7.78 164 216 6.28 616.2 8 57
Mar. 2009 7.35 148 216 6.28 501 0 93
Apr. 2009 7.45 180 208 5.96 502.3 0 93
May 2009 7.5 168 204 6.6 638 21 33
Jun. 2009 7.26 172 204 1.48 637.8 0 83.4
Jul. 2009 7.4 160 208 6.92 525.1 0 93

Aug. 2009 7.56 160 192 6.28 640.7 0 93
Sep. 2009 8.01 132 204 6.92 506.4 0 93
Oct. 2009 7.88 132 216 7.88 487.7 8 62
Nov. 2009 7.8 156 196 5.32 501 0 93
Dec. 2009 7.84 152 196 5.96 497.8 0 95.6
Jan. 2010 7.48 140 196 4.68 521.8 0 90.6
Feb. 2010 7.26 152 208 6.28 526.7 0 93
Mar. 2010 7.4 160 196 5.32 527.6 0 90.6
Apr. 2010 7.6 148 212 6.28 558.4 0 93
May 2010 7.3 156 202 6.2 562.3 0 93
Jun. 2010 7.64 172 216 5.6 745.6 21 30.4
Jul. 2010 7.25 140 192 4.2 625.3 0 90.6

Aug. 2010 7.96 164 208 7.25 756.8 0 80.8
Sep. 2010 7.84 180 212 5.46 854.6 0 90.4
Oct. 2010 7 184 192 6.62 986.3 0 87.8
Nov. 2010 7.36 180 204 7.45 568.4 0 95.4
Dec. 2010 7.25 152 216 6.6 743.2 0 90.4
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Table 4.11 Physicochemical Characteristics of Water for Zone Ten

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.69 168 224 5.32 695.2 0 93
Feb. 2008 7.85 172 204 6.28 743 0 90.4
Mar.2008 7.56 184 204 8.52 702.3 0 92.8
Apr.2008 7.57 180 192 7.24 784.6 0 92.8
May 2008 7.75 176 200 5.32 380.8 0 95.6
Jun. 2008 7.72 180 212 6.6 432.2 0 95.6
Jul. 2008 7.38 172 208 5.96 695.2 0 93

Aug. 2008 7.63 156 212 6.92 725 0 90.4
Sep.2008 7.35 168 204 6.92 669.3 0 93
Oct.2008 7.63 164 188 5.64 582.4 0 93
Nov.2008 7.36 176 200 6.28 680.2 0 93
Dec.2008 7.35 164 216 7.88 778.4 0 92.8
Jan. 2009 7.94 176 212 5.64 688.9 5 69
Feb. 2009 7.94 176 212 5.64 688.9 0 93
Mar. 2009 7.35 164 208 6.28 495.3 0 95.6
Apr. 2009 7.55 176 192 6.28 627 8 57
May 2009 7.6 172 188 6.28 788.4 0 90.4
Jun. 2009 7.56 160 196 4.04 778.2 0 88
Jul. 2009 7.44 164 188 5 787.4 0 88

Aug. 2009 7.4 155 180 5.96 780.7 0 90.4
Sep. 2009 7.3 168 196 6.6 563.3 0 93
Oct. 2009 7.46 168 192 4.68 533.3 0 90.6
Nov. 2009 7.45 148 200 6.28 559.1 0 93
Dec. 2009 7.5 164 208 5.64 495.3 0 95.6
Jan. 2010 7.55 160 200 4.68 527.5 0 90.6
Feb. 2010 7.56 168 192 3.72 530.2 8 52.2
Mar. 2010 7.5 152 184 6.28 530.7 0 93
Apr. 2010 7.42 156 188 5.64 765.2 0 90.4
May 2010 7.56 164 200 6.6 562.36 0 93
Jun. 2010 7.84 152 212 6.5 826.6 0 90.4
Jul. 2010 7.26 168 196 4.5 946.2 14 25.4

Aug. 2010 7.89 172 204 5.15 523.2 0 93
Sep. 2010 7.64 196 188 4.91 723.2 0 88
Oct. 2010 7.75 176 180 5.5 865.3 7 66.4
Nov. 2010 7 160 192 7.25 562.3 0 95.4
Dec. 2010 7.45 164 208 5.16 963.5 0 87.8
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Table 4.12 Physicochemical Characteristics of Water for Zone Eleven 

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.5 154 235 7.25 710.52 0 92.8
Feb. 2008 7.86 164 204 5.5 385.4 0 95.6
Mar.2008 8 188 204 5.96 725 0 90.4
Apr.2008 7.85 136 156 5.96 642.2 0 93
May 2008 7.12 164 192 5 687.8 0 90.6
Jun. 2008 7.18 160 192 5.64 778.6 0 90.4
Jul. 2008 7.53 156 196 6.28 687.3 0 93

Aug. 2008 7.25 164 192 6.28 670.2 0 93
Sep.2008 7.44 160 216 7.56 751.2 0 92.8
Oct.2008 7.92 168 212 3.4 684.4 0 88.2
Nov.2008 7.81 168 196 8.84 620.6 0 95.4
Dec.2008 7.86 172 188 6.28 702.9 0 90.4
Jan. 2009 7.44 168 196 6.28 866.4 8 54.4
Feb. 2009 7.44 168 196 6.28 866.4 0 90.4
Mar. 2009 7.35 172 196 8.52 863.5 0 92.8
Apr. 2009 7.89 192 192 7.24 650.6 0 95.4
May 2009 7.79 164 188 5 679.8 0 90.6
Jun. 2009 7.39 164 196 3.72 624.1 11 28.2
Jul. 2009 7.79 152 192 6.28 677.3 0 93

Aug. 2009 7.83 140 196 6.6 680.2 0 93
Sep. 2009 7.15 164 200 5.64 505.9 0 93
Oct. 2009 7.78 160 196 4.68 664.5 14 30.6
Nov. 2009 7.65 136 204 6.28 509.6 0 93
Dec. 2009 7.37 140 208 6.28 513.4 0 93
Jan. 2010 7.46 168 212 6.28 501.7 0 93
Feb. 2010 7.39 176 204 5 507.8 0 90.6
Mar. 2010 7.59 168 212 5.64 503.2 0 93
Apr. 2010 9.85 152 204 6.6 523.4 0 93
May 2010 7.56 168 196 6.2 698.2 0 93
Jun. 2010 7.86 172 192 5.4 756.5 0 90.4
Jul. 2010 7.36 156 184 4.2 563.7 0 90.6

Aug. 2010 7.45 172 172 3.84 854.6 21 25.6
Sep. 2010 7.96 196 204 7.53 742.6 0 92.8
Oct. 2010 7.25 184 212 5.4 982.3 14 27.8
Nov. 2010 7.64 136 204 6.6 568.2 0 93
Dec. 2010 7.45 144 196 6.6 745.1 0 90.4
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Table 4.13 Physicochemical Characteristics of Water for Zone Twelve

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l

DO in 
mg/l

TS in 
mg/l

MPN 
/100ml WQI

Jan.2008 7.51 132 204 5.64 703.9 0 90.4
Feb. 2008 7.83 152 216 6.92 628.2 20 33
Mar.2008 7.78 144 196 5.64 648.7 21 33
Apr.2008 7.71 176 212 6.92 684.7 7 69
May 2008 7.52 176 200 5.64 706.7 14 30.4
Jun. 2008 7.58 168 212 4.68 749.4 0 90.4
Jul. 2008 7.83 160 208 5.96 876.8 0 90.4

Aug. 2008 7.29 168 212 5.96 725 0 90.4
Sep.2008 7.98 172 220 6.28 750 0 90.4
Oct.2008 8.03 172 216 5 856.3 0 88
Nov.2008 7.89 152 212 7.24 883 0 92.8
Dec.2008 7.73 160 220 5.64 896.3 0 90.4
Jan. 2009 7.98 172 212 7.24 878.4 5 68.8
Feb. 2009 7.98 172 212 7.24 878.4 0 92.8
Mar. 2009 7.35 160 208 6.28 753.4 0 90.4
Apr. 2009 7.23 168 200 6.92 330.7 0 95.6
May 2009 7.34 160 196 6.6 304.3 0 95.6
Jun. 2009 7.12 152 208 6.92 324.6 0 95.6
Jul. 2009 7.39 168 208 6.92 306.8 21 35.6

Aug. 2009 7.4 160 212 5.96 324.3 0 95.6
Sep. 2009 7.85 156 208 5.32 863.5 17 30.4
Oct. 2009 7.49 148 208 5.32 860.4 0 90.4
Nov. 2009 7.5 156 212 6.6 860.2 8 54.4
Dec. 2009 7.48 156 216 6.92 856.3 21 30.4
Jan. 2010 7.79 164 208 7.24 865.5 8 56.8
Feb. 2010 7.12 160 208 4.68 870.4 21 28
Mar. 2010 7.48 148 204 5.32 807.2 0 90.4
Apr. 2010 7.77 160 212 7.24 868.7 0 92.8
May 2010 7.45 164 204 5.4 733.4 0 90.4
Jun. 2010 7.75 188 212 4.6 753.4 21 28
Jul. 2010 7.84 174 192 5.4 840.2 0 90.4

Aug. 2010 7.61 196 188 7.26 741.2 0 92.8
Sep. 2010 7.96 184 212 4.64 738.7 0 88
Oct. 2010 7.63 160 216 5.62 748.5 17 30.4
Nov. 2010 7.35 174 208 6.6 740.6 0 90.4
Dec. 2010 7.71 160 212 8.25 856.32 0 92.8
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Table 4.14 Physicochemical Characteristics of Water for Zone Thirteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.7 196 200 5.32 645.3 0 93
Feb. 2008 7.47 184 216 6.6 630.25 0 93
Mar.2008 7.95 180 216 7.56 689.9 0 95.4
Apr.2008 7.74 176 188 6.6 582.3 0 93
May 2008 7.69 156 208 6.28 648.7 0 93
Jun. 2008 7.53 144 212 6.92 710.3 17 30.4
Jul. 2008 7.53 156 216 7.24 706.2 17 32.8

Aug. 2008 7.7 156 212 6.92 691.2 0 93
Sep.2008 8.01 160 208 6.28 596.6 0 93
Oct.2008 7.58 152 204 6.28 678.4 0 93
Nov.2008 8.13 176 188 7.88 619.8 0 95.4
Dec.2008 7.86 144 196 7.56 755.6 0 95.4
Jan. 2009 8.01 160 204 6.92 619.5 0 93
Feb. 2009 8.01 160 204 6.92 619.5 21 33
Mar. 2009 7.35 172 212 7.56 889.3 0 92.8
Apr. 2009 7.89 160 192 6.28 553.4 21 33
May 2009 7.78 168 188 6.92 587.6 0 93
Jun. 2009 7.45 164 212 6.28 542.1 0 93
Jul. 2009 7.48 164 216 6.28 592.1 2 93

Aug. 2009 7.5 152 208 6.28 590.5 0 93
Sep. 2009 7.63 160 212 3.72 471.3 0 90.8
Oct. 2009 7.68 156 208 4.68 495.9 0 93.2
Nov. 2009 7.65 164 208 6.92 481.6 0 95.6
Dec. 2009 7.36 160 204 6.92 487.7 0 95.6
Jan. 2010 7.34 156 192 5.32 511.3 0 93
Feb. 2010 7.45 140 196 5 513.4 0 90.6
Mar. 2010 7.89 164 184 6.28 519.3 0 93
Apr. 2010 7.58 164 196 5.96 570.8 0 93
May 2010 7.89 172 216 6.2 750.7 0 90.4
Jun. 2010 7.54 184 208 7.26 726.4 12 32.8
Jul. 2010 7.69 196 204 5.4 730.6 0 90.4

Aug. 2010 7.96 152 204 6.2 714.2 0 90.4
Sep. 2010 8.12 160 208 6.4 656.7 0 93
Oct. 2010 7.53 144 192 5.4 764.3 0 90.4
Nov. 2010 7.95 152 204 5.2 714.5 17 30.4
Dec. 2010 7.12 176 216 5.8 653.2 0 93
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Table 4.15 Physicochemical Characteristics of Water for Zone Fourteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.3 124 196 5 626.2 0 90.6
Feb. 2008 7.69 168 192 5.96 654.5 0 93
Mar.2008 7.68 176 196 6.6 616.1 0 93
Apr.2008 7.78 160 204 5.96 1011 0 82.6
May 2008 7.61 148 212 6.6 689.9 5 69
Jun. 2008 7.46 160 208 6.28 733.5 8 54.4
Jul. 2008 7.89 164 208 6.6 708.5 21 30.4

Aug. 2008 7.3 160 208 7.24 716.8 21 32.8
Sep.2008 7.64 172 212 5.64 696.8 0 93
Oct.2008 7.63 164 204 5.96 690.8 0 93
Nov.2008 7.56 176 228 9.8 790.2 21 32.8
Dec.2008 7.84 156 216 8.1 786 11 32.8
Jan. 2009 7.3 148 212 8.84 820.7 0 92.8
Feb. 2009 7.3 148 212 8.84 820.7 1 92.8
Mar. 2009 7.35 164 220 6.92 652.3 21 33
Apr. 2009 7.85 148 208 6.28 717.8 0 90.4
May 2009 7.56 156 204 6.28 748.3 0 90.4
Jun. 2009 7.57 168 196 6.6 713.3 14 30.4
Jul. 2009 7.55 168 208 5.96 750.6 0 90.4

Aug. 2009 7.59 180 204 6.92 743.6 0 90.4
Sep. 2009 7.76 152 208 5.64 733.4 21 30.4
Oct. 2009 7.55 168 204 5.32 753.4 11 30.4
Nov. 2009 7.5 148 204 6.6 840.2 21 30.4
Dec. 2009 7.55 164 212 6.28 741.2 0 90.4
Jan. 2010 7.78 148 212 5.96 738.7 0 90.4
Feb. 2010 7.57 156 196 4.36 748.5 21 28
Mar. 2010 7.85 164 188 6.92 740.6 0 90.4
Apr. 2010 7.45 160 188 6.28 750.2 0 90.4
May 2010 7.86 164 208 5.4 420.7 0 95.6
Jun. 2010 7.76 156 196 4.6 447.2 0 93.2
Jul. 2010 7.82 184 192 6.6 425.7 0 95.6

Aug. 2010 7.76 172 188 5.8 438 21 35.6
Sep. 2010 7.76 148 192 4.4 423.8 0 93.2
Oct. 2010 7.35 156 196 5.6 431.9 11 35.6
Nov. 2010 7.77 164 196 6.6 426.7 0 95.6
Dec. 2010 7.78 196 208 5.2 437.8 0 95.6
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Table 4.16 Physicochemical Characteristics of Water for Zone Fifteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.15 232 196 7.24 696.3 0 95.4
Feb. 2008 7.79 216 204 7.88 640.1 0 95.4
Mar.2008 7.63 168 208 8.2 680.7 0 95.4
Apr.2008 7.97 156 216 6.28 676.2 0 93
May 2008 7.53 152 224 7.88 616.1 0 95.4
Jun. 2008 7.83 156 216 6.6 750.7 0 90.4
Jul. 2008 7.38 168 212 7.24 726.4 0 92.8

Aug. 2008 7.15 164 216 6.92 730.6 0 90.4
Sep.2008 7.34 160 208 7.24 714.2 0 92.8
Oct.2008 7.35 156 200 8.2 656.7 0 95.4
Nov.2008 7.35 156 224 7.9 764.3 0 92.8
Dec.2008 7.92 148 212 7.56 714.5 0 92.8
Jan. 2009 7.15 156 212 5.32 733.4 0 90.4
Feb. 2009 7.15 156 212 5.32 733.4 0 90.4
Mar. 2009 7.35 168 212 6.6 482.9 8 59.6
Apr. 2009 7.88 160 212 5.64 799.2 0 90.4
May 2009 7.64 168 196 7.24 778.1 0 92.8
Jun. 2009 7.58 168 204 7.24 793.2 14 32.8
Jul. 2009 7.46 160 196 6.92 789.4 11 30.4

Aug. 2009 7.48 144 212 6.28 783.4 0 90.4
Sep. 2009 7.89 168 216 6.28 511.2 21 33
Oct. 2009 7.46 144 212 7.24 506.8 0 95.4
Nov. 2009 7.42 152 216 6.28 498.5 21 35.6
Dec. 2009 7.69 152 208 5.96 832.2 0 90.4
Jan. 2010 7.56 132 204 6.28 888.5 11 30.4
Feb. 2010 7.85 164 212 6.28 880.6 0 90.4
Mar. 2010 7.88 152 204 5.96 900.3 0 87.8
Apr. 2010 7.48 144 212 3.72 627.8 0 88.2
May 2010 7.64 168 196 5.4 753.2 0 90.4
Jun. 2010 7.53 142 172 6.2 796.2 0 90.4
Jul. 2010 7.89 196 202 7.24 856.2 21 32.8

Aug. 2010 7.96 188 206 6.4 965.3 0 87.8
Sep. 2010 7.42 164 220 8.24 653.2 21 35.4
Oct. 2010 7.63 144 212 5.88 853.2 0 90.4
Nov. 2010 7.84 172 196 6.6 963.5 0 87.8
Dec. 2010 7.26 176 188 8.2 759.3 14 32.8
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Table 4.17 Physicochemical Characteristics of Water for Zone Sixteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.85 136 204 4.68 726 0 88
Feb. 2008 8.18 180 228 5.64 792 0 90.4
Mar.2008 7.92 184 212 6.6 686.9 0 93
Apr.2008 7.86 168 204 8.2 641.7 0 95.4
May 2008 7.61 172 220 6.6 680.7 0 93
Jun. 2008 7.93 168 204 6.6 767.9 0 90.4
Jul. 2008 7.35 164 216 6.92 718.9 0 90.4

Aug. 2008 7.85 168 212 7.88 674.8 0 95.4
Sep.2008 8.18 164 212 6.92 650 0 93
Oct.2008 7.86 152 220 5.96 591.5 0 93
Nov.2008 7.85 152 192 8.2 629.2 0 95.4
Dec.2008 7.85 160 196 7.24 712.8 0 92.8
Jan. 2009 7.85 172 192 7.56 650.3 0 95.4
Feb. 2009 7.85 172 192 7.56 650.3 0 95.4
Mar. 2009 7.35 176 188 6.92 437.8 0 95.6
Apr. 2009 7.65 160 188 7.24 657.8 0 95.4
May 2009 7.89 156 188 5.64 688.9 0 93
Jun. 2009 7.85 140 184 6.28 667.8 0 93
Jul. 2009 7.81 152 196 6.6 680.4 0 93

Aug. 2009 7.67 408 196 5.32 692.8 0 93
Sep. 2009 7.3 160 192 7.24 661.4 11 35.4
Oct. 2009 7.66 172 188 3.72 660.6 0 88.2
Nov. 2009 7.64 168 196 5.32 669.8 0 93
Dec. 2009 7.89 160 192 5.64 668.1 0 93
Jan. 2010 7.64 152 164 7.24 658.2 0 95.4
Feb. 2010 7.23 160 172 3.72 652.5 0 88.2
Mar. 2010 7.65 156 184 6.28 647.6 0 93
Apr. 2010 7.56 156 196 5 678.4 0 90.6
May 2010 7.56 164 204 5.8 582.4 0 93
Jun. 2010 7.23 198 212 6.6 680.2 0 93
Jul. 2010 7.98 196 204 4.4 778.4 0 88

Aug. 2010 7.45 136 208 7.62 688.9 17 35.4
Sep. 2010 7.12 146 212 6.8 688.9 0 93
Oct. 2010 7.98 124 216 5.2 495.3 0 95.6
Nov. 2010 7.45 184 196 8.16 627 14 35.4
Dec. 2010 7.63 172 188 5.4 788.4 0 90.4
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Table 4.18 Physicochemical Characteristics of Water for Zone Seventeen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.63 116 152 5 763.2 0 88.4
Feb. 2008 7.74 148 208 1.75 701.3 0 80.8
Mar.2008 8.03 168 208 7.24 381.2 0 98
Apr.2008 7.73 136 152 7.24 650.1 0 95.4
May 2008 7.79 152 216 5 650.4 14 30.6
Jun. 2008 7.15 160 208 5.96 609.4 0 93
Jul. 2008 7.58 168 204 7.24 671.2 0 95.4

Aug. 2008 7.63 172 208 6.92 467.1 0 95.6
Sep.2008 7.74 168 224 7.56 702.1 0 92.8
Oct.2008 7.73 164 220 6.92 457.4 0 95.6
Nov.2008 7.63 156 168 7.88 466.5 0 98
Dec.2008 7.38 152 176 7.56 489.3 0 98
Jan. 2009 7.63 152 180 6.92 486 0 95.6
Feb. 2009 7.63 152 180 6.92 486 0 95.6
Mar. 2009 7.35 156 192 5.96 420.3 0 95.6
Apr. 2009 9.85 136 188 6.92 477.2 0 95.6
May 2009 7.67 160 188 6.92 594.3 0 93
Jun. 2009 7.23 164 180 1.8 595 0 83.4
Jul. 2009 7.3 144 184 3.4 547.2 0 88.2

Aug. 2009 7.45 144 188 6.28 580.5 21 33
Sep. 2009 7.36 140 184 6.28 482.9 0 95.6
Oct. 2009 7.86 160 200 4.68 492.7 14 35.6
Nov. 2009 7.88 156 196 6.28 487.4 0 95.6
Dec. 2009 7.23 136 192 5.32 479.4 0 95.6
Jan. 2010 7.63 144 184 5.64 926.3 0 87.8
Feb. 2010 7.56 144 184 4.68 430.1 4 83.6
Mar. 2010 9.85 148 196 5.64 513.7 0 93
Apr. 2010 7.48 164 192 6.28 486 0 95.6
May 2010 7.5 160 196 5.4 556.3 0 93
Jun. 2010 7.68 168 174 6.6 783.5 0 90.4
Jul. 2010 7.45 172 184 6.92 856.6 0 90.4

Aug. 2010 7.89 172 212 5.4 693.4 17 33
Sep. 2010 7.63 152 220 7.56 986.5 0 90.2
Oct. 2010 7.45 160 184 5.84 894.1 14 30.4
Nov. 2010 7.56 172 164 6.2 589.6 0 93
Dec. 2010 7.29 172 172 6.63 965.2 0 87.8
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Table 4.19 Physicochemical Characteristics of Water for Zone Eighteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.76 192 144 3.72 428.5 0 91.8
Feb. 2008 7.84 192 168 8.2 727.9 10 32.8
Mar.2008 7.58 180 144 6.28 387.1 0 96.6
Apr.2008 7.86 132 168 5.32 478.2 11 35.6
May 2008 7.35 160 180 5.64 589.7 8 57
Jun. 2008 7.31 156 184 5.64 765.4 0 90.4
Jul. 2008 7.83 164 192 6.28 567.4 0 93

Aug. 2008 7.76 160 184 5.64 447.1 21 35.6
Sep.2008 7.84 172 208 6.92 555.2 21 33
Oct.2008 7.86 168 236 6.92 414 0 95.6
Nov.2008 7.76 156 172 7.24 500.1 20 35.4
Dec.2008 7.82 164 180 6.28 478.3 0 95.6
Jan. 2009 7.76 160 184 7.88 496.3 8 62
Feb. 2009 7.76 160 184 7.88 496.3 21 38
Mar. 2009 7.35 152 188 6.28 892.1 0 90.4
Apr. 2009 7.77 148 172 6.28 420.7 0 95.6
May 2009 7.78 148 168 6.28 447.2 0 95.6
Jun. 2009 7.56 152 184 5 425.7 0 93.2
Jul. 2009 7.6 144 188 7.24 438 11 38

Aug. 2009 7.62 168 188 4.68 423.8 0 93.2
Sep. 2009 7.55 164 188 5.96 431.9 21 35.6
Oct. 2009 7.56 152 188 6.28 426.7 0 95.6
Nov. 2009 7.59 144 192 5.96 437.8 14 35.6
Dec. 2009 7.89 152 196 6.28 440.2 0 95.6
Jan. 2010 7.67 164 196 4.68 427.8 14 33.2
Feb. 2010 7.43 156 192 5 427 0 93.2
Mar. 2010 7.77 172 204 5.32 432.4 0 95.6
Apr. 2010 7.89 160 188 5 450.8 0 93.2
May 2010 7.62 172 162 5.8 695.3 0 93
Jun. 2010 7.84 148 174 6.6 526.3 0 93
Jul. 2010 7.23 156 196 6.2 452.3 21 35.6

Aug. 2010 7.96 172 184 7.28 526.3 0 95.4
Sep. 2010 7.84 196 192 7.44 478.6 0 98
Oct. 2010 7.52 184 196 6.2 658.1 17 33
Nov. 2010 7.45 144 188 6.6 586.5 0 93
Dec. 2010 7.86 182 192 5.8 451 0 95.6
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Table 4.20 Physicochemical Characteristics of Water for Zone Nineteen

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.89 144 152 4.68 384.6 0 93.2
Feb. 2008 7.67 124 164 7.24 702.3 0 92.8
Mar.2008 7.63 132 168 6.6 380.8 0 95.6
Apr.2008 7.84 132 176 5.96 381.7 0 95.6
May 2008 7.49 164 172 6.28 793.2 0 90.4
Jun. 2008 7.48 172 176 5.96 690.1 0 93
Jul. 2008 7.83 156 192 6.6 625.4 0 33

Aug. 2008 7.89 164 176 6.6 461.2 0 95.6
Sep.2008 7.67 160 176 7.24 394.4 0 38
Oct.2008 7.84 168 201 8.2 439.9 0 38
Nov.2008 7.89 160 184 6.6 485.2 0 35.6
Dec.2008 7.31 156 184 5.64 765.4 0 90.4
Jan. 2009 7.69 160 192 7.24 494.2 0 98
Feb. 2009 7.35 160 164 7.24 479.7 0 38
Mar. 2009 7.35 164 196 5.64 780.8 0 90.4
Apr. 2009 7.58 156 180 6.28 440.9 0 35.6
May 2009 7.62 156 164 6.6 457.2 0 95.6
Jun. 2009 7.43 160 180 4.68 437.1 0 93.2
Jul. 2009 7.42 164 192 5.96 448.2 0 95.6

Aug. 2009 7.45 144 192 6.28 462.6 0 95.6
Sep. 2009 7.45 136 192 6.28 428.4 0 95.6
Oct. 2009 7.58 144 204 5 420.3 0 93.2
Nov. 2009 7.5 160 208 5.32 425.7 0 95.6
Dec. 2009 7.85 160 212 7.24 421.6 0 98
Jan. 2010 7.78 152 204 5.64 422.3 0 95.6
Feb. 2010 7.56 160 176 5.32 931.4 0 87.8
Mar. 2010 7.58 160 196 6.28 429.6 0 95.6
Apr. 2010 7.85 144 196 6.28 478.7 0 95.6
May 2010 7.56 132 184 5.3 546.9 0 93
Jun. 2010 7.32 144 192 5.8 658.2 8 57
Jul. 2010 7.63 136 192 6.6 458.6 0 95.6

Aug. 2010 7.96 156 204 7.24 586.2 0 95.4
Sep. 2010 7.85 168 212 6.6 456.3 0 95.6
Oct. 2010 7.75 172 210 8.48 485.2 0 98
Nov. 2010 7.89 132 180 4.8 548.2 0 90.6
Dec. 2010 7.42 160 164 6.4 486.2 0 95.6
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Table 4.21 Physicochemical Characteristics of Water for Zone Twenty

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.3 188 172 4.04 799.3 0 88
Feb. 2008 7.96 164 248 7.24 743 0 92.8
Mar.2008 7.45 172 180 6.92 687.8 0 93
Apr.2008 7.92 172 196 6.28 682.4 0 93
May 2008 7.74 168 204 5.96 828.1 0 90.4
Jun. 2008 7.34 168 212 5.64 686.9 0 93
Jul. 2008 7.56 164 224 7.56 464.8 0 95.6

Aug. 2008 7.3 172 212 6.92 755.1 0 90.4
Sep.2008 7.96 168 192 6.28 712.8 0 90.4
Oct.2008 7.92 160 184 5.96 835.1 0 90.4
Nov.2008 7.3 164 240 6.92 798.4 0 90.4
Dec.2008 7.35 152 232 5.96 700.3 0 90.4
Jan. 2009 7.3 156 228 7.24 934 0 90.2
Feb. 2009 7.3 156 228 7.24 934 0 90.2
Mar. 2009 7.35 160 208 5.96 678 0 93
Apr. 2009 7.68 164 204 5.64 800.8 0 90.4
May 2009 7.45 164 196 6.92 803.7 0 90.4
Jun. 2009 7.56 172 196 6.92 883.1 0 90.4
Jul. 2009 7.58 160 204 5.96 530.9 0 93

Aug. 2009 7.58 152 204 6.92 823.7 0 90.4
Sep. 2009 7.57 160 212 4.36 920.1 0 85.4
Oct. 2009 7.78 160 204 5.32 927.5 0 87.8
Nov. 2009 7.7 156 208 5.32 911.2 0 87.8
Dec. 2009 7.88 144 212 6.28 892.1 0 90.4
Jan. 2010 7.62 168 216 5.64 922.7 0 87.8
Feb. 2010 7.89 164 208 4.36 770.9 0 90.6
Mar. 2010 7.68 168 212 6.92 918.7 0 87.8
Apr. 2010 7.88 148 208 7.24 928.8 0 90.2
May 2010 7.78 160 240 8.1 837.8 0 92.8
Jun. 2010 7.65 152 228 4.6 816.6 0 88
Jul. 2010 7.42 164 204 6.6 853.8 0 90.4

Aug. 2010 7.96 148 232 6.2 848.1 0 90.4
Sep. 2010 7.82 172 212 5.8 842.4 0 90.4
Oct. 2010 7.45 172 196 7.24 824.5 0 92.8
Nov. 2010 7.95 160 208 6.6 756.5 0 90.4
Dec. 2010 7.65 168 216 5.96 865.3 0 90.4
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Table 4.22 Physicochemical Characteristics of Water for Zone Twenty One

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.36 164 196 7.24 648.7 0 95.4
Feb. 2008 7.69 160 236 6.6 800.9 0 90.4
Mar.2008 7.48 156 236 6.6 706.7 0 30.4
Apr.2008 7.85 156 212 7.88 704.21 0 92.8
May 2008 7.63 176 220 5.96 877.9 0 90.4
Jun. 2008 7.73 172 232 6.28 702.3 0 30.4
Jul. 2008 7.3 180 216 5.64 843.8 0 33

Aug. 2008 7.36 172 232 7.24 700.1 0 92.8
Sep.2008 7.69 172 208 6.6 711.4 0 30.4
Oct.2008 7.85 168 196 7.56 754.3 0 92.8
Nov.2008 7.36 168 232 7.24 800.9 0 32.8
Dec.2008 7.48 168 224 8.23 842.9 0 32.8
Jan. 2009 7.36 172 220 8.2 843.3 0 92.8
Feb. 2009 7.36 172 220 8.2 843.3 0 92.8
Mar. 2009 7.35 156 212 6.6 790.6 0 90.4
Apr. 2009 7.71 160 200 6.92 840.1 0 90.4
May 2009 7.67 164 204 6.28 842.5 0 90.4
Jun. 2009 7.89 156 196 6.6 830.6 0 90.4
Jul. 2009 7.95 156 208 6.28 840 0 90.4

Aug. 2009 7.8 160 212 6.6 831.2 0 90.4
Sep. 2009 7.58 156 208 4.68 779.6 0 88
Oct. 2009 7.66 172 208 7.24 827.5 0 92.8
Nov. 2009 7.71 164 212 7.24 770 0 92.8
Dec. 2009 7.45 140 204 6.28 474.5 0 95.6
Jan. 2010 7.48 140 212 6.28 786.5 0 90.4
Feb. 2010 7.9 160 204 7.24 698.1 0 95.4
Mar. 2010 7.71 152 216 7.24 780.8 14 32.8
Apr. 2010 7.65 152 212 6.92 778.1 14 30.4
May 2010 7.45 156 224 5.4 774.6 0 90.4
Jun. 2010 7.96 164 212 6.92 865.2 0 90.4
Jul. 2010 7.82 172 192 7.24 586.2 0 95.4

Aug. 2010 7.65 160 184 4.68 845.6 17 28
Sep. 2010 7.32 156 240 5.64 874.6 0 90.4
Oct. 2010 7.76 152 232 6.64 754.6 0 90.4
Nov. 2010 7.98 160 228 7.24 968.2 0 90.2
Dec. 2010 7.42 164 204 6.28 756.3 0 90.4
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Table 4.23 Physicochemical Characteristics of Water for Zone Twenty Two

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.55 160 195 4.68 685 0 90.6
Feb. 2008 7.83 154 188 6.5 690.3 0 93
Mar.2008 7.85 160 188 6.28 725.39 0 93
Apr.2008 7.38 168 188 5.32 589.7 0 93
May 2008 7.72 164 188 5 743 0 88
Jun. 2008 7.21 152 192 5.64 770.6 5 66.4
Jul. 2008 7.13 156 208 7.28 826.3 0 92.8

Aug. 2008 7.55 160 192 6.28 630.2 0 93
Sep.2008 7.83 160 192 7.9 600.1 0 95.4
Oct.2008 7.38 164 204 8.1 596.8 0 95.4
Nov.2008 7.55 164 196 7.88 690.3 0 95.4
Dec.2008 7.13 172 188 7.56 463.5 0 98
Jan. 2009 7.55 160 192 6.28 637.8 0 93
Feb. 2009 7.55 160 192 6.28 637.8 0 93
Mar. 2009 7.35 164 196 6.28 771.7 0 90.4
Apr. 2009 7.79 172 188 5.96 662.3 0 93
May 2009 7.78 168 184 7.88 678.2 0 95.4
Jun. 2009 7.9 168 196 5.64 659.8 0 93
Jul. 2009 7.85 168 204 5.64 682.4 0 93

Aug. 2009 7.85 180 204 5.32 690 0 93
Sep. 2009 7.85 164 204 4.04 644.2 0 90.6
Oct. 2009 7.96 168 192 6.92 624.3 0 93
Nov. 2009 7.91 172 196 6.92 650.3 0 93
Dec. 2009 7.67 156 192 5.32 659.1 0 93
Jan. 2010 7.56 160 188 5.96 648.7 0 93
Feb. 2010 7.55 156 192 6.28 650.3 0 93
Mar. 2010 7.79 160 196 5 650.4 0 90.6
Apr. 2010 7.26 160 192 6.28 658.9 0 93
May 2010 7.67 164 188 5.6 654.2 0 93
Jun. 2010 7.84 160 196 5.2 785.2 0 90.4
Jul. 2010 7.89 172 192 6.26 563.2 11 33

Aug. 2010 7.62 156 208 7.48 496.2 0 98
Sep. 2010 7.45 172 196 6.92 741.8 0 90.4
Oct. 2010 7.35 168 212 5.8 543.9 0 93
Nov. 2010 7.96 168 204 8.42 674.9 0 95.4
Dec. 2010 7.62 172 208 6.92 580.9 0 93
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Table 4.24 Physicochemical Characteristics of Water for Zone Twenty Three

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.21 160 192 6.6 703.9 11 31.4
Feb. 2008 7.78 156 200 6.92 827.6 0 90.4
Mar.2008 7.36 152 192 7.56 672.2 0 95.4
Apr.2008 7.82 164 224 6.6 724.4 0 90.4
May 2008 7.73 160 212 5.32 648.7 0 93
Jun. 2008 7.25 164 228 5.96 734.7 0 90.4
Jul. 2008 7.33 160 212 5.64 679.7 0 93

Aug. 2008 7.21 164 228 4.68 751.8 0 88
Sep.2008 7.78 156 208 4.68 696.2 11 30.6
Oct.2008 7.82 152 216 6.28 770.1 21 30.4
Nov.2008 7.21 160 212 6.6 827.6 17 30.4
Dec.2008 7.58 164 208 7.88 850.1 0 92.8
Jan. 2009 7.21 164 204 6.92 937.1 0 87.8
Feb. 2009 7.69 160 192 7.24 494.2 0 98
Mar. 2009 7.35 168 208 7.88 841.2 2 80.8
Apr. 2009 7.82 152 196 7.24 788.8 0 92.8
May 2009 7.99 172 192 6.6 821.3 0 90.4
Jun. 2009 7.55 164 188 3.72 793.7 20 25.6
Jul. 2009 7.61 152 192 6.92 800 7 66.4

Aug. 2009 7.66 168 196 6.28 800.5 0 90.4
Sep. 2009 7.23 148 196 6.28 787.8 17 30.4
Oct. 2009 7.63 140 208 6.28 792.8 0 90.4
Nov. 2009 7.6 148 216 6.6 814.8 0 90.4
Dec. 2009 7.78 160 212 6.6 809.7 17 30.4
Jan. 2010 7.8 148 204 5.32 791.4 0 90.4
Feb. 2010 7.56 140 196 3.4 788.6 0 85.6
Mar. 2010 7.82 148 204 6.28 793.4 21 30.4
Apr. 2010 7.59 164 212 6.28 799.1 21 30.4
May 2010 7.32 152 204 6.48 756.23 0 90.4
Jun. 2010 7.96 148 192 7.24 986.25 21 30.2
Jul. 2010 7.84 164 208 5.46 845.6 21 30.4

Aug. 2010 7.56 172 212 6.64 657.2 17 33
Sep. 2010 7.82 160 188 4.68 748.6 0 88
Oct. 2010 7.96 168 196 7.88 568.3 17 35.4
Nov. 2010 7.24 172 192 8.42 659.3 14 35.4
Dec. 2010 7.62 184 208 6.6 856.2 0 91.4
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Table 4.25 Physicochemical Characteristics of Water for Zone Twenty Four
 

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.7 140 264 6 784.5 0 90.4
Feb. 2008 7.44 176 232 7.24 768.2 0 92.8
Mar.2008 8.01 176 264 6.6 753.2 0 90.4
Apr.2008 7.81 172 248 6.28 768.2 0 90.4
May 2008 7.79 160 224 6.6 743 0 90.4
Jun. 2008 7.58 172 244 5.64 687.3 0 93
Jul. 2008 7.61 164 232 6.6 649.1 0 93

Aug. 2008 7.7 168 244 3.72 778.6 0 85.6
Sep.2008 7.44 164 228 5.64 778.6 0 90.4
Oct.2008 7.81 156 220 5.96 803.5 0 90.4
Nov.2008 7.7 156 232 3.72 510.2 0 88.2
Dec.2008 7.35 152 224 5.96 420.1 0 95.6
Jan. 2009 7.7 160 216 5.64 878.1 0 90.4
Feb. 2009 7.7 160 216 5.64 878.1 11 30.4
Mar. 2009 7.35 156 216 6.28 912.3 0 87.8
Apr. 2009 7.59 172 208 7.24 798.7 13 32.8
May 2009 7.55 164 204 5.64 827.3 2 78.4
Jun. 2009 7.88 148 196 5.32 790.3 0 90.4
Jul. 2009 7.81 176 204 5.96 807.8 0 90.4

Aug. 2009 7.56 188 196 5.96 837.8 0 90.4
Sep. 2009 7.56 156 192 8.05 816.6 0 92.8
Oct. 2009 7.23 140 196 5.96 853.8 21 30.4
Nov. 2009 7.84 156 192 6.28 848.1 0 90.4
Dec. 2009 7.46 152 196 6.92 842.4 0 90.4
Jan. 2010 7.46 156 192 6.28 824.5 0 90.4
Feb. 2010 7.56 152 196 5 830.7 21 30.4
Mar. 2010 7.6 156 192 6.28 827.6 0 90.4
Apr. 2010 7.89 168 196 5.96 771.7 0 90.4
May 2010 7.64 140 208 6.62 756.3 0 90.4
Jun. 2010 7.77 188 216 5.42 896.3 21 30.4
Jul. 2010 7.85 172 196 7.24 845.2 14 32.8

Aug. 2010 7.46 156 216 6.28 854.2 0 90.4
Sep. 2010 7.74 188 192 5.96 741.8 17 30.4
Oct. 2010 7.56 172 232 8.28 836.5 0 92.8
Nov. 2010 7.89 160 220 5.8 792.5 0 90.4
Dec. 2010 7.75 156 224 6.6 832.1 0 90.4
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Table 4.26 Physicochemical Characteristics of Water for Zone Twenty Five

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.62 160 200 5 663.7 0 90.6
Feb. 2008 7.98 152 212 7.56 739.2 0 92.8
Mar.2008 7.55 152 200 7.24 680.3 0 95.4
Apr.2008 7.89 152 212 6.92 739.2 0 90.4
May 2008 7.69 156 208 5.96 385.4 0 95.6
Jun. 2008 7.61 144 228 5.32 876.8 0 90.4
Jul. 2008 7.63 152 224 6.28 707.8 0 90.4

Aug. 2008 7.62 160 228 5.32 749.4 0 90.4
Sep.2008 7.98 160 232 6.28 759.6 0 90.4
Oct.2008 7.89 124 228 6.92 735.6 0 90.4
Nov.2008 7.62 168 220 6.92 816.4 0 90.4
Dec.2008 7.49 160 232 6.92 890.3 0 90.4
Jan. 2009 7.62 148 224 7.24 830.2 0 92.8
Feb. 2009 7.62 148 224 7.24 830.2 0 92.8
Mar. 2009 7.35 164 220 6.28 851.4 0 90.4
Apr. 2009 7.67 156 204 6.28 723.1 0 90.4
May 2009 7.6 160 196 5.96 840.4 0 90.4
Jun. 2009 7.65 160 204 5 840.7 0 88
Jul. 2009 7.66 160 204 5 823.8 21 28

Aug. 2009 7.68 144 212 6.28 799.4 0 90.4
Sep. 2009 7.43 160 204 5.64 844.8 0 90.4
Oct. 2009 7.56 172 208 6.28 835.4 0 90.4
Nov. 2009 7.45 160 204 6.28 882.1 11 30.4
Dec. 2009 7.81 168 196 6.28 870.3 0 90.4
Jan. 2010 7.81 144 196 5 841.2 11 28
Feb. 2010 7.69 148 200 4.68 850.3 0 88
Mar. 2010 7.42 160 196 5.64 847.1 0 90.4
Apr. 2010 7.99 152 184 5.32 858.1 0 90.4
May 2010 7.86 124 212 5.4 756.2 21 30.4
Jun. 2010 7.85 160 204 6.92 865.1 0 90.4
Jul. 2010 7.64 168 200 5.32 784.54 0 90.4

Aug. 2010 7.54 144 196 6.28 859.3 17 30.4
Sep. 2010 7.82 160 208 5.96 841.2 17 30.4
Oct. 2010 7.83 152 196 4.68 863.2 0 88
Nov. 2010 7.81 148 184 7.24 784.3 0 92.8
Dec. 2010 7.42 172 196 6.26 842.3 17 30.4
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Table 4.27 Physicochemical Characteristics of Water for Zone Twenty Six

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.67 152 192 8.52 750 0 92.8
Feb. 2008 8.01 160 220 7.59 722.8 0 92.8
Mar.2008 7.78 192 220 7.24 664.2 0 95.4
Apr.2008 8.13 168 224 5.96 722.8 0 90.4
May 2008 7.36 164 212 6.6 628.2 5 69
Jun. 2008 7.72 148 220 6.6 706.2 0 90.4
Jul. 2008 7.25 160 216 7.88 670.8 0 95.4

Aug. 2008 7.67 156 220 6.92 710.3 0 90.4
Sep.2008 8.01 156 212 5.96 744.5 0 90.4
Oct.2008 7.74 168 208 8.2 740.4 0 92.8
Nov.2008 7.67 164 232 5.96 875.1 0 90.4
Dec.2008 7.85 172 216 8.2 932.8 0 90.2
Jan. 2009 7.67 164 212 8.2 825.2 0 92.8
Feb. 2009 7.67 164 212 8.2 825.2 0 92.8
Mar. 2009 7.35 160 204 8.2 653.9 0 95.4
Apr. 2009 7.6 160 196 6.92 757.6 0 90.4
May 2009 7.55 160 196 7.24 788.4 0 92.8
Jun. 2009 7.66 172 204 5.64 748.4 0 90.4
Jul. 2009 7.54 140 196 5.64 778.4 0 90.4

Aug. 2009 7.54 180 208 5.96 700.6 0 90.4
Sep. 2009 7.56 168 204 5.64 900.4 0 90.4
Oct. 2009 7.38 160 204 5.32 973.8 0 87.8
Nov. 2009 7.4 168 212 7.24 969.1 0 90.2
Dec. 2009 7.3 164 204 7.24 653.4 0 95.4
Jan. 2010 7.3 140 212 7.24 975.6 0 90.2
Feb. 2010 7.65 156 204 3.4 981.1 0 83
Mar. 2010 7.44 164 188 6.28 622.4 0 93
Apr. 2010 7.32 152 196 6.28 914.7 0 87.8
May 2010 7.26 160 212 7.24 775.6 0 92.8
Jun. 2010 7.64 140 196 5.46 865.2 0 90.4
Jul. 2010 7.98 144 204 6.92 956.3 21 27.8

Aug. 2010 7.35 168 188 8.2 745.6 0 92.8
Sep. 2010 7.84 172 196 7.88 685.3 0 95.4
Oct. 2010 7.77 144 204 5.96 754.2 0 90.4
Nov. 2010 7.775 160 196 6.92 865.3 0 90.4
Dec. 2010 7.62 160 228 5.32 749.4 0 90.4
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Table 4.28 Physicochemical Characteristics of Water for Zone Twenty Seven

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.71 180 196 6.6 583.5 0 93
Feb. 2008 7.64 140 192 7.56 704.4 8 56.8
Mar.2008 7.89 148 196 7.88 640.3 9 59.4
Apr.2008 7.56 148 188 5.32 704.4 0 90.4
May 2008 7.3 168 188 6.28 630.25 0 93
Jun. 2008 7.58 164 208 5 708.5 21 28
Jul. 2008 7.29 172 204 7.24 734.1 0 92.8

Aug. 2008 7.71 164 208 7.24 733.5 0 92.8
Sep.2008 7.64 168 220 7.24 733.5 0 92.8
Oct.2008 7.56 160 192 7.56 779.2 0 92.8
Nov.2008 7.71 172 192 7.56 833.1 9 56.8
Dec.2008 7.68 176 196 8.1 863 15 32.8
Jan. 2009 7.71 168 192 8.24 849.2 0 92.8
Feb. 2009 7.71 168 192 8.24 849.2 1 92.8
Mar. 2009 7.35 176 192 6.92 900 14 30.4
Apr. 2009 7.51 148 192 7.24 791.8 0 92.8
May 2009 7.54 156 188 6.92 682.5 0 93
Jun. 2009 7.77 160 196 6.92 724.5 17 30.4
Jul. 2009 7.7 156 192 6.28 688.4 11 33

Aug. 2009 7.44 176 196 5.64 689.7 0 93
Sep. 2009 7.52 160 196 5 849.5 0 90.4
Oct. 2009 7.39 148 192 6.28 862.1 0 90.4
Nov. 2009 7.45 140 196 5.64 832.6 0 90.4
Dec. 2009 7.6 168 196 6.92 820.8 0 90.4
Jan. 2010 7.6 160 188 6.92 851.4 21 30.4
Feb. 2010 7.69 168 192 3.72 853.4 0 85.6
Mar. 2010 7.95 152 188 6.28 857.6 0 90.4
Apr. 2010 7.8 140 188 5.64 848.8 0 90.4
May 2010 7.71 164 192 8.25 791.4 21 32.8
Jun. 2010 7.67 156 164 7.24 788.6 0 92.8
Jul. 2010 7.89 156 196 6.28 793.4 0 90.4

Aug. 2010 7.95 152 180 6.28 799.1 17 30.4
Sep. 2010 7.8 160 164 5.96 756.23 0 90.4
Oct. 2010 7.58 160 180 5 986.25 17 25.4
Nov. 2010 7.45 156 192 5 756.3 0 88
Dec. 2010 7.56 172 192 6.28 853.2 0 90.4
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Table 4.29 Physicochemical Characteristics of Water for Zone Twenty Eight

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.75 200 185 7.36 750 0 92.8
Feb. 2008 7.34 152 184 6.6 701.1 0 90.4
Mar.2008 7.36 156 184 7.24 680 0 35.4
Apr.2008 7.35 172 188 6.6 701.1 0 90.4
May 2008 7.75 160 192 6.6 654.5 0 33
Jun. 2008 7.48 172 200 5.96 726.4 0 90.4
Jul. 2008 7.58 168 196 7.24 649.1 0 95.4

Aug. 2008 7.75 160 200 8.2 731.7 0 32.8
Sep.2008 7.34 176 208 6.92 600.1 0 93
Oct.2008 7.35 164 204 8.2 729.3 0 32.8
Nov.2008 7.75 168 196 7.56 690.3 0 95.4
Dec.2008 7.72 164 192 5.32 464.3 0 35.6
Jan. 2009 7.75 156 196 6.28 619.2 0 93
Feb. 2009 7.75 156 196 6.28 619.2 0 93
Mar. 2009 7.35 184 196 7.24 658.2 0 95.4
Apr. 2009 7.48 136 180 6.28 656.3 0 93
May 2009 7.28 164 176 6.28 618.7 0 33
Jun. 2009 7.58 156 184 5.96 647.8 0 93
Jul. 2009 7.51 164 180 5.32 631 0 93

Aug. 2009 7.58 168 188 6.92 628.9 0 93
Sep. 2009 7.7 160 184 5.32 644.2 0 93
Oct. 2009 7.5 140 188 5.96 642.3 0 93
Nov. 2009 7.56 152 196 6.28 650.3 0 93
Dec. 2009 7.42 160 192 6.28 671.3 0 93
Jan. 2010 7.42 156 196 6.28 651.9 0 93
Feb. 2010 7.65 144 188 5 657.8 0 90.6
Mar. 2010 7.85 152 192 6.92 647.8 0 93
Apr. 2010 7.45 148 184 6.28 634.8 0 93
May 2010 7.85 164 196 6.6 779.2 0 90.4
Jun. 2010 7.36 172 196 3.72 833.1 0 85.6
Jul. 2010 7.48 164 204 6.92 863 0 90.4

Aug. 2010 7.36 164 196 6.28 849.2 0 90.4
Sep. 2010 7.36 160 208 6.28 849.2 0 90.4
Oct. 2010 7.35 160 204 7.24 900 0 92.8
Nov. 2010 7.71 160 204 5.8 791.8 0 90.4
Dec. 2010 7.56 172 192 6.26 789.6 0 90.4
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Table 4.30 Physicochemical Characteristics of Water for Zone Twenty Nine

Month pH Alkalinity 
in mg/l

Hardness 
in mg/l DO in mg/l TS in 

mg/l
MPN 

/100ml WQI

Jan.2008 7.63 168 188 6.6 756.02 14 30.4
Feb. 2008 7.88 164 188 7.24 768.8 20 32.8
Mar.2008 7.95 268 188 6.6 695.2 21 30.4
Apr.2008 7.85 160 196 7.24 768.8 11 32.8
May 2008 7.69 176 188 5.32 743 0 30.4
Jun. 2008 7.28 180 192 4.36 750.7 14 88
Jul. 2008 7.38 172 200 6.28 770.3 0 90.4

Aug. 2008 7.63 172 192 7.88 777.1 0 32.8
Sep.2008 7.88 176 200 7.56 710.3 11 32.8
Oct.2008 7.85 168 200 5.96 792.1 21 30.4
Nov.2008 7.63 180 204 7.88 906.4 11 30.2
Dec.2008 7.35 172 212 6.28 910 21 87.8
Jan. 2009 7.63 180 204 7.24 733.3 0 92.8
Feb. 2009 7.63 180 204 7.24 733.3 0 92.8
Mar. 2009 7.35 172 212 6.92 920.5 0 87.8
Apr. 2009 7.39 168 196 5.32 863.4 0 90.4
May 2009 7.48 160 192 7.56 700.2 0 95.4
Jun. 2009 7.68 148 188 5.64 760.4 0 90.4
Jul. 2009 7.64 160 184 6.92 717.8 0 90.4

Aug. 2009 7.56 144 184 6.6 721.4 0 90.4
Sep. 2009 7.35 156 184 4.04 924.1 2 71
Oct. 2009 7.51 160 180 7.24 922.8 21 30.2
Nov. 2009 7.59 160 192 6.92 912.4 8 51.8
Dec. 2009 7.58 156 188 5.32 905.4 0 87.8
Jan. 2010 7.6 172 196 5.64 913.1 20 27.8
Feb. 2010 7.8 152 192 4.68 920.2 0 85.4
Mar. 2010 7.61 168 196 5.64 919.2 0 87.8
Apr. 2010 7.65 164 188 7.24 902.4 0 90.2
May 2010 7.36 140 196 5.32 790.3 21 30.4
Jun. 2010 7.48 188 204 5.96 807.8 17 30.4
Jul. 2010 7.36 172 196 5.96 837.8 0 90.4

Aug. 2010 7.36 156 192 8.12 816.6 17 32.8
Sep. 2010 7.35 188 196 5.96 853.8 21 30.4
Oct. 2010 7.71 172 192 6.28 848.1 0 90.4
Nov. 2010 7.67 160 196 6.92 842.4 17 30.4
Dec. 2010 7.89 168 192 6.28 824.5 0 90.4
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4.2.2 Rating Scale (qi) for Water Quality Parameters

The rating scale was prepared for range of values of each parameter the rating 

varies from 0 to 100 and is divided into five intervals. The rating qi = 0 implies that 

the parameter present in water exceeds the standard maximum permissible limits and 

water is severely polluted. On the other hand qi = 100 implies that the parameter 

present in water has most desirable value. The other ratings fall between these two 

extremes and are qi = 40, qi = 60 and qi = 80 indicating excessively polluted 

moderately polluted and less polluted respectively. The rating scale for all six water 

quality parameters is given in Table 4.31. 

Table 4.31 Rating Scale (qi) to Calculate WQI

4.2.3 Unit Weight (wi) for Water Quality Parameters

Unit weight for each quality parameter was calculated by the value 
proportional to the permissible limits
Therefore,

wi α 1/vi                   (4.2)

or   wi = K/vi                (4.3)

Where, K = Constant of proportionality, wi = Unit weight of factor, vi = Maximum 
Permissible limit. As recommended by Indian council of Medical Research (ICMR) 
value of K was calculated as 

Parameters Ranges of Water Quality Parameter

7-8.5 8.6-8.7 8.8-8.9 9.0-9.2 >9.2
pH

6.8-6.9 6.7-6.8 6.5-6.7 <6.5
DO (mg/lit) >7 5.1-7 4.1-5 3-4 <3

50.1-70 70.1-90 90.1-120 >120Alkalinity
(as mg/lit of Caco3)

21-50
15.1-20 10.1-15 6-10 <6

Hardness 
(as mg/lit of Caco3)

0-150 150.1-300 300.1-150 450.1-600 >600

TS (mg/lit) <500 500-700 701-900 901-1000 >1000
MPN (per/100 ml) <1 2-4 5-7 8-10 >10

Rating 100 80 60 40 0

Extent of pollution Clean Slight
pollution

Moderate 
pollution

Excessive 
pollution

Severe
pollution
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 (4.4)K = ∑6

i = 1

1

 Vi

Where,     ∑
6

i = 1

1

 Vi =
1

 Vi (pH) +
1

 Vi (TS) +  
1

Vi (Hardness) +
1

Vi (Total Alkalinity) +
1

Vi (DO) +  
1

Vi (MPN)

The permissible limit of each water quality parameter given by Indian Council 

of Medical Research (ICMR) and their corresponding weights calculated by weighted 

index method are mentioned in the Table 4.32. The quality of water is categorised 

from very bad to excellent on the basis of average Water Quality Index (Tiwari and 

Mishra, 1985). Water quality classification based on average water quality index is 

shown in Table 4.33. 

Table 4.32 Water Quality Factors: Their ICMR Standard and Assigned Unit 
Weights

Table 4.33 Water Quality Classification Based on Avg.WQI

The Water quality classification in the distribution system on the basis of 

average water quality index for Solapur city is shown in Table 4.34. From Table 4.34 

it can be observed that out of twenty nine zones in the study area, for zone twenty two 

and twenty eight water quality is excellent, for zone four, twenty three and twenty 

nine water quality is medium, for zone two water quality is bad and for remaining 

twenty three zones water quality is good.

Water Quality Factors ICMR Standards Unit Weight (wi)
pH 7-8.5 0.09

Total Solids (mg/lit) <500 0.13
Hardness

(as mg/lit of Caco3)
<300 0.05

 Alkalinity
(as mg/lit of Caco3)

<120 0.01

DO (mg/lit) >5 0.12
MPN (per/100 ml) <1 0.6

Value of WQI Quality of Water

91-100 Excellent

71-90 Good

51-70 Medium

26-50 Bad

00-25 Very Bad
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Table 4.34 Zone Wise Water Quality Index

 

4.3 Normalisation of Raw Dataset 

The normalisation of dataset is required before using it for developing ANN 

models. The collected water quality dataset was normalized by using max-min 

normalisation formula.  The Maximin normalisation Formula is as follow,

Normalisation =             (4.5) 
V - Min A

Max A - Min A
(new - Max A - new - Min A) + (new_MinA)

Where, 

V= raw data set value of parameters,     

Zone Avg.WQI Value Classification

1 75.33 Good
2 35.85 Bad
3 77.95 Good
4 55.37 Medium
5 85.88 Good
6 84.37 Good
7 80.58 Good
8 87.29 Good
9 86.28 Good
10 86.79 Good
11 84.06 Good
12 73.20 Good
13 82.77 Good
14 70.24 Good
15 77.72 Good
16 87.904 Good
17 84.227 Good
18 72.57 Good
19 83.63 Good
20 83.86 Good
21 74.89 Good
22 90.64 Excellent
23 66.69 Medium
24 78.75 Good
25 78.995 Good
26 89 Good
27 73.29 Good
28 92.39 Excellent
29 62.14 Medium
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Min A= the minimum value of Water Quality Parameter

Max A= the maximum value of Water Quality Parameter

new _ Max A = 1

new_ Min A = 0 or -1.

4.4 MODELING PERFORMANCE CRITERIONS

In order to evaluate the prediction accuracy of FL, ANN, ANFIS and MLR 

models three criterions were used for comparative evaluation of the performance of 

these models. The criterions employed are Mean Absolute Error (MAE), Mean 

Relative Error (MRE) and Coefficient of Correlation (Cc) (May et al. 2008).

4.4.1 Mean Absolute Error (MAE) 

MAE is a quantity used to measure how close forecasts or predictions are to 

the eventual outcomes. Expressed in words, the MAE is the average over the 

verification sample of the absolute values of the differences between forecast and the 

corresponding observation. The mean absolute error is given by 

               (4.6)MAE = 1/n∑
n

i = 1
|observed - predicted|

4.4.2 Mean Relative Error (MRE)
 

The relative error is the absolute error divided by the magnitude of the exact 

value. It is generally expressed as percentage and helps us to calculate the ratio between 

true error and the true value.

MRE =1/n  ×100            ∑n 

i
 
(Observed value - Predicted Value)

Observed Value

(4.7)                                                                                          

4.4.3 Coefficient of Correlation (Cc)

It is a measure of the strength of the linear relationship between two variables. 

It is defined in terms of the (sample) covariance of the variables divided by their 

(sample) standard deviations.       

                                                 (4.8)Cc =
∑N

i = 1
(x - x')(y - y')

∑N

i = 1
(x - x')2(y - y')2
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Where,  n = the number of data patterns in the dependent data set, x= the observed 

values, y= the predicted values, x'= mean of the observed values and y'= mean of the 

predicted values. 
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CHAPTER 5

RESULTS AND DISCUSSION

5.0 GENERAL 

This chapter provides results of the study conducted for assessment of water 

quality in various zones of municipal distribution system. The prediction of water 

quality index in various zones of distribution system was carried out by using 

artificial intelligence techniques, such as Fuzzy Logic, ANN and ANFIS. Prediction 

of water quality index was also carried out by using multiple linear regression 

technique, which is a statistical modelling technique, generally used for linear 

relationship between input and output variables. The obtained results of artificial 

intelligence techniques and statistical technique were validated with observed field 

values of water quality index. The detailed results are presented in the following 

sections of this chapter.

5.1 FUZZY MODEL FOR PREDICTION OF WATER QUALITY

The fuzzy model for water quality in the distribution system has been 

developed. The fuzzy models were trained using 2/3 rd data of the collected dataset 

and tested for remaining1/ 3 rd dataset. In this study, each of the six input water 

quality determinants have been divided into three subsets of water quality viz. low, 

medium and high. Fuzzification is the process of decomposing a system input and/or 

output into one or more fuzzy sets. A fuzzy set is defined in terms of a membership 

function which maps the domain of interest, e.g. concentrations, onto the interval [0, 

1]. The shape of the curves shows the membership function for each set. In this study 

the trapezoidal and triangular membership functions were assigned to each subset as 

shown in Fig. 5.1 and Fig. 5.2. The ranges for input and output parameters for 

trapezoidal and triangular membership function are given in Tables 5.1 to 5.4.  

Ranges for fuzzy sets given in Tables 5.1 to 5.4 have been selected to evaluate water 

quality by means of an aggregated index called Fuzzy Water Quality Index (FWQI). 

The output variable fuzzy water quality index has been divided into four subsets viz. 

poor, medium, good and excellent. 
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a)Trapezoidal MF for pH                              b)Trapezoidal MF for DO
                                                      

    

               c)Trapezoidal MF for Alkalinity          d)Trapezoidal MF for Hardness   
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e)Trapezoidal MF for TS                          f)Trapezoidal MF for MPN
Fig.5.1. Trapezoidal MF for pH, DO, Alkalinity, Hardness, TS, MPN and FWQI

                                       g) Trapezoidal MF for FWQI    

Fig.5.1. Trapezoidal MF for pH, DO, Alkalinity, Hardness, TS, MPN and FWQI
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a) Triangular MF for DO                                        b) Triangular MF for pH       

c)Triangular MF for Alkalinity                         d)Triangular MF for TS

    Fig. 5.2. Triangular MF for DO, pH, Alkalinity, TS, Hardness, MPN and FWQI

               

       

e)Triangular MF for Hardness             f)Triangular MF for MPN
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g) Triangular MF for FWQI

Fig. 5.2. Triangular MF for DO, pH, Alkalinity, TS, Hardness, MPN and FWQI

Table 5.1: Input Parameter Ranges for Trapezoidal Membership Function

Low Medium HighDeterminants
a b c d a b c d a b c d

pH 0 0 6.3 7.5 6.8 7 8.5 8.7 8.5 9 10 10
DO 0 0 3 4 3 4.5 6.5 7 6 7 10 10

Alkalinity 0 0 35 50 40 55 90 110 90 110 420 420
Hardness 0 0 150 170 150 180 280 300 270 310 450 450

TS 0 0 450 500 450 500 650 750 730 750 1100 1100
MPN 0 0 1 3 2 5 6 8 7 15 21 21

Table 5.2: Output Parameter Ranges for Trapezoidal Membership Function

Determinan
t Poor Medium Good Excellent

a b c d a b c d a b c d a b c d
WQI

0 0
4
5

5
2

4
8

5
0

6
5

7
2 0

7
5

8
5

9
0

8
7

9
1

10
0

10
0

Table 5.3: Input Parameter Ranges for Triangular Membership Function

Low Medium High
Determinants

a b c a b c a b c
Range

pH 6 6 7.5 6 7.5 9.5 7.5 10 10 0 -1
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DO 0 0 6 0 6 9 6 10 10 0 -1

Alkalinity 20 20 80 20 80 150 80 160 400 0 -1

Hardness 100 100 250 100 250 450 250 450 450 0 -1

TS 0 0 800 0 600 100 600 1100 1100 0 -1

MPN 0 0 6 0 7 18 7 21 21 0 -1

Table 5.4: Output Parameter Ranges for Triangular Membership Function

Determinant Poor Medium Good Excellent Range
a b c a b c a b c a b cWQI
0 0 80 0 70 90 60 90 100 80 100 100

0 -1

Defuzzification is such inverse transformation which maps the output from the 

fuzzy domain back into the crisp domain. In this study centroid method, mean of 

maxima (MOM) method and bisector method are used for defuzzification. The 

variables are combined into rules using the concept of ‘AND’ operator. The fuzzy 

operator minimum was used as most of the variables are independent in nature. No 

weight to any rule was assigned as the entire rule carries equal weight to calculate 

WQI. 

 For e.g. 1) If pH is medium, DO is medium, Alkalinity is high, Hardness is medium, 

TS is low and MPN is low then WQI is excellent. 

 Similarly, fifteen rules are obtained from available data points and number of fuzzy 

sets considered. Although the possible rule combination may be more but in real field 

situation effective rules are less. All fifteen rules are shown explicitly in Table 5.5. 

The rule viewer to FWQI is shown in Fig.5.3. 

Table 5.5: Fuzzy Rules

Sr. No. pH DO Alkalinity Hardness Total  
Solids MPN WQI

1 Medium Medium High Medium Low Low Excellent
2 Medium High High Medium Low Low Excellent
3 Medium Medium High Medium Medium Low Excellent
4 Medium High High Medium High Low Good
5 Medium High High Medium High Low Good
6 Medium Medium High Medium High Low Good
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7 Medium Medium High Medium Low High Medium
8 Medium Medium High Medium High High Poor
9 Medium High High Medium High High Poor
10 Medium High High Medium Low High Medium
11 Medium Medium High Medium Medium Medium Medium
12 Medium Medium High Medium Low Medium Medium
13 Medium Medium High Medium Medium Low Good
14 Medium High High Medium Medium Low Good
15 Medium Medium High Medium Low Low Good

Fig. 5.3 Rule Viewer of Fuzzy Water Quality Index (FWQI)

The water quality in the distribution system for various zones in Solapur city 

has been assessed with FWQI. The validation of predicted FWQI was carried by 

comparing the predicted values with observed field results. The error analysis during 

training and testing of fuzzy models for various zones is mentioned in the Table 5.6. It 

can be observed from Table 5.6 that model performance changes with change in 

membership function and defuzzification method. The best fitting model for each 

zone was selected on the basis of Coefficient of Correlation (Cc) between the 

observed and predicted values. The shape of membership function was also selected 

based on same argument. Higher the Coefficient of Correlation (Cc) better is the 

model performance and if the Coefficient of Correlation for various models are same, 
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then the model which gives less Mean Relative Error (MRE) was selected. The best 

fitting fuzzy model for each zone is mentioned in the Table 5.7.

 From Table 5.7 it is observed that out of twenty nine zones in the study area, 

for twenty seven zones triangular membership function performs better as compared 

to trapezoidal membership function. From Table 5.7 it can also be observed that 

triangular membership function outperforms trapezoidal membership function for all 

water quality classes viz. excellent good, medium and poor. The better performance 

of triangular membership function for all water quality classes could be due to single 

permissible limit value assigned by the regulatory bodies. 

From Table 5.6 and 5.7 it is observed that the MOM method of defuzzification 

performs better as compared to bisector and centroid method for good and excellent 

water quality classes. The performance of all three methods of defuzzification (i.e. 

Centroid, MOM and Bisector) was found to be more or less uniform for bad and 

medium water quality classes. For bad water quality class the performance of centroid 

method was found to be marginally better as compared to MOM and bisector 

methods, whereas performance of bisector method was found to be marginally better 

for medium water quality class. Overall the performance of MOM method of 

defuzzification was found to be reasonably good for all water quality classes. The 

better performance of MOM method of defuzzification could be due to unsymmetrical 

shape of triangular membership function, as appeared in Fig.5.2.

Table 5.6: Zone wise Error Analysis for of Fuzzy Models

Training Testing
Zone Membership

 Function
Defuzzification

 Method MAE MRE Cc MAE MRE Cc
Centroid 10.58 16.72 0.87 13.91 32.42 0.72
Bisector 11.68 20.51 0.72 13.73 32.32 0.72Triangular
MOM 8.55 16.60 0.85 11.49 31.46 0.73

Centroid 15.66 21.71 0.62 16.58 36.76 0.41
Bisector 14.73 20.28 0.74 16.57 36.81 0.41

1

Trapezoidal
MOM 14.72 20.29 0.76 16.35 36.68 0.41

Centroid 14.70 42.50 0.78 10.30 32.23 0.75
2 Triangular

Bisector 16.20 47.87 0.64 10.67 33.89 0.50
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MOM 15.56 46.43 0.78 12.48 39.76 0.59
Centroid 14.04 41.70 0.81 11.99 37.08 0.74
Bisector 14.06 41.74 0.81 12.00 37.11 0.74Trapezoidal
MOM 14.23 42.36 0.80 12.50 38.84 0.73

Centroid 9.56 15.98 0.96 10.62 15.06 0.83
Bisector 9.11 15.38 0.96 7.68 11.51 0.97Triangular
MOM 7.27 13.30 0.96 5.90 11.10 0.97

Centroid 11.85 18.87 0.89 11.17 16.41 0.95
Bisector 11.62 18.52 0.90 11.23 16.48 0.95

3

Trapezoidal
MOM 12.68 20.27 0.85 11.36 16.86 0.94

Centroid 14.60 36.90 0.85 8.88 20.37 0.97
Bisector 14.57 36.65 0.85 9.11 20.63 0.96Triangular
MOM 14.20 37.78 0.80 9.31 25.27 0.91

Centroid 17.00 43.37 0.67 8.71 20.90 0.94
Bisector 16.35 41.34 0.71 9.18 21.84 0.94

4

Trapezoidal
MOM 16.37 41.31 0.71 10.18 23.73 0.93

Centroid 7.35 8.64 0.99 8.21 14.04 0.98
Bisector 6.96 8.11 0.99 7.88 13.24 0.98Triangular
MOM 3.10 3.65 0.98 5.52 10.90 0.98

Centroid 8.47 9.85 0.97 9.64 14.14 0.96
Bisector 8.37 9.74 0.96 9.68 14.23 0.96

5

Trapezoidal
MOM 8.29 9.79 0.95 9.69 14.55 0.96

Centroid 7.76 10.55 0.97 7.18 11.42 0.99
Bisector 7.33 10.10 0.96 6.78 10.87 0.95Triangular
MOM 4.55 8.55 0.96 4.63 8.16 0.96

Centroid 10.68 12.65 0.90 10.67 16.63 0.99
Bisector 10.68 12.70 0.90 10.70 16.67 0.99

6

Trapezoidal
MOM 10.63 12.74 0.90 10.70 16.67 0.99

Table 5.6: Zone wise Error Analysis of Fuzzy Models (Continued…) 

Training Testing
Zone Membership

 Function
Defuzzification

 Method MAE MRE Cc MAE MRE Cc
Centroid 11.56 25.78 0.91 8.98 16.59 0.99
Bisector 10.50 24.60 0.94 7.42 12.41 0.99Triangular
MOM 15.80 31.98 0.90 7.32 17.24 0.93

Centroid 14.30 34.32 0.85 8.81 14.68 0.96
Bisector 14.30 34.37 0.85 8.80 14.71 0.96

7

Trapezoidal
MOM 14.33 34.50 0.85 9.07 15.56 0.96

8 Triangular Centroid 10.35 13.90 0.98 7.95 10.07 0.99
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Bisector 9.97 13.48 0.98 7.47 9.32 0.99
MOM 6.69 11.40 0.97 3.49 3.97 0.99

Centroid 5.93 8.46 0.94 8.13 9.65 0.99
Bisector 5.75 8.32 0.94 8.30 9.84 0.99Trapezoidal
MOM 5.08 7.71 0.94 7.89 9.71 0.99

Centroid 7.70 9.95 0.95 6.78 8.48 0.98
Bisector 7.20 9.36 0.95 6.38 7.84 0.98Triangular
MOM 3.67 5.55 0.97 2.83 3.60 0.98

Centroid 11.43 14.95 0.62 6.92 8.64 0.98
Bisector 11.56 15.08 0.62 7.08 8.90 0.98

9

Trapezoidal

MOM 12.83 16.50 0.54 6.55 8.50 0.97
Centroid 8.06 8.99 0.95 7.81 11.34 0.96
Bisector 7.58 8.44 0.96 7.28 10.35 0.96Triangular
MOM 3.13 3.54 0.98 4.35 6.99 0.98

Centroid 8.02 9.04 0.94 7.57 9.25 0.97
Bisector 8.13 9.16 0.94 7.72 9.46 0.98

10

Trapezoidal
MOM 7.86 8.89 0.93 7.29 9.35 0.97

Centroid 9.42 14.91 0.95 9.83 12.78 0.88
Bisector 9.06 14.55 0.95 9.28 11.54 0.89Triangular
MOM 5.57 11.50 0.94 7.68 11.16 0.92

Centroid 9.89 15.60 0.85 9.72 11.47 0.90
Bisector 10.02 15.75 0.85 9.93 11.94 0.87

11

Trapezoidal

MOM 9.38 15.04 0.85 9.45 11.72 0.90
Centroid 9.67 17.10 0.94 6.96 11.60 0.99
Bisector 9.38 16.74 0.94 6.45 10.35 0.99Triangular
MOM 7.27 17.70 0.91 3.85 6.99 0.99

Centroid 12.23 23.97 0.80 10.38 15.88 0.97
Bisector 12.38 24.20 0.80 10.52 16.10 0.96

12

Trapezoidal
MOM 12.26 25.12 0.76 11.02 17.52 0.97

Table 5.6: Zone wise Error Analysis for of Fuzzy Models (Continued…)

Training TestingZone Membership
 Function

Defuzzification
 Method MAE MRE Cc MAE MRE Cc
Centroid 10.97 16.96 0.95 8.30 13.90 0.95
Bisector 11.25 19.40 0.83 8.00 13.62 0.98Triangular
MOM 5.15 9.24 0.96 3.70 8.31 0.99

Centroid 10.85 17.58 0.98 8.75 15.94 0.99
Bisector 11.08 17.83 0.97 9.00 16.21 0.99

13

Trapezoidal
MOM 10.87 17.60 0.95 8.18 15.32 0.99

14 Triangular Centroid 8.89 18.46 0.87 10.25 17.80 0.73
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Bisector 8.29 17.60 0.82 9.73 17.17 0.74
MOM 9.12 24.65 0.85 6.40 13.45 0.72

Centroid 10.39 21.63 0.62 7.11 15.28 0.41
Bisector 10.48 21.80 0.74 7.11 15.28 0.41Trapezoidal
MOM 10.55 22.26 0.76 7.21 15.44 0.41

Centroid 9.58 15.23 0.78 7.21 14.66 0.72
Bisector 9.38 15.15 0.64 6.95 14.34 0.50Triangular
MOM 7.17 14.08 0.78 5.14 12.10 0.59

Centroid 12.54 19.03 0.81 8.21 15.05 0.74
Bisector 12.47 18.93 0.81 8.23 15.09 0.74

15

Trapezoidal
MOM 13.30 20.10 0.80 8.42 15.96 0.75

Centroid 10.53 12.54 0.96 8.84 13.85 0.83
Bisector 10.16 12.22 0.96 8.62 13.39 0.97Triangular
MOM 6.75 9.00 0.94 4.14 7.27 0.97

Centroid 9.47 11.18 0.89 8.99 13.95 0.95
Bisector 9.49 11.21 0.90 78.33 99.65 0.95

16

Trapezoidal
MOM 9.23 10.93 0.85 8.92 13.87 0.94

Centroid 12.46 17.93 0.85 15.75 26.70 0.97
Bisector 12.17 17.65 0.85 15.20 25.49 0.96Triangular
MOM 9.41 15.00 0.95 13.48 25.17 0.98

Centroid 14.21 20.37 0.67 14.75 24.91 0.94
Bisector 14.03 20.18 0.71 14.75 24.94 0.94

17

Trapezoidal
MOM 13.55 19.64 0.71 14.73 25.21 0.93

Centroid 12.60 25.30 0.87 16.49 32.90 0.73
Bisector 12.53 25.37 0.72 16.56 33.04 0.72Triangular
MOM 12.54 29.02 0.85 13.97 31.17 0.72

Centroid 18.23 38.36 0.62 14.82 32.19 0.41
Bisector 17.83 37.92 0.74 15.25 32.65 0.41

18

Trapezoidal
MOM 17.46 37.21 0.76 16.07 33.50 0.41

Table 5.6: Zone wise Error Analysis for of Fuzzy Models (Continued…)

Training TestingZone Membership
 Function

Defuzzification
 Method MAE MRE Cc MAE MRE Cc
Centroid 12.33 20.83 0.78 9.73 10.45 0.72
Bisector 12.13 20.70 0.64 9.37 10.04 0.50Triangular 
MOM 11.10 22.90 0.80 5.58 6.03 0.79

Centroid 14.58 32.73 0.81 7.15 7.96 0.74
Bisector 13.88 31.27 0.81 7.03 7.84 0.74

19

Trapezoidal 
MOM 13.57 31.26 0.80 6.33 7.08 0.75

Centroid 7.17 9.82 0.96 7.30 11.57 0.8320 Triangular Bisector 6.81 9.29 0.96 6.90 10.62 0.97
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MOM 3.70 5.85 0.96 4.17 6.69 0.98
Centroid 10.73 16.71 0.89 9.41 12.51 0.95
Bisector 10.71 16.62 0.90 9.42 12.54 0.95Trapezoidal 
MOM 10.71 16.81 0.85 9.63 13.22 0.94

Centroid 9.65 18.36 0.85 8.16 14.01 0.97
Bisector 9.38 17.70 0.95 7.85 13.32 0.98Triangular 
MOM 7.94 16.96 0.80 7.18 17.25 0.91

Centroid 11.97 20.98 0.67 10.18 14.46 0.94
Bisector 11.97 20.98 0.71 10.22 14.57 0.94

21
Trapezoidal 

MOM 11.99 21.40 0.71 10.59 15.80 0.93
Centroid 9.14 10.01 0.92 12.71 17.25 0.60
Bisector 8.68 9.50 0.90 11.73 17.03 0.59Triangular
MOM 5.85 6.35 0.95 8.98 14.00 0.74

Centroid 9.35 10.30 0.87 12.88 16.57 0.65
Bisector 9.39 10.35 0.87 13.15 16.85 0.65

22

Trapezoidal
MOM 8.78 9.71 0.84 12.73 16.41 0.64

Centroid 8.99 16.21 0.96 7.37 17.70 0.95
Bisector 10.70 22.80 0.86 7.07 16.95 0.95Triangular 
MOM 6.38 14.92 0.94 8.69 24.40 0.93

Centroid 9.62 16.49 0.96 9.77 22.38 0.93
Bisector 9.67 16.60 0.95 9.78 22.40 0.93

23

Trapezoidal
MOM 11.79 23.36 0.95 10.28 24.05 0.93

Centroid 7.41 10.41 0.97 6.28 10.02 0.99
Bisector 7.01 9.99 0.98 5.87 9.24 0.99Triangular
MOM 5.10 10.54 0.93 6.13 13.42 0.99

Centroid 8.51 11.15 0.99 9.39 15.12 0.99
Bisector 8.45 11.12 0.98 9.38 15.09 0.99

24 

Trapezoidal
MOM 8.46 11.45 0.98 9.88 16.70 0.99

Centroid 7.39 9.67 0.99 10.52 17.56 0.83
Bisector 7.15 9.38 0.99 10.13 25.14 0.81Triangular
MOM 4.67 7.74 0.95 7.46 20.01 0.95

Centroid 11.28 13.32 0.80 11.86 26.28 0.84
Bisector 11.31 13.34 0.80 11.85 26.25 0.84

25

Trapezoidal
MOM 11.50 13.80 0.80 8.83 16.35 0.99

Table 5.6: Zone wise Error Analysis for of Fuzzy Models (Continued…)

Training TestingZone Membership
 Function

Defuzzification
 Method MAE MRE Cc MAE MRE Cc

Centroid 8.36 9.27 0.89 6.63 7.33 0.99
Bisector 7.94 8.80 0.88 6.53 7.29 0.99Triangular

MOM 4.39 4.82 0.79 5.24 9.02 0.98

Centroid 11.05 12.14 0.84 9.48 11.13 0.98

26

Trapezoidal
Bisector 10.98 12.07 0.83 9.53 11.23 0.98



88

MOM 10.95 12.04 0.79 9.54 11.55 0.98

Centroid 9.27 15.25 0.96 5.13 7.89 0.99
Bisector 8.25 13.40 0.97 4.90 6.94 0.99Triangular

MOM 5.57 10.83 0.96 5.28 11.96 0.99
Centroid 12.03 21.11 0.90 8.43 13.39 0.99
Bisector 12.06 21.17 0.90 8.45 13.45 0.99

27

Trapezoidal
MOM 12.10 21.47 0.90 8.95 15.15 0.99

Centroid 14.73 15.81 0.11 7.11 7.78 0.46
Bisector 14.49 15.56 0.12 6.95 7.62 0.53Triangular

MOM 11.50 12.40 0.15 3.53 3.87 0.61
Centroid 14.60 15.66 0.00 9.15 10.06 0.45
Bisector 14.74 15.80 0.00 9.28 10.20 0.43

28

Trapezoidal
MOM 14.23 15.26 0.01 9.02 9.91 0.39

Centroid 13.77 28.43 0.70 3.98 6.59 0.99
Bisector 15.40 33.30 0.61 3.53 5.18 0.99Triangular

MOM 15.69 36.83 0.57 6.71 18.06 0.99
Centroid 18.25 36.50 0.59 7.72 15.42 0.99
Bisector 18.28 36.52 0.59 7.73 15.48 0.99

29

Trapezoidal
MOM 18.78 37.63 0.59 13.23 23.21 0.84

Table 5.7: Zone wise Best Fitting Fuzzy Model

Zone N0. Water Quality  
Class

Membership 
Function

Defuzzification 
Method

Correlation
 Coeff. (Cc)

2 Bad Triangular Centroid 0.75

4 Medium Triangular Centroid 0.97
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23 Bisector 0.95

29 Bisector 0.99

1 Centroid 0.75

3 MOM 0.73

5 MOM 0.98

6 MOM 0.96

7 Bisector 0.99

8 MOM 0.99

9 MOM 0.98

10 MOM 0.98

11 MOM 0.92

12 MOM 0.99

13 MOM 0.99

14

Triangular

Bisector 0.74

15 Trapezoidal MOM 0.75

16 MOM 0.97

17 MOM 0.98

18 Centroid 0.73

19 MOM 0.79

20 MOM 0.98

21 Bisector 0.98

24

Triangular

Bisector 0.99

25 Trapezoidal MOM 0.99

26 Bisector 0.99

27

Good

Triangular
Bisector 0.99

22 MOM 0.74

28
Excellent Triangular

MOM 0.61
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5.1.1 Fuzzy Predictions for Various Water Quality Classes 

Prediction performance of fuzzy models was assessed by selecting few typical 

zones from each water quality class. Fuzzy model behaviour for zone twenty two and 

twenty eight, where water quality is excellent, is shown in Fig.5.4. Fuzzy model 

behaviour for zones four, twenty three and twenty nine, where water quality is 

medium, is shown in Fig.5.5.  Fuzzy model behaviour, for zone second, where water 

quality is bad, is shown in Fig.5.6. The typical fuzzy model behaviour for zone 

fourteen, where water quality is good, is shown in Fig.5.7. The performance of fuzzy 

model is overall good with inferior performance during selective months as appeared 

in Figs.5.4 (b), 5.5 (c) and 5.6 during training. From Fig. 5.4 to 5.7 it is observed that 

the testing performance of fuzzy models is consistently better for overall period of 

study and for all water classes. 
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(b) 
Fig.5.4 Fuzzy Model Predictions of Water Quality for zones of Excellent Water 

Quality a) Zone Twenty Two (Avg. WQI- 90.64) b) Zone Twenty eight 
(Avg .WQI- 92.39)
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(c)  
Fig.5.5 Fuzzy Model Predictions of Water Quality for zones of Medium Water 

Quality a) Zone Four (Avg.WQI-55.37) b) Zone Twenty three 
(Avg.WQI-66.69) c) Zone Twenty nine (Avg.WQI-62.14)
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Fig.5.6 Fuzzy Model Predictions of Water Quality for Zone of Bad Water 
Quality (Zone Two with Avg. WQI- 35.85) 
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Fig.5.7 Fuzzy Model Predictions of Water Quality for Zone of Good Water 
Quality (Zone Fourteen with Avg.WQI-70.24)

5.2 ARTIFICIAL NEURAL NETWORK FOR PREDICTION OF WATER 
QUALITY

Different ANN models were developed using training data set and tested in 

order to determine optimum number of neurons in the hidden layer, best fitting 

transfer function, best suited training algorithm and optimum length of training 

dataset. The best fitting ANN model for each zone was selected by comparing the 

coefficient of co-relation (Cc) during testing. Higher the Coefficient of Correlation 

(Cc) better is the model performance and if the Coefficient of Correlation for various 

models are same, then the model which gives less Mean Relative Error (MRE) was 

selected. The ANN architecture for WQI prediction is composed of one input layer 

with six input variables, one hidden layer in which number of neurons are varied from 

one to ten and one output layer with one output variable. In this study Feed Forward 

Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP) algorithm 
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were compared for the prediction of WQI in the various zones of municipal 

distribution system. The constructed ANN models for prediction of the WQI were 

trained using the Levenberg-Marquardt algorithm (LMA). The LMA is much faster 

than other algorithms used in back propagation (Ying et al., 2007). Tansigmoidal, 

Purelinear and Logsigmoidal transfer functions were used to construct the ANN 

models for various zones in the study area.  The effect of influencing parameters on 

prediction efficiency was studied by selecting one typical zone from each water 

quality class. The Zone second from bad water quality class (35.85), fourth zone 

(55.37) from medium water quality class, zone three (77.95) from good water quality 

class and zone twenty two (90.64) from excellent water quality class were selected for 

the study. The value mentioned in the bracket indicates average WQI.   

5.2.1 Effect of Transfer Function  

The assessment for effect of transfer function on prediction performance was carried 

out by using Feed Forward Back Propagation (FFBP) and Cascade Forward Back 

Propagation (CFBP) algorithm for zone two, four, three and zone twenty two having 

water quality class bad, medium, good and excellent respectively. The error analysis 

during training and testing for these four zones is mentioned in the Tables 5.8 to 5.39.  

The performance of ANN models was assessed for four lengths of training data sets, 

viz. 50%, 60%, 66.66% and 90%. From Tables 5.8 to 5.39 it is observed that model 

performance varies considerably with change in transfer function. The best fitting 

ANN model for each zone is mentioned in Table 5.40. From Table 5.40 it is observed 

that, out of twenty nine zones in the study area, for twenty zones Tansigmoidal, for 

five zones Purelinear and for remaining four zones Logsigmoidal transfer function 

performs better. From Table 5.40 it is also observed that tansigmoidal transfer 

function performs better for bad, medium and good water quality classes whereas for 

excellent water quality class purelinear transfer function performs marginally better as 

compared to tansigmoidal transfer function. Overall performance of tansigmoidal 

transfer function was found satisfactory for water quality prediction. The better 

performance of tansigmoidal transfer function could be due to strong nonlinearity 

between input variables and output variable for all quality classes. 
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Table 5.8 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm

(With 50% Training Length)

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 7.413 6.036 11.370 9.743 9.775 7.829 6.474 5.275 26.292 17.817
CC 0.730 0.915 0.738 0.908 0.729 0.617 0.744 0.872 0.255 0.287Training

MRE 19.588 14.299 20.940 18.729 28.202 20.703 14.150 12.168 77.541 49.887
MAE 3.567 4.462 4.453 4.315 4.403 5.528 3.050 2.215 19.826 3.669
CC 0.067 0.246 -0.230 -0.174 -0.202 -0.221 -0.008 0.302 -0.265 -0.175

Tansigmoidal

Testing
MRE 11.074 13.741 13.712 13.263 13.629 17.561 9.503 6.996 63.059 11.638
MAE 6.569 24.058 14.902 29.197 8.645 44.434 9.045 8.381 16.598 12.651
CC 0.892 -0.046 0.362 -0.416 0.849 0.686 0.795 0.859 -0.327 0.509Training

MRE 16.493 65.343 40.526 74.306 24.497 128.554 25.091 23.624 33.919 33.378
MAE 4.043 18.309 9.840 22.998 10.666 24.116 11.862 10.428 12.933 9.669
CC 0.061 0.119 -0.219 -0.500 0.330 0.506 -0.341 0.161 -0.260 0.287

Purelinear

Testing
MRE 12.629 57.628 31.257 74.165 33.766 73.906 37.128 33.161 41.282 30.991
MAE 23.824 26.611 23.656 25.725 23.656 26.611 23.900 23.669 26.611 23.817
CC 0.952 -0.055 0.946 0.731 0.946 -0.096 0.952 0.946 0.057 0.947Training

MRE 73.444 76.598 73.237 75.645 73.237 76.598 73.501 73.253 76.598 73.424
MAE 28.400 28.400 28.400 28.400 28.400 28.400 31.111 28.400 28.400 31.201
CC -0.182 0.000 -0.181 -0.186 3.6E-15 3.6E-15 3.6E-15 3.6E-15 3.6E-15 -0.001

Logsigmoidal

Testing
MRE 89.660 89.660 89.660 89.660 89.660 89.660 98.170 89.660 89.660 98.427
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Table 5.9 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm 

(With 60% Training Length)

   No. of Neurons       Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 4.838 6.219 1.690 3.885 3.505 1.050 3.849 1.794 1.301 1.239
CC 0.905 0.764 0.977 0.937 0.945 0.993 0.940 0.956 0.989 0.986Training 

MRE 13.513 17.414 3.363 9.651 6.145 3.007 9.505 3.787 3.493 2.787
MAE 3.556 7.543 2.755 2.551 2.850 4.176 3.990 1.675 3.562 4.525
CC 0.531 -0.158 0.102 0.090 0.004 -0.041 -0.117 0.369 -0.220 0.011

Tansigmoidal

Testing
MRE 10.759 24.003 8.759 8.103 8.960 13.183 12.607 5.409 11.516 14.363
MAE 10.005 7.444 8.793 8.708 32.608 7.278 7.649 10.714 7.987 8.742
CC 0.629 0.823 0.763 0.776 -0.142 0.825 0.834 0.661 0.815 0.619Training 

MRE 28.928 19.655 23.269 25.384 92.591 18.948 21.391 31.128 22.426 23.682
MAE 9.231 5.896 13.467 9.384 20.924 6.581 6.888 10.776 8.271 9.930
CC -0.394 0.101 0.612 -0.297 0.445 -0.058 -0.110 -0.676 -0.251 -0.456

Purelinear

Testing
MRE 29.126 18.536 31.359 29.059 65.701 20.493 21.435 35.108 25.519 31.115
MAE 24.336 24.341 24.365 26.755 24.355 26.755 24.361 24.340 24.348 24.336
CC 0.947 0.948 0.950 -0.039 0.948 -3.3E-16 0.949 0.948 0.948 0.947Training 

MRE 75.018 75.023 75.055 77.768 75.040 77.767 75.048 75.022 75.032 75.018
MAE 28.686 28.686 28.686 28.686 28.686 28.686 28.686 28.686 28.686 28.686
CC -0.159 -0.159 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Logsigmoidal

Testing
MRE 91.554 91.554 91.554 91.554 91.554 91.554 91.554 91.554 91.554 91.554
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Table 5.10 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm 

(With 66% Training Length)

   No. of Neurons       Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 3.197 19.503 8.089 10.137 6.169 6.304 1.185 1.497 4.089 3.679
CC 0.797 0.411 0.665 0.665 0.822 0.716 0.982 0.989 0.935 0.865Training 

MRE 8.966 57.507 22.469 29.672 16.884 14.381 3.583 3.854 10.998 10.023
MAE 2.122 17.973 5.403 5.351 3.489 4.092 3.181 1.949 2.111 5.763
CC 0.143 -0.062 0.489 -0.214 0.248 0.481 0.040 0.236 0.304 -0.476

Tansigmoidal

Testing
MRE 6.805 57.361 16.336 17.137 11.041 12.732 10.217 6.404 7.015 18.984
MAE 9.747 9.052 10.317 9.797 7.969 8.059 8.731 8.135 8.096 13.403
CC 0.700 0.788 0.454 0.723 0.824 0.798 0.762 0.804 0.749 0.817Training 

MRE 26.862 26.260 25.634 28.364 22.835 22.476 25.705 23.397 21.666 32.850
MAE 5.614 6.997 7.487 6.298 6.927 6.903 10.921 5.697 5.926 8.870
CC 0.211 0.354 0.294 -0.124 -0.115 -0.254 0.399 0.457 0.588 0.706

Purelinear

Testing
MRE 17.881 22.726 24.020 20.039 21.764 21.517 35.537 18.753 19.316 28.666
MAE 24.592 24.592 24.592 24.592 24.592 25.090 26.803 24.592 24.592 24.658
CC 0.948 0.948 0.948 0.948 0.948 0.948 0.736 0.948 0.948 0.951Training 

MRE 75.687 75.687 75.687 75.687 75.687 76.302 78.201 75.687 75.687 75.768
MAE 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900
CC 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15

Logsigmoidal

Testing
MRE 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976
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Table 5.11 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using CFBP Algorithm 

(With 90% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 19.013 4.898 2.208 0.920 1.656 8.027 1.381 1.518 3.610 10.867
CC -0.088 0.850 0.982 0.996 0.982 0.845 0.980 0.989 0.938 -0.009Training 

MRE 51.475 12.340 6.140 2.868 4.871 22.949 3.946 4.458 8.130 24.926
MAE 11.832 6.502 6.658 2.782 11.224 6.325 4.747 3.587 2.375 2.375
CC -0.839 -0.453 -0.567 -0.273 -0.782 -0.500 -0.325 -0.716 -0.331 -0.331

Tansigmoidal

Testing
MRE 38.026 21.122 21.884 9.026 36.543 20.150 15.316 11.638 7.631 7.631
MAE 9.637 8.730 4.903 7.780 6.944 9.384 6.067 7.683 8.335 7.662
CC 0.955 0.664 0.261 0.654 0.789 0.596 0.780 0.801 0.758 0.754Training 

MRE 5.397 25.361 8.030 22.134 19.459 26.705 15.714 21.777 24.410 22.219
MAE 1.832 8.174 1.173 9.232 8.031 11.815 7.841 7.755 13.141 7.021
CC 0.974 -0.589 -0.015 -0.305 -0.289 -0.805 0.036 -0.171 -0.098 -0.422

Purelinear

Testing
MRE 3.082 26.687 3.680 29.990 26.379 38.117 25.638 25.346 42.383 23.064
MAE 24.664 25.278 24.908 26.042 26.303 26.303 25.411 25.278 26.468 24.618
CC 0.946 0.734 0.946 0.737 -0.009 -0.003 0.907 0.734 -0.031 0.944Training 

MRE 76.942 77.708 77.251 78.529 78.810 78.810 78.629 77.707 79.285 76.893
MAE 39.200 27.933 27.933 39.200 27.933 27.933 27.933 27.933 27.933 27.933
CC -0.500 9.6E-16 9.6E-16 9.6E-16 9.6E-16 9.6E-16 9.6E-16 9.6E-16 9.6E-16 9.6E-16

Logsigmoidal

Testing
MRE 126.684 89.623 89.623 123.764 89.623 89.623 89.623 89.623 89.623 89.623
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Table 5.12 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using FFBP Algorithm 

(With 50% Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 14.656 21.276 9.977 6.048 7.030 4.186 4.558 22.072 10.792 7.152
CC -0.056 -0.198 0.576 0.880 0.687 0.941 0.917 -0.270 0.456 0.764Training 

MRE 29.552 51.078 21.767 16.758 19.689 10.488 12.549 54.443 29.234 20.101
MAE 11.900 11.900 10.283 11.501 13.089 10.872 10.747 16.550 15.368 11.374
CC 0.116 3.6E-15 0.464 -0.162 -0.354 -0.058 -0.172 0.439 0.566 -0.095

Tansigmoidal

Testing
MRE 21.812 21.812 19.335 21.055 26.172 19.751 19.060 36.650 34.000 20.609
MAE 9.992 12.935 9.304 12.272 21.108 8.063 8.683 12.778 8.047 27.967
CC 0.859 0.587 0.819 0.121 0.620 -0.027 0.790 0.616 0.874 0.382Training 

MRE 29.307 36.231 27.353 24.760 62.079 11.616 24.565 34.916 23.122 84.225
MAE 23.196 18.952 17.149 12.138 24.270 9.000 15.952 23.327 18.695 27.174
CC -0.093 0.624 -0.586 -0.644 0.587 -0.232 0.061 -0.044 -0.088 0.197

Purelinear

Testing
MRE 52.544 42.531 38.509 24.550 65.715 14.678 33.902 52.895 40.174 73.605
MAE 24.322 26.611 23.656 26.611 26.611 23.902 23.656 24.320 26.611 26.655
CC 0.946 -0.056 0.946 -0.122 2.9E-16 0.953 0.946 0.946 -0.128 0.767Training 

MRE 73.954 76.598 73.237 76.598 76.598 73.594 73.237 74.058 76.598 76.785
MAE 26.611 26.611 26.611 26.611 26.611 26.610 26.611 26.611 26.611 26.678
CC 0.006 0.398 -0.190 0.076 3.6E-15 -0.242 -0.186 -0.175 -0.080 0.569

Logsigmoidal

Testing
MRE 76.598 76.598 76.598 76.598 76.598 76.598 76.598 76.598 76.598 76.813
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Table 5.13 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using FFBP Algorithm 

(With 60% Training Length)

   No. of Neurons       Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 2.572 8.581 1.173 0.915 5.855 2.765 1.314 2.770 0.414 1.326
CC 0.963 0.547 0.978 0.993 0.881 0.989 0.995 0.968 0.999 0.982Training 

MRE 5.684 18.672 2.691 2.921 9.781 5.215 3.623 5.353 1.293 3.334
MAE 1.726 3.960 1.902 2.885 2.166 3.104 1.911 7.442 11.465 2.033
CC -0.158 0.007 0.358 -0.651 0.020 0.176 0.055 0.089 0.790 0.167

Tansigmoidal

Testing
MRE 5.917 12.398 6.162 9.408 7.102 9.923 6.227 23.768 24.729 6.798
MAE 7.803 7.794 7.279 9.273 7.641 7.200 9.209 7.267 7.824 20.345
CC 0.829 0.794 0.723 0.644 0.795 0.817 0.597 0.824 0.674 0.392Training 

MRE 20.407 20.667 15.095 24.070 19.217 18.204 23.701 19.012 22.088 61.914
MAE 7.568 8.215 2.825 5.974 5.162 6.026 7.111 6.676 10.798 26.417
CC -0.258 0.356 0.267 0.144 0.048 -0.197 -0.081 -0.315 -0.421 -0.584

Purelinear

Testing
MRE 23.392 26.320 8.944 19.335 16.075 18.583 22.154 20.990 33.394 88.094
MAE 26.755 26.756 26.755 26.755 26.796 24.344 24.353 24.881 26.767 24.336
CC 0.471 0.611 0.988 -0.088 0.551 0.947 0.948 0.947 0.561 0.947Training 

MRE 77.767 77.771 77.767 77.767 77.937 75.027 75.037 75.691 77.820 75.018
MAE 28.686 28.687 28.686 28.686 28.725 28.686 28.686 28.686 28.699 28.686
CC -0.291 0.167 -0.141 -0.229 0.352 -0.201 -0.106 -0.159 0.466 -0.200

Logsigmoidal

Testing
MRE 91.554 91.557 91.554 91.554 91.678 91.554 91.554 91.554 91.595 91.554
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Table 5.14 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using FFBP Algorithm 
(With 66.66 % Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 9.202 8.685 1.612 2.230 1.731 3.472 12.276 7.394 10.281 3.867
CC 0.516 0.536 0.977 0.969 0.956 0.906 -0.032 0.839 -0.068 0.923Training 

MRE 17.454 17.329 3.330 4.613 4.156 9.638 26.060 20.353 20.515 9.823
MAE 3.192 3.634 2.210 2.274 2.125 3.373 4.097 4.084 4.097 2.089
CC 0.356 -0.177 -0.058 -0.542 -0.076 -0.173 -0.188 -0.186 -0.138 0.365

Tansigmoidal

Testing
MRE 9.992 11.317 7.303 7.531 7.042 11.176 12.748 12.705 12.748 6.721
MAE 26.809 24.866 26.809 26.809 24.635 26.809 26.809 24.728 26.828 26.809
CC 0.902 0.955 0.000 0.000 0.954 0.000 0.000 0.952 0.371 0.000Training 

MRE 78.207 75.984 78.207 78.207 75.761 78.207 78.207 75.836 78.280 78.207
MAE 6.489 29.057 4.485 5.102 5.137 8.112 7.297 5.820 6.742 13.843
CC 0.809 0.419 -0.125 -0.778 -0.064 -0.285 -0.349 -0.013 -0.194 -0.516

Purelinear

Testing
MRE 26.22 92.987 14.030 17.221 16.066 26.301 23.016 18.140 20.931 45.886
MAE 41.940 26.906 7.486 8.164 6.811 15.005 10.454 9.112 7.489 14.516
CC 0.565 -0.204 0.791 0.529 0.818 0.471 0.649 0.742 0.815 0.565Training 

MRE 127.067 77.090 19.043 17.898 17.181 44.424 29.348 25.856 20.975 42.785
MAE 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900 28.900
CC 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 1.7E-15 -0.130 1.7E-15

Logsigmoidal

Testing
MRE 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976 92.976



100

Table 5.15 Error Analysis for Zone Two (Avg.WQI-35.85) with Bad Water Quality Using FFBP Algorithm

(With 90% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 4.690 1.041 2.481 1.927 2.076 1.328 2.799 0.934 6.771 3.937
CC 0.338 0.991 0.892 0.960 0.982 0.985 0.837 0.995 0.995 0.827Training 

MRE 7.449 2.570 6.657 5.438 5.921 3.626 8.197 2.834 13.464 8.659
MAE 2.128 1.347 3.130 3.038 1.521 4.886 0.723 1.875 0.563 2.622
CC -0.966 0.017 -0.781 -0.398 0.523 -0.041 0.859 0.336 0.993 -0.634

Tansigmoidal

Testing
MRE 6.861 4.339 10.093 9.683 4.967 15.990 2.261 6.121 1.834 8.499
MAE 7.268 6.841 27.298 6.605 6.857 7.590 8.198 9.923 7.724 8.430
CC 0.780 0.815 -0.406 0.687 0.800 0.985 0.735 0.604 0.754 0.758Training 

MRE 20.555 20.017 78.502 17.050 20.008 20.371 23.584 28.808 22.702 24.666
MAE 10.487 10.485 34.222 4.530 11.005 7.369 10.856 16.435 11.502 11.971
CC -0.392 -0.424 0.396 -0.413 -0.453 -0.543 -0.645 -0.408 -0.408 -0.471

Purelinear

Testing
MRE 34.023 33.996 109.455 14.812 35.694 24.094 35.709 53.071 37.269 38.780
MAE 26.303 26.303 25.748 26.303 24.712 26.114 24.674 24.621 26.303 26.303
CC 0.987 -0.009 0.734 -0.222 0.946 0.874 0.946 0.944 0.734 0.044Training 

MRE 78.810 78.810 78.213 78.810 76.997 78.600 76.953 76.897 78.810 78.810
MAE 27.933 27.933 27.867 27.933 27.934 27.933 27.933 27.933 27.867 27.933
CC -0.501 0.922 -1.000 -0.113 -0.496 -0.500 -0.499 -0.501 -1.000 -0.500

Logsigmoidal

Testing
MRE 89.623 89.623 89.421 89.623 89.624 89.623 89.623 89.623 89.421 89.623
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Table 5.16 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using CFBP Algorithm 
(With 50% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 11.863 18.683 25.306 24.137 26.243 26.669 27.903 23.540 22.906 19.743
CC 0.627 0.444 0.185 0.343 0.605 0.034 -0.020 0.229 0.338 0.443Training 

MRE 29.019 29.991 34.897 35.439 54.040 65.924 52.930 40.811 55.389 38.430
MAE 30.172 26.804 18.803 39.469 16.909 35.857 33.463 31.994 35.966 37.754
CC 0.112 -0.227 0.513 -0.475 0.519 -0.285 -0.229 -0.351 -0.384 -0.078

Tansigmoidal

Testing
MRE 80.488 44.754 28.725 87.284 40.107 95.239 83.713 69.224 91.589 102.198
MAE 25.525 27.271 29.922 24.828 25.294 25.699 31.187 25.663 33.793 29.335
CC 0.232 0.176 -0.079 0.221 0.156 0.177 0.015 0.072 -0.241 0.001Training 

MRE 45.265 56.288 47.774 55.413 57.969 62.992 71.770 43.030 76.943 48.473
MAE 27.595 39.713 34.018 40.087 25.736 31.363 33.119 28.778 34.164 35.576
CC 0.041 -0.090 -0.117 -0.469 0.392 0.103 0.208 0.009 0.091 -0.493

Purelinear

Testing
MRE 55.651 105.128 74.605 105.974 68.820 84.558 89.174 75.568 88.280 72.856
MAE 23.534 23.529 25.219 28.833 24.580 25.706 24.087 25.878 27.359 28.601
CC 0.394 0.439 0.317 -0.070 0.235 0.417 0.381 0.078 0.152 -0.091Training 

MRE 53.720 56.089 55.237 75.282 55.395 55.854 58.088 62.918 70.301 73.988
MAE 35.772 32.911 27.212 38.406 31.534 29.189 31.555 32.668 33.475 36.449
CC -0.156 0.070 0.494 0.063 0.161 0.286 0.177 0.232 0.177 0.067

Logsigmoidal

Testing
MRE 99.900 93.192 74.058 115.883 87.557 81.422 90.064 94.529 96.790 106.714
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Table 5.17 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using CFBP Algorithm 

(With 60% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 27.962 26.389 23.481 26.049 24.698 27.124 22.116 24.005 25.364 26.291
CC 0.046 0.217 0.498 0.258 0.345 -0.019 0.613 0.509 0.353 0.297Training 

MRE 73.935 64.292 58.231 61.235 65.835 64.977 56.843 59.731 61.209 62.349
MAE 31.414 27.023 31.668 30.179 29.399 26.101 28.207 29.379 31.425 34.166
CC 0.238 0.384 -0.213 -0.283 0.123 0.494 0.246 -0.022 -0.220 -0.378

Tansigmoidal

Testing
MRE 85.107 73.133 80.233 76.385 77.964 69.593 76.975 73.347 81.347 89.665
MAE 26.304 25.070 23.787 29.623 21.894 25.654 24.139 26.643 22.545 24.704
CC 0.156 0.228 0.259 0.053 0.291 0.070 0.237 0.072 0.288 0.180Training 

MRE 60.728 57.353 49.386 70.603 46.562 57.162 54.421 66.296 46.528 42.653
MAE 29.690 31.580 32.583 31.636 39.465 29.104 49.535 28.473 30.029 29.758
CC -0.005 -0.331 -0.412 -0.050 -0.141 -0.051 -0.620 0.186 -0.177 0.020

Purelinear

Testing
MRE 76.248 73.783 72.730 92.742 90.975 68.424 119.457 75.569 63.551 55.199
MAE 24.567 20.196 6.380 22.103 5.414 24.960 7.703 25.376 26.694 18.677
CC 0.256 0.287 0.847 0.122 0.862 0.537 0.761 -0.005 0.300 0.360Training 

MRE 60.550 39.470 17.403 35.201 8.527 35.143 22.680 46.214 68.270 34.125
MAE 28.875 25.942 30.749 33.821 27.460 21.848 36.056 27.358 32.707 25.811
CC 0.101 0.196 0.087 -0.279 0.074 0.354 -0.142 -0.014 -0.055 0.150

Logsigmoidal

Testing
MRE 67.125 63.600 76.482 75.429 54.902 33.067 92.404 53.759 82.346 48.669
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Table 5.18 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using CFBP Algorithm

(With 66.66% Training Length)

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 6.063 6.175 6.176 6.632 4.271 4.105 6.868 8.228 13.907 19.675
CC 0.891 0.948 0.935 0.881 0.941 0.977 0.929 0.838 0.694 0.614Training 

MRE 12.705 10.913 10.807 15.034 7.407 9.959 11.186 13.456 35.883 52.029
MAE 8.853 5.229 5.184 12.241 5.341 5.471 17.284 10.844 10.077 30.807
CC 0.872 0.957 0.970 0.744 0.956 0.975 0.722 0.744 0.885 0.311

Tansigmoidal

Testing
MRE 12.245 11.661 7.639 34.988 9.021 11.426 33.000 26.883 25.966 94.747
MAE 10.397 8.309 9.200 9.130 8.609 12.323 9.966 9.320 10.506 14.968
CC 0.901 0.898 0.897 0.895 0.907 0.879 0.867 0.913 0.881 0.840Training 

MRE 24.934 22.382 21.916 23.024 22.011 26.280 21.999 21.290 29.269 39.811
MAE 7.901 10.665 9.612 10.252 10.800 14.172 17.470 9.921 11.199 14.306
CC 0.931 0.912 0.915 0.921 0.917 0.927 0.708 0.925 0.900 0.890

Purelinear

Testing
MRE 17.788 30.769 25.388 24.342 25.922 32.375 33.363 20.832 28.036 33.626
MAE 18.385 19.806 21.184 21.950 23.012 24.859 21.707 20.282 20.991 18.276
CC 0.966 0.948 0.890 0.700 0.658 0.496 0.856 0.936 0.823 0.965Training 

MRE 55.191 56.771 59.151 59.292 60.374 62.499 59.002 57.358 58.230 55.062
MAE 17.363 19.062 20.758 22.601 21.019 28.743 23.984 18.646 20.449 18.745
CC 0.940 0.918 0.836 0.641 0.765 0.386 0.921 0.997 0.833 0.919

Logsigmoidal

Testing
MRE 56.298 58.085 60.466 62.041 60.156 68.740 63.957 57.915 59.632 57.835
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Table 5.19 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using CFBP Algorithm

(With 90% Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 22.767 26.293 29.912 29.617 27.619 24.997 16.721 7.103 23.873 35.111
CC 0.330 0.114 -0.127 0.001 -0.080 0.175 0.481 0.823 0.302 0.050Training 

MRE 50.739 56.688 67.898 55.549 45.122 54.716 30.269 16.668 63.544 101.153
MAE 18.715 19.526 37.218 20.375 18.939 17.655 55.865 37.969 19.162 43.780
CC 0.795 0.593 -0.980 0.892 0.959 0.669 -0.999 0.502 0.557 0.782

Tansigmoidal

Testing
MRE 49.227 47.785 81.286 24.602 34.470 57.731 141.579 121.261 52.177 140.787
MAE 26.498 26.396 23.268 23.271 25.156 28.250 25.477 24.593 23.764 23.725
CC 0.230 0.124 0.266 0.235 0.299 0.175 0.049 0.265 0.306 0.327Training 

MRE 47.919 60.333 44.248 40.670 59.779 73.657 48.819 58.746 55.345 52.851
MAE 31.793 31.571 21.743 22.251 29.787 30.097 26.464 21.932 20.948 20.412
CC -0.997 0.082 0.649 0.638 0.999 0.986 -0.039 0.518 0.997 0.988

Purelinear

Testing
MRE 44.536 87.010 45.650 54.927 92.452 83.678 57.193 59.855 60.701 59.166
MAE 27.354 26.965 25.926 28.841 26.260 26.515 26.100 29.130 26.784 24.042
CC -0.121 0.164 0.291 0.045 0.238 0.999 0.204 0.053 0.178 0.490Training 

MRE 64.160 62.514 63.447 71.227 65.433 65.556 63.730 77.940 64.063 63.999
MAE 30.434 30.455 21.020 30.792 30.105 22.255 31.191 30.056 23.553 33.748
CC -0.322 -0.932 0.993 -0.560 0.999 0.999 -0.500 0.999 0.997 0.501

Logsigmoidal

Testing
MRE 79.224 79.296 68.825 80.592 78.871 70.239 81.716 92.113 73.172 107.376
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Table 5.20 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using FFBP Algorithm 

(With 50% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 6.689 5.482 2.097 4.429 7.718 12.650 5.812 4.753 3.026 23.212
CC 0.960 0.963 0.995 0.949 0.799 0.780 0.844 0.903 0.975 0.479Training 

MRE 14.972 15.640 4.439 9.570 22.611 18.896 14.939 8.326 5.554 62.709
MAE 6.242 7.308 3.424 8.797 14.803 10.518 3.485 8.246 3.915 27.335
CC 0.993 0.972 0.984 0.818 0.741 0.785 0.986 0.845 0.966 0.318

Tansigmoidal

Testing
MRE 18.368 20.246 8.448 17.021 43.179 17.536 8.218 23.351 7.367 75.120
MAE 12.303 9.855 10.956 9.303 12.130 13.163 9.378 8.751 9.569 13.058
CC 0.836 0.910 0.861 0.891 0.899 0.857 0.926 0.926 0.908 0.805Training 

MRE 27.631 20.880 23.230 23.956 21.744 25.543 23.239 21.584 22.555 29.239
MAE 17.445 9.745 15.851 10.082 13.006 15.201 9.700 11.683 11.619 24.627
CC 0.807 0.905 0.756 0.898 0.844 0.769 0.923 0.881 0.869 0.562

Purelinear

Testing
MRE 51.207 23.925 39.577 29.055 25.727 31.057 25.060 29.889 27.685 60.305
MAE 14.876 19.069 14.398 14.476 24.299 15.828 16.164 20.711 15.406 17.228
CC 0.962 0.887 0.961 0.959 0.429 0.945 0.868 0.700 0.886 0.851Training 

MRE 43.662 50.301 43.162 43.244 54.314 44.779 45.152 51.016 44.368 46.433
MAE 21.872 28.985 24.591 24.113 28.212 21.935 23.238 27.455 22.161 25.645
CC 0.996 0.532 0.754 0.737 0.607 0.962 0.826 0.442 0.947 0.655

Logsigmoidal

Testing
MRE 68.213 84.030 71.188 70.557 75.214 68.179 69.697 77.548 68.507 72.691
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Table 5.21 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using FFBP Algorithm 

(With 60% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 3.307 1.789 5.330 9.530 16.049 20.803 6.220 17.710 3.832 1.556
CC 0.958 0.996 0.973 0.901 0.830 0.518 0.913 0.612 0.979 0.994Training 

MRE 5.448 3.398 9.670 20.448 43.063 42.348 13.561 26.073 7.400 3.642
MAE 4.634 3.691 7.146 16.744 18.278 23.609 14.409 16.307 9.358 13.602
CC 0.985 0.982 0.979 0.728 0.678 0.674 0.672 0.842 0.822 0.665

Tansigmoidal

Testing
MRE 10.896 7.559 13.941 39.555 53.730 47.932 28.899 22.804 18.391 29.246
MAE 9.550 8.614 9.038 8.177 10.720 12.147 9.124 8.427 10.162 11.088
CC 0.905 0.925 0.922 0.901 0.887 0.780 0.930 0.926 0.882 0.845Training 

MRE 22.150 23.993 21.726 22.615 24.346 29.921 19.473 19.392 22.618 23.943
MAE 13.002 7.145 10.747 9.749 13.356 14.393 11.741 12.060 14.034 16.271
CC 0.899 0.942 0.916 0.910 0.857 0.825 0.907 0.908 0.797 0.799

Purelinear

Testing
MRE 27.787 20.891 24.598 29.710 36.287 31.935 24.262 28.728 34.285 33.215
MAE 18.847 21.733 17.534 17.704 17.267 17.095 23.361 22.443 30.359 18.807
CC 0.965 0.807 0.965 0.966 0.966 0.964 0.664 0.810 0.261 0.955Training 

MRE 53.057 58.902 51.625 51.835 51.321 51.139 58.975 59.661 83.336 53.107
MAE 21.538 22.719 19.978 20.681 19.638 20.240 26.988 24.198 32.556 21.650
CC 0.941 0.803 0.997 0.985 0.945 0.981 0.458 0.937 0.105 0.980

Logsigmoidal

Testing
MRE 64.682 67.828 13.094 64.097 62.596 63.387 72.816 69.748 98.638 65.358
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Table 5.22 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using FFBP Algorithm
(With 66.66 % Training Length)

No. of Neurons Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 2.202 2.696 1.728 10.014 2.190 8.647 12.039 4.617 5.621 4.521
CC 0.995 0.979 0.997 0.869 0.994 0.753 0.750 0.947 0.908 0.929Training 

MRE 4.790 5.013 4.064 18.906 4.353 17.600 25.592 10.663 9.476 7.015
MAE 13.032 3.996 4.782 11.992 6.375 15.519 24.938 11.742 9.318 23.913
CC 0.663 0.978 0.991 0.919 0.975 0.656 0.336 0.772 0.864 0.394

Tansigmoidal

Testing
MRE 26.735 8.148 12.479 23.834 17.862 27.443 53.247 24.508 14.859 42.295
MAE 9.419 19.771 9.933 11.649 8.810 9.604 12.995 9.526 16.195 9.054
CC 0.913 0.660 0.907 0.877 0.912 0.911 0.821 0.867 0.855 0.912Training 

MRE 22.146 38.880 25.613 28.411 20.982 24.265 29.698 24.588 42.955 22.935
MAE 12.829 29.699 11.596 9.063 11.387 11.438 14.146 11.899 12.231 9.952
CC 0.936 -0.036 0.921 0.930 0.896 0.919 0.842 0.888 0.906 0.913

Purelinear

Testing
MRE 30.133 58.915 25.591 21.911 25.541 25.698 36.098 25.980 33.335 24.585
MAE 19.298 21.337 27.278 20.374 19.521 22.694 20.890 18.701 23.429 21.248
CC 0.967 0.926 0.363 0.954 0.901 0.800 0.823 0.965 0.709 0.904Training 

MRE 56.216 60.345 66.930 58.195 56.525 61.042 57.984 55.580 63.066 58.983
MAE 18.802 20.328 30.491 18.805 19.374 23.480 24.061 18.414 21.763 27.105
CC 0.998 0.932 -0.263 0.887 0.915 0.623 0.549 0.924 0.793 0.245

Logsigmoidal

Testing
MRE 58.032 60.537 78.423 60.236 58.463 63.428 63.546 57.486 62.152 73.209
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Table 5.23 Error Analysis for Zone Four (Avg.WQI-55.67) with Medium Water Quality Using FFBP Algorithm 

(With 90 % Training Length)

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 2.435 3.410 3.922 4.218 31.003 3.158 8.428 2.361 6.314 3.445
CC 0.986 0.984 0.950 0.965 0.532 0.986 0.809 0.989 0.882 0.971Training 

MRE 5.099 7.874 7.085 7.761 89.501 7.464 18.789 4.317 13.841 9.083
MAE 20.472 19.520 19.067 19.608 20.448 19.119 20.363 20.364 21.430 19.420
CC 0.258 0.857 0.931 0.993 0.476 0.886 0.013 0.647 -0.398 0.987

Tansigmoidal

Testing
MRE 25.251 22.705 22.713 23.633 25.715 25.786 23.658 25.512 26.456 23.607
MAE 8.550 8.677 10.412 8.745 8.509 9.733 8.762 10.101 8.901 8.233
CC 0.929 0.932 0.909 0.927 0.933 0.986 0.934 0.901 0.932 0.932Training 

MRE 22.535 23.128 25.082 22.372 21.620 22.391 21.815 24.160 20.965 20.566
MAE 9.958 9.086 10.223 13.089 13.548 8.693 7.577 8.977 9.020 10.053
CC 0.902 0.935 0.908 0.920 0.932 0.978 0.953 0.984 0.943 0.918

Purelinear

Testing
MRE 29.111 27.897 30.326 38.200 35.178 26.941 24.235 25.422 28.414 29.984
MAE 19.162 18.773 17.015 27.017 16.107 18.711 17.251 19.675 17.810 18.826
CC 0.794 0.861 0.963 0.174 0.967 0.953 0.948 0.895 0.877 0.799Training 

MRE 53.268 55.513 50.889 62.715 49.861 52.875 51.222 55.540 52.730 54.958
MAE 21.495 21.175 22.341 30.155 22.680 21.769 21.349 23.309 21.468 23.782
CC 0.999 0.999 0.999 0.972 0.998 0.998 0.998 0.984 0.999 0.998

Logsigmoidal

Testing
MRE 69.335 68.981 70.271 80.160 70.646 69.639 69.174 73.182 69.306 71.865
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Table 5.24 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm 
(50% Training Dataset)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 17.272 7.845 3.607 0.702 4.269 6.367 3.800 1.069 5.228 0.825
CC 0.942 0.958 0.952 0.935 0.964 0.876 0.960 0.955 9.4E-01 0.886Training 

MRE 24.554 10.629 5.526 0.822 7.115 13.845 6.110 2.302 7.875 1.577
MAE 42.791 4.799 3.343 6.843 4.615 11.167 2.228 5.231 2.643 27.528
CC 0.920 0.843 0.990 0.325 0.996 0.831 0.769 0.716 0.879 0.642

Tansigmoidal

Testing
MRE 57.220 5.651 3.820 8.003 6.491 12.836 2.594 6.381 3.281 43.696
MAE 4.604 11.464 4.205 7.273 6.566 26.254 9.340 10.045 22.215 10.209
CC 0.954 0.904 0.974 0.927 0.958 0.661 0.779 0.931 0.249 0.840Training 

MRE 11.763 16.397 8.526 16.302 13.211 45.012 21.452 17.439 57.865 22.837
MAE 3.992 11.469 6.285 7.484 7.662 14.616 4.373 7.808 14.244 6.293
CC 0.975 0.705 0.901 0.866 0.918 0.425 0.965 0.887 -0.113 0.978

Purelinear

Testing
MRE 6.163 15.550 8.885 12.253 12.185 19.127 7.262 11.412 29.936 7.565
MAE 10.306 10.409 10.508 10.267 10.516 10.476 9.299 10.089 10.235 10.627
CC 0.542 0.944 0.978 0.999 0.955 0.834 0.982 0.997 0.936 0.998Training 

MRE 28.874 28.950 29.086 28.788 29.109 29.186 27.627 28.588 28.755 31.087
MAE 5.483 6.427 6.619 19.744 5.686 7.005 8.599 8.898 6.061 11.969
CC -0.286 0.939 0.980 0.901 0.974 0.803 0.989 0.923 0.987 -0.265

Logsigmoidal

Testing
MRE 12.547 13.670 13.869 28.491 12.820 14.256 16.114 16.422 13.200 19.860
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Table 5.25 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm 

(With 60% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 3.266 4.337 3.122 0.827 4.409 5.078 1.091 1.858 2.997 13.724
CC 0.981 0.944 0.985 0.998 0.963 0.990 0.999 0.994 0.971 0.701Training 

MRE 4.955 6.972 4.832 1.396 6.167 8.499 1.357 3.156 4.899 20.215
MAE 3.225 4.733 4.035 1.958 4.229 4.731 2.808 2.555 2.099 8.278
CC 0.991 0.905 0.976 0.992 0.976 0.995 0.977 0.987 0.994 0.805

Tansigmoidal

Testing
MRE 4.181 6.414 6.272 2.371 5.773 6.400 3.484 3.424 2.661 9.975
MAE 5.003 3.984 3.984 9.400 4.568 4.166 9.867 6.495 6.928 6.997
CC 0.964 0.969 0.893 0.966 0.883 0.971 0.848 0.956 0.937 0.825Training 

MRE 9.548 9.421 9.421 19.675 9.720 8.770 20.576 12.066 16.057 16.230
MAE 6.022 3.689 9.032 4.593 5.069 4.364 8.818 6.233 8.217 6.300
CC 0.953 0.984 0.964 0.973 0.968 0.972 0.963 0.991 0.965 0.944

Purelinear

Testing
MRE 10.190 6.359 11.784 7.127 8.889 7.736 14.102 10.478 16.656 10.161
MAE 8.681 8.951 9.614 8.820 9.098 7.994 7.892 8.113 18.289 7.714
CC 0.949 0.970 0.976 0.937 0.941 0.945 0.949 0.954 0.256 0.962Training 

MRE 23.842 24.254 25.055 24.279 24.389 23.123 22.996 23.228 43.458 22.723
MAE 5.851 7.210 7.944 7.559 7.660 5.702 5.641 8.156 7.780 5.991
CC 0.963 0.889 0.986 0.919 0.897 0.982 0.978 0.812 0.979 0.944

Logsigmoidal

Testing
MRE 14.769 16.339 17.283 16.828 16.912 14.635 14.560 17.483 16.933 14.963
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Table 5.26 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm 

(With 66.66 % Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 7.244 3.725 1.381 4.874 0.788 1.892 1.563 10.578 1.804 2.289
CC 0.889 0.947 0.996 0.950 0.998 0.992 0.994 0.759 0.995 0.979Training 

MRE 15.771 5.563 2.083 8.074 1.060 2.963 2.239 22.389 2.686 3.520
MAE 8.093 10.202 2.351 5.234 1.208 0.825 2.174 9.389 1.667 1.470
CC 0.976 0.772 0.994 0.960 0.999 0.999 0.994 0.821 0.993 0.998

Tansigmoidal

Testing
MRE 16.510 12.224 3.149 7.356 1.932 1.233 2.949 21.219 1.999 2.229
MAE 7.367 3.991 7.819 4.740 31.374 4.147 4.886 12.788 3.994 10.426
CC 0.954 0.968 0.939 0.967 0.411 0.966 0.958 0.838 0.965 0.785Training 

MRE 12.122 8.356 15.440 9.081 45.527 8.223 10.338 23.632 9.894 20.160
MAE 7.968 4.251 8.907 6.633 29.213 4.688 2.707 12.362 2.698 4.694
CC 0.973 0.981 0.952 0.964 0.953 0.969 0.984 0.943 0.993 0.967

Purelinear

Testing
MRE 12.410 7.516 15.039 9.768 37.352 7.696 5.263 21.467 4.496 7.265
MAE 7.515 7.964 7.851 7.180 7.455 8.697 8.016 8.084 7.849 7.644
CC 0.936 0.920 0.932 0.959 0.953 0.945 0.947 0.953 0.950 0.950Training 

MRE 21.413 21.979 21.802 20.948 21.310 22.788 21.942 22.389 21.745 21.522
MAE 7.082 6.457 6.640 6.540 6.993 6.589 6.461 8.501 6.348 6.207
CC 0.970 0.987 0.985 0.984 0.959 0.986 0.982 0.860 0.968 0.984

Logsigmoidal

Testing
MRE 17.500 16.806 17.002 16.894 17.414 16.954 16.814 19.117 16.704 16.533
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Table 5.27 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using CFBP Algorithm 

(With 90% Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 1.458 2.323 1.119 1.413 1.425 1.902 1.210 1.511 4.557 4.528
CC 0.995 0.989 0.994 0.994 0.995 0.991 0.995 0.990 0.978 0.970Training 

MRE 2.025 3.520 2.065 2.326 2.140 2.641 1.720 2.068 6.491 6.660
MAE 2.071 1.412 2.541 2.678 2.385 1.363 0.706 0.701 4.200 2.719
CC 0.993 0.897 0.370 0.840 0.881 0.937 0.993 0.985 0.179 0.912

Tansigmoidal

Testing
MRE 2.334 1.569 2.838 2.988 2.665 1.481 0.794 0.778 4.729 3.012
MAE 4.417 4.362 5.147 3.837 4.373 5.901 8.633 4.911 4.142 3.770
CC 0.966 0.957 0.966 0.966 0.959 0.863 0.957 0.960 0.968 0.969Training 

MRE 8.493 10.895 9.120 8.927 10.219 13.723 16.069 9.497 8.194 8.628
MAE 3.976 1.281 3.417 1.561 2.003 1.135 6.521 7.689 5.152 1.510
CC -0.871 0.978 0.017 0.983 0.994 0.971 -0.942 -0.820 -0.592 0.890

Purelinear

Testing
MRE 4.246 1.421 3.655 1.730 2.244 1.207 7.291 8.309 5.554 1.667
MAE 7.812 7.280 7.955 8.500 8.703 8.026 7.276 8.862 7.282 7.768
CC 0.960 0.953 0.953 0.865 0.776 0.949 0.968 0.939 0.966 0.954Training 

MRE 21.652 21.092 21.847 24.095 24.954 21.933 21.044 22.845 21.033 21.646
MAE 2.630 1.741 1.959 0.798 1.640 1.321 3.431 1.539 2.974 2.061
CC 0.894 0.948 0.932 0.980 0.932 0.870 0.928 0.870 0.821 0.945

Logsigmoidal

Testing
MRE 2.961 1.914 2.203 0.879 1.814 1.425 3.889 1.711 3.272 2.281
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Table 5.28 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using FFBP Algorithm 

(With 50% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 12.892 2.156 3.328 6.366 4.651 2.154 4.098 1.948 4.300 6.920
CC 0.723 0.986 0.968 0.956 0.969 0.991 0.976 0.979 0.909 0.843Training 

MRE 15.713 3.643 4.692 12.764 7.367 3.588 9.484 3.489 5.628 15.431
MAE 6.515 2.341 1.883 3.008 4.481 1.851 4.282 6.923 7.413 3.690
CC 0.940 0.984 0.991 0.979 0.931 0.988 0.960 0.871 0.882 0.970

Tansigmoidal

Testing
MRE 7.634 2.887 2.528 4.754 5.212 2.574 7.684 8.217 8.390 4.372
MAE 15.086 10.655 5.634 21.663 21.139 18.936 3.868 4.800 9.402 5.416
CC 0.674 0.836 0.967 0.536 0.916 0.642 0.969 0.969 0.899 0.967Training 

MRE 37.779 24.440 10.374 33.727 55.630 34.406 8.807 9.715 19.830 9.485
MAE 8.211 7.247 6.928 15.427 4.359 14.678 3.976 6.163 6.735 7.481
CC 0.821 0.969 0.898 0.556 0.950 0.782 0.975 0.922 0.905 0.877

Purelinear

Testing
MRE 18.362 9.535 10.455 20.264 7.104 20.970 7.290 9.210 10.484 10.184
MAE 10.112 9.316 9.482 9.513 10.061 9.490 9.158 9.612 26.967 9.979
CC 0.936 0.960 0.957 0.954 0.939 0.955 0.960 0.960 -0.351 0.953Training 

MRE 28.700 27.672 27.860 27.872 28.585 27.875 27.480 27.992 46.914 28.454
MAE 9.738 7.991 8.348 12.167 10.597 5.940 9.666 8.055 27.522 5.701
CC 0.617 0.767 0.769 0.615 0.672 0.903 0.748 0.804 -0.981 0.944

Logsigmoidal

Testing
MRE 17.460 15.364 15.816 20.064 18.302 13.037 17.278 15.454 36.866 12.787
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Table 5.29 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using FFBP Algorithm 

(With 60% Training Length) 

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 4.175 1.107 2.138 0.601 0.893 1.431 2.927 2.191 7.178 5.277
CC 0.976 0.999 0.995 0.999 0.999 0.989 0.963 0.990 0.901 0.806Training 

MRE 6.002 1.958 3.372 1.011 1.345 2.245 6.341 3.165 9.430 13.064
MAE 7.938 4.225 1.975 1.686 1.964 2.602 3.218 2.667 7.078 11.631
CC 0.806 0.893 0.989 0.993 0.992 0.988 0.975 0.984 0.885 -0.439

Tansigmoidal

Testing
MRE 9.733 4.876 2.468 2.385 2.454 3.468 4.087 3.500 9.352 30.258
MAE 4.804 10.664 7.147 4.415 19.433 12.114 4.683 8.364 9.598 9.184
CC 0.967 0.953 0.863 0.960 0.270 0.382 0.959 0.915 0.843 0.924Training 

MRE 9.138 15.761 16.604 10.922 49.261 29.059 9.185 15.543 17.524 17.276
MAE 6.313 9.889 5.406 3.017 16.143 6.504 6.111 7.010 5.715 9.458
CC 0.950 0.986 0.957 0.986 0.047 0.922 0.962 0.906 0.957 0.977

Purelinear

Testing
MRE 9.456 11.903 8.877 4.870 36.077 10.790 10.479 13.002 8.740 14.825
MAE 9.838 8.302 8.503 7.885 8.196 7.993 7.792 11.522 8.511 8.539
CC 0.945 0.938 0.961 0.964 0.973 0.944 0.959 0.966 0.965 0.982Training 

MRE 25.135 23.474 23.681 22.921 23.456 23.125 22.820 27.438 23.760 23.985
MAE 8.873 6.441 7.655 6.563 10.368 5.763 5.801 8.781 7.189 5.796
CC 0.842 0.941 0.865 0.966 0.678 0.980 0.977 0.981 0.901 0.978

Logsigmoidal

Testing
MRE 18.252 15.418 16.837 15.654 19.949 14.708 14.718 18.184 16.275 14.777
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Table 5.30 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using FFBP Algorithm 

(With 66.66 % Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 2.352 1.842 4.504 1.012 5.299 2.756 2.031 1.924 2.786 1.559
CC 0.991 0.996 0.979 0.997 0.853 0.944 0.985 0.990 0.991 0.989Training 

MRE 3.924 2.930 7.855 1.542 11.554 6.576 3.162 2.926 4.055 1.814
MAE 4.394 2.933 3.507 0.703 10.321 7.421 1.643 2.786 4.109 8.058
CC 0.959 0.984 0.997 0.999 0.698 0.795 0.997 0.984 0.979 0.772

Tansigmoidal

Testing
MRE 5.457 3.464 5.660 0.775 14.489 12.627 2.392 4.599 5.326 10.384
MAE 4.401 5.581 5.017 5.132 4.377 7.299 5.039 6.991 4.555 7.044
CC 0.960 0.949 0.955 0.969 0.967 0.828 0.961 0.833 0.948 0.817Training 

MRE 10.438 9.361 8.634 10.252 8.900 16.366 10.160 15.955 10.226 18.295
MAE 2.986 7.734 7.135 4.968 4.617 5.365 3.767 5.337 4.546 4.848
CC 0.993 0.917 0.936 0.967 0.979 0.966 0.983 0.961 0.983 0.940

Purelinear

Testing
MRE 5.729 11.476 11.105 7.893 8.110 8.510 8.163 8.892 9.044 11.464
MAE 8.060 7.286 8.300 8.664 7.202 7.141 9.895 7.509 9.424 9.161
CC 0.965 0.957 0.943 0.944 0.957 0.958 0.894 0.962 0.871 0.952Training 

MRE 22.007 21.078 22.315 22.767 20.979 20.899 24.115 21.374 24.443 23.203
MAE 6.040 7.693 7.055 8.487 8.641 6.376 9.128 7.842 9.854 7.089
CC 0.995 0.856 0.957 0.813 0.873 0.974 0.863 0.900 0.747 0.978

Logsigmoidal

Testing
MRE 16.346 18.226 17.476 19.121 19.265 16.733 19.778 18.371 21.559 17.493
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Table 5.31 Error Analysis for Zone Three (Avg.WQI-77.95) with Good Water Quality Using FFBP Algorithm

(With 90% Training Length)

   No. of Neurons       Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 3.966 4.190 1.440 3.754 1.157 0.497 1.828 0.968 0.677 1.610
CC 0.958 0.953 0.992 0.986 0.997 1.000 0.987 0.997 0.999 0.987Training 

MRE 7.295 7.633 2.195 5.276 1.713 0.742 2.889 1.787 0.921 2.227
MAE 2.983 2.559 1.483 2.784 1.649 3.276 2.654 2.056 1.481 1.315
CC -0.981 -0.016 0.934 0.896 0.955 0.571 0.888 0.543 0.786 0.999

Tansigmoidal

Testing
MRE 3.260 2.765 1.647 3.006 1.842 3.659 2.910 2.330 1.677 1.110
MAE 4.035 3.918 7.219 3.671 4.969 5.179 4.273 3.829 4.133 8.181
CC 0.971 0.970 0.877 0.972 0.944 0.943 0.969 0.973 0.968 0.922Training 

MRE 8.442 8.855 13.836 8.800 10.906 10.939 9.165 8.256 8.254 17.238
MAE 4.542 3.866 11.179 0.976 4.877 6.378 2.855 3.673 7.085 6.374
CC -0.527 -0.432 -0.956 0.998 -0.751 -0.911 -0.102 -0.689 -0.870 -0.983

Purelinear

Testing
MRE 4.925 4.197 12.154 1.071 5.288 6.902 3.061 4.027 7.702 7.039
MAE 7.618 8.589 7.738 7.657 7.682 8.280 8.433 7.388 7.761 7.402
CC 0.967 0.964 0.954 0.946 0.973 0.908 0.958 0.955 0.970 0.971Training 

MRE 21.441 22.580 21.589 21.511 21.501 22.271 22.419 21.229 21.644 21.176
MAE 2.811 1.935 3.631 3.847 2.180 2.364 2.476 0.843 1.802 1.346
CC 0.884 0.999 0.915 0.933 0.954 0.953 0.906 0.980 0.967 0.885

Logsigmoidal

Testing
MRE 3.140 2.061 4.059 4.332 2.404 2.647 2.668 0.920 1.998 1.434
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Table 5.32 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm 

(With 50% Training Length) 
No. of NeuronsTransfer

Function Data Error
Analysis 1 2 3 4 5 6 7 8 9 10

MAE 0.744 0.907 0.540 1.096 1.102 2.803 1.290 5.834 0.529 2.527
CC 0.980 0.981 0.994 0.954 0.967 0.857 0.972 -0.009 0.993 0.973Training 

MRE 0.808 0.994 0.593 1.177 1.182 3.062 1.383 7.063 0.582 2.890
MAE 4.140 3.775 3.375 3.927 4.198 4.949 5.239 7.678 3.803 5.182
CC 0.861 0.914 0.968 0.948 0.905 0.792 0.902 0.710 0.938 0.946

Tansigmoidal

Testing
MRE 8.043 7.746 7.265 7.859 8.449 8.971 9.329 11.926 7.914 10.370
MAE 1.032 1.148 0.731 2.108 2.587 0.877 0.926 2.630 0.607 0.693
CC 0.974 0.972 0.988 0.371 -0.149 0.980 0.986 -0.342 0.992 0.980Training 

MRE 1.250 1.235 0.781 2.898 3.544 0.934 1.151 3.583 0.660 0.752
MAE 2.430 2.952 2.316 5.009 5.581 2.909 1.211 5.065 1.573 1.458
CC 0.986 0.976 0.985 -0.298 -0.449 0.983 0.997 -0.415 0.994 0.994

Purelinear

Testing
MRE 5.508 4.437 4.055 12.450 13.064 4.903 1.888 12.510 2.532 2.261
MAE 1.825 2.460 1.976 1.937 1.429 1.967 2.617 1.548 3.857 1.685
CC 0.820 0.147 0.777 0.743 0.875 0.845 0.854 0.877 0.750 0.930Training 

MRE 2.480 3.310 2.532 2.496 1.915 2.498 3.221 2.038 4.566 2.199
MAE 3.977 4.467 4.560 5.463 5.890 4.832 5.211 4.066 5.907 4.996
CC 0.544 -0.229 0.632 0.614 0.564 0.657 0.835 0.757 0.908 0.808

Logsigmoidal

Testing
MRE 10.419 11.595 10.688 11.215 11.724 10.556 10.956 9.724 12.075 10.722
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Table 5.33 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm (With 

60 % Training Length)

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 7.889 0.416 1.440 0.679 2.803 2.399 1.017 5.192 1.802 0.419
CC -0.056 0.994 0.928 0.990 0.948 0.878 0.928 0.466 -0.013 0.991Training 

MRE 9.146 0.445 1.562 0.851 3.005 2.637 1.110 5.716 2.540 0.453
MAE 8.404 3.617 3.923 3.838 8.319 4.163 3.727 8.038 6.361 4.882
CC 0.707 0.985 0.950 0.951 0.705 0.942 0.973 0.676 -0.271 0.955

Tansigmoidal

Testing
MRE 13.735 8.548 8.892 8.813 13.652 9.288 8.676 13.351 15.889 9.933
MAE 0.686 5.627 0.602 0.759 1.226 1.060 2.571 0.685 2.055 0.645
CC 0.988 0.693 0.990 0.987 0.963 0.985 0.947 0.990 -0.164 0.991Training 

MRE 0.740 6.250 0.659 0.821 1.337 1.284 3.064 0.738 2.832 0.695
MAE 1.808 8.164 1.991 1.281 0.888 1.408 4.972 2.006 5.839 1.958
CC 0.996 0.119 0.994 0.998 0.998 0.997 0.965 0.994 -0.418 0.994

Purelinear

Testing
MRE 3.573 16.463 3.489 2.312 1.210 2.060 10.760 3.673 15.358 3.574
MAE 1.322 1.624 1.632 2.817 1.848 1.713 1.818 1.227 1.417 2.087
CC 0.924 0.833 0.844 -0.116 0.834 0.832 0.835 0.836 0.812 0.753Training 

MRE 1.730 2.104 2.063 3.593 2.295 2.155 2.279 1.647 1.844 2.594
MAE 4.841 5.133 5.405 6.303 5.334 4.556 5.047 6.597 5.013 6.073
CC 0.855 0.695 0.731 -0.481 0.786 0.839 0.799 -0.385 0.787 0.066

Logsigmoidal

Testing
MRE 12.082 12.843 12.693 15.848 12.612 11.771 12.321 15.922 12.270 14.904
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Table 5.34 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm (With 

66.66 % Training Length)

   No. of Neurons      Transfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 1.462 0.830 0.530 6.592 0.799 0.624 6.115 1.031 0.542 0.801
CC 0.408 0.985 0.991 0.415 0.967 0.983 0.052 0.940 0.982 0.975Training 

MRE 2.031 0.915 0.575 7.057 0.863 0.685 6.970 1.111 0.592 0.850
MAE 8.937 4.168 3.875 11.340 4.424 5.244 8.525 7.169 7.729 4.964
CC -0.179 0.982 0.988 -0.107 0.966 0.954 0.066 0.722 0.649 0.961

Tansigmoidal

Testing
MRE 19.867 9.977 9.621 22.832 10.202 11.247 18.524 13.150 13.716 10.771
MAE 1.114 0.716 2.935 0.816 0.836 2.079 0.683 1.214 0.878 0.743
CC 0.964 0.988 -0.717 0.985 0.986 -0.258 0.988 0.984 0.982 0.988Training 

MRE 1.334 0.778 4.060 0.888 0.904 2.822 0.739 1.485 0.943 0.802
MAE 3.855 1.830 11.687 2.360 2.349 7.288 1.712 3.555 2.667 1.653
CC 0.980 0.997 -0.963 0.994 0.994 -0.917 0.997 0.994 0.989 0.997

Purelinear

Testing
MRE 8.599 3.284 32.342 4.280 4.636 20.579 3.189 8.584 4.313 2.985
MAE 1.799 1.370 3.875 1.022 1.481 2.221 1.330 1.117 1.520 0.888
CC 0.689 0.910 0.034 0.910 0.779 0.192 0.937 0.937 0.896 0.982Training 

MRE 2.314 1.754 4.667 1.384 1.880 2.859 1.712 1.492 1.999 0.953
MAE 6.485 5.397 6.910 7.038 6.627 6.428 5.239 6.447 5.437 2.046
CC -0.431 0.879 0.441 0.613 0.663 -0.439 0.894 0.903 0.885 0.996

Logsigmoidal

Testing
MRE 17.335 13.824 16.467 15.606 15.293 17.391 13.645 14.958 13.961 3.993
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Table 5.35 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using CFBP Algorithm (With 

90% Training Length)

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 0.488 0.486 1.883 0.942 0.694 1.300 0.615 1.885 3.575 6.031
CC 0.996 0.996 0.970 0.984 0.993 0.845 0.957 0.863 0.854 0.556Training 

MRE 0.522 0.519 2.040 1.081 0.761 1.552 0.677 2.366 4.071 6.820
MAE 1.639 9.981 4.086 0.961 2.684 2.626 2.320 2.941 4.128 4.200
CC -0.819 -1.000 0.533 0.938 -0.987 -0.820 -1.000 -0.962 -1.000 0.487

Tansigmoidal

Testing
MRE 1.758 10.516 4.370 1.024 2.857 2.805 2.454 3.150 4.417 4.493
MAE 0.639 0.610 0.724 0.490 0.969 0.609 0.652 0.595 0.686 0.643
CC 0.994 0.995 0.995 0.993 0.995 0.994 0.995 0.992 0.995 0.996Training 

MRE 0.686 0.704 0.795 0.575 1.231 0.656 0.731 0.640 0.758 0.727
MAE 1.673 1.342 0.803 1.035 2.426 0.872 1.167 0.831 0.648 0.875
CC -0.926 0.878 0.989 0.748 0.662 0.812 0.853 0.773 0.934 0.885

Purelinear

Testing
MRE 1.794 1.435 0.858 1.111 2.599 0.929 1.250 0.887 0.687 0.940
MAE 0.329 4.612 1.489 0.965 0.696 0.924 1.307 0.455 0.416 0.871
CC 0.926 0.493 -0.178 0.913 0.921 0.904 0.846 0.918 0.930 0.537Training 

MRE 0.350 5.376 1.928 1.036 0.750 0.995 1.447 0.489 0.452 1.111
MAE 4.084 4.192 2.411 2.524 1.899 2.627 1.705 2.329 0.435 2.839
CC -1.000 -0.883 0.777 -0.999 -0.989 -0.995 -0.922 -0.621 0.888 -0.999

Logsigmoidal

Testing
MRE 4.348 4.484 2.583 2.704 2.030 2.806 1.824 2.501 0.466 3.050
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Table 5.36 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using FFBP Algorithm (With 

50% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 3.727 0.987 1.909 0.351 1.766 0.885 1.365 1.662 6.321 1.119
CC 0.661 0.975 0.887 0.995 0.974 0.961 0.968 0.789 0.045 0.977Training 

MRE 4.146 1.094 2.016 0.373 2.198 0.942 1.579 2.311 7.589 1.239
MAE 9.396 5.701 3.904 6.022 3.266 4.936 5.040 4.755 12.892 4.485
CC 0.446 -0.180 0.936 -0.204 0.982 0.702 0.650 0.746 -0.123 0.841

Tansigmoidal

Testing
MRE 13.904 12.913 7.899 13.540 7.881 8.980 10.244 9.625 20.939 8.702
MAE 0.923 1.271 0.653 0.739 1.606 1.215 2.316 1.353 0.925 0.629
CC 0.976 0.949 0.992 0.989 0.898 0.973 0.631 0.968 0.986 0.990Training 

MRE 0.984 1.610 0.704 0.791 2.019 1.465 3.003 1.629 1.038 0.711
MAE 2.806 3.564 1.576 2.056 4.107 3.320 4.497 2.837 2.060 1.493
CC 0.978 0.928 0.995 0.990 0.814 0.962 0.353 0.973 0.988 0.994

Purelinear

Testing
MRE 4.462 7.993 2.672 3.525 9.447 6.742 11.105 5.575 2.793 2.213
MAE 1.734 2.876 9.421 3.127 1.385 2.218 2.178 2.216 1.533 2.897
CC 0.950 0.389 0.028 0.636 0.841 -0.212 0.566 0.492 0.913 -0.111Training 

MRE 2.223 3.690 10.439 3.767 1.864 3.157 2.926 2.934 2.028 3.858
MAE 3.903 5.393 10.124 7.569 3.862 5.006 4.172 5.476 4.789 4.501
CC 0.964 -0.470 0.138 0.402 0.941 -0.701 0.890 0.464 0.731 0.535

Logsigmoidal

Testing
MRE 9.540 12.854 16.247 13.498 9.495 12.426 9.854 11.597 10.496 10.967
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Table 5.37 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using FFBP Algorithm (With 

60% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 0.703 1.906 0.985 0.974 0.749 1.949 4.546 1.113 2.128 1.760
CC 0.990 0.804 0.973 0.973 0.989 0.908 0.025 0.958 -0.104 0.939Training 

MRE 0.797 2.097 1.060 1.129 0.851 2.167 5.487 1.233 2.904 1.919
MAE 3.820 5.194 3.674 8.143 3.933 3.671 6.736 5.234 8.077 5.346
CC 0.977 0.843 0.985 -0.086 0.981 0.988 0.982 0.863 -0.171 0.856

Tansigmoidal

Testing
MRE 8.970 10.442 8.674 16.968 9.156 8.715 14.004 10.400 17.773 10.629
MAE 1.807 0.594 1.739 1.871 0.749 0.683 3.073 0.773 0.717 0.633
CC 0.489 0.989 0.701 0.449 0.988 0.985 0.555 0.988 0.984 0.988Training 

MRE 2.428 0.646 2.293 2.503 0.804 0.735 3.676 0.835 0.770 0.683
MAE 5.849 1.874 5.875 5.882 2.182 1.621 6.199 1.387 2.482 2.098
CC -0.430 0.994 0.098 -0.411 0.992 0.997 0.248 0.998 0.988 0.994

Purelinear

Testing
MRE 15.368 3.363 14.591 15.394 3.803 2.964 15.071 2.597 4.253 4.037
MAE 1.311 2.712 3.395 1.593 1.925 2.312 1.671 1.806 1.598 2.065
CC 0.930 0.900 0.918 0.882 0.112 0.849 0.491 0.752 0.880 0.352Training 

MRE 1.718 3.392 4.130 2.053 2.627 2.788 2.279 2.264 2.089 2.722
MAE 4.875 6.521 6.838 5.454 6.193 5.543 4.683 6.258 5.880 6.050
CC 0.860 -0.550 0.692 0.763 -0.491 0.805 0.884 0.599 -0.307 0.070

Logsigmoidal

Testing
MRE 12.117 16.078 15.655 12.766 15.671 12.845 12.021 13.585 15.013 14.892
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Table 5.38 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using FFBP Algorithm (With 

66.66 % Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 1.219 0.774 2.489 0.637 11.307 0.698 1.849 2.566 1.542 1.014
CC 0.968 0.984 0.744 0.981 0.479 0.978 0.133 0.803 0.758 0.955Training 

MRE 1.316 0.824 2.719 0.727 12.268 0.856 2.533 2.770 1.661 1.100
MAE 4.421 4.026 4.987 8.391 13.360 7.297 4.528 5.825 7.855 5.647
CC 0.942 0.989 0.945 0.458 0.490 0.514 0.966 0.849 0.593 0.912

Tansigmoidal

Testing
MRE 10.298 9.770 11.271 19.481 19.864 18.431 10.989 11.739 14.158 11.575
MAE 0.823 5.778 1.431 1.754 0.905 2.592 2.340 0.801 0.716 1.873
CC 0.985 0.503 0.899 0.580 0.982 0.854 0.457 0.985 0.987 0.293Training 

MRE 0.886 6.464 1.813 2.303 1.041 2.779 3.175 0.860 0.772 2.494
MAE 2.353 7.340 5.114 6.690 2.857 5.113 9.417 2.684 2.005 7.125
CC 0.994 0.797 0.892 0.118 0.991 0.942 0.904 0.992 0.996 0.683

Purelinear

Testing
MRE 4.268 14.969 13.162 17.474 6.252 6.379 24.987 4.615 3.685 18.935
MAE 1.353 1.327 2.382 1.291 1.439 1.545 3.437 1.132 2.564 2.345
CC 0.916 0.936 0.821 0.626 0.954 0.872 0.924 0.884 0.359 0.699Training 

MRE 1.733 1.716 2.841 1.793 1.834 1.946 4.059 1.511 3.187 2.823
MAE 5.369 5.530 6.605 6.968 5.290 6.065 7.621 5.995 7.389 6.871
CC 0.897 0.886 0.726 0.233 0.909 0.836 0.958 0.913 0.355 0.657

Logsigmoidal

Testing
MRE 13.791 13.951 15.132 18.039 13.709 14.557 16.823 14.464 18.318 15.418
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Table 5.39 Error Analysis for Zone Twenty Two (Avg.WQI-90.64) with Excellent Water Quality Using FFBP Algorithm (With 

90% Training Length) 

No. of NeuronsTransfer
Function Data Error

Analysis 1 2 3 4 5 6 7 8 9 10
MAE 1.912 1.043 0.855 0.802 1.595 1.383 2.065 2.246 5.735 4.303
CC 0.964 0.986 0.997 0.995 0.987 0.989 0.876 0.955 0.447 -0.157Training 

MRE 3.835 1.244 1.011 0.997 2.708 2.149 2.621 3.482 9.492 8.888
MAE 1.375 1.266 1.414 1.293 1.670 0.666 1.365 1.850 2.813 3.515
CC 0.672 0.459 0.342 0.043 -0.993 0.811 0.056 0.687 0.845 -0.995

Tansigmoidal

Testing
MRE 1.476 1.360 1.520 1.382 1.760 0.716 1.459 1.971 3.024 3.772
MAE 1.320 1.334 1.041 0.839 0.985 1.582 1.170 0.868 0.973 0.931
CC 0.987 0.989 0.993 0.995 0.994 0.990 0.991 0.994 0.994 0.994Training 

MRE 1.606 2.146 1.187 0.953 1.123 3.044 1.883 0.986 1.115 1.044
MAE 0.813 0.860 0.869 1.153 0.728 0.840 1.392 0.807 1.564 1.528
CC 0.933 0.771 0.931 0.582 0.877 0.799 0.258 0.850 -0.668 0.832

Purelinear

Testing
MRE 0.867 0.924 0.931 1.234 0.768 0.900 1.494 0.864 1.676 1.638
MAE 1.850 2.189 2.301 3.040 3.868 2.239 3.345 3.147 1.972 3.615
CC 0.921 0.922 0.907 0.939 -0.045 0.950 0.899 0.682 0.921 0.249Training 

MRE 3.927 4.281 4.465 5.483 8.074 4.605 5.893 5.672 4.059 7.639
MAE 1.453 1.186 1.291 1.472 0.680 1.569 1.848 3.312 2.861 3.845
CC 0.359 -0.500 0.989 -0.991 0.892 -0.931 0.901 0.398 -0.999 0.589

Logsigmoidal

Testing
MRE 1.560 1.264 1.369 1.549 0.724 1.667 1.978 3.543 3.071 4.127
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Table 5.40 Zone wise Best Fitting ANN Models 

Zone
No.

Water 
Quality 

  Class

Type of
Neural Network

Transfer
Functions

No. of
Neurons Cc MRE (%) MAE

2 Bad Feed Tansigmoidal 9 0.993 1.83 0.562

4 Feed Tansigmoidal 3 0.99 12.47 4.78

23 Cascade Purelinear 3 0.996 3.14 5.4

29

Medium

Cascade Tansigmoidal 3 0.979 3.81 1.78

1 Cascade Purelinear 2 0.852 21.37 214.6

3 Feed Tansigmoidal 4 0.999 0.703 0.775

5 Cascade Logsigmoidal 3 0.993 18.46 177.58

6 Cascade Tansigmoidal 3 0.687 35.24 656.22

7 Feed Logsigmoidal 3 0.397 41.704 655.966

8 Cascade Logsigmoidal 5 0.67 16.27 175.71

9 Feed Tansigmoidal 3 0.671 19.778 320.39

10 Cascade Tansigmoidal 3 0.99 2.375 9.031

11 Feed Tansigmoidal 6 0.999 2.19 2.393

12 Cascade Tansigmoidal 3 0.999 2.88 2.728

13 Feed Tansigmoidal 3 0.998 1.77 2.88

14 Cascade Tansigmoidal 2 0.994 4.78 8.78

15 Cascade Tansigmoidal 3 0.997 3.15 4.49

16 Cascade Tansigmoidal 3 0.995 1.65 5.66

17 Feed Tansigmoidal 8 0.837 23.92 266.81

18 Feed Tansigmoidal 3 0.998 2.294 3.347

19 Cascade Logsigmoidal 3 0.996 1.83 6.55

20 Cascade Tansigmoidal 3 0.994 8.76 305.018

21 Feed Tansigmoidal 3 0.997 2.66 4.22

24 Cascade Tansigmoidal 8 0.999 0.92 0.46

25 Cascade Tansigmoidal 3 0.999 3.59 2.77

26 Cascade Purelinear 3 0.997 2.046 4.188

27

Good

Cascade Tansigmoidal 3 0.998 4.42 5.18

28 Feed Purelinear 3 0.864 18.37 285.861

22
Excellent

Cascade Purelinear 5 0.998 1.21 0.887
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5.2.2 Effect of Number of Neurons in Hidden Layer

The performance of ANN models was assessed by changing hidden layer 

structure. In hidden layer number of neurons are varied from 1-10. Fig.5.8 shows the 

performance of ANN model during training and testing for the typical zone two, four, 

three and twenty two. From Fig.5.8 and Tables 5.8 to 5.39 it is observed that the 

model performance changes considerably with change in number of neurons in the 

hidden layer. From Table 5.40 it is observed that hidden layer structure with three 

neurons performed better for prediction of water quality in the distribution system. 

The zone wise best fitting hidden layer structure changes due to zone wise change in 

statistical values (mean, standard deviation, variance etc.) for various water quality 

parameter viz. pH, alkalinity, hardness, DO, total solids and MPN. 
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Fig.  5.8 Relationship between Coeff. of  Corr. (Cc)  and No. of Neurons in the 
Hidden Layer for Zone a) Two, b) Three, c) Four and d) Twenty two
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5.2.3 Effect of Length of Dataset

In order to check the effect of length of data set on prediction performance of 

the ANN model, four different lengths of training data set were used. These four 

training length of data sets are 50%, 60%, 66.66% and 90% of total dataset. From 

Figs. 5.9 to 5.12 it is observed that for bad water quality class 90 % of training dataset 

length, for medium and good water quality class 66% of training dataset length and 

for excellent water quality class 60 % of training dataset length gives good prediction 

performance. This eventually indicates that as water quality deteriorates more length 

of training dataset is required to train the ANN models. This could be due to more 

length of dataset is required by the ANN model to find change in Water Quality Index 

(WQI) with change in concentration of water quality variables.
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Fig. 5.9 Relationship between Length of Training Dataset (%) and (a) Coeff. of   

Correlation (Cc) (b) MRE (%) for Zone Two (Avg.WQI-35.85 )
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Correlation (Cc) (b) MRE (%) for  Zone Four (Avg.WQI-55.37) 
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Fig. 5.12 Relationship between Length of Training Dataset (%) and (a) Coeff. of 

Correlation (Cc) (b) MRE (%) for Zone Four (Avg.WQI-90.64) 

5.2.4 Comparison of Cascade Forward Back Propagation (CFBP) and Feed 
Forward Back Propagation (FFBP) Algorithms
From Table 5.41 and Figs. 5.9-5.12 it is observed that FFBP algorithm 

outperforms CFBP algorithm for bad, medium and good water quality class whereas for 

excellent water quality class CFBP algorithm performs marginally better as compared 

to FFBP model. Overall FFBP model outperforms CFBP model for water quality 

prediction in municipal distribution system. The better performance of FFBP model 

eventually indicates that less training is required by ANN model to adjust the weight for 

prediction of water quality. This is because, in FFBP model only output layer is 

connected to input layer to adjust the weight that give for FFBP network less training to 

adjust the weight, whereas in the CFBP structure each layer neuron relates to all 

previous layer neurons that gives ANN more training to adjust the weight. 
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Table 5.41 Performance Comparison of CFBP with FFBP Algorithms

F.F.B.P C.F.B.P

Zone Details

 Water
Quality
Status

Length 
of Data 
set (%)

Cc MRE MAE Cc MRE MAE

50 0.62
4

42.53
14

18.95 0.50
6

73.90
6

24.11
60 0.79

0
24.27 11.46 0.61

2
31.35

9
13.46

66 0.80
9

26.22 6.48 0.70
6

28.66
57

8.86

Zone no. 2
With

Avg. WQI
35.85

(35.85)

Bad

90 0.99
3

1.834
4

0.56 0.97
4

3.82 1.83
50 0.99

34
18.36 6.24 0.51

91
40.1 16.90

60 0.99
76

13.09 19.97 0.35
4

33.06 21.84
66 0.99

9
12.47 4.78 0.99

7
57.91 18.64

Zone no. 4
With

Avg. WQI
55.37

Medium

90 0.99
9

68.98 21.17 0.99
99

70.23
856

22.25
50 0.99

77
2.52 1.88 0.99

6
6.49 4.61

60 0.99
3

2.385 1.68 0.99
3

2.66 2.09
66 0.99

9
0.775 0.70 0.99

9
1.23 0.82

Zone no. 3
With

Avg. WQI
77.95

Good

90 0.99
9

1.11 1.31 0.99
3

0.79 0.70
50 0.99

4
2.21 1.49 0.99

76
1.88 1.21

60 0.99
8

2.59 1.38 0.99
8

1.21 0.88
66 0.97

6
3.68 2 0.99

7
2.98 1.65

Zone no. 22
With

Avg. WQI
90.64

Excellent

90 0.98
9

1.36 1.29 0.98
9

0.85 0.808
88888
88888
88888
88888
88888

8

5.2.5 Performance of ANN for Various Water Quality Classes
Prediction performance of ANN models was assessed by selecting typical 

zone from each water quality class. ANN model behaviour for zone two, where water 

quality is bad, is shown in Fig.5.13 (a). ANN model behaviour for zones four, where 

water quality is medium, is shown in Fig.5.13 (b).  ANN model behaviour, for zone 

three, where water quality is good, is shown in Fig.5.13(c). The typical fuzzy model 

behaviour for zone twenty two, where water quality is excellent, is shown in Fig.5.13 

(d). From Figs.5.13 (a) to 5.13(d) it is observed that ANN model predictions shows 

good correlation with observed WQI during training as well as testing for all water 

quality classes. The better performance of ANN model for all water quality classes 

could be due to nonlinear relation between input and output variables.
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Fig. 5.13 ANN Predictions of Water Quality for different Zones  a) Zone Two 
With Bad Water Quality b) Zone Four with Medium Water Quality c) 
Zone Three with Good Water Quality d) Zone Twenty Two with 
Excellent Water quality
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5.3 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM MODEL FOR 

PREDICTION OF WATER QUALITY

In ANFIS model the water quality index (WQI) is characterized as a function of 

various variables such as pH, alkalinity, hardness, DO, total solids and MPN. The 

relationship between water quality index and input variables can be expressed as

WQI= f (pH, alkalinity, hardness, DO, total solids, MPN)

ANFIS models were developed by using triangular, trapezoidal, bell and Gaussian 

membership functions. The ANFIS system defines the membership function 

parameters and creates if-then rules on its own. It has the advantage of allowing the 

extraction of fuzzy rule from numerical data. In this study 250 rules were generated 

by ANFIS editor to predict the WQI. The error analysis during training and testing of 

ANFIS models is shown in the Table 5.42. It can also be observed from Table 5.42 

that ANFIS model with Gaussian membership function shows better predictions 

followed by triangular membership function. Out of twenty nine zones in study area, 

for eighteen zones Gaussian membership function, for eight zones triangular 

membership function and for remaining three zones bell membership function shows 

better prediction. It can be observed from the Table 5.42 that for all four membership 

functions during training error is zero and coefficient of correlation (Cc) one. This 

indicates that all four models capture the trend fully and there is no scatter during 

training. The predicted WQI shows high degree of correlation with observed WQI 

during training but during testing ANFIS models performance decreases considerably 

for all water quality classes. Figs.5.14 to 5.17 shows poor performance of developed 

ANFIS model during testing for bad, medium, good and excellent water classes 

respectively. The poor performance of ANFIS could be due to creating more rules, 

classifying limits for subsets and fixing overlapping pattern on its own by the ANFIS 

editor.
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Table 5.42:  Zone wise Error Analysis of ANFIS Models 

Training TestingZone Membership
Function MAE MRE Cc MAE MRE Cc

Bell 0 0 1 22.56 35.99 0.86
Triangular 0 0 1 16.22 26.84 0.89

Trapezoidal 0 0 1 39.82 35.94 0.66
1

Gaussian 0 0 1 20.49 32.31 0.85
Bell 0 0 1 9.77 32.19 0.43

Triangular 0 0 1 9.80 31.78 0.48
Trapezoidal 0 0 1 10.58 34.82 0.41

2

Gaussian 0 0 1 9.35 30.66 0.46
Bell 0 0 1 5.96 8.219 0.96

Triangular 0 0 1 5.55 10.23 0.95
Trapezoidal 0 0 1 6.39 12.32 0.95

3

Gaussian 0 0 1 5.14 7.900 0.97
Bell 0 0 1 39.43 66.87 0.51

Triangular 0 0 1 33.02 51.56 0.54
Trapezoidal 0 0 1 52.10 85.47 0.03

4

Gaussian 0 0 1 59.07 66.87 0.21
Bell 0 0 1 32.71 56.92 0.63

Triangular 0 0 1 41.60 56.35 0.66
Trapezoidal 0 0 1 31.95 47.05 0.46

5

Gaussian 0 0 1 31.43 46.04 0.66
Bell 0 0 1 36.36 53.02 0.65

Triangular 0 0 1 36.36 49.73 0.61
Trapezoidal 0 0 1 38.99 49.75 0.61

6

Gaussian 0 0 1 35.34 48.87 0.66
Bell 0 0 1 43.77 52.41 0.43

Triangular 0 0 1 53.58 55.26 0.39
Trapezoidal 0 0 1 40.67 71.89 0.32

7

Gaussian 0 0 1 37.50 48.21 0.47
Bell 0 0 1 30.52 63.21 0.50

Triangular 0 0 1 52.69 62.09 0.56
Trapezoidal 0 0 1 36.17 38.80 0.32

8

Gaussian 0 0 1 31.26 45.20 0.57
Bell 0 0 1 40.06 49.49 0.47

Triangular 0 0 1 48.87 50.07 0.56
Trapezoidal 0 0 1 40.38 59.87 0.41

9

Gaussian 0 0 1 40.00 49.15 0.58
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Table 5.42:  Zone wise Error Analysis of ANFIS Models (Continued…)

Table 5.42: Zone wise Error Analysis of ANFIS Models (Continued…)

Training TestingZone Membership
Function MAE MRE Cc MAE MRE Cc

Bell 0 0 1 33.93 48.25 0.68
Triangular 0 0 1 45.64 48.54 0.70

Trapezoidal 0 0 1 34.18 61.77 0.51
10

Gaussian 0 0 1 32.48 46.40 0.70
Bell 0 0 1 22.90 35.98 0.88

Triangular 0 0 1 33.42 35.78 0.86
Trapezoidal 0 0 1 22.94 48.29 0.76

11

Gaussian 0 0 1 21.81 34.39 0.89
Bell 0 0 1 33.04 54.32 0.61

Triangular 0 0 1 53.77 50.08 0.57
Trapezoidal 0 0 1 36.27 77.46 0.37

12

Gaussian 0 0 1 32.21 49.13 0.62
Bell 0 0 1 30.06 51.94 0.16

Triangular 0 0 1 33.36 34.94 0.60
Trapezoidal 0 0 1 37.95 77.52 0.57

13

Gaussian 0 0 1 28.54 51.51 0.56
Bell 0 0 1 22.89 51.34 0.70

Triangular 0 0 1 57.56 34.39 0.83
Trapezoidal 0 0 1 41.83 77.52 0.45

14

Gaussian 0 0 1 37.84 51.51 0.76
Bell 0 0 1 29.80 49.37 0.70

Triangular 0 0 1 44.73 48.39 0.67
Trapezoidal 0 0 1 30.25 66.24 0.41

15

Gaussian 0 0 1 28.86 49.37 0.73
Bell 0 0 1 21.99 29.35 0.61

Triangular 0 0 1 32.81 29.82 0.62
Trapezoidal 0 0 1 22.15 42.55 0.49

16

Gaussian 0 0 1 22.05 28.98 0.62
Bell 0 0 1 35.54 38.33 0.52

Triangular 0 0 1 48.14 48.34 -0.06
Trapezoidal 0 0 1 30.64 64.05 0.40

17

Gaussian 0 0 1 32.76 41.32 0.51
Bell 0 0 1 41.82 59.01 0.57

Triangular 0 0 1 54.92 56.17 0.61
Trapezoidal 0 0 1 44.60 73.20 0.43

18

Gaussian 0 0 1 43.31 57.342 0.57
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Training TestingZone Membership
Function MAE MRE Cc MAE MRE Cc

Bell 0 0 1 36.68 50.114 0.46
Triangular 0 0 1 57.03 42.042 0.54

Trapezoidal 0 0 1 44.25 64.133 0.3619

Gaussian 0 0 1 38.63 44.018 0.52
Bell 0 0 1 31.54 44.216 0.57

Triangular 0 0 1 39.88 45.978 0.66
Trapezoidal 0 0 1 31.52 55.205 0.4620

Gaussian 0 0 1 37.01 50.192 0.50
Bell 0 0 1 34.07 41.960 0.54

Triangular 0 0 1 41.43 41.847 0.49
Trapezoidal 0 0 1 32.38 56.228 0.4521

Gaussian 0 0 1 31.86 40.336 0.54
Bell 0 0 1 39.19 52.153 0.35

Triangular 0 0 1 56.61 46.452 0.38
Trapezoidal 0 0 1 43.90 66.009 0.2322

Gaussian 0 0 1 42.43 50.657 0.37
Bell 0 0 1 26.67 56.187 0.70

Triangular 0 0 1 37.16 50.161 0.67
Trapezoidal 0 0 1 28.82 69.102 0.5123

Gaussian 0 0 1 26.95 52.213 0.71
Bell 0 0 1 14.34 32.649 0.97

Triangular 0 0 1 23.57 32.782 0.97
Trapezoidal 0 0 1 13.43 46.373 0.8624

Gaussian 0 0 1 12.68 30.989 0.98
Bell 0 0 1 27.35 52.012 0.75

Triangular 0 0 1 37.06 53.243 0.79
Trapezoidal 0 0 1 27.95 67.291 0.6525

Gaussian 0 0 1 26.57 50.343 0.79
Bell 0 0 1 33.59 45.051 0.47

Triangular 0 0 1 54.38 42.655 0.53
Trapezoidal 0 0 1 35.88 65.227 0.2126

Gaussian 0 0 1 28.82 37.460 0.58
Bell 0 0 1 36.34 53.205 0.60

Triangular 0 0 1 50.45 58.737 0.6527
Trapezoidal 0 0 1 35.06 74.248 0.34
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Table 5.42: Zone wise Error Analysis of ANFIS Models (Continued…)
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Fig. 5.14 ANFIS Predictions of Water Quality for Zone Two with Bad Water 
Quality (Avg.WQI-35.85)

Fig. 5.15 ANFIS Predictions of Water Quality for Zone Four with Medium 
Water Quality (Avg.WQI-55.37) 

Training TestingZone Membership
Function MAE MRE Cc MAE MRE Cc

Bell 0 0 1 29.04 37.416 0.66
Triangular 0 0 1 47.01 32.333 0.58

Trapezoidal 0 0 1 33.63 52.106 0.5128

Gaussian 0 0 1 33.28 37.048 0.62
Bell 0 0 1 32.12 54.861 0.66

Triangular 0 0 1 40.24 60.553 0.52
Trapezoidal 0 0 1 30.21 76.616 0.5929

Gaussian 0 0 1 28.07 48.648 0.65
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Fig. 5.16 ANFIS Predictions of Water Quality for Zone Three with Good Water 
Quality (Avg.WQI-77.95)
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Fig. 5.17 ANFIS Predictions of Water Quality for Zone Twenty Two with 
Excellent Water quality (Avg.WQI-90.64)

5.4 MULTIPLE LINEAR REGRESSION MODEL (MLR) FOR PREDICTION

 Multiple linear regression model is a statistical technique used for prediction. 

In this study it was used for prediction of water quality index (WQI) in the various 

zones of municipal distribution system. In this method 2/3 rd  of total data set (two 

years) was used to obtain the regression intercept (B) and partial regression 

coefficients (B1, B2, B3-----) of the linear regression equations. The regression 

intercept and coefficients for each zone are shown in Table 5.43. The zone wise error 

analysis for regression model is shown in Table 5.44. Figs.5.18 (a) to 5.18 (d) shows 

performance of multiple regression models for zone two, four, three and twenty two 

with water quality class bad, medium, good and excellent respectively. From Fig.5.18 

(a) to 5.18 (d) it is observed that the linear regression model captures the trend but 

tends to underestimate or overestimate the high or low WQI values. 
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Fig.5.18  MLR  Model Predictions of Water Quality for Different Zones  a) Zone 
Two With Bad Water Quality b) Zone Four with Medium Water    
Quality c) Zone Three with Good Water Quality d) Zone Twenty Two 
with Excellent Water quality
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Table 5.43: Regression Intercepts and Coefficients

Partial Regression CoefficientsZone B(intercept)
B1 B2 B3 B4 B5 B6

1 41.23 4.38 -0.03 0.08 5.73 -0.05 -3.31
2 82.01 -2.36 0.04 -0.01 0.42 0.00 -2.17
3 51.50 6.39 0.15 -0.13 0.14 -0.01 -3.39
4 100.34 1.64 -0.17 -0.11 -1.89 0.02 -3.14
5 87.26 1.44 -0.05 -0.03 -0.47 -0.01 -2.90
6 49.10 2.47 0.03 0.06 10.35 0.00 -4.16
7 175.87 -1.43 0.04 -0.23 0.78 -0.06 -2.25
8 91.31 -0.27 0.04 -0.01 1.31 -0.02 -3.86
9 158.32 -2.79 0.06 -0.29 1.83 -0.01 -3.13
10 89.81 -1.28 0.04 0.05 0.67 -0.01 -4.49
11 76.83 2.00 -0.13 -0.01 1.66 -0.01 -4.66
12 34.02 5.73 -0.22 0.27 1.28 -0.02 -3.13
13 66.85 3.37 0.05 -0.02 0.95 -0.01 -3.17
14 142.60 -8.48 -0.02 0.13 1.25 -0.03 -3.09
15 14.42 3.72 0.08 0.31 -0.29 -0.04 -3.58
16 83.04 1.94 0.01 -0.03 1.42 -0.01 5.27
17 119.80 -2.20 -0.08 -0.02 2.66 -0.02 -3.41
18 118.55 -7.55 0.15 0.14 -1.04 -0.03 -3.07
19 231.46 -15.72 0.02 -0.09 1.44 -0.03 -3.84
20 77.04 1.36 0.02 0.01 1.14 -0.01 -2.94
21 157.89 -4.99 -0.17 -0.11 3.11 0.00 -3.65
22 86.80 -0.05 0.02 0.03 1.22 -0.01 -4.82
23 21.67 6.38 -0.05 0.07 1.53 0.00 -3.45
24 183.71 -9.34 -0.12 0.00 1.18 -0.01 -3.77
25 49.47 5.59 0.02 0.04 -0.31 -0.02 -3.43
26 105.87 -2.75 0.04 0.01 1.09 -0.01 -4.98
27 37.99 1.37 0.06 0.23 -0.45 -0.01 -3.79
28 97.49 1.06 0.00 -0.03 1.36 -0.02 -0.05
29 716.66 -85.52 -0.11 0.72 -4.09 -0.11 -1.09
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Table 5.44: Zone wise Error Analysis of Multiple Regression Models

Training Testing
Zone

MAE MRE Cc MAE MRE Cc
1 5.53 8.21 0.93 9.48 24.38 0.73
2 7.21 19.41 0.83 5.69 17.81 -0.08
3 4.11 8.55 0.97 3.97 7.10 0.98
4 24.67 52.49 0.91 24.36 47.48 0.95
5 17.26 20.33 0.99 15.64 20.91 0.97
6 2.04 4.33 0.98 3.97 10.67 0.99
7 8.01 13.17 0.87 7.97 16.86 0.96
8 1.22 2.42 0.99 3.29 7.97 0.98
9 1.93 2.74 0.98 3.95 5.91 0.97
10 0.80 0.87 0.99 1.92 2.86 0.99
11 1.50 3.05 0.99 4.73 14.80 0.98
12 3.36 6.83 0.99 6.31 12.58 0.97
13 3.04 5.16 0.99 5.56 11.94 0.98
14 6.26 21.57 0.95 5.66 22.43 0.94
15 3.96 7.36 0.97 8.07 16.48 0.95
16 0.72 0.78 1.00 4.59 11.58 0.99
17 2.14 4.44 0.99 6.94 17.63 0.74
18 7.47 16.17 0.94 5.71 11.19 0.96
19 2.85 5.35 0.99 3.61 4.51 0.93
20 0.78 1.07 1.00 11.62 21.20 0.61
21 3.53 8.65 0.98 3.68 8.06 0.99
22 0.71 0.77 0.99 2.15 3.68 0.99
23 9.30 18.11 0.97 11.21 28.92 0.99
24 3.55 7.45 0.96 5.82 16.25 0.98
25 2.77 5.84 0.96 4.02 12.02 0.97
26 0.75 0.82 0.98 1.88 14.41 0.99
27 3.20 7.16 0.98 6.68 16.66 0.98
28 0.93 0.99 0.75 1.28 1.40 0.77
29 13.34 29.10 0.82 30.72 67.42 -0.06
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5.5 OVERALL  COMPARISON OF ALL MODELS

The overall  comparison of all modelling techniques has been made for all water 

quality classes (viz. bad, medium, good and excellent) by comparing coefficient of 

correlation (Cc) and mean relative error  (MRE). 

5.5.1  Comparison for Bad Water Quality Class

Figs. 5.19 and 5.20 show comparative performance of  Fuzzy, ANN, ANFIS and 

MLR  models for prediction of  Water Quality Index (WQI) in municipal distribution 

system for zone two bearing bad water quality class. From  Figs. 5.19 and 5.20 it can 

be observed that  prediction performance of ANN model is considerably better and 

showed  high coefficient of correlation  (Cc)  and  low mean relative error, which is 

around 2 %. 
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5.5.2  Comparison for Medium Water Quality Class

The performance of  Fuzzy, ANN, ANFIS and MLR  models for prediction of  Water 

Quality Index (WQI) in municipal distribution system for zone four, Twenty- three 

and Twenty- nine  bearing medium water quality class has been  shown in figs. 5.21 

and 5.22. From  Figs. 5.21 and 5.22 it can be observed that  ANN model outperforms 

other modelling techniques for all three zones and showed  high coefficient of 

correlation  (Cc)  and  low mean relative error, which varied from 3-11%.
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Fig. 5.21 Performance of Various Models in terms of Coeff. of Correlation (Cc) 
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Fig. 5.22 Performance of Various Models in terms of MRE (%) for Medium 
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5.5.3  Comparison for Good Water Quality Class

The performance of  Fuzzy, ANN, ANFIS and MLR  models for prediction of  Water 

Quality Index (WQI) in municipal distribution system for zones one, three,  five to 

Twenty- one  and Twenty-four to Twenty-seven bearing good water quality has been 
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shown in figs. 5.23 and 5.24. From figs. 5.23 and 5.24 it is observed that ANN show 

high coefficient  and low mean relative error almost for all the zones bearing good 

water quality class. The performance of ANN model has been observed to be more 

consistant as compared to other modelling techniques.
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5.5.4  Comparison for Excellent Water Quality Class

The performance of  Fuzzy, ANN, ANFIS and MLR  models for prediction of  Water 

Quality Index (WQI) in municipal distribution system for zones Twenty- two and 
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Twenty- eight bearing excellent water quality has been shown in figs. 5.25 and 5.26. 

From figs. 5.25 and 5.26 it is observed that ANN show high coefficient for both the 

zones  and show mean relative error comparetively very low.
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Fig. 5.26 Performance of Various Models in terms of MRE (%) for Excellent 
Water Quality 

Overall from figs.5.19 to 5.26 it can be observed that ANN outperforms other 

modelling techniques for all water quality classes. Which eventually indicates that 

ANN is  a robust tool for understanding the poorly defined relations between water 

quality variables and WQI in municipal distribution system. This tool could be of 

great help to the distribution system operator and manager to find change in WQI with 

changes in water quality varibles. 
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CHAPTER 6

CONCLUSIONS

The study on prediction of water quality index (WQI) in the distribution system for 

Solapur city, India, has been carried out by using fuzzy logic, artificial neural network 

(ANN), adaptive neuro fuzzy inference system (ANFIS) and multiple linear 

regression (MLR) models.  Initially fuzzy inference system was used for water quality 

prediction. In this method triangular and trapezoidal membership functions were 

assigned to fuzzy sets. Defuzzification was carried by using centroid, mean of 

maxima and bisector method. In ANN method the cascade feed forward back 

propagation (CFBP) and feed forward back propagation (FFBP) algorithms were 

compared for prediction of water quality in the municipal distribution system. The 

comparative study was carried by varying the number of neuron (1-10) in the hidden 

layer, by changing length of training dataset and by changing transfer function. In 

ANFIS model the prediction for water quality was carried out by using triangular, 

trapezoidal, bell and gaussion membership function. Further, these artificial 

intelligence techniques were compared with MLR technique, which is a commonly 

used statistical technique for prediction. Performance of these models was validated 

by comparing the predicted results with the observed field results. The study revealed 

that 

1) ANN outperforms other modelling techniques such as Fuzzy Logic, Adaptive 

Neuro-Fuzzy Inference System and Multiple Linear Regression Technique for 

predicting water quality.

2) Performance of tansigmoidal transfer function was found to be more consistent for 

all water quality classes. 

3) The hidden layer structure with three neurons is the best fitting hidden layer 

structure for predicting water quality.

4) As water quality deteriorates more length of training dataset is required to train the 

ANN models.
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5) FFBP algorithm outperforms CFBP algorithm for all water quality classes.

6) ANN models represent non-linear water quality dynamics more accurately and 

efficiently than that of their linear counterparts.

7) The data required for monitoring water quality and development of actual WQI 

during operation could be very large. The distribution system operators may not 

have the required skill. In such situations, a tool using the ANN can help water 

quality system managers to find changes in WQI with changes in water quality 

variables.
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