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ABSTRACT 

Analytical formulations and solutions are presented for the thermo-elastic analysis of 

Functionally Graded Material (FGM) plates based on a set of higher order refined 

shear deformation theories. The displacement components in these computational 

models are based on Taylor’s series expansions, which incorporates parabolic 

variation of transverse strains across the plate thickness. The displacement model with 

twelve degrees of freedom considers the effects of both transverse shear and normal 

strain/stress while the other model with nine degrees of freedom includes only the 

effect of transverse shear deformation. Besides these, a higher order model and a first 

order model with five degrees of freedom that are developed by other investigators 

and are reported in the literature are also used in the present investigation for 

evaluation purposes. A simply supported FGM plate subjected to thermal load is 

considered throughout as a test problem. The material properties are mathematically 

modeled based on power law function. The temperature is assumed to vary 

nonlinearly and obey one-dimensional steady state heat conduction equation 

throughout the plate thickness while in-plane is sinusoidal. Along with this constant 

and linearly varying temperatures are also considered in the study. The equations of 

equilibrium are derived using the Principle of Minimum Potential Energy (PMPE) 

and closed form solutions are obtained using Navier’s solution technique. Firstly, 

numerical results obtained using various displacement models are compared with the 

three-dimensional elasticity solutions available in the literature inorder to establish the 

accuracy of higher order models considered in the study. After establishing the 

accuracy of the solution method benchmark results and comparison of solutions are 

presented for Monel/Zirconia, Titanium-Alloy/Zirconia and Aluminium/Alumina 

FGM plate by varying edge ratio, slenderness ratio and power law parameter. 

Numerical and graphical results are presented for in-plane, transverse displacements 

and stresses for all the models by considering different temperature profiles. 

Keywords: FGM Plate; Analytical solution; Navier’s technique; Higher Order 

Theory; Shear Deformation; Thermal Load; Stress Analysis. 
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(TNL), linear (TL) and constant (TC) thermal loads based on            

(a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and (d) FSDT displacement 

models 
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NOMENCLATURE 

x, y, z Cartesian co-ordinate system for an FGM plate and is 

named as FGM plate axes   

u, v, w Displacement components along x, y and z directions 

respectively at any point (x, y, z) in the FGM plate 

space. 

u, v,w  Nondimensionalized quantities of u, v and w 

0 0 0u , v , w  Displacement components along x, y and z directions 

respectively at any point (x, y, 0) in the FGM plate 

space. 

x yθ , θ  Rotation of transverse normal at the plate mid-surface 

about y and x axes respectively 

* * *
0 0 z zu , v , ,   Higher-order membrane displacement components in the 

Taylor’s series expansion corresponding to x, y and z 

directions respectively at any point (x, y, 0) in the FGM 

plate space. 

* * *

x y 0, , w 
 

Higher-order flexure displacement components in the y, 

x and z directions respectively at any point (x, y, 0) in 

the FGM plate space. 

 w
+ 

Transverse displacement at any point on the top surface 

of the FGM plate 

x y zσ , σ , σ  Normal stresses at any point in the plate with reference 

to the FGM plate axes. 

x y zσ , σ , σ  Nondimensionalized quantities of  x,  y and  z 

xy yz xzτ , τ , τ  Shear stresses at any point in the plate with reference to 

the FGM plate axes. 

xy yz xzτ , τ , τ  Nondimensionalized quantities of  xy,  yz, and  xz 

x y zε , ε , ε
 

Normal strains at any point in the plate with reference to 

the plate axes. 

xy yz xzγ , γ , γ
 

Shear stains at any point in the plate with reference to 

the FGM plate axes. 

0 0 0x y xy z, , ,     Membrane strains at any point (x, y, 0) in the plate with 

reference to the plate axes 
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0 0 0 0

* * * *

x y xy z, , ,     Higher-order membrane strains at any point (x, y, 0) 

with reference to the FGM plate axes. 

x y xy, ,    Flexure strains at any point (x, y, 0) in the plate with 

reference to the plate axes. 

x y,   Transverse shear strains at any point (x, y, 0) in the plate 

with reference to the plate axes 

* * * * *

x y xy z xz yz, , , , ,       Higher order flexure strains at any point (x, y, 0) in the 

plate with reference to the plate axes 

* * *

xz yz x y, , ,     Higher-order transverse shear strains at any point (x, y, 

0) in the plate with reference to the plate axes 

ΔT Temperature gradient or Change in Temperature at any 

point (x, y, z) in the FGM plate space. 

T(x,y) Temperature distribution in the plane of the plate (x, y) 

TZ Temperature variation in an FGM plate across the 

thickness direction 

TNL, TC, TL Nonlinear, constant and linear variations in temperatures 

across the thickness direction. 

T0, T1 Temperature at bottom and top surface in an FGM plate. 

Ez, kz, αz Variation of young’s modulus of elasticity, thermal 

conductivity and thermal coefficient of expansion in an 

FGM plate across the plate thickness direction 

Ec, Em
 

Young’s modulus of ceramic and metal in an FGM plate 

respectively 

kc, km
 

Thermal conductivity coefficient of metal and ceramic in 

an FGM plate respectively 

αm, αc Thermal coefficient of expansion of metal and ceramic 

in an FGM plate respectively 

ν
 

Poisson’s ratio. 

Vf Volume fraction 

p Power law parameter. 

ijQ  
Material stiffness matrix with reference to the plate axes. 

DM, DB, DS Membrane, flexure and shear rigidity matrix respectively 

DC Membrane – flexure coupling rigidity matrix 
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A, dA Area and differential area of the FGM plate element 

respectively 

V, dV Volume and differential volume of the FGM plate 

element respectively 

N, M, Q Membrane, flexure and transverse shear stress resultant 

vector respectively. 

T TN ,M  Membrane and flexure stress resultant vector due to 

thermal effects respectively. 

x y xyN , N , N  
Membrane stress-resultants at any point in the plate mid-

surface with reference to the FGM plate axes. 

T T Tx y xyN , N , N   Membrane stress-resultants at any point in the plate mid-

surface due to thermal effects with reference to FGM 

plate axes. 

* * * *

x y xy z zN , N , N , N , N  Higher-order membrane stress-resultants at any point in 

the plate mid-surface with reference to the FGM plate 

axes. 

T T T T T

* * * *

x y xy z zN , N , N , N , N  Higher-order membrane stress-resultants at any point in 

the plate mid-surface due to thermal effects  

x y xyM M M  
Flexure stress-resultants at any point in the plate mid-

surface with reference to the FGM plate axes. 

T T Tx y xyM M M
 

Flexure stress-resultants at any point in the plate mid-

surface due to thermal effect with reference to the FGM 

plate axes. 

* * * *

x y xy z zM ,M ,M ,M ,M
 

Higher-order flexure stress-resultants at any point in the 

plate mid-surface with reference to the FGM plate axes 

T T T T T

* * * *
x y xy z zM ,M ,M ,M ,M  Higher-order flexure stress-resultants at any point in the 

plate mid-surface due to thermal effects with reference 

to the FGM plate axes 

x yQ , Q  
Transverse shear stress-resultants at any point in the 

plate mid-surface with reference to the FGM plate axes. 

* * * *

x y x y x yS ,S ,S ,S ,Q ,Q
 

Higher-order transverse shear stress-resultants at any 

point in the plate mid-surface with reference to the FGM 

plate axes. 

U Internal strain energy of the FGM plate 
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  Total potential energy of the FGM plate.  

W Work done by external forces. 

0p  
Amplitude of sinusoidal varying transverse mechanical 

load at the plate centre. 

+
zp

 
Transverse mechanical load applied on the top surface of 

the plate. 

t
 

Superscript denoting transpose of a matrix/vector. 

a, b
 

Plate dimensions. 

h
 

Total thickness of the plate. 


 

Variational symbol 
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CHAPTER 1 

INTRODUCTION 

1.1 PRELIMINARY REMARKS 

Laminated composite plates have established their potential applications in various 

sectors like aerospace, marine, medical, nuclear and automotive industries as well as 

in other fields involving advanced high performance materials. Developments in the 

field of materials have revolutionized the application of multilayered composites with 

a new innovative material called Functionally Graded Material (FGM). The smooth 

variation of thermo-mechanical properties in FGM was found to be most efficient in 

handling high temperature gradients than that of composite laminates. The rapid 

change in material properties at the laminate interface promotes the development of 

interlaminar stresses resulting in de-bonding of fibers and matrix, cracking and 

delamination effects at elevated temperatures. These problems can be mitigated in 

FGMs due to the smooth and continuous gradation of material properties through the 

thickness and hence finding major use in high temperature applications viz., rocket 

nozzles, heat exchange panels, space craft truss structures, bullet proof jackets, armor 

plates, combustion chamber components in aircrafts and automobiles. 

FGM are the advanced composite materials formed by continuous change in 

composition of two or more constituent phases over a specified volume. FGMs can 

also be defined as a material which possesses gradual variations in thermo-mechanical 

properties due to material heterogeneity. The smooth gradation of physical properties 

can be either unidirectional or multidirectional and also it can be continuously or 

discontinuously varied between any two points or surfaces. Most commonly FGMs 

are used as a thermal coating or a heat shielding material to resist high temperature 

exposures and hence manufactured using ceramics and metals. A heat resisting 

ceramic material is used on high temperature side and the material composition is 

gradually graded to a tough metal with high thermal conductivity on the other side. 

Such bi-material graded composites can incorporate most of the advantageous 
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physical and chemical properties of both the materials, thereby increasing the bond 

strength, fracture toughness, thermal properties and also by reducing the interfacial 

stresses, thermal stresses, stress intensity factors and crack driving forces. Some of the 

commonly used FGMs are Monel-Zirconia, Aluminium-Silicon Carbide, Titanium 

Alloy-Zirconia, Aluminium-Alumina, Silicon Carbide-Carbon, Nickel-Zirconia, etc. 

Structural analysis of FGM plates plays a vital role in predicting the static, dynamic 

and stability behavior of plates subjected to mechanical / thermal loads. The 

governing factors include thermo-physical properties, boundary conditions and 

applied mechanical/thermal loads. In the present investigation, a continuously graded, 

simply supported, ceramic-metal FGM plate subjected to thermal load is considered 

for the analysis. The static responses are examined for different temperature profiles, 

plate geometries and material compositions. 

Most of the FGMs are found in high temperature resisting structural elements like 

thermal shielding materials, combustion chamber parts and space shuttle components 

involving very high surface temperatures of 2100K with a temperature gradient of 

1600K across a section with less than 10mm thickness (Koizumi, 1997). Hence 

mathematical modeling and analysis of these structural elements under thermal 

environments have attracted substantial attention of researchers and consequently 

aiming in developing a precise, accurate and efficient theoretical model for thermo-

elastic analysis of FGM plates. 

Most of the modeling and analysis techniques used for FGM plates are the extensions 

of composite laminate / isotropic plates. Classical Plate Theory (CPT) based analysis 

was found to be inaccurate for FGM plate analysis, as it neglects the transverse 

deformation effects. Hence refined theories were developed by incorporating the 

effects of transverse shear stress/strain. The First Order Shear Deformation Theory 

(FSDT) commonly known as Reissner-Mindlin’s plate theory assumes linear 

variations of transverse displacements/stresses and hence a shear correction 

coefficient has to be introduced to rectify the variation of shear stress/strain across the 

thickness of the FGM plate. These limitations of FSDT forced the development of 

higher-order refined theories. The second and third order theories involve additional 
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terms in the expression for the in-plane displacements which are parabolic and cubic 

respectively in thickness direction coordinate. These higher order theories consider 

the realistic parabolic variation of transverse shear stress through the plate thickness.  

1.2 AIM AND SCOPE 

Analytical modeling plays a vital role in the design and development of FGM plates 

because experimental studies are not feasible to evaluate the stresses and 

displacements, as the plate thickness is very small compared to the lateral dimensions. 

Also, investigations related to ultimate stress, critical buckling load, failure analysis, 

crack propagation, etc. can only be examined analytically but not experimentally. 

Therefore, in recent decades many publications have been reported on the analytical 

evaluation of thermo-elastic responses of FGM plates using various three-dimensional 

(3-D) and two-dimensional (2-D) theories. Though 3-D methods of analysis are found 

to be the most accurate, it is very difficult to obtain solutions for various plate 

geometries, loading and boundary conditions. Hence a 3-D plate problem has to be 

reduced to a 2-D plate problem using suitable assumptions and the accuracy of the 

assumed 2-D plate theory has to be established by comparing the results obtained 

using the theory with the 3-D exact elasticity solutions that are already reported in the 

literature. Then the most accurate 2-D theory can be formulated using Finite Element 

Methods (FEM) and can be further used for the development of commercial FEM 

packages. 

It has been found from the literature that in all the earlier investigations the through 

the thickness temperature profiles assumed were either constant or linear. Moreover, 

most of the studies using various two-dimensional theories for the thermo-elastic 

analysis of FGM plates were confined towards establishing the accuracy of results 

obtained using a particular model developed based on any two-dimensional theory by 

comparing the results with that of three-dimensional exact solutions already available 

in the literature. Analytical evaluation of various two-dimensional higher order 

refined theories especially with higher order polynomial terms in the displacement 

fields (viz., HSDT12, HSDT9) using more realistic non-linear variation of 

temperature across the thickness (using heat conduction equation) in predicting the 
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different responses of FGM plates and also the evaluation with regard to their relative 

accuracy in predicting the displacements and stresses have not been reported yet. 

Owing to the above limitations, there is a need to evaluate analytically the various 

higher order refined theories for the thermo-elastic analysis of FGM pales subjected to 

different temperature profiles and to present the numerical results hitherto not 

reported in the literature. Keeping this in view the aims and objectives set for the 

present work are as follows: 

1. To develop analytical formulations and solutions using a set of higher order 

refined theories with twelve and nine degrees of freedom for the thermo-elastic 

analysis of FGM plates. 

2. To determine the various responses (Displacements, Stresses) of thermally 

loaded FGM plates subjected to different temperature profiles namely non-linear, 

linear and constant temperature.   

3. To calculate the accuracy of the solutions obtained by comparing them with 

the three-dimensional elasticity solutions wherever available in the literature, for 

validating the accuracy of the displacement models considered in the study. 

4. To evaluate the accuracy of the solution obtained in (1) in comparison to the 

accuracy of solutions obtained by independently developing the analytical 

formulations and solutions using other higher-order theory with five degrees of 

freedom and the first-order theory already available in the literature and by comparing 

the solutions of all the theories with exact 3-D elasticity solutions. The physical 

interpretation of the calculated results are discussed though various example 

problems. 

5. To establish benchmark analytical solutions for the thermo-elastic analysis of 

FGM plates using various theories, material properties and temperature profiles 

considered in the present study.  

For mathematical modelling purposes, the material properties are assumed to vary 

across the thickness direction of the plate based on power law function, while the in-

plane variation is assumed to be isotropic. The temperature is assumed to vary 

sinusoidally along the plane of the plate, while its variation across the thickness can 

either be constant/linear or non-linear. One-dimensional steady state heat conduction 
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equation is used to obtain the nonlinear variation of temperature across the plate 

thickness. 

The theories are applied to study the thermo-elastic response of FGM plates subjected 

to different temperature profiles explained above. For all the problems a simply 

supported plate is considered for the analysis. The equations of equilibrium using 

different displacement models are obtained using the Principle of Minimum Potential 

Energy (PMPE) and solutions in closed-form are obtained using Navier’s solution 

technique by solving the Boundary Value Problem (BVP). 

The scope of this study is restricted to small deformation thermo-elasto-static analysis 

of simply supported FGM plate using Power-Law variation of material properties and 

is subjected to constant, linear and nonlinear distribution of temperature profiles 

across the plate thickness. 

1.3 LAYOUT OF THE THESIS 

The extensive work carried out in this investigation to achieve the above mentioned 

aims and objectives is presented systematically in different chapters as follows: 

Chapter 2 contains a detailed literature review of the research works concerning the 

different methods of analysis to evaluate the thermal stresses in FGM plates using 

various three-dimensional and two-dimensional plate theories. Based on the type of 

temperature distribution adopted in the analysis, this has been presented under three 

broad headings, viz., 1) Three dimensional temperature variation, 2) One dimensional 

nonlinear temperature variation, 3) One dimensional constant and linear temperature 

variation. Available literatures under both analytical and numerical methods are 

reviewed to give a clear picture of research work carried out on the thermo-elastic 

analysis of FGM plates. 

Chapter 3 contains a list of various displacement models (theories) used in the present 

investigation. Detailed theoretical formulation is presented for HSDT-12 

displacement model only for brevity sake. Following the similar procedure adopted 

for the model HSDT-12, the equilibrium equations obtained for the thermo-elastic 

analysis using all other displacement models are given in Appendix - I. 



6 

 

In Chapter 4 analytical solution method using Navier’s solution technique is presented 

in detail for the thermo-elastic analysis of simply supported FGM plates using       

HSDT-12 displacement model only. The same procedure is used to obtain solutions 

using all other displacement models. The elements of the plate stiffness matrices 

T[A],  [A ],  [C ], [B],  [B ],  [D],  [D ],  [E],  [E ]     , the coefficient matrix  X , and the 

elements of thermal force matrix  TF  using different displacement models are given 

in Appendices II, III and IV respectively. 

In Chapter 5 numerical results and discussion are presented for the thermo-elastic 

analysis of FGM plates. The results obtained using various displacement models are 

first compared with the available three dimensional elasticity solutions. After 

establishing the accuracy of the model, parametric studies are performed for Monel-

Zirconia, Titanium Alloy-Zirconia and Aluminium-Alumina FGM plates. Benchmark 

results are presented for nonlinearly, linearly and constantly varying temperature 

profiles across the plate thickness. 

Chapter 6 contains the general conclusions that are drawn from the present 

investigation using the four computational models and also the suggestions for future 

work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 PRELIMINARY REMARKS 

Generally, FGMs are the nonhomogeneous particulate composites formed by 

continuous gradation of constituents with variable composition profile, which can be 

tailored to achieve desired strength and stiffness. The concept of FGM was first 

introduced at National Aerospace Laboratories of Japan in 1984 to create a thermal 

barrier material for a space shuttle, which can withstand high surface temperature of 

2100K with a temperature gradient of 1600K across a 10mm thick section. Often 

FGMs are used in structures where extreme temperatures gradients are involved, due 

to which structure confronts to sudden stretching and bending forces. Therefore it is 

very important to understand the deformation characteristics and stress distribution 

pattern for a wide range of temperatures. A remarkable effort has been devoted in the 

recent decades for the development of computational models for studying the 

responses of FGM structural elements/plates subjected to thermal loads. Many 

mathematical modelling techniques with various degrees of freedom have been 

evolved. Most of these theories are extensions of the models used in the analysis of 

composite laminates/ isotropic plates. Thus various approaches used for the modelling 

and analysis of FGM plates can be grouped into the following categories: 

 (1) Three-dimensional (3-D) elasticity theory 

 (2) Two-dimensional (2-D) plate theories 

 a) Classical Plate Theory (CPT) 

 b) First-Order Shear Deformation Theories (FSDTs) 

 c) Higher-Order Shear Deformation Theories (HSDTs) 

The exact solutions to boundary value problem using three-dimensional elasticity 

theories are very difficult and tedious to solve. Analytical solutions to 3-D elasticity 
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equations would not be feasible for plates with complex geometries and boundary 

conditions. Further, solutions to functionally graded plates will still get complicated 

with the use of power law function and three dimensional variations in temperature. 

Therefore 3-D elasticity theories are simplified by making suitable assumptions based 

on kinematics of deformation and constitutive behaviour, called as 2-D plate theories. 

Most of these theories are reported in the literature and are based on displacement 

fields and stress functions. The Classical Plate Theory (Reissner and Stavsky 1961) 

which is an extension of Classical Plate Theory (Timoshenko and Woinowsky-

Krieger 1959, Szilard 1974) neglects the effect of out-of-plane strains. It was 

observed that the CPT fails to predict accurately the static and dynamic response in 

the case of FGM plates which are rather thick and/or exhibit high anisotropy ratios. 

Thus the CPT is not suitable for modelling of FGM plates. Theories which include the 

effects of transverse shear deformation effect and at times the transverse normal strain 

effect become necessary. First-order shear deformation theory based on Riessner 

(1945) and Mindlin (1951) assume linear displacement and/or stress variation across 

the plate thickness direction. Since FSDT account for constant transverse shear stress, 

shear correction coefficients are needed to rectify the unrealistic variation of the shear 

strain/ stress through the thickness. Whitney and Pagano (1970) was the first to use 

FSDT for the static analysis of laminated composite plates. The limitations 

encountered in FSDT have been resolved in HSDTs by using higher-order terms in 

the Taylor’s expansions of displacements in the thickness coordinate. The second and 

third-order theories involve additional terms in the expression for in-plane 

displacements which are parabolic and cubic respectively in thickness direction. Kant 

(1982) was the first to derive the complete set of variationally consistent governing 

equations for the flexure of a symmetrically laminated plate incorporating both 

distortion of transverse normal and effects of transverse normal stress/strain by 

utilizing the complete three-dimensional generalized Hooke’s law. Reddy (1984b) 

derived a set of variationally consistent equilibrium equations for the kinematic 

models originally proposed by Levinson (1980) and Murthy (1981). Rohwer et al. 

(2001) were the first investigators to report the significance of using higher order 

polynomials for the displacement fields for the thermo-elastic analysis of laminated 

composite plates. Later, Kant and Swaminathan (2002), Swaminathan and 



9 

 

Ragounadin (2004), Swaminathan et al. (2006), Swaminathan and Patil (2007) 

presented analytical formulations and solutions using higher order refined 

computational models for the stress analysis of composite and sandwich plates. The 

deformation patterns of transverse normal according to various theories are 

represented in Fig. 2.1. 

 

Fig. 2.1. Deformation patterns of transverse normal according to the CLPT, 

FSDT and TSDT. (Reddy, 1996) 

The above theories that are discussed for laminated plates are extended for modelling 

and analysis of FGM plates. Extensive investigations are reported in the literature on 

the evaluation of various responses of FGM plates subjected to high temperature 

gradients. Tanigawa (1995) reviewed the developments related to thermo-elastic 
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analysis of FGMs till the year 1995. It was found that the behaviour of FGMs can be 

predicted more accurately through precise modeling of material nonhomogeneity and 

thermal field. Markworth et al. (1995) discussed the various techniques that are 

involved in modeling the microstructure dependent thermophysical properties of 

FGMs. Based on review, some modeling methods were recommended for additional 

studies and hence few approaches for the improvement were also suggested. The 

behaviour of crack-tip fields in an FGM were dealt by Jin and Batra (1996) and its 

fracture related problems were summarized based on crack-bridging concept and rule 

of mixture. Jha et al. (2013) presented a review on aero thermo elastic and vibration 

analyses on FGMs since 1998, in which historical development and its application 

were also discussed. Swaminathan et al. (2014) presented a critical review of various 

three dimensional and two dimensional theories based on analytical and numerical 

methods; and its solution techniques that are employed for the stress, vibration and 

buckling analyses of FGM plate subjected to mechanical and thermomechanical 

loads. Thai and Kim (2015) reviewed various theories like CPT, First Order Shear 

Deformation Theory (FSDT), Third Order Shear Deformation Theory (TSDT), 

Higher Order Shear Deformation Theory (HSDT), Simplified Theories, Mixed 

theories, three dimensional elasticity theories and CUF based models that are used for 

modeling and analysis of FGM plates and shells. Wu and Liu (2016) presented an 

overview of various semi-analytical numerical methods like Finite Layer Method, 

State Space Method (SSM), Asymptotic Method, Sampling Surface method (SAS), 

that are adopted for the analysis of laminated composite and sandwich functionally 

graded elastic/piezoelectric materials plates and shells for various combination of 

boundary conditions and micro mechanical schemes. In recent years, significant 

research works have been published in analysis of FGM plates exposed to thermal 

environments. In the following sections, an attempt has been made to include all the 

important contributions related to thermal stress analysis of FGM plates and the 

classification of all the available literature is done based on the different type of 

temperature distribution as given below. The various analytical and numerical 

methods are dealt in subsections. 

1. Three dimensional temperature variation  
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2. One dimensional nonlinear temperature variation 

a. Analytical methods 

b. Numerical methods 

3. One dimensional constant and linear temperature variation 

a. Analytical methods 

b. Numerical methods 

2.2 THERMAL STRESS ANALYSIS 

The developments related thermal stress analysis of FGM plates are discussed based 

on the type of temperature profile used for obtaining the solution. Generally, 3-D 

exact methods adopt three dimensional distribution of temperature field which can be 

obtained by solving heat equation. But 2-D plate theories adopt one dimensional 

distribution of temperature field which varies only across the plate thickness direction 

and can be assumed as constant, linear or nonlinearly varying. Thus various research 

works related to the current study are presented in the following sequence: three 

dimensional variation of temperature, one dimensional nonlinear variation of 

temperature and one-dimensional constant and linear variation of temperature which 

includes three-dimensional (3-D) elasticity theory, two-dimensional (2-D) plate 

theory, finite element methods and meshless methods. 

2.2.1 Three Dimensional Temperature Variation 

Three dimensional elasticity solutions formulated based on 3-D temperature profiles 

were found to be the most accurate methods for thermal analysis of FGM plates. Mian 

and Spencer (1998) developed 3-D elasticity solutions for an inhomogeneous plate 

across the thickness direction based on the two dimensional solutions of classical thin 

plate theory for the equivalent plate. Theoretical formulations and solution methods 

were presented for rectangular, cylindrical polar coordinates systems and radially 

symmetric systems. Reddy and Cheng (2001a, 2001b) adopted asymptotic technique 

for square and smart FGM plates with piezoelectric actuators subjected to thermal and 

mechanical loads. It was found that the assumption of constant transverse 

displacement across the plate thickness is not valid for plates subjected to thermal 

loads and the maximum longitudinal compressive stress appears at the top surface of 
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the plate. Wang et al. (2016) obtained asymptotic solutions for thin FGM plates 

subjected to sudden change in temperature at the boundary based on Lord and 

Shulman theory (L–S theory) with power law distribution of material properties. Vel 

and Batra (2002) used power series method to study the thermomechanical 

deformations of a simply supported rectangular plate, in which the material properties 

were evaluated using either self consistent method or Mori-Tanaka method or the 

combination of both. Parametric studies were performed and a comparative study with 

CLPT, FSDT and HSDT models was presented. Significant difference was observed 

in displacements and stresses obtained using exact solutions and 2-D plate theories. It 

was observed that the results obtained using different material schemes agree 

qualitatively but differ quantitatively. Later this work was extended to study transient 

thermal stresses by Vel and Batra (2003), in which the transient longitudinal stress 

was found to be nearly eight times greater than the steady state value for rapid time 

dependent surface temperature condition. Ootao and Tanigawa (1999) adopted 

exponential variation of material properties to study the transient thermal stresses in a 

simply supported rectangular FGM plate subjected to partial heat supply. The work 

was extended to study the plate behaviour under non-uniform heat supply by Ootao 

and Tanigawa (2005, 2007). Analytical formulations were developed using heat 

conduction, Laplace and Finite cosine transformations and the solutions were 

obtained using series expansion of Bessel functions. It was found that the most precise 

evaluation of transverse stresses is possible in transient state. Further, Ootao and 

Ishihara (2013) adopted piece wise exponential law to study the response of two and 

three layered rectangular plate models. It was concluded that the maximum value of 

thermal stresses can be reduced by using multi layered FGM plates instead of single 

layered FGM plates in transient analysis. Xu et al. (2010) presented exact thermo-

elastic solutions for a simply supported exponentially graded rectangular plate with 

variable thickness using double fourier sinusoidal series expansions. Thermo elastic 

solutions for circular FGM plates subjected to axisymmetric loads were studied by 

Jabbari et al. (2014). 

Ying et al. (2009) developed semi-analytical solutions for a FGM plate with one pair 

of opposite edges simply supported using State Space Method (SSM). Solutions for 
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Mori-Tanaka FGM plates were obtained using Levy’s method and Differential 

Quadrature Method (DQM), which makes it feasible to treat non-simply supported 

edges. Alibeigloo (2010) obtained 3-D elasticity solutions for an exponentially graded 

rectangular plates with simply supported edges using Fourier series and SSM 

technique. Further, it was extended for solid and annular circular FGM plates by 

Alibeigloo (2012) and for sandwich circular plate with a layer of FGM core by 

Alibeigloo (2016). Analytical solutions for various support conditions were obtained 

using DQM technique. It was observed that, the neutral surface and middle surface 

will not coincide with each other and it depends on the variation of young’s modulus 

of elasticity across the plate thickness. Liu and Zhong (2011) presented Peano-Baker 

series solution for an orthotropic simply supported and isothermal functionally graded 

rectangular plate based on SSM method. It was observed that the material gradient 

distribution significantly effects the total stiffness, deflection and temperature field 

distribution of the plate. Jiang et al. (2017) developed analytical solution for three- 

dimensional steady thermodynamic analysis of a piezoelectric laminated plate using 

refined plate theory and Galerkin method. It was concluded that considering 

geometrical nonlinearity would enlarge the stiffness of the piezoelectric laminated 

plate and thus decreasing the magnitude of deflection and stresses.  

2.2.2 One-Dimensional Nonlinear Temperature Variation 

Most of the two-dimensional theories adopt nonlinear or parabolic variation of 

temperatures across the plate thickness which are either based on heat conduction 

equation or polynomial functions. The related studies are discussed under two 

categories namely, analytical and numerical methods. The various analytical methods 

using either two or three dimesnional theories are presented under analytical methods 

whereas the finite element and the meshless methods are dealt under numerical 

methods. 

2.2.2.1 Analytical Methods 

Tanigawa (1993) used transient heat conduction problem to study the associated 

thermal stress problems for a nonhomogeneous FGM plate. Thereafter optimization 

problems were discussed inorder to obtain optimum material composition for the 
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purpose of reducing the thermal stress distribution. Noda and Jin (1993) discussed 

stress intensity factors relating to crack development in an exponentially graded FGM 

plates subjected to prescribed surface temperature and its responses due to thermal 

shock were dealt by Jin and Noda (1994). It was found that, the crack close to heating 

side of the strip will be more likely to be unstable than that of the cooling side. Noda 

(1999) discussed crack propagation path, thermal stresses and thermal stress intensity 

factors in FGM plates subjected to steady state temperature fields and thermal shocks. 

Significant decrease in stresses was observed by adopting a precise and appropriate 

gradation of material properties. Ravichandran (1995) studied the effect of residual 

thermal stresses that arises during the fabrication of FGM system. Both temperature 

dependent and independent gradation forms were evaluated for continuous and 

discrete change in composition across the thickness direction. It was found that, the 

residual stresses can be decreased by adopting multiple layers of FGM (greater than 

11) plates with constant composition and thickness. Bouchafa et al. (2010) employed 

exponential gradation of material properties to evaluate residual thermal stresses in 

Al2O3-Ni FGM system. It was concluded that, the magnitude of stresses increases by 

adding a fully ceramic or metal surface in the middle of graded regions and hence 

should be kept minimum to avoid cracking at interfaces.  

A new higher order micromechanical theory for FGM plates “HOTFGM” which 

includes both local and global effects have been developed by Aboudi et al. 

(1994a,1994b). The accuracy of the method has been established and proved to be 

efficient tool for the analysis of FGM plates. Theoretical formulations were developed 

in cartesian-coordinate system with temperature gradient across the thickness 

direction. The theory was extended by Aboudi et al. (1995a, 1995b) to incorporate 

partial homogenization scheme normal to the functionally graded direction and 

temperature dependent response of the constituent phases respectively. Further it was 

extended to develop a two dimensional frame work for modeling FGM plates by 

enabling nonuniform spacing of fibers in two directions by Aboudi et al. (1996). 

Reddy (2000) developed analytical formulations and Navier’s solutions for a simply 

supported rectangular FGM plates which accounts the effects of thermomechanical 

coupling, time dependency and geometric nonlinearity. The response of plates has 
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been studied using HSDT and FSDT models for various loading and boundary 

conditions. Woo and Meguid (2001) studied large deflection in FGM plates subjected 

to steady state temperature field under different types of thermomechanical loads. The 

nonlinear bending responses were investigated by Shen (2007), for simply supported 

FGM plates with or without piezoelectric actuators and subjected to both thermal and 

electrical loads. Also, Yang and Huang (2007) obtained asymptotic solutions for 

nonlinear transient response of FGM plates with initial geometric imperfections using 

improved perturbation technique. It was found that, the effect of heat conduction and 

temperature dependency could not be neglected while evaluating the response of 

FGM plates. Brischetto et al. (2008) presented Unified Formulations (UF) for simply 

supported rectangular plates subjected to steady state thermal loads. The accuracy 

with the exact solutions was achieved by using higher order expansion terms across 

the thickness coordinate. Asymptotic solutions were formulated by Zhao et al. (2008) 

for an infinite sandwich plate with double sided FGM coatings under convective 

boundary conditions to investigate transient heat conduction and thermal stresses. 

Some design rules were suggested for FGM cutting tools to resist high thermal 

shocks. Based on layerwise theory and perturbation technique, Tahani and 

Mirzababaee (2009) derived solutions for cylindrical bending of FGM plates 

subjected to mechanical, thermal and thermomechanical loads. Significant increase in 

the magnitude of transverse deflection was observed due to the effect of geometric 

nonlinearity. Zenkour (2010, 2012) used Sinusoidal Shear Deformation Theory 

(SSDT) to formulate solutions using power law function and exponentially function 

for FGM plates subjected to hygro-thermo-mechanical loads respectively. Polynomial 

form of temperature profile was assumed to evaluate static bending response of the 

plate and hence the effects of temperature and moisture concentrations were 

discussed. Further, the studies were extended for FGM sandwich plates by Zenkour 

and Alghamdi (2010) and the results obtained from SSDT were compared with 

HSDT, FSDT and CPT. Fahsi et al. (2012), Bouderba et al. (2013) and Zidi et al. 

(2014) adopted a new four variable refined theory to study the bending behaviour of 

FGM plates subjected to thermomechanical loads with or without resting on elastic 

foundations. Further, the work was extended by Houari et al. (2013) and Tounsi et al. 

(2013) for FGM sandwich plates. The accuracy of theory was established by 
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comparing the results with various other theories that were reported in the literature. 

Mantari and Granados (2015) obtained analytical solutions using quasi-3D hybrid 

type HSDT with six unknowns for FGM sandwich plates subjected to generalized 

nonlinear temperature field. The deflections and stresses were found to be highly 

sensitive to polynomial forms adopted to define the temperature field. Ramos et al. 

(2016) investigated thermoelastic response of a simply supported rectangular FGM 

sandwich plates using Unified Formulations, which includes several shear strain 

shape functions related to non-polynomial displacement fields like sinusoidal, hybrid 

and hyperbolic deformation theories. Later, the author proposed a new set of plate 

theories and by performing comparative studies it was revealed that, these theories are 

effective in predicting similar results as that of classical polynomial based functions. 

Dong and Li (2017) developed unified nonlinear analytical solutions for simply-

supported FG rectangular plates subjected to thermal load using temperature 

dependent material properties. Effects of material heterogenity and thermal load are 

discussed using various higher order shear deformtaion theories and mathematical 

models based on P-FGM, S-FGM and E-FGMs. Li et al.(2017) adopted four variable 

refined theory to study the responses in FGM sandwich plates with face sheets and 

core. It was observed that the power index p and inhomogeneity parameter k play an 

important role in eliminating interface problems of sandwich plates and thus the 

stresses distributions remain continuous throughout the plate thickness.  

Cheng and Batra (2000) presented 3-D solutions using Mori-Tanaka estimation and 

asymptotic scheme to study the thermomechanical deformations of a rigidly clamped 

FGM elliptical plate. Behravan and Shariyat (2016) and Behravan (2015) used semi-

analytical methods for the thermo-elastic analysis of exponentially graded plates 

circular/ annular plates subjected to asymmetric loads and plates resting on gradient 

hybrid foundation respectively. The inflence of thermal gradient index on 

displacement and stresses were found to be more than the elastic grading indices. 

Nosier and Fallah (2008) reformulated the bending and extension equations of 

Mindlin–Reissner plate theory by relating to interior and edge zone problems of FGM 

circular plates. The nonlinear behaviour of FGM circular plates subjected to 

asymmetric thermo-mechanical loads were studied by Fallah and Nosier (2012) for 
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various combinations of clamped and simply supported boundary conditions. Zhang 

and Zhou (2015) used HSDT with multi-term Ritz method to evaluate the nonlinear 

bending response of FGM circular plates. Temperature dependent material properties 

are assumed according to power law function and solutions obtained for three 

different cases of temperature fields. Kiani (2016) analyzed steady state thermo-

elastic response of rotating functionally graded nanoplates using surface elasticity 

approach. Static bending problems in a thermally stressed annular and circular micro 

plates were discussed by Eshraghi et al. (2016) using DQM. The effect of influencing 

factors like applied loads, plate geometry ratios and material inhomogeneity were 

discussed. Yang et al. (2017) carried out thermo-mechanical bending analysis of 

functionally graded polymer nanocomposite circular and annular plates reinforced 

with the graphene nanoplatelets (GPLs) by employing three- dimensional elasticity 

theory and the generalized Mian and Spencer method. It was observed that, among the 

three GPL distribution patterns adopted the parabolic distribution provides the best 

reinforcing effect with smallest deflection, followed by uniform then linear 

distribution patterns 

2.2.2.2 Numerical Methods 

Tanaka et al. (1993a) presented a new thermoelastic material design called Mori-

Tanaka’s theory to reduce thermal stresses in FGM plates. Incremental finite element 

methods with direct sensitivity analysis and optimization techniques were used to 

arrive at the optimal volume fraction of phases in FGM. Further, Tanaka et al. 

(1993b) discussed improved solutions, which considered multiple design parameters 

and accounted volume fraction dependence of material properties to estimate the 

micro structural behaviour. The differences in optimized stresses predicted using 

Mori-Tanaka’s theory was found to be small, because it predicts a lesser value of 

ceramic rich FGM phase. Reddy and Chin (1998) performed parametric studies on 

FGM cylinders and plates subjected to abrupt thermal loads using power law function. 

Thermomechanical coupling effects were discussed by comparing the results of 

coupled and uncoupled formulations. The static and dynamic thermo-elastic responses 

for FGM plates including geometric nonlinear effects were discussed by Praveen and 

Reddy (1998) and for FGM cylinders exposed to rapid heating conditions by Praveen 
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et al. (1999). FEM models based on HSDT were developed by Reddy (2000), which 

accounted the time dependency effect along with thermomechanical coupling and 

geometric nonlinearity. Cho and Oden (2000) presented parametric studies for 

thermally stressed FGM plates using Crank-Nicolson-Galerkin scheme. Significant 

difference was observed in the thermal characteristics of transient and steady-state 

responses. Apalak and Gunes (2005) adopted eight noded isoparamteric multilayered 

finite element to study the effect of thermal residual stresses and discussed the method 

to determine optimum material composition to reduce the effect of stresses. Muliana 

(2009) introduced a new micromechanical modeling method by idealizing the spatial 

distribution of spherical particles in a homogeneous matrix for predicting the thermo-

visco-elastic response of FGM plates. Static and dynamic characteristics of Reissner–

Mindlin plates were studied using Non-Uniform Rational B-spline (NURBS) based 

iso-geometric FEM by Valizadeh et al. (2013) and cell-based smoothed FEM with 

discrete shear gap technique by Natarajan et al. (2014) for Mori-Tanaka FGM plates. 

Gulshan-Taj et al. (2013) used HSDT with C
0
 continuous isoparametric Lagrangian 

finite element with seven degrees of freedom at each node to study the static response 

of FGM skew plates. Kulikov and Plotnikova (2015) dealt with the implementation of 

sampling surfaces method and state space method to study the response of laminated 

FGM plates. In three dimensional stress problems, convergence of results was 

observed by introducing sampling surfaces inside each layer at Chebyshev polynomial 

nodes. Thai et al. (2016) presented shear and normal deformation theory with four 

unknown variables to predict the static and dynamic response of FGM isotropic and 

sandwich plates using both Mori-Tanka and power law homogenization schemes. 

FEM formulations were developed using NURBS based isogeometric analysis and are 

discretized using C
1
 continuity of displacement field. The accuracy of the model has 

been established by comparing with various other models. Pandeya and Pradyumna 

(2017) developed FEM formulations for FGM sandwich beams subjected to thermal 

shock using layerwise higher order theory to study the transient stresses under various 

geometric and thermal boundary conditions. 

In recent decades, many investigations have been reported based on meshless or 

meshfree based interpolation methods. Dai et al. (2005) presented dynamic response 
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of FGM plates with piezoelectric sensors and actuators based on FSDT, and by using 

element free Galerkin method and Moving Least Square method with C
1
 continuity. 

Golmakani and Kadkhodayan (2011) studied nonlinear large deflections of circular 

and annular plates using power law function for temperature dependent and 

temperature independent variation of material properties across the plate thickness. 

The solutions for FSDT model were obtained using dynamic relaxation method 

(DRM) and finite difference discretization technique. It was concluded that, the value 

of deflections and stresses predicted for plates with simply supported edges are 

greater than for plates with clamped edges. Wu et al. (2012) used meshless 

collocation method based on the differential reproducing kernel (DRK) interpolation 

technique for the analysis of multilayered FGM electro-thermo-elastic plates. Edge 

cracking of FGM plates subjected to thermal shock has been discussed by Burlayenko 

et al (2016). A meshless local Petrov–Galerkin (MLPG) approach have been adopted 

by Sladek et al. (2013) for the bending analysis of circular piezoelectric FGM plates 

under static and transient dynamic mechanical and thermal loads. The physical 

quantities were approximated using Moving Least Square method and Local integral 

equations. It was concluded that, the mechanical deflection and electric potential are 

highly influenced by gradation of thermal expansion coefficient rather than other 

parameters. Jafarinezhad and Eslami (2017) performed parametric studies on an 

annular FGM annular plate subjected to lateral thermal shock load using FSDT and 

Galerkin finite element method. The differences in the solutions obtained using 

coupled and uncoupled theories are found to be very much different from each other 

and the effect of large coupling coefficient has a major impact on the dynamic 

behavior of the plate. Burlayenko et al. (2017) presented formulations and theoretical 

framework to develop a graded finite element which can be applied for a coupled 

thermo-mechanical analysis of FGM plates. 

2.2.3 One-Dimensional Constant and Linear Temperature Variation 

Few researchers carried out thermal stress analysis of FGM plates subjected to either 

constant or linearly varying temperatures across the plate thickness. Some of the 

articles dealing with the evaluation of both linear and nonlinear temperature profiles 

are already discussed in the previous sections and hence for brevity they are not dealt 
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here again. Based on the method of analysis, the reported research studies are grouped 

under two sections namely analytical and numerical methods.  

2.2.3.1 Analytical Methods 

Fukui et al. (1993) studied thermal stresses for a thick walled FGM tubes subjected to 

uniform thermal loads. It was found that the, distribution of stresses and strains 

mainly depends upon the gradation of components in the radial direction. Tsukamoto 

(2003) presented combined micro- and macro-mechanical approaches, for the 

analyses of an FGM plate subjected to transient thermal stresses. In-plane and out-of-

plane micro stresses were derived using Eshelby’s equivalent inclusion method and 

Mori–Tanaka’s mean-field approximation, and the macro-mechanical analysis is 

carried out based on the CPT. The significance of considering inelastic deformations 

for elastic, elastic-plastic and elastic-plastic-creep analysis has been discussed. Chung 

and Chang (2008) obtained Fourier series solutions for a simply supported rectangular 

plates using CPT by considering power-law function, exponential function and 

sigmoidal function for material property variations. It was observed that FGMs based 

on sigmoidal functions are most sensitive to the variations in the ratio of thermal 

coefficient of expansions than that of power-law and exponential based functions. 

Shen (2002) considered temperature dependence of material properties to study the 

nonlinear bending response of a simply supported rectangular FGM plate. Governing 

equations were derived for HSDT and the solutions were obtained using mixed 

Galerkin-perturbation technique. This work was extended by Yang and Shen (2003) 

for combined mechanical and thermal loads with different boundary conditions. It was 

found that the material gradation, volume fraction, temperature variation, plate 

geometry, boundary conditions, transverse shear deformations have significant effect 

in determining the nonlinear bending behaviour of FGM plates, while the effect of in-

plane constraints were negligible. Matsunaga (2009) adopted higher order shear 

deformation theory for the thermal stress analysis of a simply supported FGM plate 

subjected to constant and linear variation of thermal loads. The effect of geometric 

nonlinearity in FGM plates were examined by Kumar et al (2011). It was observed 

that nonlinear deflections were more in plates subjected to thermal loads. Analytical 
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and numerical models were developed by Sadowski et al. (2015) to study the response 

of structural elements under thermal and mechanical loads. Accuracy of solutions 

obtained by analytical formulations and finite element methods were found to be in 

good correlation with each other. Trinh et al. (2017) adopted general quasi-3D and 

higher-order shear deformation models to study the mechanical and thermal 

behaviours of FG sandwich microplates. It was observed that, the thickness stretching 

thermal strain induces out- of-plane thermal load in the thermal analysis which leads 

to the higher deflections and stresses. 

2.2.3.2 Numerical Methods 

Apalak and Gunes (2005) discussed the effect of residual stresses in FGM plates 

using 3D eight noded isoparamteric multilayered finite element with three degrees of 

freedom at each node and with 2500 layers through the plate thickness. Bhandari and 

Purohit (2015) adopted eight-node quadratic Lagrange element and performed 

comparative studies on FGM plates subjected to thermomechanical loads for different 

material gradient laws (power-law function, exponential function and sigmoidal 

function) and boundary conditions (simply supported, clamped, free and combined) 

using FSDT. The deflections and stresses were found to remain closer to each other 

with increase in power law parameter in FGM plates with sigmoidal function than that 

of other material gradation laws. Natarajan and Ganapathi (2012) considered      

QUAD-8 shear flexible element to study the bending behaviour of sandwich plates 

using zig-zag functions. The accuracy of HSDT with 13 degrees-of-freedom at each 

node was established by comparing the results with other lower order models with 11, 

9 and 5 degrees of freedom at each node. Sadowski et al. (2015) investigated 

mechanical and thermal responses of structural elements using finite element method 

for an airplane made of FGM. Comparative studies were performed with simplified 

analytical models and a good conformability between the two methods was 

established. Bui et al. (2016) developed FEM formulations to study the static bending 

behaviour of heated FGM plates using HSDT and power law function. Parametric 

studies were performed using ZrO2/SUS304, Al2O3/SUS304 and Si3N4/SUS304 FGM 

plates with different shape configurations. Due to the nonlinear behaviour of 
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constituent phases and thermal expansion coefficients, the response predicted by 

ZrO2/SUS304 was found to be quite different from other materials.  

2.3 FINAL REMARKS 

A literature review of various approaches used for the thermal stress analysis of FGM 

plates has been presented in the preceding section. The general remarks from the 

current literature survey are as follows: 

1. The majority of the methodologies used for the investigation of FGM 

plates are the extensions of the similar methodologies used either for laminated 

composite plates / isotropic plates. 

2. As a result of the coupling between bending and stretching, analytical 

evaluation of static responses in FGM plates is exceptionally difficult, unless plate is 

simply supported. 

3. Three-dimensional theories can predict the three-dimensional stress 

state at the boundaries more accurately than the 2-D plate theories, but their solution 

methods involve mathematical complexities and are very difficult and tedious to 

solve. 

4. Based on suitable assumptions, several 2-D plate theories were 

developed and are used to investigate the thermal response of FGM plates. However, 

CPT, FSDT and most of the higher order theories considers only transverse shear 

deformation effects. But to obtain accurate results in thermal analysis of FGM plates, 

the effect of both transverse shear and transverse normal deformation are very 

important. 

5. Several investigations are reported on analytical evaluation of FGM 

plates subjected to thermal loads using CPT and FSDT. It was observed that CPT fails 

to predict accurate responses, whereas FSDT can provide reasonable accurate results 

by using shear correction factor to rectify the nonlinear variation of shear stress/ strain 

through the plate thickness. 
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6. It has been concluded that, accurate prediction of thermal plate 

responses using 2-D plate theories is only possible by using higher order polynomials 

in the in-plane and transverse displacement expressions. 

7. Exact solutions for the thermo-elastic analysis of FGM plates are still 

not yet reported for simply supported FGM plates with power law variation of 

material properties and steady state heat conduction type variation of temperature. 

8. Micromechanical modelling methods adopted for the estimation of 

material property gradation plays a vital role in predicting the structural behaviour of 

FGM plates. The volume fraction index and anisotropy of the constituent phases are 

the important factors which governs the material nonhomogeneity of FGM plates, 

which further complicates the solution.  

9. The distribution of temperature field has a direct impact in predicting 

thermal response of FGM plates. Therefore during thermal analysis, three dimensional 

evaluation of temperature field is found to be the most appropriate method for 

obtaining accurate results. But obtaining solutions using 3-D heat conduction equation 

is very complex in nature and hence in most of the 2-D plate analysis it is reduced to 

one dimensional heat conduction equation, by assuming temperature variation only 

across the plate thickness direction and in-plane being either constant / sinusoidal. 

Several other forms of one dimensional temperature distributions are also reported 

namely; constant distribution, linearly varying, polynomial form of variation, etc. 

10. In most of the two-dimensional theories developed till date, the 

accuracy of the solutions obtained using a particular theory was established by 

comparing them with the results of three-dimensional elasticity theory, and a very few 

studies are reported on the analytical evaluation of various higher order theories in 

predicting the thermo-elastic responses of FGM plates subjected to different 

temperature profiles through the thickness.  

11. Because of complexities, analytical solutions for FGM plates exist for 

plates with simple geometry, loading and boundary conditions. Therefore more 



24 

 

emphasis has been placed on the use of numerical methods especially when the FGM 

plate problem involves complex geometry, loading and boundary conditions. 

12. 3-D thermal analysis of FGM plates using numerical methods (FEM/ 

Meshless) requires large computer core memory, computational effort and time as 

compared to 2-D thermal analysis. Thus reducing a 3-D plate problem to a 2-D plate 

problem can drastically reduce the cost incurred in the analysis with little 

compromising in the accuracy of results. 

13. Meshless methods have been proved by various researchers as one of 

the best alternative to FEM methods for thermal analysis of FGM plates. But few 

difficulties in computational methods, handling the boundary conditions and the 

temperature effects still have to be resolved in meshless methods. 

Most of the analytical 2-D higher order theories discussed till date consider only 

transverse shear deformation effect and neglects normal deformation effects. But in 

thermal analysis of FGM plates, the higher order polynomials in the transverse 

displacement field plays a crucial role in predicting accurate results closer to that of    

3-D exact solutions. Therefore in the present investigation, analytical formulations are 

developed for higher order displacement model with twelve degrees (HSDT-12) of 

freedom which includes the effect of transverse shear and normal stress/ strain. 

Material modelling based on power law function and temperature profile based on 

steady state heat conduction equation is not reported for simply supported flat panels 

and hence adopted in the present study. Comparative studies using various 

displacement models, material sets and temperature profiles that are already reported 

in the literature are also included in the present investigation to emphasize the 

accuracy of HSDT-12 displacement model in predicting thermal responses in an FGM 

plate. 
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CHAPTER 3 

THEORETICAL FORMULATIONS 

3.1 PRELIMINARY REMARKS 

In this chapter a set of higher-order refined theories and their theoretical formulations 

are presented for thermal stress analysis of geometrically thin and thick FGM plates. 

The displacement model with 12 degrees-of-freedom (dof) includes the effect of both 

transverse shear and normal strain/stress and the other model with 9 degrees of 

freedom considers the effect of transverse shear deformation only. In addition to 

above, another higher-order theory and the first-order theory both having five degrees 

of freedom developed by other investigators and reported in the literature are also 

considered. The theoretical formulation using the displacement model with 12 dof is 

presented in detail. The governing equations of equilibrium using various theories for 

the thermo-elastic analysis are derived using the Principle of Minimum Potential 

Energy (PMPE). Rule of mixtures based on Power-Law estimation is used to obtain 

the effective material properties across the thickness of the FGM plate. Through the 

thickness variation of temperature is assumed to be nonlinear and obeys one 

dimensional steady state heat conduction equation. Along with this constant and 

linearly varying temperatures across the plate thickness are also considered during the 

study. The complete theoretical formulations for the thermo-elastic analysis of FGM 

plates based on the Higher Order Shear Deformation Theory with twelve degrees of 

freedom (HSDT-12) only are presented in detail in the following sections. 

3.2 DEFINITION OF DISPLACEMENT FIELD 

The Taylor’s series expansion method is used to deduce a two-dimensional 

formulation of a three-dimensional elasticity problem (Hildebrand et al. (1949)) and 

the following set of equations are obtained by expanding the displacement 

components u(x, y, z), v(x, y, z) and w(x, y, z) of any point in the FGM plate in terms 

of the thickness coordinate, z, viz., 
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 (3.1) 

According to Reissner (1975) and Lo et al. (1977a, 1977b) it is sufficient to retain 

only the first four terms for all displacements. The expansions of the in–plane 

displacements u and v imply a nonlinear variation of these through the plate thickness. 

Thus, the warping of the cross section is automatically incorporated. The expansions 

of transverse displacement, w imply a non-vanishing transverse normal strain. Thus 

the limitations of the usual Kirchhoff’s hypothesis Timoshenko and Woinoswsky-

Krieger (1959) as well as the Reissner (1945) /Mindlin (1951) type first-order shear 

deformation theories are completely eliminated. The expressions given by 

Equation 3.1 are now written in a concise form by grouping the terms corresponding 

to membrane behaviour and flexure behaviour as follows: 

 Membrane Flexure 

         2 * 3 *

0 0 x x
u x, y,z u x, y z u x, y ......... x, y z x, y .........        

         2 * 3 *

0 0 y y
v x, y,z v x, y z v x, y ......... x, y z x, y .........        

         3 * 2 *

z z 0 0
w x, y,z z x, y z x, y .......w x, y z w x, y .........        

 (3.2) 

In the above relation, the terms u, v and w are the displacements of a general point 

(x, y, z) in the plate domain in the x, y and z direction respectively, the parameters u0, 

v0, are the in-plane displacements and w0 is the transverse displacements of a point 
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(x, y) on the middle plane. The functions θx, θy are rotations of the normal to the 

middle plane about y and x axes respectively. The parameters 

   
     

     
     

     
     

          are the higher-order terms in the Taylor’s series 

expansion and represent the transverse cross sectional deformation modes. The 

geometry of an FGM plate with positive set of coordinate axes is shown in Fig. 3.1.  

3.2.1 Displacement Models 

The membrane-flexure coupling phenomenon exhibited by an FGM plate necessitates 

the use of a displacement field containing both, membrane as well as flexural 

deformation terms which contribute to the overall response of the plate. Thus, the 

displacement field derived from the expanded Taylor’s series in terms of the thickness 

coordinates z and defined by Equation 3.2 is considered. This displacement field 

contains both, membrane as well as flexure terms. Further, if the variation of 

transverse displacement component w(x, y, z) in Equation 3.2 is assumed to be 

constant through the plate thickness and thus setting  zthen the displacement 

field may be expressed as 

              2 * 3 *

0 x 0 x
u x, y,z u x, y z x, y z u x, y z x, y       

              2 * 3 *

0 y 0 y
v x, y,z v x, y z x, y z v x, y z x, y       

        
0

w x, y,z w x, y  

 (3.3) 

Finally, the first displacement model assumed for thermal stress analysis of FGM 

plate is based on the higher order refined theory which includes the effects of both 

transverse shear and normal strain/stress (i.e., Higher Order Shear Deformation theory 

with 12 degrees of freedom, HSDT-12). The complete theoretical formulation is given 

below with the reference literature in which the model was reported earlier. 

HSDT-12 (Kant and Manjunatha 1988) 

              2 * 3 *

0 x 0 x
u x, y,z u x, y z x, y z u x, y z x, y       
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              2 * 3 *

0 y 0 y
v x, y,z v x, y z x, y z v x, y z x, y       

              2 * 3 *

0 z 0 z
w x, y,z w x, y z x, y z w x, y z x, y       

 (3.4) 

The second displacement model is Higher order Shear Deformation Theory with Nine 

degrees of freedom (HSDT-9) which neglects the effect of transverse normal 

strain/stress and is given below along with the reference literature in which the model 

was reported earlier. 

HSDT-9 (Pandya and Kant 1988) 

              2 * 3 *

0 x 0 x
u x, y,z u x, y z x, y z u x, y z x, y       

              2 * 3 *

0 y 0 y
v x, y,z v x, y z x, y z v x, y z x, y       

        
0

w x, y,z w x, y  

 (3.5) 

In addition to the above, the Higher order Shear Deformation Theory with Five 

degrees of freedom (HSDT-5) and the First-order Shear Deformation Theory (FSDT) 

developed by other investigators that are reported in the literature are also considered 

during the study. 

HSDT-5 (Reddy 1984) 

            
2

0

0 x x

w4 z
u x, y,z u x,y z x,y x,y

3 h x

   
        

    

 

            
2

0

0 y y

w4 z
v x, y,z v x,y z x,y x,y

3 h y

   
        

    

 

        
0

w x, y,z w x, y  

 (3.6) 
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FSDT (Whitney and Pagano 1970) 

          
0 x

u x, y,z u x, y z x, y  
 

           
0 y

v x, y,z v x, y z x, y  
 

         
0

w x, y,z w x, y  

 (3.7) 

In the following sections, the detailed formulations using the displacement model 

HSDT-12 are presented for the analysis of FGM plates subjected to thermal loads. 

The same procedure is followed for the formulations using all other displacement 

models. 

3.3 STRESS STRAIN RELATIONS FOR AN FGM PLATE  

An FGM plate is assumed to behave as a homogeneous and orthotropic material with 

three orthogonal planes of material symmetry. Generalized Hooke’s law based on 

linear theory of elasticity relates the thermal stresses and strains in an FGM plate, and 

can be written in contracted form as 

     
i ij j ij j

Q Q T        ;                i, j = 1 to 6 

 (3.8) 

Where, 
i

  is the stress vector, 
j
ε  is the engineering strain vector and Qij is the 

functionally graded material stiffness matrix. The coefficient of thermal expansion αj 

is assumed to vary across the thickness direction z, while in-plane remains constant. 

Therefore, thermal expansion coefficients α1=α2 =α3 =αz and α4=α5=α6= 0. Also, ΔT is 

the change in temperature from a stress free state. In Equation 3.8 the first three 

components are normal stress and strains and last three components are shearing 

stress and strains respectively. In an FGM plate there is no interaction between normal 

stresses  1,  2,  3 and shearing strains γ12, γ23, γ31, and hence the coefficients of 

stiffness matrix Qij for an FGM plate can be written as follows 
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x x

y y

z z

xy xy

yz yz

xz xz

z11 12 13

z12 22 23

13 23 33 z

44

55

66

TQ Q Q 0 0 0

TQ Q Q 0 0 0

Q Q Q 0 0 0 T

0 0 0 Q 0 0

0 0 0 0 Q 0

0 0 0 0 0 Q

σ ε

σ ε

σ ε

τ γ

τ γ

τ γ

     
    

     
              

    
    
    
        

 

 (3.9a) 

Where, 

     
 2

z

11 22 33

E 1
Q Q Q ;


  


 

     
 2

z

44 55 66 1-

E
Q Q Q ;  


 

     
 2

z

13 23 12 21 31 32

E
Q Q Q Q Q Q ;

 
     


 

      2 31 3 2      (3.9b) 

In the above equation the material properties are defined using Power-Law function. 

The volume fraction Vf and power-law parameter p defines the gradation of material 

from metal at bottom surface to the ceramic at the top surface of the plate. Through 

the thickness variation of physical properties like young’s modulus of elasticity Ez, 

thermal coefficient of expansion αz, thermal conductivity kz and volume fraction Vf 

are evaluated using the relation given below, 

  p

z m c m f
E E E E V    

 (3.10a) 

  p

z m c m f
V       

 (3.10b) 
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  p

z m c m f
k k k k V    

 (3.10c) 

f

z 1
V

h 2

 
  
 

 

 (3.10d) 

Temperature change from stress free state ΔT is assumed to vary sinusoidally across 

the plane T(x,y) and nonlinearly across the thickness direction Tz and is given by 

            
z

T T x, y,z T z T x, y T T x, y       

 (3.11) 

The nonlinear variation of temperature across the thickness direction Tz, is obtained 

by solving one dimensional steady state heat conduction equation with boundary 

conditions at top and bottom surface of the plate as in Equation 3.12a. The solution 

for heat conduction equation is given by Equation 3.12b. 

     
z 1 0

d dT h h
- k 0; T z T and T z - T

dz dz 2 2

     
         

     
 

 (3.12a) 

           

 
 

 

 
 

 

n

n c m

m

n

c m

m

k k
1

k
(np 1)

np 1 f
n 0

z NL 0 1 0
k k

1
k

np 1
n 0

V

T T T T T

 
   

 




 
   
 




   





 

 (3.12b) 

In addition to above, constant and linear variation of temperature across the plate 

thickness are also considered during the study. Constant temperature is achieved by 

applying same temperatures at top and bottom surface i.e., T0=T1 in Equation 3.12b. 

Linear temperature distribution from bottom to top surface is achieved by neglecting 

higher order terms and retaining only first term in the series expansion of 
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Equation 3.12b. Constant and linear variations of temperature across the plate 

thickness are given by Equation 3.13a and 3.13b respectively. 

     
z C 0 1

T T T T    

 (3.13a) 

      z L 0 1 0 f
T T T T T V     

 (3.13b) 

Where; 

 p = Power law parameter 

 Vf = Volume fraction. 

 Em = Young’s modulus of elasticity of metal (at bottom surface) 

 Ec = Young’s modulus of elasticity of ceramic (at top surface).  

 km = Thermal conductivity of metal (at bottom surface) 

 kc = Thermal conductivity of ceramic (at top surface). 

 αm = Thermal coefficient of expansion of metal (at bottom surface) 

 αc = Thermal coefficient of expansion of ceramic (at top surface). 

 T0= Temperature at bottom surface of the plate. 

 T1= Temperature at top surface of the plate. 

TNL, TC, TL = Nonlinear, constant and linear variation of temperatures across 

the thickness direction. 

3.4 STRAIN DISPLACEMENT RELATIONS 

The relationship between the strains at any point within the plate and the 

corresponding deformations are functions of the assumed displacement fields. With 
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the definitions of strains from linear theory of elasticity, the general linear strain 

displacement relations are given as follows (Timoshenko and Goodier 1970) 

     
x y z

u v w
;     ;      

x y z
ε ε ε

  
  
  

 

     
xy xz yz

u v u w v w
;    ;    

y x z x z y
γ γ γ

     
     
     

  

 (3.14)
 

The six quantities, three-unit elongations in three perpendicular directions 
x y z

( , , )    

and three unit shear strains 
xy xz yz

( , , )    related to the three orthogonal planes are 

called components of strain at a point. The component of strain displacement relations 

for HSDT-12 model is discussed in the following sections. 

3.4.1 Strain Expressions Corresponding to HSDT-12 Model 

The strains corresponding to the displacement model in Equation 3.4 can be written as 

     0 0

2 * 3 *

x x x x x
z z z          

     
0 0

2 * 3 *

y y y y y
z z z          

     
0 0

* 2 *

z z z z
z z        

     
0 0

2 * 3 *

xy xy xy xy xy
z z z          

     2 * 3 *

yz y yz y yz
z z z          

     2 * 3 *

xz x xz x xz
zk z z         

 
(3.15a)

  

Where, 

  
0 0 0

* * * *

* * * 0 0 0 0

x y xy

u v u v
, , , ,

x y y x

    
     

     

 

    
0 0

* *

z z z z
, , 3      
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   y y* *x x

x y z xy 0
, , , , , 2w ,

x y y x

   
      

     

 

  
* ** *
y y* * * x x

x y xy
, , , ,

x y y x

   
     
    
 

 

  
* *

* * * *0 0 0 0

x x y y x x y y

w w w w
, , , , 3 , , 3

x x y y

    
             

     

 

  
* *

* * * *z z z z

xz yz xz yz 0 0
, , , 2u , 2v , ,

x y x y

    
       

     

  

 (3.15b) 

The strains expressions in Equation 3.15a can be represented in matrix form as 

follows: 

     

0 0

0 0

0 0

0 0

*
*x x

x x x
* *

y yy y y2 3

MB *
z z z z

*
*

xyxy xyxy xy

z z z
0

                              
              

            
                      

 

     2 3

MB 0 0
z z z             

 (3.16a) 

 

     

* *
yz y yz y yz2 3

S * *
xz x xz x xz

z z z
                      

              
                      

 

     2 3

S 0 x 0 x
z z z           

 (3.16b)

 
This completes the derivation of strain expressions for FGM plates based on     

HSDT-12 displacement model. Same procedure is adopted to obtain the strain 

expressions for other displacement models used for the thermal analysis of FGM 

plates. 
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3.5 STRESS-RESULTANT AND MIDDLE-PLANE-STRAIN RELATIONS 

In this section, the membrane, the flexure and the shear stress resultants of an FGM 

plate will be expressed as a function of the middle plane stretching, curvatures and 

shear rotations strain terms respectively. The resulting equations are referred as plate 

constitutive relation and are derived for HSDT-12 model as follows: 

The total potential energy   of the plate with volume V middle surface A can 

be written as, p 

              U W   

or           t t

V A

1
dV u dA

2
      p  

 (3.17) 

Where U is the strain energy stored in the plate, W represents the work done by 

externally applied load and p is the vector of surface load intensities corresponding to 

the generalized displacement vector u defined at the middle plane and these are 

expressed as, 

      
t

x y z xy yz xz
, , , , ,         

      
t

x y z xy yz xz
, , , , ,         

      
t

u u, v, w  

      
t

x y z
, ,p p p p  

 (3.18) 

The expressions for the strain components are substituted in Equation 3.17 and the 

following relation results when an explicit integration is carried out through the plate 

thickness, 
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t

t

A A

1
dA u dA

2
      p  

 (3.19) 

in which , , u   for the HSDT-12 model is written as follows: 

3.5.1 Constitutive Relations for FGM Plate based on HSDT-12 Model. 

      




* * * *

x y xy x y xy z z x y xy

t
* * * * * * * *

x y xy z x y x y x y x y

N , N , N , N , N , N , N , N ,M ,M ,M ,

      M ,M ,M ,M ,Q ,Q ,Q ,Q ,S ,S ,S ,S

 

  

      



0 0 0 0 0 0 0 0

* *

x y x y

* * * *

x y xy x y xy z z x y xy

t
* * * * * *

x y xy z xz yz xz yz
, , ,

, , , , , , , , , , ,

       , , , , , , , ,  

            

        

 

       
t

* * * * * *

0 0 0 x y z 0 0 0 x y z
u u , v , w , , , u v , w , , ,, ,        

      



T T T T T T T T T T

T T T T T

T x y xy x y xy z z x y

t

xy x y xy z

N N , N , N , N , N , N , N , N ,M ,M ,

M ,M ,M ,M ,M ,0,0,0,0,0,0,0,0

   

   



 

 (3.20) 

The components of the stress resultant vector   for an FGM plate are defined as, 

 

xx x

h/2
yy y 2

h/2 zz z

xyxy xy

N N

N N
1,z dz

N N

N N



 






   
   

   
   

   
   
    

  

                    

T T

T T

T T

x xx11 12 13

h/2
y12 22 23 y y2

h/2 z13 23 33 z z

xy44

N NQ Q Q 0

Q Q Q 0 N N
1,z dz

Q Q Q 0 N N

0 0 0 Q
0 0








   
   

    
         
           

  

 (3.21a) 
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 

T T

T T

T T

x x
11 12 13

h/2
y y 12 22 23 2

z
h/2 13 23 33z z

N N Q Q Q 0

N N Q Q Q 0
1,z T dz

Q Q Q 0N N

0 0 0 0
0 0



 




 
 

 
 

 
 

     
 

 
 

    

  

 (3.21b) 

 

xx x

h/2
yy y 3

h/2 zz

xyxy xy

M M

M M
z,z dz

M 0

M M



 






   
   

   
   

   
   
    

  

                   

T T

T T

T

x xx11 12 13

h/2
y12 22 23 y y3

h/2 z13 23 33 z

xy44

M MQ Q Q 0

Q Q Q 0 M M
z,z dz

Q Q Q 0 M 0

0 0 0 Q
0 0








   
   

    
         
           

  

 (3.21c) 

 

T T

T T

T

x x
11 12 13

h/2
y y 12 22 23 3

z
h/2 13 23 33z

M M Q Q Q 0

M M Q Q Q 0
z,z T dz

Q Q Q 0M 0

0 0 0 0
0 0



 




 
 

 
 

 
 

     
 

 
 

    

  

 (3.21d) 

 
h/2

xzx x x x 2 3

yzh/2y y y y

Q Q S S
1,z , z, z dz

Q Q S S

  

 



    
    

     
  

 (3.21e) 

Upon integration, these expressions are rewritten in the matrix form as, 

 

M C T

t

C B T

S

D D 0 NN

M D D 0 M

Q 00 0 D

      
      

        
             

  

 (3.22) 
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or        T
D N     

 (3.23a) 

In which, 

 
t

* * * *

x y xy x y xy z z
N N , N , N , N , N , N , N , N  

 
t

* * * *

x y xy x y xy z
M M ,M ,M ,M ,M ,M ,M  

 
t

* * * *

x y x y x y x y
Q Q ,Q ,Q ,Q ,S ,S ,S ,S  

 
0 0 0 0 0 0 0 0

t
* * * *

x y xy x y xy z z
, , , , , , ,           

 
t

* * * *

x y xy x y xy z
, , , , , ,          

 
t

* * * *

x y x y xz yz xz yz
, , , , , , ,           

 
T T T T T T T T

t

T x y xy x y xy z z
N N , N , N , N , N , N , N , N     

 
T T T T T T T

t

T x y xy x y xy z
M M ,M ,M ,M ,M ,M ,M     

 (3.23b) 

and 

2 2 2

11 12 11 12 13 13

2 2 2

22 12 22 23 23

2

44 44

4 4 2 4h/2
11 12 13 13

M 4 2 4
h/2 22 23 23

3

44

2

33 33

4

33

Q Q 0 Q z Q z 0 Q Q z

Q 0 Q z Q z 0 Q Q z

Q 0 0 Q z 0 0

Q z Q z 0 Q z Q z
D dz

Q z 0 Q z Q z

Q z 0 0

Q Q z

Q z



 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 (3.23c) 

symmetric 
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2 3

66 66 66 66

2 3

55 55 55 55

4 3 5

66 66 66

4 3 5h/2
55 55 55

S 2 4
h/2 66 66

2 4

55 55

6

66

6

55

Q 0 Q z 0 Q z 0 Q z 0

Q 0 Q z 0 Q z 0 Q z

Q z 0 Q z 0 Q z 0

Q z 0 Q z 0 Q z
D dz

Q z 0 Q z 0

Q z 0 Q z

Q z 0

Q z



 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 (3.23d) 

The coefficients of DC matrix can be obtained by multiplying the terms in matrix DM 

with z before integrating. Similarly the coefficients of DB matrix can be obtained by 

multiplying the terms in matrix DM with z
2
 before integrating. 

3.6 EQUATIONS OF EQUILIBRIUM AND NATURAL BOUNDARY 

CONDITIONS 

The equilibrium equations for thermal stress analysis of FGM plates using various 

displacement models are derived from Principle of Minimum Potential Energy 

(PMPE) (Dym and Shames 1973, Reddy 1984a, b). This method is chosen due to its 

simplicity and also its application gives simultaneously the natural boundary 

conditions that are to be used with the theory. In the following sections, the equations 

of equilibrium and the natural boundary conditions for the stress analysis of a simply 

supported FGM plates subjected to thermal loads are presented using HSDT-12 

displacement model. Same procedure is used to derive the equilibrium equations 

using other displacement models also. 

3.6.1 Thermal Stress Analysis 

The potential energy П for the plate element is defined as, 

 s ex ey
U W W W     

 (3.24) 

symmetric 
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Where,    

U = strain energy of the plate  

Ws= work done by surface tractions 

Wex= work done by edge stress on edge x=constant 

Wey= work done by edge stress on edge y=constant 

For equilibrium, the total potential energy   for the plate must be stationary, 

i.e.,   

  s ex ey
U W W W 0        

 (3.25) 

The individual terms of the above equations are evaluated as follows 

 x x y y z z xy xy xz xz yz yz
x y z

U dx dydz                    

(3.26)

 

Substituting the appropriate strain expressions using Equations 3.15a and 3.15b and 

integrating through the thickness to get the stress resultants as defined in Equations 

3.21a, 3.21b, 3.21c, 3.21d and 3.21e and then, integrating the resulting expressions by 

parts transforms the Equation 3.26 into the following form 

y 0 xy 0 y 0 xy x y y y z
x

* * * * * * * * * * *

xy 0 y 0 y 0 xy x y y y z

U N   v N   u Q   w M   M   S  

                N   u N   v Q   w M   M   S     dx

            


           




 

    
x 0 xy 0 x 0 xy y x x x z

y

* * * * * * * * * * *

xy 0 x 0 x 0 xy y x x x z

   N   u N   v Q   w M   M   S  

           N   v N   u Q   w M   M   S     dy

           


           



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 
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 
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xy *x

z x 0

* * **
y xy y* * *x

y 0 z 0

* * **
xy y xy* * *x

x x y

NN
      2S    u

x y

N N QQ
                2S    v    2M    w

y x x y

M M MM
                3Q       3Q

x y y x

 
     

   
 

     
          
      
   

     
        
     
   

*

y

**
y * *x

z z
dx dy

  

SS
                3N        

x y

 


 
    

   
    

 (3.27) 

The work done by surface tractions, Ws may be calculated as follows, 

       s z

x y

1
W w dx dy

2

    p  

 (3.28) 

Where w
+
 is the transverse displacement at any point at the top surface of the plate 

and is given by 

      2 * 3 *

0 z 0 z
w w h h w h          

 (3.29)
 

Therefore, 

            2 * 3 *

s z 0 z z z 0 z z

x y

1
W w h h w h dx dy

2

             p p p p  

 (3.30) 
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And the variation of Ws for h
+
=h/2, 

      
2 3

* *

s z 0 z 0 z

x y

h h h
W w     w   dx dy

2 4 8


   

          
   

  p  

 (3.31) 

The work done by the edge stresses is 

      ex x xy xz

y z

1
W  u  v  w dy dz

2
            on an edge x = constant. 

 (3.32) 

      ey xy y yz

x z

1
W  u  v  w dx dz

2
           on an edge y = constant. 

 (3.33) 

Where, the bars on the quantities refer to edge values. On integration through the 

thickness the variation of these expressions takes the form 

     




ex x 0 xy 0 x 0 x x xy y x z

y

* * * * * * * * * * * *

x 0 xy 0 x 0 x x xy y x z

W N   u N   v Q   w M   M   S  

                    N   u N   v Q   w M   M   S     dy

            

           


 

 (3.34)

 
and 

     





ey xy 0 y 0 y 0 xy x y y y z

x

* * * * * * * * * * * *

xy 0 y 0 y 0 xy x y y y z

W N   u N   v Q   w M   M   S  

                   N   u N   v Q   w M   M   S     dx

            

           


 

 (3.35)

 

The variational Equation 3.25 takes the following form when the relevant foregoing 

expressions are substituted for its individual terms. 
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

 

 (3.36) 

The above Equation 3.36 will be an identity only if each of the coefficients of the 

arbitrary variation vanishes. The vanishing of the surface integral defines twelve 

equilibrium equations, while that of the line integrals defines the consistent natural 

boundary conditions that are to be used with this theory along the two edges. Setting 

the individual integral terms in Equation 3.36 to zero, the following equations of 

equilibrium and the consistent boundary conditions are obtained. 
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and the boundary conditions on the edge x = constant 

 
0 0 x x 0 0 xy xy

u u or N N v v or N N     

 
0 0 x x x x x x

w w or Q Q or M M       

 
y y xy xy z z x x

or M M or S S         

 
0 0 x x 0 0 xy xy

u u or N N v v or N N            

 
0 0 x x x x x x

w w or Q Q or M M              

 
y y xy xy z z x x

or M M or S S                

 (3.38a) 

On the edge y = constant 

 
0 0 xy xy 0 0 y y

u u or N N v v or N N     

 
0 0 y y x x xy xy

w w or Q Q or M M       

 
y y y y z z y y

or M M or S S         

 
0 0 xy xy 0 0 y y

u u or N N v v or N N            

 
0 0 y y x x xy xy

w w or Q Q or M M              

 
y y y y z z y y

or M M or S S                

  (3.38b) 

The same procedure is followed to obtain the equilibrium equations for FGM plates 

using other displacement models and the corresponding equilibrium equations are 

given in Appendix - I. 

3.7 CLOSURE 

In this chapter, detailed theoretical formulations for the thermal stress analysis of 

FGM plates based on higher order refined theories which take into account the effects 

of both transverse shear strain / stress and normal strain / stress are presented. Three-
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dimensional constitutive relations and the Principle of Minimum Potential Energy 

(PMPE) are used to derive the governing equations of equilibrium. A modified and 

reduced version of stress-strain constitutive relations is used for models that do not 

consider the effect of transverse normal deformations. Theoretical formulations for 

HSDT-12 displacement model are discussed in detail and the equations of equilibrium 

obtained using other models are given in the appendix. In the following chapter, 

analytical solution method using Navier’s solution technique is presented for the 

different displacement models considered in the present study. 
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Fig. 3.1: FGM plate geometry with positive set of reference axes and displacement 

components 
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Fig. 3.2: Variation of the generalized displacement components across the thickness 

of an FGM plate using (a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and (d) FSDT 

displacement models.  
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CHAPTER 4 

ANALYTICAL SOLUTION METHOD 

4.1 PRELIMINARY REMARKS 

In order to solve the boundary value problem for stress analysis of FGM plates more 

accurately an exact three dimensional elasticity solution is needed. But the 

mathematical complexity involved in solving three dimensional problems necessitates 

the simplification of three dimensional problems to two dimensional problems with 

suitable assumptions, so that various two dimensional solution methods can be used 

effectively without sacrificing much on the accuracy. The assumption that the stress 

resultant rather than stresses are more reliable in the statement of governing equations 

helps in reducing the 3-D problem to 2-D problem. Among the analytical methods 

available, the Navier’s solution technique is very simple and easy to use for plates 

with rectangular geometry with simply supported edge conditions. This method of 

solution for various plate problems with rectangular geometry is well documented in 

various texts (Timoshenko and Woinwsky-Krieger 1959, Szilard 1974, Reddy 1996). 

The main objective of the present investigation is to evaluate analytically the accuracy 

of various two dimensional theories. Therefore, for all the problems, a simply 

supported FGM plate subjected to constant, linear and nonlinearly varying thermal 

loads are considered for comparision purpose and the Navier’s solution technique 

using double Fourier series is used to get the results with desired level of accuracy. 

The geometry of the plate with a positive set of the coordinate axes and physical mid-

plane displacement terms are shown in Figure 3.1 in chapter 3. The various steps 

involved in using the above technique for the thermo-elastic bending stress analysis of 

FGM plates are discussed in this chapter. 

4.2 NAVIER SOLUTION TECHNIQUE 

In the following sections, the Navier’s solution technique using the double Fourier 

series for the thermal stress analysis of FGM plates is presented. Various steps 
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involved in using the above technique are discussed in detail for HSDT-12 

displacement model. Same procedure is used to obtain the solutions using other 

displacement models. 

4.2.1 In-Plane Stresses 

The FGM plate structure considered in the present work is a simply supported square / 

rectangular plate. Such supports imply the following boundary conditions. 

At edges x = 0 and x = a : 

 0 0 y z xv 0; w 0; 0; 0; M 0;        

 
* * * * *
0 0 y z xv 0; w 0; 0; 0; M 0;        

 
*

x xN 0; N 0;   

 (4.1) 

At edges y = 0 and y = b : 

 0 0 x z yu 0; w 0; 0; 0; M 0;        

 
* * * * *
0 0 x z yu 0; w 0; 0; 0; M 0;        

 
*

y yN 0; N 0;   

 (4.2) 

To satisfy the above boundary conditions the generalized displacement field is 

expanded in double Fourier series as: 

 
mn0 0

m 1 n 1

u u cos x sin y
 

 

   
 

 
mn0 0

m 1 n 1

v v sin x cos y
 

 

     
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mn0 0

m 1 n 1

w w sin x sin y
 

 

     

 
mnx x

m 1 n 1

cos x sin y
 

 

       

 
mny y

m 1 n 1

sin x cos y
 

 

       

 
mnz z

m 1 n 1

sin x sin y
 

 

       

 
mn

* *

0 0

m 1 n 1

u u cos x sin y
 

 

     

 
mn

* *

0 0

m 1 n 1

v v sin x cos y
 

 

     

 
mn

* *

0 0

m 1 n 1

w w sin x sin y
 

 

     

 
mn

* *

x x

m 1 n 1

cos x sin y
 

 

       

 
mn

* *

y y

m 1 n 1

sin x cos y
 

 

       

 
mn

* *

z z

m 1 n 1

sin x sin y
 

 

       

 (4.3) 

The transverse load and thermal loading term is expanded as, 

 
z zmn

m 1 n 1

sin x sin y
 

 

 

   p p
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mn1 1

m 1 n 1

T T sin x sin y
 

 

     

 
mn0 0

m 1 n 1

T T sin x sin y
 

 

     

 

(4.4)

 

where 
mπ

α=
a

and   
nπ

β=
b

  m,n=1,3,5,7……odd. 

Now the expressions for the curvature and slopes (Equation 3.15a and 3.15b) are 

substituted in the stress resultant-mid plane strain relationship (Equation 3.22) and the 

relation between the stress resultant and the mid plane strain quantities can be written 

as,   

 
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
   
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 (4.6) 

where, 

 
mn mn mn mn mn mn

 t
* *

*0 0 0 0
z z

* * *

0 0 0 0 z z

m 1 n 1

u v u v
                            

x y x y

            u     v     u     v            sin x sin y
 

 

    
   

     

       

 

 
mn mn mn mn mn mn

 t
**

y y *x x
0 0

* * *

x y x y 0 0

m 1 n 1

                    w    w    
x y x y

                           w    w    sin x sin y
 

 

   
 

     

     

 

 
mn mn mn mn

 t
* *

0 0 0 0

* *

0 0 0 0

m 1 n 1

u v u v
                    

y x y x

            u     v     u     v    cos x cos y
 

 

    
 

     

     

 

 
mn mn mn mn

 t
**

y yx x

* *

x y x y

m 1 n 1

                    
y x y x

                           cos x cos y
 

 

   
 

     

     
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 
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x x
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 

 

  
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 (4.7) 

The matrices T[A],  [A ],  [C ], [B],  [B ],  [D],  [D ],  [E],  [E ]     are the matrices of 

plate stiffness whose elements are defined in Appendix-II. The same procedure is 

followed in obtaining the plate stiffness matrices of other models and they are also 

defined under the same appendix. 

To solve the equilibrium equations represented by Equations 3.37 following steps are 

taken: 

( i ) Substitute the Equations 4.5, 4.6 and 4.7 in to the equilibrium Equations 3.37. 

( ii ) To solve for the unknowns 
* * * * * *

0 0 0 x y z 0 0 0 x y zu ,  v ,  w ,   ,   ,   ,  u ,  v ,  w ,   ,   ,         for 

some fixed values m m  and n n , multiply the twelve equilibrium 

equations by  
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m x n y
cos   sin

a b

 

, 

m x n y
sin   cos

a b

 

, 

m x n y
sin   sin

a b

 

, 

m x n y
cos   sin

a b

 

, 

m x n y
sin   cos

a b

 

, 

m x n y
sin   sin

a b

 

, 

m x n y
cos   sin

a b

 

, 

m x n y
sin   cos

a b

 

, 

m x n y
sin   sin

a b

 

, 

m x n y
cos   sin

a b

 

, 

m x n y
sin   cos

a b

 

, 

m x n y
sin   sin

a b

 

 

respectively and let them be doubly integrated between the limits  0 x a   and 

 0 y b   

( iii )  Apply following orthogonally conditions. 

 

a

0

             m m

                         

m x m x
sin sin dx 0        

             =  a/2  

  if  
a a

     if  m m


 





  

0

b

              
b b

                         

n y n y
sin sin dy 0        

             =  b/2  

  if  n

     if  n

n

n

 




  

a

0

             m m

                          

m x m x
cos cos dx 0         

             =  a/2   

 if  
a

    if  m

a

m

 
 



  

0

b

              
b b

                          

n y n y
cos cos dy 0         

             =  b/2   

 if  n n

n    if  n

 
 



  

and 

 

a

0

m x m x
sin cos dx 0

a a
                 

 
 ; 

0

b
n y n y

cos sin dy 0
a a

                 
 

 ; 

0

a
m x m x

cos sin dx 0
a a

                 
 

 ; 
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0

b
n y n y

                 
b b

sin cos dy 0
 

 ; 

irrespective of the values m and n. 

After following the steps ( i ) to ( iii ) and collecting the coefficients, the solution for 

the Fourier amplitudes is obtained in the following form ; 
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 (4.8) 

For any fixed values of m and n. The elements of the coefficient matrix [X] are given 

in Appendix III and the coefficients of thermal force matrix {FT} are given in 

Appendix IV. Similarly the elements of [X] and {FT} matrices of other models are 

also given under the same appendix. 

The Fourier amplitudes can be obtained by solving Equation 4.8. These amplitudes 

are used to evaluate the generalized displacement components and their derivatives to 

obtain the stress resultants by substituting in Equations 4.5 and 4.6. Further, these 

values (generalized displacement components and their derivatives) are back 

substituted into the strain-displacement relations i.e. in Equation 3.16a and 3.16b to 

obtain the values of strains. The complete three dimensional Hooke’s law can be used 
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to compute the in-plane stress, and the transverse stresses can then be calculated using 

equilibrium equations. 

4.2.1.1 Transverse Stress               

The transverse stresses can be evaluated from the constitutive stress-strain relations, 

but they will not satisfy the stress boundary conditions at top and bottom surfaces of 

the plate. Whereas in-plane stress components are independent of boundary 

conditions and are evaluated from the constitutive relations and hence these are used 

for the computation of transverse stress components by integrating three dimensional 

elasticity equilibrium equations. The three dimensional equations of equilibrium 

without body forces are given by, 
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(4.9)

 

The transverse stresses are derived by integrating the above 3-D equilibrium 

equations across the thickness coordinate ‘z’ and are given by, 
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(4.10) 

The above equilibrium equations are valid throughout the plate thickness from bottom 

to top surface of the plate over the range of –h/2 to h/2. 
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The in-plane stresses x , y  and xy  in Equation 4.10 are expressed in terms of 

expanded strain components from Equation 3.15a and 3.9a and thus the transverse 

stresses takes the form, 
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 (4.11) 

 

The general expression for transverse stresses in terms of expanded displacement 

components are expressed as, 
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4.3 CLOSURE 

The various steps involved in obtaining analytical solutions for the thermal stress 

analysis of FGM plates using Navier’s solution technique is presented in this chapter. 

For brevity sake, Higher Order displacement model with twelve degrees of freedom 

HSDT-12 is discussed in detail. The elements of plate stiffness matrices, the 

coefficient matrix [X] and thermal force matrix {FT} obtained using various 

displacement models are given in Appendices. The numerical results obtained 

considering the various displacement models and the discussion of results for various 

plate problems using the above technique are presented in the following chapter. 
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CHAPTER 5 

NUMERICAL RESULTS AND DISCUSSIONS 

5.1 PRELIMINARY REMARKS 

In this chapter, various numerical examples solved are described and discussed for 

establishing the accuracy of various theories related to thermo-elastic analysis of 

FGM plates. For all the example problems, simply supported boundary condition is 

considered for the analysis. The plates are subjected to nonlinear, linear and constant 

variation of temperatures across the plate thickness, while in-plane is sinusoidal. The 

equations of equilibrium are derived using the Principle of Minimum Potential Energy 

(PMPE) and closed form solutions are obtained using Navier’s solution technique. 

Firstly, the accuracy of the solutions obtained using the various displacement models 

considered in the present study is established by comparing the displacements and 

stresses with that of 3-D elasticity solutions wherever available in the literature. After 

establishing the accuracy of each model, comparative studies have been carried out 

and benchmark results using all the models are presented for FGM plates with 

different material properties, length to breadth ratio, length to thickness ratio and 

power law parameter. 

For the solution of boundary value problem obtained using the various 

displacement models and their theoretical formulation given in Chapter 3 and the 

solution method given in Chapter 4, a set of computer codes using MATLAB-15 

software were developed for numerical computation. In this investigation twelve 

separate computer programmes were developed for the thermo-elastic analysis of 

FGM plates. Out of twelve programmes, four each corresponds to nonlinear, linear 

and constant variation of temperature. All the numerical results shown in tables and 

figures using various displacement models are generated independently using various 

computer programmes developed during the present investigation. The numerical 

results of all the models compared are the in-plane/transverse displacements and 

stresses. A shear correction factor of 5/6 is used for obtaining the results using 
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Whitney-Pagano’s theory (Pagano and Hatfield, 1972). The various numerical 

examples are solved, and the results obtained using various theories, material 

properties and temperature profiles are discussed in detail in the following section. 

5.2 THERMAL STRESS ANALYSIS 

The following material set data are used in obtaining numerical results. 

Material set - 1 (M1) [ Alibeigloo (2010)] 

Monel-Zirconia FGM plate (70Ni-30Cu- ZrO2) 

Em =227.24 GPa αm =15×10−6 /K km =25 W/mK ν=0.3  

Ec =125.83 GPa αc =10×10−6 /K kc =2.09 W/mK ν=0.3.  

Ec / Em =0.5537 αc / αm = 0.6667, kc / km = 0.0836 

Material set - 2 (M2) [Praveen and Reddy. (1998)] 

Aluminium-Alumina FGM plate (Al- Al2O3) 

Em =70 GPa αm =23×10−6 /K, km =204 W/mK, ν=0.3  

Ec =380 GPa, αc =7.4×10−6 /K, kc =10.4 W/mK, ν=0.3.  

Ec / Em =5.429, αc / αm = 0.3217, kc / km = 0.0510 

Material-3 (M3) [Jabbari et. al. (2014)] 

Titanium Alloy - Zirconia FGM plate (Ti-6Al-4V - ZrO2) 

Em =66.2 GPa, αm =10.3×10−6 /K, km =18.1 W/mK, ν=0.322  

Ec =117 GPa, αc =7.11×10−6 /K, kc =2.036 W/mK, ν=0.322.  

Ec / Em = 1.7673, αc / αm = 0.690, kc / km = 0.1125 

 

Results that are reported in tables and plots are obtained using the following 

nondimensionalized forms: 

*(u, v, w)E
(u, v, w)

P a
  
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x y z xy xz yz

x y z xy xz yz *

( , , , , , )
( , , , , , , )

P E

     
        

*
z T

T
P


  

Where, *
0P E p for applied transverse mechanical load 0p  and *

1P T   for 

applied temperature T1 at the top surface of the FGM plate. The scale factors 

corresponding to coefficient of thermal expansion and young’s modulus of elasticity 

are * 610 / K   and 
*E 1 Gpa  respectively.  

Unless otherwise specified within the table(s) or plot(s) the location (i.e. x- and y- 

coordinates) for the maximum values of displacements and stresses for the present 

evaluations are as follows: 

In-plane displacement (u)  : (0, b/2) 

In-plane displacement (v)  : (a/2, 0) 

Transverse displacement (w)  : (a/2, b/2) 

In-plane normal stress 
x( )  : (a/2, b/2) 

In-plane normal stress y( )  : (a/2, b/2) 

Transverse normal stress
z( )  : (a/2, b/2) 

In-plane shear stress xy( )  : (0, 0) 

Transverse shear stress
xz( )  : (0, b/2) 

Transverse shear stress yz( )  : (a/2, 0) 

5.2.1 Description of Examples and Discussions 

In this section, various examples related to thermo-elastic analysis of FGM plates are 

described and discussed. Initially, through the thickness variation of thermo-physical 
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properties of various materials are presented and then the accuracy of the 

displacement models is established by comparing with the 3-D elasticity solutions 

available in the literature. Then the parametric studies are performed and results are 

presented for Monel-Zirconia, Aluminium-Alumina and Titanium Alloy-Zirconia 

FGM plates subjected to steady state thermal loads. Also the effect of temperature 

distribution (viz., nonlinear, linear and constant) on displacements and stresses are 

discussed. 

Example 1: In this example, through the thickness variation of material properties 

and temperature field distribution for various FGMs considered in the study are 

presented. The effective material properties are evaluated using micromechanical 

scheme based on power law function. The volume fraction (Vf) distribution of the 

ceramic-metal constituent phases in an FGM plate is governed by power law 

parameter p. Fig. 5.1 shows through the thickness variation of volume fraction 

distribution Vf  and temperature profile with increase in power law parameter p.  

Three materials namely Monel-Zirconia (M1), Aluminium-Alumina (M2) and 

Titanium Alloy-Zirconia (M3) are considered in the analysis. Through the thickness 

variation of effective material properties like young’s modulus of elasticity, thermal 

coefficient of expansion, thermal conductivity of M1, M2 and M3 using various 

power law parameters are presented. Similarly the nonlinear temperature variation 

obtained by solving steady state heat conduction equation is also presented. Through 

the thickness variation the material properties for various power law parameters are 

shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4 for Monel-Zirconia (M1), Aluminium-

Alumina (M2) and Titanium Alloy-Zirconia (M3) FGMs respectively. It is observed 

that, the volume fraction of metal constituent phase in an FGM plate increases with 

increase in p value and is purely ceramic for p equal to zero. Similar variations are 

observed in young’s modulus of elasticity, thermal coefficient of expansion and 

thermal conductivity of FGMs. Also, the ceramic surface is exposed to temperature 

and is gradually reduced to reach zero / room temperature at the metal surface. 

Through the thickness variation of temperature is nonlinear for p value greater than or 

equal to one and is linear for p equal to zero. 
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Example 2: In order to establish the accuracy of various displacement models, a 

simply supported Monel-Zirconia (M1) FGM plate subjected to transverse sinusoidal 

load of intensity    at the top surface of the plate is considered. The numerical results 

of displacements and stresses are compared with the three dimensional elasticity 

solutions reported by Reddy and Cheng, (2001a). The nondimensionalized in-plane 

displacement   , transverse displacement    and in-plane normal stress     at various 

locations across the thickness of the FGM plate are given in Table 5.1, Table 5.2 and 

Table 5.3 respectively along with the percentage error with respect to 3-D elasticity 

solutions. The results clearly shows that the values obtained using HSDT-12 are in 

close agreement with the 3-D elasticity solutions for all a/h ratios. For a/h ratio equal 

to 4, HSDT-9 overpredicts the in-plane displacement    by 11.42% and transverse 

displacement    by 5.64% at the top surface of the plate as compared with the exact 

solutions. Whereas the in-plane normal stress     at the top surface of the plate, are 

underpredicted by HSDT-9, HSDT-5 and FSDT by 3.76%, 3.76% and 9.16% 

respectively. Also, the maximum value of transverse shear stress      and transverse 

normal stress     at the middle surface of the plate are given in Table 5.4 along with 

the percentage of error with respect to 3-D elasticity solutions. It can be seen that, for 

all a/h ratios HSDT-12 gives better accuracy as compared to other displacement 

models. For a/h ratio equal to 10, HSDT-12 overpredicts the transverse shear stress 

     by 0.14%, whereas transverse normal stress     were predicted as accurate as exact 

solutions. The accuracy of the models in predicting the displacements and stresses 

increases with increase in slenderness ratio (a/h ratio). In all the parameters 

considered, the percentage error in the results obtained from HSDT-12 is less than 

2.5% and is found to be in excellent agreement with the 3-D elasticity solutions.  

Example 3: In this example, accuracy of the displacement models in predicting the 

thermal responses is established by comparing with the 3-D elasticity solutions 

reported by Alibeigloo (2010). A simply supported Monel-Zirconia (M1) FGM plate 

subjected to thermal load is considered. The temperature variation is assumed to be 

nonlinear and obeys steady state heat conduction equation. Through the thickness 

variation of nondimensionalized transverse displacement   , transverse shear stress 

     and transverse normal stress     are compared with the 3-D elasticity solutions 
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reported for a square FGM plate with side-to-thickness ratio (a/h ratio) 5, 10 and 20. 

The graphical representations for the variation of transverse displacement    using 

various a/h ratios are given in Fig. 5.5. The results clearly indicate that, only HSDT-

12 predicts the nonlinear variation of transverse displacement most accurately and it is 

very much closer to the exact solutions whereas all other models predict the variation 

as linear. The variation of nondimensionalized transverse shear stress      and 

transverse normal stress     across the plate thickness direction are depicted in Fig. 5.6 

and Fig. 5.7 respectively. It shows that HSDT-12 predicts transverse stresses as 

accurately as exact solutions, while all other models either underpredcits or 

overpredicts the transverse stresses. The effect of nonlinear transverse shear and 

normal stress / strain in HSDT-12 model has a significant effect in predicting the 

displacement and stresses in FGM plates. Thus it can be clearly seen from the graphs 

that for all values of a/h ratios considered, the transverse displacement and stresses 

computed using HSDT-12 model is very much closer to exact solutions as compared 

to other models considered for comparision. Therefore among various two 

dimensional theories considered, the results obtained using HSDT-12 are in good 

agreement with exact solutions and hence the same is used as reference for 

establishing the accuracy of other models in the subsequent examples.  

Example 4: In order to study the effect of variations in geometric and power law 

parameters on displacements and stresses, a simply supported square / rectangular 

Monel-Zirconia (M1) FGM plate subjected to nonlinear thermal loads (TNL) is 

considered. The nondimensionalized values of displacements           and stresses 

                        in a thick (a/h equal to 4 and power law parameter equal to 3) 

FGM plate with various values of length-to-breadth ratios (a/b ratios) are given in 

Table 5.5 and Table 5.6 respectively. The difference in the values predicted using 

HSDT-12 and those obtained using other models increases with the increase in the 

value of length-to-breadth ratio and the minimum difference is observed in a square 

plate (a/b ratio equal to 1). For a/b ratio equal to 2, the values of in-plane 

displacements           predicted by HSDT-9, HSDT-5 and FSDT are 13.42%, 

14.85%, 13.70% lower as compared to the values predicted by HSDT-12 and the 

values of transverse displacement     predicted by HSDT-9, HSDT-5 and FSDT are 
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52.34%, 59.78%, 52.45% lower as compared to the values predicted by HSDT-12. 

For a square plate with a/b ratio equal to 1, the values of in-plane normal stresses 

            predicted by HSDT-9, HSDT-5 and FSDT are 9.77%, 9.86%, 9.87% lower 

as compared to the values predicted by HSDT-12, the values of in-plane shear stress 

     predicted by HSDT-9, HSDT-5 and FSDT are 4.67%, 4.73%, 4.74% higher as 

compared to the values predicted by HSDT-12 and the values of transverse shear 

stresses                predicted by HSDT-9, HSDT-5 and FSDT are 33.02%, 78.81% 

and 37.16% higher as compared to the values predicted by HSDT-12.  

The nondimensionalized values of the in-plane displacement     and in-plane normal 

stress     at bottom, middle and top surface of a rectangular (a/b ratio equal to 1.5) 

FGM plate are given in Table 5.7 and Table 5.8 respectively. The results clearly show 

that, the value of displacements and stress increase from bottom to top surface of the 

plate. Whereas the percentage difference in the values predicted by HSDT-12 and 

other models is found to be maximum at the bottom surface of the plate and minimum 

at the middle surface of the plate for all a/h ratios and power law parameters 

considered. For a/h ratio equal to 10 and power law parameter p equal to 2, the value 

of in-plane displacement     predicted by HSDT-9, HSDT-5 and FSDT are 1.68%, 

1.95%, 1.82% lower as compared to the values predicted by HSDT-12 at the top 

surface of the plate. For a/h ratio equal to 10 and power law parameter p equal to 5, 

the value of in-plane normal stress     predicted by HSDT-9, HSDT-5 and FSDT are 

48.21%, 60.42%, 51.04% higher as compared to the values predicted by HSDT-12 at 

the bottom surface of the plate. For all cases considered, HSDT-9 is found to predict 

closer results to HSDT-12 and with least percentage difference as compared to other 

models. 

In order to study the effect of displacements and stresses with increase in a/h ratio and 

power law parameter p, a simply supported square FGM plate is considered. The 

nondimensionalized values of in-plane displacement     and transverse displacement 

   are given in Table 5.9 and Table 5.10 respectively. For a/h ratio equal to 4 and 

power law parameter p equal to 5, the value of in-plane displacement     predicted by 

HSDT-9, HSDT-5 and FSDT are 6.38%, 6.65%, 6.13% lower as compared to the 
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values predicted by HSDT-12 and the value of transverse displacement    predicted 

by HSDT-9, HSDT-5 and FSDT are 31.16%, 35.52%, 31.14% lower as compared to 

the values predicted by HSDT-12. The nondimensionalized values of in-plane normal 

stress     , in-plane shear stress      and transverse shear stress       are given in 

Table 5.11, Table 5.12 and Table 5.13 respectively. For a/h ratio equal to 4 and power 

law parameter p equal to 2, the value of in-plane normal stress       predicted by 

HSDT-9, HSDT-5 and FSDT models are 7.09%, 5.86% and 6.50% lower as 

compared to the values predicted by HSDT-12, the value of in-plane shear stress       

predicted by HSDT-9, HSDT-5 and FSDT models are 5.98%, 6.98% and 6.46% lower 

as compared to the values predicted by HSDT-12 and the value of transverse stress 

      predicted by HSDT-9, HSDT-5 and FSDT models are 11.48%, 34.21% and 

14.02% higher as compared to the values predicted by HSDT-12. The percentage 

difference in the values predicted by HSDT-12 and other displacement models 

decreases with increase in a/h ratio and increases with increase in power law 

parameter. For plates with a/h ratio 20 and above, the differences in the displacements 

and stresses is found to be minimum. Among various models considered, the values 

predicted by HSDT-9 are found to be with least percentage difference as compared to 

HSDT-12 model. 

Through the thickness variation of nondimensionalized in-plane displacements     and 

  , transverse displacement   , in-plane shear stress      , in-plane normal stresses     

and     and transverse shear stresses       and        for a rectangular plate with a/b ratio 

equal to 3, a/h ratio equal to 4 and power law parameter p equal to 4 are shown in 

Figs. 5.8 to 5.15 respectively. From the figures, it can be seen that considerable 

difference in the values is observed between HSDT-12 and rest of the models. The 

values predicted by HSDT-9, HSDT-5 and FSDT models are closer to each other and 

are much different form HSDT-12. This clearly indicates that the effect of transverse 

shear and normal strain / stress has a significant effect in predicting the overall 

thermo-elastic responses in an FGM plates. 

Example 5: A simply supported square / rectangular Aluminium-Alumina (M2) FGM 

plate subjected to nonlinear thermal loads (TNL) is considered. The behaviour of 
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displacements and stresses at various locations of the plate is studied by varying 

geometric parameters like a/b ratio and a/h ratio and power law parameter p. The 

nondimensionalized values of in-plane/transverse displacements and stresses in a 

rectangular (a/b ratio equal to 2 and p equal to 2) FGM plate for various values of 

side-to thickness ratios (a/h ratios) are given in Table 5.14 and Table 5.15 

respectively. For a/h ratio equal to 4, the values of in-plane displacements           

predicted by HSDT-9, HSDT-5 and FSDT are 10.52%, 13.01%, 9.47% lower as 

compared to the values predicted by HSDT-12, the values of transverse displacement 

    predicted by HSDT-9, HSDT-5 and FSDT are 55.24%, 81.18%, 54.31% lower as 

compared to the values predicted by HSDT-12, the values of in-plane normal stresses 

     predicted by HSDT-9, HSDT-5 and FSDT are 7.28%, 6.26%, 6.38% lower as 

compared to the values predicted by HSDT-12, the values of in-plane normal stress 

     predicted by HSDT-9, HSDT-5 and FSDT are 28.15%, 23.74%, 24.26% lower as 

compared to the values predicted by HSDT-12, the values of in-plane shear stresses 

     predicted by HSDT-9, HSDT-5 and FSDT are 9.95%, 8.17%, 8.38% higher as 

compared to the values predicted by HSDT-12, the values of transverse shear stress 

                predicted by HSDT-9, HSDT-5 and FSDT are 18.51%, 56.37%, 10.00% 

lower as compared to the values predicted by HSDT-12. It is observed that for all 

parameters considered, the in-plane displacements and stresses predicted by HSDT-9. 

HSDT-5 and FSDT are much closer to each other and deviate much from the values 

predicted by HSDT-12. For plates with a/h ratio 20 and above, the values predicted by 

all the models are almost same. 

The nondimensionalized values of the in-plane displacement    and in-plane shear 

stress      at the bottom, middle and top surface of an FGM plate for a/h ratio 20 are 

given in Table 5.16 and Table 5.17 respectively. The results clearly shows that, the 

values of in-plane / transverse displacements and stresses predicted by all the models 

are very close to each other throughout the plate thickness direction in both square 

and rectangular plates and for various power law parameters. Hence, the percentage 

differences in the results predicted by various models and HSDT-12 is very less. For 

a/b ratio equal to 2 and power law parameter p equal to 3, the value of in-plane 

displacement    and in-plane shear stress       predicted by HSDT-9, HSDT-5 and 
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FSDT are 4.07%, 2.57%, 3.30% lower as compared to the values predicted by HSDT-

12 at the bottom surface of the plate. 

In order to study the effect of displacements and stresses with increase in a/b ratio and 

power law parameter p, a simply supported FGM plate with a/h ratio 10 is considered. 

The nondimensionalized values of in-plane displacement     and transverse 

displacement    are given in Table 5.18 and Table 5.19 respectively. For a/b ratio 

equal to 1.5 and power law parameter p equal to 2, the value of in-plane displacement 

    predicted by HSDT-9, HSDT-5 and FSDT are 1.32%, 1.58%, 1.19% lower as 

compared to the values predicted by HSDT-12 and the value of transverse 

displacement    predicted by HSDT-9, HSDT-5 and FSDT are 11.52%, 16.59%, 

11.31% lower as compared to the values predicted by HSDT-12. The 

nondimensionalized values of in-plane normal stress     , in-plane shear stress      and 

transverse shear stress       are given in Table 5.20, Table 5.21 and Table 5.22 

respectively. For a/b ratio equal to 2.5 and power law parameter p equal to 2, the 

value of in-plane normal stress       predicted by HSDT-9, HSDT-5 and FSDT models 

are 2.52%, 2.98% and 2.28% higher as compared to the values predicted by HSDT-

12, the value of in-plane shear stress       predicted by HSDT-9, HSDT-5 and FSDT 

models are 2.87%, 3.45% and 2.58% lower as compared to the values predicted by 

HSDT-12 and the value of transverse stress       predicted by HSDT-9, HSDT-5 and 

FSDT models are 37.15%, 24.20% and 40.53% higher as compared to the values 

predicted by HSDT-12. The percentage difference in the values predicted by HSDT-

12 and other displacement models is found to be minimum in square plates and 

increases with increase in a/b ratio and power law parameter p. Also, least difference 

is observed in the results predicted by HSDT-9 as compared to other two models. 

Figs. 5.16 to 5.20 shows through the thickness variation of nondimensionalized in-

plane displacement    , transverse displacement   , in-plane normal stresses    , in-

plane shear stress      and transverse shear stresses       in a square FGM plate with a/h 

ratio equal to 10 and power law parameter equal to 3. From the figures it can be seen 

that the differences in the values predicted by HSDT-12 and all other models is found 

to be more in transverse displacement and stresses than that of in-plane displacements 
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and stresses. This indicates the need for higher order polynomials in the displacement 

fields for accurate estimation of thermal displacements / stresses in an FGM plate. 

Example 6: A simply supported square / rectangular Titanium Alloy-Zirconia (M3) 

FGM plate subjected to nonlinear thermal loads (TNL) is considered. The thermo-

elastic responses at various locations of the plate are studied by varying geometric and 

power law parameters. The variation of nondimensionalized displacements and 

stresses using various power law parameters are given in Table 5.23 and Table 5.24 

respectively for a/b ratio equal to 2 and a/h ratio equal to 10. For power law parameter 

p equal to 3, the values of in-plane displacement           predicted by HSDT-9, HDT-

5 and FSDT models are 2.09%, 2.57% and 2.14% lower as compared to the values 

obtained using HSDT-12, the values of transverse displacement    predicted by 

HSDT-9, HDT-5 and FSDT models are 14.26%, 18.85%, 14.32% lower as compared 

to the values obtained using HSDT-12, the values of in-plane normal stress      

predicted by HSDT-9, HDT-5 and FSDT models are 4.37%, 4.40%, 4.40% lesser as 

compared to the values obtained using HSDT-12, the values of in-plane normal stress 

    predicted by HSDT-9, HDT-5 and FSDT models are 19.96%, 20.17%, 20.17% 

lower as compared to the values obtained using HSDT-12, the values of in-plane 

shear stress      predicted by HSDT-9, HDT-5 and FSDT models are 2.11%, 2.15%, 

2.15% higher as compared to the values obtained using HSDT-12, the values of 

transverse shear stress                 predicted by HSDT-9, HDT-5 and FSDT models 

are 41.85%, 71.24%, 43.95% higher as compared to the values obtained using HSDT-

12. For all parameters considered the results predicted by HSDT-9 model are closer to 

HSDT-12 and with least percentage difference compared to HSDT-5 and FSDT 

models. It can also be noted that with increase in the value of power law parameter, 

the difference in the values obtained using HSDT-12 and all other models increases.  

The variation of nondimensionalized transverse displacement    and in-plane normal 

stress     at various locations across the plate thickness direction are given in Table 

5.25 and Table 5.26 respectively. The effect of increase in a/b ratio and a/h ratio in a 

plate with power law parameter p equal to 1 is studied. For a/b ratio equal to 2 and a/h 

ratio equal to 4, the values of transverse displacement    predicted by HSDT-9, HDT-
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5 and FSDT models are 47.59%, 63.12%, 48.05% lower as compared to the values 

obtained using HSDT-12 at the top surface of the plate. For a/b ratio equal to 1 and 

a/h ratio equal to 4, the values of in-plane normal stress     predicted by HSDT-9, 

HDT-5 and FSDT models are 15.84%, 17.55%, 17.55% lower as compared to the 

values obtained using HSDT-12 at the middle surface of the plate. For all parameters 

studied across the thickness direction, the percentage difference in the results 

decreases as the plate becomes thin and increases with increase in edge ratio (a/b 

ratio). Though the values of transverse displacement    predicted by HSDT-12 and all 

other models are almost same in thin plates, the values of in-plane stress      deviate 

much from HSDT-12. This clearly shows the need for including transverse shear and 

normal deformation effects during the analysis. 

Example 7: A simply supported rectangular plate subjected to nonlinear thermal load 

(TNL) is considered for the analysis. Material sets like Monel-Zirconia (M1), 

Aluminium-Alumina (M2) and Titanium Alloy-Zirconia (M3) are used. The plate 

responses with increase in the ratio of young’s modulus of elasticity of ceramic-to-

metal, Ec / Em ratio is studied for various a/h ratios and power law parameters. The 

numerical results of in-plane / transverse displacements and stresses for a/b ratio equal 

to 2 and power law parameter equal to 2 are given in Table 5.27 and Table 5.28. For 

all Ec / Em ratio studied, the percentage difference between HSDT-12 and other 

models are more in thin plates with a/h ratio equal to 10 and is considerably less in 

thick plates with a/h ratio equal to 50. The plate responses are dependent on overall 

thermal and physical properties of the material, and hence remarkable variations with 

increase in Ec / Em ratio is not observed. In Titanium Alloy-Zirconia (M3, Ec / Em ratio 

equal to 1.7673) FGM plate with a/h ratio equal to 10, the in-plane displacement 

          predicted by HSDT-9, HSDT-5 and FSDT are 2.01%, 2.59%, 2.18% lower 

than HSDT-12, the transverse displacement    predicted by HSDT-9, HSDT-5 and 

FSDT are 13.67%, 18.12%, 13.78% lower than HSDT-12, in-plane normal stress      

predicted by HSDT-9, HSDT-5 and FSDT are 5.48%, 5.61%, 5.61% lower than 

HSDT-12, in-plane normal stress     predicted by HSDT-9, HSDT-5 and FSDT are 

28.92%, 29.93%, 29.96% lower than HSDT-12, transverse shear stress       predicted 

by HSDT-9, HSDT-5 and FSDT are 2.04%, 2.19%, 2.19% higher than HSDT-12 and 
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transverse shear stress                 predicted by HSDT-9, HSDT-5 and FSDT are 

31.97%, 45.58%, 33.78% higher than HSDT-12. Table 5.29 and Table 5.30 shows the 

variation of in-plane displacement     and in-plane normal stress      predicted by 

different models for various power law parameters. For all Ec / Em ratios considered, 

the percentage differences  in the results predicted by HSDT-12 and other models is 

found to increase with increase in power law parameter. 

Example 8: A simply supported rectangular plate subjected to nonlinear thermal load 

(TNL) is considered for the analysis. Material sets like Monel-Zirconia (M1), 

Aluminium-Alumina (M2) and Titanium Alloy-Zirconia (M3) are used. The plate 

responses are studied for various parameters based on increase in the ratio of thermal 

conductivity of ceramic- to-metal viz., kc / km ratio. The numerical results of in-plane / 

transverse displacements and stresses for a/h ratio equal to 10 and power law 

parameter equal to 2 are given in Table 5.31 and Table 5.32. For all kc / km ratio 

studied, the percentage difference between HSDT-12 and other models are less in 

square plate with a/b ratio equal to 1 and more in rectangular plate with a/b ratio equal 

to 3. The plate responses are dependent on overall thermal and physical properties of 

the material, and thus significant variation with increase in kc / km ratio is not 

observed. In Aluminium-Alumina (M2, kc / km ratio equal to 0.0510) FGM plate with 

a/b ratio equal to 3, the in-plane displacement           predicted by HSDT-9, HSDT-5 

and FSDT are 3.89%, 4.66%, 3.49% lower than HSDT-12, the transverse 

displacement    predicted by HSDT-9, HSDT-5 and FSDT are 28.55%, 41.19%, 

28.04% lower than HSDT-12, in-plane normal stress      predicted by HSDT-9, 

HSDT-5 and FSDT are 1.80%, 1.52%, 1.55% lower than HSDT-12, in-plane normal 

stress     predicted by HSDT-9, HSDT-5 and FSDT are 16.37%, 13.71%, 13.99% 

lower than HSDT-12, transverse shear stress       predicted by HSDT-9, HSDT-5 and 

FSDT are 3.57%, 2.98%, 3.04% higher than HSDT-12 and transverse shear stress 

                predicted by HSDT-9, HSDT-5 and FSDT are 27.22%, 10.48%, 31.54% 

higher than HSDT-12. Table 5.33 and Table 5.34 shows the variation of transverse 

displacement       and in-plane normal stress      predicted by different models for 

various power law parameters. For all kc / km ratios studied, the percentage difference 
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in the values predicted by HSDT-12 and other displacement models increases with 

increase in power law parameter.  

Example 9: In order to study the effect of different types of temperature profiles in 

predicting the plate responses, a simply supported rectangular plate subjected to non-

linear (TNL), linear (TL) and constant (TC) temperature distribution across the plate 

thickness is considered. Material sets like Monel-Zirconia (M1), Aluminium-Alumina 

(M2) and Titanium Alloy-Zirconia (M3) are used. The behaviour of displacements 

and stresses with increase in Ec/Em ratio and a/b ratio is studied for a plate with a/h 

ratio equal to 4 and power law parameter p equal to 2. The nondimensionalized in-

plane displacement     and transverse displacement    at the top surface of the plate are 

given in Table 5.35. For a Monel-Zirconia (M1, Ec/Em ratio equal to 0.5537) FGM 

plate with a/b ratio equal to 1.5, the values of in-plane displacement     predicted by 

HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature distribution 

(TL) are found to be 36.83%, 34.88%, 37.85%, 37.63% higher and by using constant 

temperature distribution (TC) are found to be 40.02%, 26.93%, 31.87%, 29.00% 

higher as compared to the values obtained using nonlinear temperature profile (TNL) 

and the values of transverse displacement    predicted by HSDT-12, HSDT-9, HSDT-

5 and FSDT models using linear temperature distribution (TL) are found to be 

30.31%, 23.74%, 25.08%, 23.93% higher and by using constant temperature 

distribution (TC) are found to be 1.5 times lower as compared to the values obtained 

using nonlinear temperature profile (TNL). The nondimensionalized in-plane normal 

stress      and     at the middle surface of the plate are given in Table 5.36. For a 

Titanium Alloy-Zirconia (M3, Ec/Em ratio equal to 1.7673) FGM plate with a/b ratio 

equal to 1.5, the values of in-plane normal stress      predicted by HSDT-12, HSDT-9, 

HSDT-5 and FSDT models using linear temperature distribution (TL) are found to be 

80.47%, 89.93%, 92.88%, 92.89% higher and by using constant temperature 

distribution (TC) are found to be approximately 2.5 times higher as compared to the 

values obtained using nonlinear temperature profile (TNL) and the values of in-plane 

normal stress     predicted by all the models using linear temperature distribution (TL) 

are found to be approximately 1.5 times higher and by using constant temperature 

distribution (TC) are found to be approximately 3.5 times higher as compared to the 
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values obtained using nonlinear temperature profile (TNL). The nondimensionalized 

values of in-plane shear stress      at the top surface of the plate are given in Table 

5.37. For a Aluminium-Alumina (M2, Ec/Em ratio equal to 5.429) FGM plate with a/b 

ratio equal to 2.5, the values of in-plane shear stress       predicted by HSDT-12, 

HSDT-9, HSDT-5 and FSDT models using linear temperature distribution (TL) are 

found to be 33.02%, 28.48%, 33.03%, 32.71% higher and by using constant 

temperature distribution (TC) are found to be 32.82%, 10.90%, 15.29%, 12.75% 

higher as compared to the values obtained using nonlinear temperature profile (TNL). 

The nondimensionalized transverse shear stresses                at the middle surface of 

the plate are given in Table 5.38. For all the parameters studied, the values of 

transverse shear stresses                 predicted by various displacement models using 

linear temperature distribution (TL) and constant temperature distribution (TC) are 

found to be approximately 2-3 times higher as compared to the values obtained using 

nonlinear temperature profile (TNL). It was observed that, with increase in a/b ratio the 

percentage difference in the values obtained using linear(TL) and constant (TC) 

temperature increases whereas no remarkable differences are observed with increase 

in Ec/Em ratio. 

The variation of nondimensionalized in-plane / transverse displacements and stresses 

   ,    ,   ,     ,    ,     ,                across the thickness of a simply supported 

rectangular Titanium Alloy-Zirconia (M3) FGM plate subjected to nonlinear (TNL), 

linear (TL) and constant (TC) thermal loads are given in Figs. 5.21 to 5.28 respectively 

for a/b ratio equal to 2, a/h ratio equal to 10 and power law parameter p equal to 2. It 

can be noted that, displacements and stresses predicted using linear (TL) and constant 

(TC) temperature profiles deviate much from the results obtained using nonlinear 

(TNL) temperature profiles in all the models considered. Remarkable differences are 

observed in the distribution pattern of displacements and stresses. The maximum 

deviation is observed in the values obtained using constant temperature (TC) variation 

and FSDT model. 

Example 10: A simply supported rectangular plate subjected to non-linear (TNL), 

linear (TL) and constant (TC) temperature distribution across the plate thickness is 
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considered. Material sets like Monel-Zirconia (M1), Aluminium-Alumina (M2) and 

Titanium Alloy-Zirconia (M3) are used. The behaviour of displacements and stresses 

with increase in kc/km ratio and a/h ratio is studied for a plate with a/b ratio equal to 2 

and power law parameter p equal to 2. The nondimensionalized values of in-plane 

displacement     and transverse displacement    at the top surface of the plate are 

given in Table 5.39. For a Titanium Alloy-Zirconia (M3, kc/km ratio equal to 0.1125) 

FGM plate with a/4 ratio equal to 4, the values of in-plane displacement     predicted 

by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature 

distribution (TL) are found to be 27.39%, 24.93%, 27.95%, 27.70% higher and by 

using constant temperature distribution (TC) are found to be 32.78%, 19.38%, 

24.21%, 21.47% higher as compared to the values obtained using nonlinear 

temperature profile (TNL) and the values of transverse displacement    predicted by 

HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature distribution 

(TL) are found to be 21.81%, 9.92%, 8.35%, 11.61% higher and by using constant 

temperature distribution (TC) are found to be approximately 1.5 times lower as 

compared to the values obtained using nonlinear temperature profile (TNL). The 

nondimensionalized values of in-plane normal stress      and     at the middle surface 

of the plate are given in Table 5.40. For a Monel-Zirconia (M1, kc / km ratio equal to 

0.0836) FGM plate with a/h ratio equal to 4, the values of in-plane normal stress      

predicted by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature 

distribution (TL) are found to be 86.08%, 89.38%, 92.17%, 92.17% higher and by 

using constant temperature distribution (TC) are found to be approximately 2.5 times 

higher as compared to the values obtained using nonlinear temperature profile (TNL) 

and the values of in-plane normal stress     predicted by HSDT-12, HSDT-9, HSDT-5 

and FSDT models using linear temperature distribution (TL) are found to be 

approximately 2 times higher and by using constant temperature distribution (TC) are 

found to be 4 times higher as compared to the values obtained using nonlinear 

temperature profile (TNL). The nondimensionalized values of in-plane shear stress      

at the top surface of the plate are given in Table 5.41. For a Titanium Alloy-Zirconia 

(M3, kc/km ratio equal to 0.1125) FGM plate with a/h ratio equal to 20, the values of 

in-plane shear stress       predicted by HSDT-12, HSDT-9, HSDT-5 and FSDT 
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models using linear temperature distribution (TL) are found to be 27.70%, 27.57%, 

27.71%, 27.70% higher and by using constant temperature distribution (TC) are found 

to be 22.05%, 21.37%, 21.57%, 21.47% higher as compared to the values obtained 

using nonlinear temperature profile (TNL). The nondimensionalized values of 

transverse shear stresses                at the middle surface of the plate are given in 

Table 5.42. For a Aluminium-Alumina (M2, kc/km ratio equal to 0.0510) FGM plate 

with a/h ratio equal to 4, the values of transverse shear stresses                 predicted 

by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature 

distribution (TL) are found to be 2.5 times higher and by using constant temperature 

distribution (TC) are found to be very much higher as compared to the values obtained 

using nonlinear temperature profile (TNL). For all values of a/h ratio and kc/km ratio, 

the values obtained using nonlinear (TNL) temperature and those predicted using linear 

(TL) and constant (TC) temperature distributions are very much different from each 

other and the percentage differences are too high. Maximum percentage differences 

are found to be more in FSDT models with constant (TC) temperature distributions. 

5.3 CLOSURE 

The stress analysis results of FGM plates subjected to thermal loads are presented in 

this chapter. A simply supported Monel-Zirconia / Aluminium-Alumina / Titanium 

Alloy-Zirconia FGM plate with rectangular / square geometry is considered 

throughout as a test problem. The distribution of temperature is considered to be 

nonlinear / linear / constantly varying across the plate thickness direction, while in-

plane is sinusoidal. Discussion mainly focused on evaluating the accuracy of solutions 

obtained using various displacement models and temperature profiles in predicting the 

thermo-elastic plate responses. Based on various examples solved and the numerical 

results obtained the general conclusions, and the suggestion for future work are 

presented in the next chapter. 
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Table 5.1. Nondimensionalized in-plane displacement      at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a simply supported square FGM 

(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical 

load (m=n=1 and p=2) 

 
u  

a/h THEORY (0, b/2, -h/2) (0, b/2, 0) (0, b/2, h/2) 

4 

3D-Exact
$
 -0.004069 -0.00008998 0.004021 

HSDT-12 -0.004067 [-0.05]
 Ϯ
 -0.000091 [1.13] 0.00402 [-0.02] 

HSDT-9 -0.004172 [2.53] -0.00015 [66.70] 0.00448 [11.42] 

HSDT-5 -0.003999 [-1.72] -0.000194 [115.60] 0.004113 [2.29] 

FSDT -0.003929 [-3.44] -0.000149 [65.59] 0.004228 [5.15] 

10 

3D-Exact
$
 -0.02472 0.0007108 0.02617 

HSDT-12 -0.024723 [0.01] 0.000711 [0.03] 0.026172 [0.01] 

HSDT-9 -0.024806 [0.35] 0.00093 [30.84] 0.02668 [1.95] 

HSDT-5 -0.02463 [-0.36] 0.000981 [38.01] 0.026305 [0.52] 

FSDT -0.024557 [-0.66] 0.000934 [31.04] 0.026425 [0.97] 

50 

3D-Exact
$
 -0.6141 0.0231 0.6603 

HSDT-12 -0.6140 [0.01] 0.0231 [0.04] 0.6603 [0.00] 

HSDT-9 -0.6142 [0.01] 0.0234 [0.99] 0.6609 [0.09] 

HSDT-5 -0.6140 [-0.02] 0.0234 [1.20] 0.6605 [0.03] 

FSDT -0.6139 [-0.03] 0.0234 [1.00] 0.6606 [0.05] 

Ϯ 
Numbers in parentheses are the percentage error with respect to 3-D elasticity values 

$ 
Reddy, J. N. and Cheng, Z. Q. (2001a). 
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Table 5.2. Nondimensionalized transverse displacement      at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a simply supported square FGM 

(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical 

load (m=n=1 and p=2) 

 
w  

a/h THEORY (a/2, b/2, -h/2) (a/2, b/2, 0) (a/2, b/2, h/2) 

4 

3D-Exact
$
 -0.0127 -0.0137 -0.0135 

HSDT-12 -0.0127 [-0.02]
 Ϯ
 -0.0137 [0.04] -0.0135 [-0.01] 

HSDT-9 -0.0142 [11.70] -0.0142 [3.79] -0.0142 [5.64] 

HSDT-5 -0.0104 [-17.95] -0.0104 [-23.76] -0.0104 [-22.40] 

FSDT -0.0142 [11.90] -0.0142 [3.98] -0.0142 [5.83] 

10 

3D-Exact
$
 -0.1685 -0.1707 -0.1689 

HSDT-12 -0.1685 [0.00] -0.1707 [-0.01] -0.1689 [-0.01] 

HSDT-9 -0.1719 [2.02] -0.1719 [0.70] -0.1719 [1.78] 

HSDT-5 -0.1624 [-3.60] -0.1624 [-4.84] -0.1624 [-3.83] 

FSDT -0.1719 [2.04] -0.1719 [0.72] -0.1719 [1.79] 

50 

3D-Exact
$
 -20.3200 -20.3300 -20.3200 

HSDT-12 -20.3139 [-0.03] -20.3246 [-0.03] -20.3145 [-0.03] 

HSDT-9 -20.3333 [0.07] -20.3333 [0.02] -20.3333 [0.07] 

HSDT-5 -20.2859 [-0.17] -20.2859 [-0.22] -20.2859 [-0.17] 

FSDT -20.3334 [0.07] -20.3334 [0.02] -20.3334 [0.07] 

Ϯ 
Numbers in parentheses are the percentage error with respect to 3-D elasticity values

 

$ 
Reddy, J. N. and Cheng, Z. Q. (2001a). 
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Table 5.3. Nondimensionalized in-plane normal stress       at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a simply supported square FGM 

(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical 

load (m=n=1 and p=2) 

 x  

a/h THEORY (a/2, b/2, -h/2) (a/2, b/2, 0) (a/2, b/2, h/2) 

4 

3D-Exact
$
 3.6310 -0.2037 -3.1540 

HSDT-12 3.7336 [2.83]
 Ϯ
 -0.1976 [-2.98] -3.2077 [1.70] 

HSDT-9 3.7232 [2.54] -0.1230 [-39.62] -3.0355 [-3.76] 

HSDT-5 3.7232 [2.54] -0.1230 [-39.62] -3.0355 [-3.76] 

FSDT 3.5062 [-3.44] -0.1246 [-38.81] -2.8652 [-9.16] 

10 

3D-Exact
$
 22.0600 -0.8722 -18.1700 

HSDT-12 21.8173 [-1.10] -0.8836 [1.31] -18.0287 [-0.78] 

HSDT-9 22.1360 [0.34] -0.7774 [-10.87] -18.0816 [-0.49] 

HSDT-5 21.9789 [-0.37] -0.8182 [-6.19] -17.8264 [-1.89] 

FSDT 21.9139 [-0.66] -0.7790 [-10.69] -17.9078 [-1.44] 

50 

3D-Exact
$
 548.0000 -19.5600 -447.9000 

HSDT-12 537.7070 [-1.88] -20.0571 [2.54] -442.2532 [-1.26] 

HSDT-9 548.0710 [0.01] -19.4729 [-0.45] -447.8683 [-0.01] 

HSDT-5 547.9140 [-0.02] -19.5141 [-0.23] -447.6117 [-0.06] 

FSDT 547.8481 [-0.03] -19.4745 [-0.44] -447.6940 [-0.05] 

Ϯ
Numbers in parentheses are the percentage error with respect to 3-D elasticity values

 

$ 
Reddy, J. N. and Cheng, Z. Q. (2001a).  
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Table 5.4. Nondimensionalized transverse shear stress        and transverse normal 

stress       at the middle (z=0) surface of a simply supported square FGM 

(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical 

load (m=n=1 and p=2) 

a/h THEORY xz  
z  

4 

3-D Exact
$
 -0.9500 -0.5130 

HSDT12 -0.9458 [-0.44]
 Ϯ
 -0.5136 [0.12] 

HSDT-9 -0.9452 [-0.51] -0.5137 [0.14] 

HSDT-5 -0.9452 [-0.51] -0.5137 [0.14] 

FSDT -0.9597 [1.03] -0.5150 [0.39] 

10 

3-D Exact
$
 -2.3960 -0.5142 

HSDT12 -2.3994 [0.14] -0.5142 [0.00] 

HSDT-9 -2.3934 [-0.11] -0.5135 [-0.14] 

HSDT-5 -2.3996 [0.15] -0.5137 [-0.10] 

FSDT- -2.3994 [0.14] -0.5150 [0.19] 

50 

3-D Exact
$
 -12.0000 -0.5141 

HSDT12 -12.0290 [0.24] -0.5140 [-0.02] 

HSDT-9 -11.9955 [-0.04] -0.5135 [-0.12] 

HSDT-5 -11.9968 [-0.03] -0.5136 [-0.10] 

FSDT -11.9967 [-0.03] -0.5150 [0.18] 

Ϯ  
Numbers in parentheses are the percentage error with respect to 3-D elasticity values

 

$ 
Reddy, J. N. and Cheng, Z. Q. (2001a).  
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Table 5.5. Nondimensionalized in-plane displacements         and transverse 

displacement      at the top (z = h/2) surface of a rectangular FGM 

(Monel-Zirconia, M1) plate subjected to nonlinear (TNL) thermal load 

(a/h=4 and p=3) 

a/b THEORY u  v  w  

1 

HSDT-12 -1.9962 -1.9962 3.4373 

HSDT-9 -1.8718 -1.8718 2.3811 

HSDT-5 -1.8591 -1.8591 2.2312 

FSDT -1.8692 -1.8692 2.3788 

1.5 

HSDT-12 -1.2738 -1.9107 2.5193 

HSDT-9 -1.1528 -1.7292 1.4661 

HSDT-5 -1.1403 -1.7104 1.3166 

FSDT -1.1502 -1.7254 1.4639 

2 

HSDT-12 -0.8664 -1.7327 2.0010 

HSDT-9 -0.7501 -1.5003 0.9537 

HSDT-5 -0.7377 -1.4754 0.8048 

FSDT -0.7477 -1.4953 0.9515 

2.5 

HSDT-12 -0.6282 -1.5705 1.6959 

HSDT-9 -0.5180 -1.2950 0.6584 

HSDT-5 -0.5057 -1.2643 0.5101 

FSDT -0.5156 -1.2891 0.6562 

3 

HSDT-12 -0.4792 -1.4377 1.5007 

HSDT-9 -0.3761 -1.1283 0.4778 

HSDT-5 -0.3640 -1.0919 0.3304 

FSDT -0.3738 -1.1215 0.4758 

3.5 

HSDT-12 -0.3795 -1.3283 1.3638 

HSDT-9 -0.2843 -0.9949 0.3611 

HSDT-5 -0.2723 -0.9532 0.2146 

FSDT -0.2821 -0.9875 0.3591 

4 

HSDT-12 -0.3088 -1.2351 1.2590 

HSDT-9 -0.2219 -0.8877 0.2818 

HSDT-5 -0.2102 -0.8407 0.1364 

FSDT -0.2199 -0.8796 0.2799 
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Table 5.6. Nondimensionalized in-plane normal stresses          , in-plane shear 

stress        and transverse shear stresses             at the middle (z=0) 

surface of a rectangular FGM (Monel-Zirconia, M1) plate subjected to 

nonlinear (TNL) thermal load (a/h=4 and p=3) 

a/b THEORY                        

1 

HSDT-12 -539.65 -539.65 -462.89 1.5674 1.5674 

HSDT-9 -486.95 -486.95 -484.51 2.0850 2.0850 

HSDT-5 -486.45 -486.45 -484.78 2.8027 2.8027 

FSDT -486.39 -486.39 -484.81 2.1498 2.1498 

1.5 

HSDT-12 -738.06 -391.31 -416.10 1.3407 2.0112 

HSDT-9 -673.55 -300.99 -447.08 2.0459 3.0688 

HSDT-5 -672.93 -300.04 -447.47 3.2083 4.8124 

FSDT -672.86 -299.93 -447.52 2.1498 3.2247 

2 

HSDT-12 -859.30 -336.38 -348.61 1.0372 2.0745 

HSDT-9 -778.15 -197.21 -387.29 1.9928 3.9856 

HSDT-5 -777.38 -195.70 -387.79 3.7727 7.5454 

FSDT -777.28 -195.51 -387.85 2.1498 4.2996 

2.5 

HSDT-12 -941.03 -333.31 -289.39 0.6656 1.6639 

HSDT-9 -838.54 -137.78 -333.69 1.9275 4.8187 

HSDT-5 -837.59 -135.61 -334.27 4.4928 11.2320 

FSDT -837.46 -135.32 -334.35 2.1498 5.3745 

3 

HSDT-12 -1003.62 -356.86 -242.53 0.2319 0.6955 

HSDT-9 -875.55 -101.82 -290.15 1.8517 5.5550 

HSDT-5 -874.40 -98.95 -290.79 5.3645 16.0935 

FSDT -874.24 -98.54 -290.89 2.1498 6.4494 

3.5 

HSDT-12 -1056.67 -392.08 -206.76 -0.2604 -0.9112 

HSDT-9 -899.56 -78.89 -255.32 1.7675 6.1861 

HSDT-5 -898.23 -75.31 -256.02 6.3829 22.3402 

FSDT -898.02 -74.76 -256.13 2.1498 7.5243 

4 

HSDT-12 -1104.39 -429.50 -179.97 -0.8088 -3.3249 

HSDT-9 -915.93 -63.59 -227.29 1.6769 6.7076 

HSDT-5 -914.42 -59.32 -228.02 7.5425 30.1700 

FSDT -914.17 -58.62 -228.15 2.1498 8.5993 
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Table 5.7. Nondimensionalized in-plane displacement      at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Monel-Zirconia, M1) 

plate subjected to nonlinear (TNL) thermal load (a/b=1.5) 

a/h p z HSDT-12 HSDT-9 HSDT-5 FSDT 

10 

2 

-h/2 0.0191 0.0281 0.0272 0.0287 

0 -0.5193 -0.5258 -0.5262 -0.5262 

h/2 -1.1011 -1.0826 -1.0796 -1.0811 

5 

-h/2 -0.0402 -0.0271 -0.0293 -0.0276 

0 -0.6456 -0.6536 -0.6532 -0.6532 

h/2 -1.3013 -1.2780 -1.2771 -1.2789 

10 

-h/2 -0.0542 -0.0381 -0.0410 -0.0388 

0 -0.7512 -0.7606 -0.7600 -0.7600 

h/2 -1.5060 -1.4793 -1.4790 -1.4812 

20 

2 

-h/2 0.0263 0.0285 0.0283 0.0287 

0 -0.5245 -0.5261 -0.5262 -0.5262 

h/2 -1.0862 -1.0815 -1.0807 -1.0811 

5 

-h/2 -0.0308 -0.0275 -0.0280 -0.0276 

0 -0.6513 -0.6533 -0.6532 -0.6532 

h/2 -1.2845 -1.2786 -1.2784 -1.2789 

10 

-h/2 -0.0427 -0.0387 -0.0394 -0.0388 

0 -0.7578 -0.7602 -0.7600 -0.7600 

h/2 -1.4875 -1.4807 -1.4807 -1.4812 

50 

2 

-h/2 0.0283 0.0287 0.0286 0.0287 

0 -0.5259 -0.5262 -0.5262 -0.5262 

h/2 -1.0819 -1.0812 -1.0811 -1.0811 

5 

-h/2 -0.0281 -0.0276 -0.0277 -0.0276 

0 -0.6529 -0.6532 -0.6532 -0.6532 

h/2 -1.2798 -1.2788 -1.2788 -1.2789 

10 

-h/2 -0.0395 -0.0388 -0.0389 -0.0388 

0 -0.7597 -0.7601 -0.7600 -0.7600 

h/2 -1.4822 -1.4811 -1.4811 -1.4812 
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Table 5.8. Nondimensionalized in-plane normal stress       at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Monel-Zirconia, M1) 

plate subjected to nonlinear (TNL) thermal load (a/b=1.5) 

a/h p  z HSDT-12 HSDT-9 HSDT-5 FSDT 

10 

2 

-h/2 24.00 -36.97 -35.73 -37.69 

0 -545.52 -527.46 -526.91 -526.91 

h/2 -1124.69 -1009.83 -1012.01 -1010.92 

5 

-h/2 24.00 35.57 38.50 36.25 

0 -862.68 -850.06 -850.50 -850.48 

h/2 -897.16 -867.70 -868.31 -867.04 

10 

-h/2 -2.72 50.11 53.89 51.05 

0 -995.68 -1004.98 -1005.80 -1005.75 

h/2 -574.58 -721.17 -721.43 -719.80 

20 

2 

-h/2 16.14 -37.51 -37.20 -37.69 

0 -539.64 -527.05 -526.91 -526.91 

h/2 -1136.65 -1010.65 -1011.19 -1010.92 

5 

-h/2 12.74 36.08 36.81 36.25 

0 -854.82 -850.37 -850.49 -850.48 

h/2 -910.24 -867.20 -867.35 -867.04 

10 

-h/2 -16.90 50.81 51.76 51.05 

0 -986.29 -1005.56 -1005.76 -1005.75 

h/2 -588.80 -720.15 -720.21 -719.80 

50 

2 

-h/2 13.91 -37.66 -37.61 -37.69 

0 -537.98 -526.93 -526.91 -526.91 

h/2 -1140.04 -1010.88 -1010.97 -1010.92 

5 

-h/2 9.55 36.23 36.34 36.25 

0 -852.61 -850.46 -850.48 -850.48 

h/2 -913.95 -867.06 -867.09 -867.04 

10 

-h/2 -20.91 51.01 51.16 51.05 

0 -983.65 -1005.72 -1005.76 -1005.75 

h/2 -592.83 -719.86 -719.87 -719.80 
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Table 5.9. Nondimensionalized in-plane displacement      at the top (z = h/2) surface 

of a square FGM (Monel-Zirconia, M1) plate subjected to nonlinear (TNL) 

thermal load  

a/h p  HSDT-12 HSDT-9 HSDT-5 FSDT 

4 

0 -2.1916 -2.0690 -2.0532 -2.0690 

1 -1.8058 -1.7066 -1.6803 -1.6908 

2 -1.8782 -1.7658 -1.7471 -1.7568 

5 -2.2140 -2.0727 -2.0668 -2.0782 

8 -2.4473 -2.2918 -2.2888 -2.3021 

10 -2.5567 -2.3956 -2.3925 -2.4070 

10 

0 -2.0893 -2.0690 -2.0666 -2.0690 

1 -1.7098 -1.6934 -1.6891 -1.6908 

2 -1.7769 -1.7583 -1.7553 -1.7568 

5 -2.1007 -2.0772 -2.0764 -2.0782 

8 -2.3263 -2.3004 -2.3001 -2.3021 

10 -2.4319 -2.4051 -2.4047 -2.4070 

20 

0 -2.0741 -2.0690 -2.0684 -2.0690 

1 -1.6955 -1.6914 -1.6904 -1.6908 

2 -1.7619 -1.7572 -1.7564 -1.7568 

5 -2.0838 -2.0779 -2.0777 -2.0782 

8 -2.3082 -2.3017 -2.3016 -2.3021 

10 -2.4132 -2.4065 -2.4064 -2.4070 

50 

0 -2.0698 -2.0690 -2.0689 -2.0690 

1 -1.6915 -1.6909 -1.6907 -1.6908 

2 -1.7576 -1.7569 -1.7568 -1.7568 

5 -2.0791 -2.0781 -2.0781 -2.0782 

8 -2.3031 -2.3021 -2.3021 -2.3021 

10 -2.4080 -2.4069 -2.4069 -2.4070 

100 

0 -2.0692 -2.0690 -2.0690 -2.0690 

1 -1.6910 -1.6908 -1.6907 -1.6908 

2 -1.7570 -1.7568 -1.7568 -1.7568 

5 -2.0784 -2.0782 -2.0781 -2.0782 

8 -2.3024 -2.3021 -2.3021 -2.3021 

10 -2.4072 -2.4070 -2.4070 -2.4070 
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Table 5.10. Nondimensionalized transverse displacement      at the top (z = h/2) 

surface of a square FGM (Monel-Zirconia, M1) plate subjected to 

nonlinear (TNL) thermal load 

a/h p HSDT-12 HSDT-9 HSDT-5 FSDT 

4 

0 3.7688 2.6344 2.3923 2.6344 

1 3.2505 2.3122 2.1509 2.3107 

2 3.2891 2.2991 2.1510 2.2962 

5 3.7594 2.5880 2.4239 2.5889 

8 4.1389 2.8475 2.6591 2.8522 

10 4.3251 2.9781 2.7751 2.9843 

10 

0 7.0408 6.5859 6.4924 6.5859 

1 6.1522 5.7773 5.7151 5.7767 

2 6.1380 5.7417 5.6845 5.7405 

5 6.9423 6.4719 6.4086 6.4723 

8 7.6476 7.1286 7.0559 7.1306 

10 7.9995 7.4582 7.3798 7.4607 

20 

0 13.3992 13.1718 13.1252 13.1718 

1 11.7411 11.5538 11.5228 11.5535 

2 11.6797 11.4815 11.4531 11.4810 

5 13.1797 12.9444 12.9129 12.9446 

8 14.5198 14.2602 14.2240 14.2611 

10 15.1909 14.9201 14.8812 14.9214 

50 

0 33.0204 32.9294 32.9108 32.9294 

1 28.9588 28.8839 28.8715 28.8837 

2 28.7819 28.7026 28.6913 28.7024 

5 32.4555 32.3613 32.3487 32.3614 

8 35.7563 35.6524 35.6380 35.6528 

10 37.4113 37.3030 37.2874 37.3035 

100 

0 65.9043 65.8588 65.8495 65.8588 

1 57.8050 57.7675 57.7614 57.7675 

2 57.4445 57.4049 57.3992 57.4048 

5 64.7698 64.7228 64.7165 64.7228 

8 71.3574 71.3055 71.2983 71.3057 

10 74.6609 74.6067 74.5989 74.6069 
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Table 5.11. Nondimensionalized in-plane normal stress       at the top (z = h/2) 

surface of a square FGM (Monel-Zirconia, M1) plate subjected to 

nonlinear (TNL) thermal load 

a/h p HSDT-12 HSDT-9 HSDT-5 FSDT 

4 

0 -555.90 -629.15 -638.09 -629.15 

1 -871.09 -833.84 -848.66 -842.76 

2 -861.43 -800.36 -810.94 -805.45 

5 -590.71 -627.09 -630.38 -623.99 

8 -348.30 -503.34 -505.03 -497.50 

10 -223.87 -444.71 -446.44 -438.30 

10 

0 -617.03 -629.15 -630.53 -629.15 

1 -929.72 -841.27 -843.67 -842.76 

2 -922.98 -804.60 -806.30 -805.45 

5 -658.15 -624.50 -624.97 -623.99 

8 -419.76 -498.48 -498.67 -497.50 

10 -297.43 -439.36 -439.56 -438.30 

20 

0 -626.11 -629.15 -629.49 -629.15 

1 -938.41 -842.38 -842.99 -842.76 

2 -932.14 -805.24 -805.67 -805.45 

5 -668.22 -624.12 -624.23 -623.99 

8 -430.43 -497.75 -497.79 -497.50 

10 -308.41 -438.56 -438.61 -438.30 

50 

0 -628.66 -629.15 -629.20 -629.15 

1 -940.86 -842.70 -842.79 -842.76 

2 -934.72 -805.42 -805.49 -805.45 

5 -671.06 -624.01 -624.02 -623.99 

8 -433.44 -497.54 -497.55 -497.50 

10 -311.50 -438.34 -438.35 -438.30 

100 

0 -629.03 -629.15 -629.16 -629.15 

1 -941.21 -842.74 -842.77 -842.76 

2 -935.09 -805.45 -805.46 -805.45 

5 -671.47 -623.99 -623.99 -623.99 

8 -433.87 -497.51 -497.51 -497.50 

10 -311.95 -438.31 -438.31 -438.30 
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Table 5.12. Nondimensionalized in-plane shear stress        at the top (z = h/2) 

surface of a square FGM (Monel-Zirconia, M1) plate subjected to 

nonlinear (TNL) thermal load 

a/h p HSDT-12 HSDT-9 HSDT-5 FSDT 

4 

0 -666.44 -629.15 -624.33 -629.15 

1 -549.12 -518.93 -510.95 -514.13 

2 -571.14 -536.96 -531.26 -534.22 

5 -673.24 -630.26 -628.49 -631.93 

8 -744.18 -696.90 -695.98 -700.04 

10 -777.45 -728.47 -727.53 -731.92 

10 

0 -635.32 -629.15 -628.41 -629.15 

1 -519.90 -514.93 -513.64 -514.13 

2 -540.33 -534.67 -533.76 -534.22 

5 -638.80 -631.65 -631.40 -631.93 

8 -707.38 -699.51 -699.41 -700.04 

10 -739.49 -731.34 -731.24 -731.92 

20 

0 -630.70 -629.15 -628.96 -629.15 

1 -515.58 -514.33 -514.01 -514.13 

2 -535.75 -534.33 -534.10 -534.22 

5 -633.66 -631.86 -631.80 -631.93 

8 -701.88 -699.91 -699.88 -700.04 

10 -733.82 -731.77 -731.75 -731.92 

50 

0 -629.40 -629.15 -629.12 -629.15 

1 -514.36 -514.16 -514.11 -514.13 

2 -534.46 -534.24 -534.20 -534.22 

5 -632.21 -631.92 -631.91 -631.93 

8 -700.33 -700.02 -700.01 -700.04 

10 -732.22 -731.89 -731.89 -731.92 

100 

0 -629.21 -629.15 -629.14 -629.15 

1 -514.19 -514.14 -514.13 -514.13 

2 -534.28 -534.22 -534.21 -534.22 

5 -632.00 -631.93 -631.93 -631.93 

8 -700.11 -700.03 -700.03 -700.04 

10 -731.99 -731.91 -731.91 -731.92 
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Table 5.13. Nondimensionalized transverse shear stress        at the middle (z = 0) 

surface of a square FGM (Monel-Zirconia, M1) plate subjected to 

nonlinear (TNL) thermal load 

a/h p HSDT-12 HSDT-9 HSDT-5 FSDT 

4 

0 -0.5389 0.0000 0.6755 0.0000 

1 2.8597 2.7923 3.4518 2.8261 

2 3.0614 3.4130 4.1086 3.4906 

5 -2.0179 -1.5943 -0.8574 -1.6120 

8 -5.2314 -5.0354 -4.2561 -5.1570 

10 -6.1622 -6.0309 -5.2102 -6.1925 

10 

0 -0.0354 0.0000 0.0418 0.0000 

1 1.2742 1.1283 1.1691 1.1304 

2 1.3548 1.3912 1.4344 1.3962 

5 -0.6802 -0.6437 -0.5982 -0.6448 

8 -1.9559 -2.0549 -2.0071 -2.0628 

10 -2.3167 -2.4665 -2.4162 -2.4770 

20 

0 -0.0045 0.0000 0.0052 0.0000 

1 0.6468 0.5650 0.5700 0.5652 

2 0.6870 0.6975 0.7029 0.6981 

5 -0.3307 -0.3223 -0.3166 -0.3224 

8 -0.9678 -1.0304 -1.0245 -1.0314 

10 -1.1474 -1.2372 -1.2309 -1.2385 

50 

0 -0.0003 0.0000 0.0003 0.0000 

1 0.2598 0.2261 0.2264 0.2261 

2 0.2759 0.2792 0.2795 0.2792 

5 -0.1312 -0.1290 -0.1286 -0.1290 

8 -0.3860 -0.4125 -0.4121 -0.4126 

10 -0.4577 -0.4953 -0.4949 -0.4954 

100 

0 -0.0001 0.0000 0.0000 0.0000 

1 0.1300 0.1130 0.1131 0.1130 

2 0.1380 0.1396 0.1397 0.1396 

5 -0.0655 -0.0645 -0.0644 -0.0645 

8 -0.1929 -0.2063 -0.2062 -0.2063 

10 -0.2288 -0.2477 -0.2476 -0.2477 
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Table 5.14. Nondimensionalized in-plane displacements         and transverse 

displacement      at the top (z = h/2) surface of a rectangular FGM 

(Aluminium-Alumina, M2) plate subjected to nonlinear (TNL) thermal 

load (a/b=2 and p=2) 

a/h THEORY u  v  w  

2 

HSDT-12 -0.8692 -1.7385 1.8592 

HSDT-9 -0.6518 -1.3036 0.3396 

HSDT-5 -0.5591 -1.1182 -0.5677 

FSDT -0.6748 -1.3497 0.3618 

4 

HSDT-12 -0.7454 -1.4908 1.5837 

HSDT-9 -0.6670 -1.3339 0.7089 

HSDT-5 -0.6484 -1.2967 0.2980 

FSDT -0.6748 -1.3497 0.7236 

10 

HSDT-12 -0.6873 -1.3746 2.1633 

HSDT-9 -0.6734 -1.3469 1.8025 

HSDT-5 -0.6707 -1.3414 1.6434 

FSDT -0.6748 -1.3497 1.8091 

20 

HSDT-12 -0.6780 -1.3560 3.7959 

HSDT-9 -0.6745 -1.3490 3.6148 

HSDT-5 -0.6738 -1.3476 3.5356 

FSDT -0.6748 -1.3497 3.6181 

50 

HSDT-12 -0.6754 -1.3507 9.1164 

HSDT-9 -0.6748 -1.3496 9.0439 

HSDT-5 -0.6747 -1.3494 9.0123 

FSDT -0.6748 -1.3497 9.0453 

80 

HSDT-12 -0.6750 -1.3501 14.5169 

HSDT-9 -0.6748 -1.3497 14.4716 

HSDT-5 -0.6748 -1.3496 14.4518 

FSDT -0.6748 -1.3497 14.4724 

100 

HSDT-12 -0.6750 -1.3499 18.1261 

HSDT-9 -0.6748 -1.3497 18.0898 

HSDT-5 -0.6748 -1.3496 18.0740 

FSDT -0.6748 -1.3497 18.0905 
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Table 5.15. Nondimensionalized in-plane normal stresses          , in-plane shear 

stress        and transverse shear stresses             at the middle (z=0) 

surface of a rectangular FGM (Aluminium-Alumina, M2) plate subjected 

to nonlinear (TNL) thermal load (a/b=2 and p=2) 

a/h THEORY x  
y  xy  xz  

yz  

2 

HSDT-12 -805.03 -436.57 -245.63 -34.6069 -69.2138 

HSDT-9 -641.02 -206.25 -289.85 -11.4758 -22.9517 

HSDT-5 -662.53 -248.30 -276.16 20.0078 40.0155 

FSDT -658.83 -241.05 -278.52 -16.0020 -32.0041 

4 

HSDT-12 -703.75 -318.27 -256.98 -8.8901 -17.7802 

HSDT-9 -652.49 -228.67 -282.55 -7.2446 -14.4892 

HSDT-5 -659.67 -242.71 -277.98 -3.8791 -7.7582 

FSDT -658.83 -241.05 -278.52 -8.0010 -16.0020 

10 

HSDT-12 -664.54 -253.18 -274.24 -2.1480 -4.2962 

HSDT-9 -657.68 -238.80 -279.25 -3.1467 -6.2935 

HSDT-5 -658.96 -241.31 -278.43 -2.9437 -5.8874 

FSDT -658.83 -241.05 -278.52 -3.2004 -6.4008 

20 

HSDT-12 -658.61 -242.49 -277.42 -0.9646 -1.9292 

HSDT-9 -658.53 -240.48 -278.70 -1.5934 -3.1868 

HSDT-5 -658.86 -241.11 -278.50 -1.5682 -3.1365 

FSDT -658.83 -241.05 -278.52 -1.6002 -3.2004 

50 

HSDT-12 -656.94 -239.43 -278.34 -0.3734 -0.7469 

HSDT-9 -658.78 -240.96 -278.55 -0.6396 -1.2793 

HSDT-5 -658.83 -241.06 -278.51 -0.6380 -1.2761 

FSDT -658.83 -241.05 -278.52 -0.6401 -1.2802 

80 

HSDT-12 -656.75 -239.08 -278.45 -0.2325 -0.4650 

HSDT-9 -658.81 -241.01 -278.53 -0.3999 -0.7999 

HSDT-5 -658.83 -241.05 -278.52 -0.3996 -0.7991 

FSDT -658.83 -241.05 -278.52 -0.4001 -0.8001 

100 

HSDT-12 -656.70 -239.00 -278.47 -0.1859 -0.3717 

HSDT-9 -658.81 -241.03 -278.52 -0.3200 -0.6400 

HSDT-5 -658.83 -241.05 -278.52 -0.3198 -0.6396 

FSDT -658.83 -241.05 -278.52 -0.3200 -0.6401 
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Table 5.16. Nondimensionalized in-plane displacement      at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Aluminium-Alumina, 

M2) plate subjected to nonlinear (TNL) thermal load (a/h=20) 

a/b p z HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

1 

-h/2 -0.0493 -0.0454 -0.0462 -0.0455 

0 -0.7742 -0.7755 -0.7755 -0.7755 

h/2 -1.5085 -1.5055 -1.5048 -1.5055 

3 

-h/2 -0.4008 -0.3941 -0.3966 -0.3954 

0 -1.1360 -1.1385 -1.1379 -1.1380 

h/2 -1.8840 -1.8799 -1.8793 -1.8806 

8 

-h/2 -0.5293 -0.5200 -0.5235 -0.5215 

0 -1.5493 -1.5537 -1.5529 -1.5528 

h/2 -2.5884 -2.5829 -2.5823 -2.5841 

2 

1 

-h/2 -0.0439 -0.0362 -0.0379 -0.0364 

0 -0.6178 -0.6204 -0.6204 -0.6204 

h/2 -1.2104 -1.2044 -1.2029 -1.2044 

3 

-h/2 -0.3271 -0.3138 -0.3187 -0.3163 

0 -0.9065 -0.9113 -0.9103 -0.9104 

h/2 -1.5112 -1.5032 -1.5019 -1.5045 

8 

-h/2 -0.4327 -0.4142 -0.4212 -0.4172 

0 -1.2354 -1.2440 -1.2424 -1.2422 

h/2 -2.0759 -2.0649 -2.0636 -2.0673 

3 

1 

-h/2 -0.0385 -0.0270 -0.0295 -0.0273 

0 -0.4614 -0.4654 -0.4653 -0.4653 

h/2 -0.9123 -0.9033 -0.9011 -0.9033 

3 

-h/2 -0.2534 -0.2335 -0.2408 -0.2372 

0 -0.6771 -0.6842 -0.6827 -0.6828 

h/2 -1.1385 -1.1264 -1.1245 -1.1284 

8 

-h/2 -0.3360 -0.3084 -0.3188 -0.3129 

0 -0.9215 -0.9343 -0.9319 -0.9317 

h/2 -1.5633 -1.5470 -1.5450 -1.5505 
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Table 5.17. Nondimensionalized in-plane shear stress        at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Aluminium-Alumina, 

M2) plate subjected to nonlinear (TNL) thermal load (a/h=20) 

a/b p z HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

1 

-h/2 -8.33 -7.68 -7.82 -7.70 

0 -420.96 -421.69 -421.68 -421.68 

h/2 -1385.30 -1382.55 -1381.86 -1382.54 

3 

-h/2 -67.80 -66.67 -67.08 -66.88 

0 -298.56 -299.20 -299.06 -299.07 

h/2 -1730.10 -1726.38 -1725.81 -1726.99 

8 

-h/2 -89.53 -87.96 -88.55 -88.22 

0 -266.62 -267.37 -267.23 -267.22 

h/2 -2376.96 -2371.92 -2371.33 -2373.00 

2 

1 

-h/2 -7.42 -6.13 -6.41 -6.16 

0 -335.91 -337.36 -337.34 -337.34 

h/2 -1111.53 -1106.04 -1104.67 -1106.03 

3 

-h/2 -55.34 -53.08 -53.91 -53.50 

0 -238.24 -239.51 -239.24 -239.26 

h/2 -1387.80 -1380.38 -1379.23 -1381.59 

8 

-h/2 -73.20 -70.07 -71.24 -70.57 

0 -212.59 -214.08 -213.80 -213.77 

h/2 -1906.30 -1896.25 -1895.07 -1898.40 

3 

1 

-h/2 -6.51 -4.57 -5.00 -4.62 

0 -250.87 -253.04 -253.01 -253.01 

h/2 -837.74 -829.53 -827.48 -829.53 

3 

-h/2 -42.86 -39.49 -40.74 -40.13 

0 -177.93 -179.82 -179.41 -179.44 

h/2 -1045.46 -1034.38 -1032.65 -1036.19 

8 

-h/2 -56.84 -52.18 -53.94 -52.93 

0 -158.57 -160.78 -160.37 -160.33 

h/2 -1435.60 -1420.59 -1418.80 -1423.80 
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Table 5.18. Nondimensionalized in-plane displacement      at the top (z = h/2) 

surface of a FGM (Aluminium-Alumina, M2) plate subjected to 

nonlinear (TNL) thermal load (a/h=10) 

a/b p HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

0 -1.5461 -1.5311 -1.5293 -1.5311 

1 -1.5175 -1.5055 -1.5025 -1.5055 

2 -1.6997 -1.6857 -1.6830 -1.6871 

5 -2.2308 -2.2116 -2.2090 -2.2156 

8 -2.6012 -2.5794 -2.5768 -2.5841 

10 -2.7871 -2.7640 -2.7615 -2.7689 

1.5 

0 -0.9572 -0.9422 -0.9404 -0.9422 

1 -0.9384 -0.9265 -0.9235 -0.9265 

2 -1.0507 -1.0368 -1.0341 -1.0382 

5 -1.3786 -1.3595 -1.3569 -1.3634 

8 -1.6073 -1.5856 -1.5829 -1.5902 

10 -1.7221 -1.6991 -1.6966 -1.7039 

2 

0 -0.6273 -0.6124 -0.6106 -0.6124 

1 -0.6141 -0.6022 -0.5992 -0.6022 

2 -0.6873 -0.6734 -0.6707 -0.6748 

5 -0.9013 -0.8823 -0.8797 -0.8862 

8 -1.0506 -1.0290 -1.0264 -1.0336 

10 -1.1256 -1.1028 -1.1002 -1.1076 

2.5 

0 -0.4371 -0.4224 -0.4206 -0.4224 

1 -0.4271 -0.4153 -0.4123 -0.4153 

2 -0.4778 -0.4640 -0.4613 -0.4654 

5 -0.6261 -0.6073 -0.6047 -0.6112 

8 -0.7297 -0.7083 -0.7056 -0.7129 

10 -0.7817 -0.7591 -0.7565 -0.7638 

3 

0 -0.3209 -0.3062 -0.3044 -0.3062 

1 -0.3128 -0.3011 -0.2981 -0.3011 

2 -0.3496 -0.3360 -0.3333 -0.3374 

5 -0.4579 -0.4393 -0.4366 -0.4431 

8 -0.5335 -0.5123 -0.5096 -0.5168 

10 -0.5715 -0.5491 -0.5464 -0.5538 
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Table 5.19. Nondimensionalized transverse displacement      at the top (z = h/2) 

surface of a FGM (Aluminium-Alumina, M2) plate subjected to 

nonlinear (TNL) thermal load (a/h=10) 

a/b p HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

0 5.2102 4.8735 4.8044 4.8735 

1 4.9567 4.6479 4.5331 4.6474 

2 4.8779 4.5160 4.3568 4.5226 

5 5.9596 5.4438 5.1802 5.4717 

8 7.1408 6.5327 6.2200 6.5655 

10 7.7930 7.1442 6.8183 7.1766 

1.5 

0 3.3357 2.9991 2.9300 2.9991 

1 3.1691 2.8604 2.7457 2.8599 

2 3.1380 2.7766 2.6174 2.7832 

5 3.8544 3.3394 3.0759 3.3672 

8 4.6150 4.0076 3.6951 4.0403 

10 5.0322 4.3841 4.0583 4.4164 

2 

0 2.2859 1.9494 1.8803 1.9494 

1 2.1678 1.8594 1.7448 1.8590 

2 2.1633 1.8025 1.6434 1.8091 

5 2.6749 2.1611 1.8976 2.1887 

8 3.1999 2.5937 2.2813 2.6262 

10 3.4856 2.8385 2.5129 2.8706 

2.5 

0 1.6807 1.3444 1.2754 1.3444 

1 1.5906 1.2825 1.1680 1.2820 

2 1.6011 1.2412 1.0821 1.2476 

5 1.9943 1.4820 1.2187 1.5094 

8 2.3836 1.7788 1.4666 1.8112 

10 2.5935 1.9477 1.6224 1.9797 

3 

0 1.3108 0.9747 0.9057 0.9747 

1 1.2375 0.9300 0.8155 0.9295 

2 1.2570 0.8981 0.7392 0.9045 

5 1.5775 1.0671 0.8040 1.0943 

8 1.8838 1.2810 0.9690 1.3131 

10 2.0474 1.4035 1.0785 1.4353 
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Table 5.20. Nondimensionalized in-plane normal stress       at the top (z = h/2) 

surface of a FGM (Aluminium-Alumina, M2) plate subjected to 

nonlinear (TNL) thermal load (a/h=10) 

a/b p HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

0 -1378.91 -1406.00 -1409.09 -1406.00 

1 -1493.08 -1449.55 -1454.66 -1449.56 

2 -1118.08 -1142.31 -1146.91 -1139.87 

5 330.81 -245.36 -249.78 -238.59 

8 1551.05 381.90 377.41 389.86 

10 2205.75 696.77 692.48 705.05 

1.5 

0 -1911.51 -1946.77 -1950.75 -1946.77 

1 -2018.28 -1981.29 -1987.88 -1981.31 

2 -1707.09 -1738.88 -1744.83 -1735.76 

5 -443.72 -1029.81 -1035.54 -1021.13 

8 647.05 -533.04 -538.86 -522.84 

10 1236.80 -283.55 -289.10 -272.92 

2 

0 -2203.01 -2249.60 -2254.82 -2249.60 

1 -2306.96 -2279.06 -2287.71 -2279.09 

2 -2031.24 -2073.52 -2081.36 -2069.45 

5 -870.79 -1470.68 -1478.26 -1459.36 

8 148.03 -1047.27 -1054.97 -1033.94 

10 701.69 -834.46 -841.82 -820.58 

2.5 

0 -2363.16 -2424.14 -2430.96 -2424.14 

1 -2466.99 -2450.67 -2461.98 -2450.71 

2 -2211.41 -2267.05 -2277.32 -2261.78 

5 -1109.17 -1726.60 -1736.61 -1711.93 

8 -131.13 -1345.80 -1355.97 -1328.52 

10 402.03 -1154.23 -1163.95 -1136.23 

3 

0 -2452.54 -2530.80 -2539.57 -2530.80 

1 -2557.89 -2555.54 -2570.08 -2555.60 

2 -2314.29 -2386.01 -2399.29 -2379.31 

5 -1246.37 -1884.98 -1898.00 -1866.28 

8 -292.53 -1530.58 -1543.82 -1508.54 

10 228.45 -1352.08 -1364.75 -1329.13 
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Table 5.21. Nondimensionalized in-plane shear stress        at the top (z = h/2) 

surface of a FGM (Aluminium-Alumina, M2) plate subjected to 

nonlinear (TNL) thermal load (a/h=10) 

a/b p  HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

0 -1419.79 -1406.00 -1404.34 -1406.00 

1 -1393.51 -1382.55 -1379.80 -1382.54 

2 -1560.85 -1547.99 -1545.51 -1549.30 

5 -2048.55 -2030.96 -2028.58 -2034.60 

8 -2388.76 -2368.72 -2366.30 -2373.00 

10 -2559.45 -2538.26 -2535.95 -2542.72 

1.5 

0 -1318.45 -1297.85 -1295.35 -1297.85 

1 -1292.59 -1276.21 -1272.08 -1276.19 

2 -1447.36 -1428.16 -1424.44 -1430.12 

5 -1898.92 -1872.66 -1869.06 -1878.10 

8 -2214.00 -2184.06 -2180.42 -2190.46 

10 -2372.12 -2340.46 -2336.98 -2347.12 

2 

0 -1152.12 -1124.80 -1121.48 -1124.80 

1 -1127.78 -1106.05 -1100.55 -1106.03 

2 -1262.29 -1236.85 -1231.86 -1239.44 

5 -1655.28 -1620.48 -1615.65 -1627.68 

8 -1929.60 -1889.92 -1885.02 -1898.40 

10 -2067.31 -2025.35 -2020.66 -2034.17 

2.5 

0 -1003.56 -969.66 -965.50 -969.66 

1 -980.47 -953.50 -946.62 -953.48 

2 -1096.81 -1065.28 -1059.02 -1068.48 

5 -1437.39 -1394.24 -1388.15 -1403.18 

8 -1675.26 -1626.03 -1619.85 -1636.55 

10 -1794.71 -1742.65 -1736.73 -1753.60 

3 

0 -883.93 -843.60 -838.62 -843.60 

1 -861.65 -829.56 -821.31 -829.53 

2 -963.24 -925.78 -918.24 -929.58 

5 -1261.39 -1210.15 -1202.76 -1220.76 

8 -1469.80 -1411.29 -1403.78 -1423.80 

10 -1574.51 -1512.60 -1505.41 -1525.63 
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Table 5.22. Nondimensionalized transverse shear stress        at the middle (z = 0) 

surface of a FGM (Aluminium-Alumina, M2) plate subjected to 

nonlinear (TNL) thermal load (a/h=10) 

a/b p  HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

0 -0.0791 0.0000 0.0933 0.0000 

1 0.4227 0.5714 0.6646 0.5734 

2 -1.9733 -3.1787 -3.0976 -3.2004 

5 -5.7803 -8.2590 -8.1806 -8.3052 

8 -6.6672 -8.9704 -8.8872 -9.0147 

10 -6.7567 -8.9144 -8.8314 -8.9573 

1.5 

0 -0.1281 0.0000 0.1516 0.0000 

1 0.3441 0.5701 0.7216 0.5734 

2 -2.0465 -3.1653 -3.0334 -3.2004 

5 -5.8336 -8.2303 -8.1029 -8.3052 

8 -6.7086 -8.9429 -8.8077 -9.0147 

10 -6.7946 -8.8878 -8.7529 -8.9573 

2 

0 -0.1963 0.0000 0.2330 0.0000 

1 0.2347 0.5683 0.8013 0.5734 

2 -2.1481 -3.1467 -2.9437 -3.2004 

5 -5.9078 -8.1906 -7.9942 -8.3052 

8 -6.7663 -8.9047 -8.6965 -9.0147 

10 -6.8475 -8.8508 -8.6431 -8.9573 

2.5 

0 -0.2830 0.0000 0.3376 0.0000 

1 0.0953 0.5661 0.9036 0.5734 

2 -2.2773 -3.1233 -2.8285 -3.2004 

5 -6.0022 -8.1402 -7.8547 -8.3052 

8 -6.8400 -8.8561 -8.5537 -9.0147 

10 -6.9150 -8.8036 -8.5023 -8.9573 

3 

0 -0.3878 0.0000 0.4653 0.0000 

1 -0.0731 0.5633 1.0284 0.5734 

2 -2.4331 -3.0953 -2.6880 -3.2004 

5 -6.1161 -8.0795 -7.6847 -8.3052 

8 -6.9291 -8.7973 -8.3798 -9.0147 

10 -6.9969 -8.7466 -8.3306 -8.9573 
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Table 5.23. Nondimensionalized in-plane displacements         and transverse 

displacement      at the top (z = h/2) surface of a rectangular FGM 

(Titanium Alloy-Zirconia, M3) plate subjected to nonlinear (TNL) thermal 

load (a/h=10 and a/b=2) 

p THEORY u  v  w  

1 

HSDT-12 -0.5229 -1.0458 2.0461 

HSDT-9 -0.5129 -1.0258 1.7835 

HSDT-5 -0.5093 -1.0187 1.7006 

FSDT -0.5114 -1.0229 1.7808 

2 

HSDT-12 -0.5366 -1.0731 2.0146 

HSDT-9 -0.5258 -1.0516 1.7393 

HSDT-5 -0.5227 -1.0454 1.6495 

FSDT -0.5249 -1.0498 1.7369 

3 

HSDT-12 -0.5610 -1.1220 2.0511 

HSDT-9 -0.5493 -1.0986 1.7587 

HSDT-5 -0.5466 -1.0933 1.6644 

FSDT -0.5490 -1.0980 1.7573 

5 

HSDT-12 -0.6080 -1.2160 2.1716 

HSDT-9 -0.5949 -1.1898 1.8494 

HSDT-5 -0.5928 -1.1856 1.7502 

FSDT -0.5953 -1.1905 1.8500 

7 

HSDT-12 -0.6455 -1.2910 2.2889 

HSDT-9 -0.6313 -1.2626 1.9449 

HSDT-5 -0.6296 -1.2592 1.8433 

FSDT -0.6321 -1.2642 1.9466 

9 

HSDT-12 -0.6747 -1.3495 2.3884 

HSDT-9 -0.6598 -1.3195 2.0281 

HSDT-5 -0.6582 -1.3164 1.9254 

FSDT -0.6608 -1.3216 2.0304 

10 

HSDT-12 -0.6869 -1.3739 2.4317 

HSDT-9 -0.6717 -1.3433 2.0647 

HSDT-5 -0.6702 -1.3403 1.9616 

FSDT -0.6727 -1.3455 2.0672 
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Table 5.24. Nondimensionalized in-plane normal stresses          , in-plane shear 

stress        and transverse shear stresses             at the middle (z=0) 

surface of a rectangular FGM (Titanium Alloy-Zirconia, M3) plate 

subjected to nonlinear (TNL) thermal load (a/h=10 and a/b=2) 

p THEORY x  
y  xy  xz  

yz  

1 

HSDT-12 -170.20 -22.22 -98.65 0.7389 1.4777 

HSDT-9 -161.34 -10.49 -100.57 0.9975 1.9950 

HSDT-5 -160.84 -9.53 -100.87 1.0771 2.1543 

FSDT -160.84 -9.53 -100.87 1.0110 2.0220 

2 

HSDT-12 -183.26 -44.50 -92.50 0.5577 1.1154 

HSDT-9 -173.22 -31.63 -94.39 0.7360 1.4719 

HSDT-5 -172.97 -31.18 -94.53 0.8119 1.6239 

FSDT -172.97 -31.17 -94.53 0.7461 1.4922 

3 

HSDT-12 -195.65 -57.46 -92.13 0.2437 0.4874 

HSDT-9 -187.10 -45.99 -94.07 0.3457 0.6913 

HSDT-5 -187.04 -45.87 -94.11 0.4173 0.8346 

FSDT -187.04 -45.87 -94.11 0.3508 0.7015 

5 

HSDT-12 -212.51 -68.33 -96.12 -0.2593 -0.5185 

HSDT-9 -208.38 -61.03 -98.24 -0.2380 -0.4761 

HSDT-5 -208.49 -61.24 -98.17 -0.1722 -0.3445 

FSDT -208.51 -61.26 -98.16 -0.2401 -0.4803 

7 

HSDT-12 -222.92 -71.17 -101.17 -0.5512 -1.1023 

HSDT-9 -222.64 -67.51 -103.42 -0.5604 -1.1209 

HSDT-5 -222.83 -67.87 -103.31 -0.4980 -0.9960 

FSDT -222.85 -67.91 -103.30 -0.5666 -1.1333 

9 

HSDT-12 -229.89 -71.61 -105.52 -0.7044 -1.4086 

HSDT-9 -232.29 -70.48 -107.87 -0.7251 -1.4501 

HSDT-5 -232.51 -70.92 -107.73 -0.6647 -1.3294 

FSDT -232.54 -70.97 -107.72 -0.7337 -1.4673 

10 

HSDT-12 -232.59 -71.57 -107.35 -0.7488 -1.4976 

HSDT-9 -235.94 -71.33 -109.74 -0.7718 -1.5435 

HSDT-5 -236.18 -71.78 -109.60 -0.7121 -1.4242 

FSDT -236.21 -71.83 -109.59 -0.7812 -1.5623 
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Table 5.25. Nondimensionalized transverse displacement      at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Titanium Alloy-

Zirconia, M3) plate subjected to nonlinear (TNL) thermal load (p=1) 

a/b a/h z HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

4 

-h/2 1.5276 1.7874 1.5729 1.7808 

0 1.7193 1.7874 1.5729 1.7808 

h/2 2.4434 1.7874 1.5729 1.7808 

10 

-h/2 4.3516 4.4547 4.3718 4.4520 

0 4.4285 4.4547 4.3718 4.4520 

h/2 4.7173 4.4547 4.3718 4.4520 

50 

-h/2 22.2400 22.2606 22.2441 22.2601 

0 22.2554 22.2606 22.2441 22.2601 

h/2 22.3131 22.2606 22.2441 22.2601 

2 

4 

-h/2 0.4584 0.7186 0.5057 0.7123 

0 0.6464 0.7186 0.5057 0.7123 

h/2 1.3711 0.7186 0.5057 0.7123 

10 

-h/2 1.6801 1.7835 1.7006 1.7808 

0 1.7570 1.7835 1.7006 1.7808 

h/2 2.0461 1.7835 1.7006 1.7808 

50 

-h/2 8.8840 8.9046 8.8881 8.9040 

0 8.8994 8.9046 8.8881 8.9040 

h/2 8.9571 8.9046 8.8881 8.9040 

3 

4 

-h/2 0.1083 0.3619 0.1518 0.3562 

0 0.2844 0.3619 0.1518 0.3562 

h/2 1.0024 0.3619 0.1518 0.3562 

10 

-h/2 0.7893 0.8931 0.8104 0.8904 

0 0.8661 0.8931 0.8104 0.8904 

h/2 1.1556 0.8931 0.8104 0.8904 

50 

-h/2 4.4320 4.4526 4.4361 4.4520 

0 4.4473 4.4526 4.4361 4.4520 

h/2 4.5051 4.4526 4.4361 4.4520 
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Table 5.26. Nondimensionalized in-plane normal stress       at the bottom (z= -h/2), 

middle (z=0) and top (z= h/2) surface of a FGM (Titanium Alloy-

Zirconia, M3) plate subjected to nonlinear (TNL) thermal load (p=1) 

a/b a/h z HSDT-12 HSDT-9 HSDT-5 FSDT 

1 

4 

-h/2 -2.58 -34.26 -32.66 -36.83 

0 -103.31 -86.95 -85.18 -85.18 

h/2 -552.48 -529.01 -541.17 -533.79 

10 

-h/2 -13.39 -36.40 -36.19 -36.83 

0 -93.31 -85.48 -85.18 -85.18 

h/2 -587.19 -532.99 -534.93 -533.79 

50 

-h/2 -15.45 -36.81 -36.80 -36.83 

0 -91.44 -85.19 -85.18 -85.18 

h/2 -593.74 -533.76 -533.84 -533.79 

2 

4 

-h/2 14.43 -40.53 -34.60 -48.16 

0 -53.48 -14.84 -9.53 -9.53 

h/2 -254.48 -305.98 -344.46 -320.50 

10 

-h/2 -19.55 -46.77 -46.06 -48.16 

0 -22.22 -10.49 -9.53 -9.53 

h/2 -359.00 -317.91 -324.22 -320.50 

50 

-h/2 -26.58 -48.11 -48.08 -48.16 

0 -15.97 -9.57 -9.53 -9.53 

h/2 -379.84 -320.39 -320.64 -320.50 

3 

4 

-h/2 47.41 -37.65 -23.00 -51.94 

0 -63.70 5.59 15.69 15.69 

h/2 -63.31 -221.38 -300.54 -249.40 

10 

-h/2 -14.96 -49.01 -47.41 -51.94 

0 -4.43 13.67 15.69 15.69 

h/2 -263.61 -243.95 -257.41 -249.40 

50 

-h/2 -30.00 -51.82 -51.76 -51.94 

0 8.93 15.61 15.69 15.69 

h/2 -307.74 -249.17 -249.72 -249.40 
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Table 5.27. Nondimensionalized in-plane displacements         and transverse 

displacement      at the top (z = h/2) surface of a rectangular FGM 

plate subjected to nonlinear (TNL) thermal load (a/b=2 and p=2) 

Ec / Em a/h THEORY u  v  w  

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

10 

HSDT-12 -0.7226 -1.4453 2.6937 

HSDT-9 -0.7042 -1.4084 2.2974 

HSDT-5 -0.7012 -1.4025 2.2402 

FSDT -0.7027 -1.4055 2.2962 

50 

HSDT-12 -0.7035 -1.4071 11.5604 

HSDT-9 -0.7028 -1.4056 11.4812 

HSDT-5 -0.7027 -1.4053 11.4698 

FSDT -0.7027 -1.4055 11.4810 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

10 

HSDT-12 -0.5366 -1.0731 2.0146 

HSDT-9 -0.5258 -1.0516 1.7393 

HSDT-5 -0.5227 -1.0454 1.6495 

FSDT -0.5249 -1.0498 1.7369 

50 

HSDT-12 -0.5254 -1.0508 8.7400 

HSDT-9 -0.5250 -1.0499 8.6849 

HSDT-5 -0.5248 -1.0497 8.6671 

FSDT -0.5249 -1.0498 8.6844 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

5
.4

2
9
 

10 

HSDT-12 -0.6873 -1.3746 2.1633 

HSDT-9 -0.6734 -1.3469 1.8025 

HSDT-5 -0.6707 -1.3414 1.6434 

FSDT -0.6748 -1.3497 1.8091 

50 

HSDT-12 -0.6754 -1.3507 9.1164 

HSDT-9 -0.6748 -1.3496 9.0439 

HSDT-5 -0.6747 -1.3494 9.0123 

FSDT -0.6748 -1.3497 9.0453 
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Table 5.28. Nondimensionalized in-plane normal stresses          , in-plane shear 

stress        and transverse shear stresses             at the middle (z=0) 

surface of a rectangular FGM plate subjected to nonlinear (TNL) thermal 

load (a/b=2 and p=2) 

Ec / Em a/h THEORY x  
y  xy  xz  

yz  

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

10 

HSDT-12 -637.76 -147.22 -327.02 1.3167 2.6634 

HSDT-9 -617.48 -117.53 -333.30 1.3838 2.7675 

HSDT-5 -616.77 -116.14 -333.75 1.4915 2.9831 

FSDT -616.77 -116.13 -333.75 1.3962 2.7925 

50 

HSDT-12 -627.94 -127.72 -333.48 0.2756 0.5512 

HSDT-9 -616.79 -116.19 -333.73 0.2791 0.5583 

HSDT-5 -616.77 -116.14 -333.75 0.2800 0.5600 

FSDT -616.77 -116.13 -333.75 0.2792 0.5585 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

10 

HSDT-12 -183.26 -44.50 -92.50 0.5577 1.1154 

HSDT-9 -173.22 -31.63 -94.39 0.7360 1.4719 

HSDT-5 -172.97 -31.18 -94.53 0.8119 1.6239 

FSDT -172.97 -31.17 -94.53 0.7461 1.4922 

50 

HSDT-12 -180.24 -38.57 -94.45 0.1260 0.2519 

HSDT-9 -172.98 -31.19 -94.53 0.1491 0.2983 

HSDT-5 -172.97 -31.17 -94.53 0.1497 0.2995 

FSDT -172.97 -31.17 -94.53 0.1492 0.2984 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

5
.4

2
9
 

10 

HSDT-12 -664.54 -253.18 -274.24 -2.1481 -4.2961 

HSDT-9 -657.68 -238.80 -279.25 -3.1467 -6.2935 

HSDT-5 -658.96 -241.31 -278.43 -2.9437 -5.8874 

FSDT -658.83 -241.05 -278.52 -3.2004 -6.4008 

50 

HSDT-12 -656.94 -239.43 -278.34 -0.3734 -0.7469 

HSDT-9 -658.78 -240.96 -278.55 -0.6396 -1.2793 

HSDT-5 -658.83 -241.06 -278.51 -0.6380 -1.2761 

FSDT -658.83 -241.05 -278.52 -0.6401 -1.2802 
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Table 5.29. Nondimensionalized in-plane displacement      at the top (z = h/2) 

surface of a square FGM plate subjected to nonlinear (TNL) thermal load 

(a/b=1.5 and a/h=10) 

Ec / Em p HSDT-12 HSDT-9 HSDT-5 FSDT 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

0 -1.2935 -1.2732 -1.2708 -1.2732 

1 -1.0594 -1.0431 -1.0389 -1.0405 

2 -1.1011 -1.0826 -1.0796 -1.0811 

3 -1.1712 -1.1507 -1.1487 -1.1502 

5 -1.3013 -1.2780 -1.2771 -1.2789 

7 -1.4008 -1.3757 -1.3752 -1.3772 

9 -1.4755 -1.4493 -1.4489 -1.4511 

10 -1.5060 -1.4793 -1.4790 -1.4812 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

0 -0.9352 -0.9206 -0.9188 -0.9206 

1 -0.7983 -0.7883 -0.7847 -0.7868 

2 -0.8193 -0.8085 -0.8053 -0.8076 

3 -0.8566 -0.8449 -0.8422 -0.8446 

5 -0.9286 -0.9154 -0.9133 -0.9158 

7 -0.9859 -0.9717 -0.9699 -0.9725 

9 -1.0306 -1.0156 -1.0140 -1.0166 

10 -1.0493 -1.0339 -1.0324 -1.0350 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

5
.4

2
9
 

0 -0.9572 -0.9422 -0.9404 -0.9422 

1 -0.9384 -0.9265 -0.9235 -0.9265 

2 -1.0507 -1.0368 -1.0341 -1.0382 

3 -1.1707 -1.1547 -1.1521 -1.1573 

5 -1.3786 -1.3595 -1.3569 -1.3634 

7 -1.5400 -1.5190 -1.5163 -1.5235 

9 -1.6676 -1.6452 -1.6426 -1.6500 

10 -1.7221 -1.6991 -1.6966 -1.7039 
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Table 5.30. Nondimensionalized in-plane normal stress       at the top (z = h/2) 

surface of a FGM plate subjected to nonlinear (TNL) thermal load 

(a/b=1.5 and a/h=10) 

Ec / Em p HSDT-12 HSDT-9 HSDT-5 FSDT 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

0 -855.35 -871.13 -872.91 -871.13 

1 -1123.87 -1038.59 -1041.68 -1040.50 

2 -1124.69 -1009.83 -1012.01 -1010.92 

3 -1060.23 -960.31 -961.75 -960.62 

5 -897.16 -867.70 -868.31 -867.04 

7 -748.99 -796.61 -796.92 -795.49 

9 -626.82 -743.05 -743.29 -741.72 

10 -574.58 -721.17 -721.43 -719.80 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

0 -564.63 -575.91 -577.20 -575.91 

1 -721.68 -669.48 -672.00 -670.52 

2 -727.43 -655.21 -657.43 -655.84 

3 -694.74 -629.42 -631.33 -629.66 

5 -605.10 -579.57 -581.05 -579.29 

7 -519.34 -539.78 -541.01 -539.21 

9 -445.93 -508.74 -509.84 -508.02 

10 -413.76 -495.77 -496.83 -495.00 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

5
.4

2
9
 

0 -1911.51 -1946.77 -1950.75 -1946.77 

1 -2018.28 -1981.29 -1987.88 -1981.31 

2 -1707.09 -1738.88 -1744.83 -1735.76 

3 -1293.15 -1479.86 -1485.45 -1474.11 

5 -443.72 -1029.81 -1035.54 -1021.13 

7 312.44 -679.32 -685.19 -669.45 

9 954.38 -401.91 -407.62 -391.47 

10 1236.80 -283.55 -289.10 -272.92 
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Table 5.31. Nondimensionalized in-plane displacements         and transverse 

displacement      at the top (z = h/2) surface of a FGM plate subjected 

to nonlinear (TNL) thermal load (a/h=10 and p=2) 

kc / km a/b THEORY u  v  w  

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

0
.0

5
1
0
 

1 

HSDT-12 -1.6997 -1.6997 4.8779 

HSDT-9 -1.6857 -1.6857 4.5160 

HSDT-5 -1.6830 -1.6830 4.3568 

FSDT -1.6871 -1.6871 4.5226 

3 

HSDT-12 -0.3496 -1.0489 1.2570 

HSDT-9 -0.3360 -1.0081 0.8981 

HSDT-5 -0.3333 -0.9999 0.7392 

FSDT -0.3374 -1.0123 0.9045 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

1 

HSDT-12 -1.7769 -1.7769 6.1380 

HSDT-9 -1.7583 -1.7583 5.7417 

HSDT-5 -1.7553 -1.7553 5.6845 

FSDT -1.7568 -1.7568 5.7405 

3 

HSDT-12 -0.3710 -1.1129 1.5454 

HSDT-9 -0.3528 -1.0585 1.1493 

HSDT-5 -0.3499 -1.0496 1.0922 

FSDT -0.3514 -1.0541 1.1481 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

1 

HSDT-12 -1.3240 -1.3240 4.6200 

HSDT-9 -1.3132 -1.3132 4.3447 

HSDT-5 -1.3101 -1.3101 4.2547 

FSDT -1.3123 -1.3123 4.3422 

3 

HSDT-12 -0.2739 -0.8218 1.1458 

HSDT-9 -0.2633 -0.7900 0.8708 

HSDT-5 -0.2602 -0.7807 0.7812 

FSDT -0.2625 -0.7874 0.8684 
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Table 5.32. Nondimensionalized in-plane normal stresses          , in-plane shear 

stress        and transverse shear stresses             at the middle (z=0) 

surface of a FGM plate subjected to nonlinear (TNL) thermal load 

(a/h=10 and p=2) 

kc / km a/b THEORY x  
y  xy  xz  

yz  

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

0
.0

5
1
0
 

1 

HSDT-12 -452.23 -452.23 -345.96 -1.9733 -1.9733 

HSDT-9 -449.25 -449.25 -348.52 -3.1787 -3.1787 

HSDT-5 -450.02 -450.02 -348.10 -3.0976 -3.0976 

FSDT -449.94 -449.94 -348.15 -3.2004 -3.2004 

3 

HSDT-12 -739.89 -199.31 -202.72 -2.4331 -7.2993 

HSDT-9 -726.57 -166.68 -209.96 -3.0953 -9.2858 

HSDT-5 -728.68 -171.98 -208.76 -2.6880 -8.0641 

FSDT -728.45 -171.42 -208.89 -3.2004 -9.6012 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

1 

HSDT-12 -383.36 -383.36 -413.77 1.3953 1.3953 

HSDT-9 -366.88 -366.88 -416.96 1.3912 1.3912 

HSDT-5 -366.45 -366.45 -417.19 1.4344 1.4344 

FSDT -366.45 -366.45 -417.19 1.3962 1.3962 

3 

HSDT-12 -728.06 -86.76 -240.49 1.2549 3.7645 

HSDT-9 -701.37 -35.64 -249.65 1.3714 4.1141 

HSDT-5 -700.21 -32.72 -250.31 1.5865 4.7596 

FSDT -700.20 -32.70 -250.32 1.3962 4.1887 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

1 

HSDT-12 -111.09 -111.09 -117.14 0.6025 0.6025 

HSDT-9 -102.22 -102.22 -118.09 0.7420 0.7420 

HSDT-5 -102.07 -102.07 -118.17 0.7725 0.7725 

FSDT -102.07 -102.07 -118.17 0.7461 0.7461 

3 

HSDT-12 -209.05 -27.88 -67.94 0.4843 1.4530 

HSDT-9 -197.01 -8.51 -70.69 0.7261 2.1783 

HSDT-5 -196.61 -7.55 -70.90 0.8775 2.6326 

FSDT -196.60 -7.54 -70.90 0.7461 2.2383 
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Table 5.33. Nondimensionalized transverse displacement      at the top (z = h/2) 

surface of a square FGM plate subjected to nonlinear (TNL) thermal load 

(a/h=20) 

kc / km p HSDT-12 HSDT-9 HSDT-5 FSDT 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

0
.0

5
1
0
 

0 9.9154 9.7471 9.7127 9.7471 

1 9.4496 9.2950 9.2380 9.2948 

2 9.2231 9.0419 8.9627 9.0453 

3 9.6578 9.4475 9.3480 9.4554 

5 11.1878 10.9294 10.7983 10.9434 

7 12.7235 12.4318 12.2820 12.4480 

9 14.0639 13.7485 13.5891 13.7650 

10 14.6617 14.3369 14.1748 14.3532 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

0 13.3992 13.1718 13.1252 13.1718 

1 11.7411 11.5538 11.5228 11.5535 

2 11.6797 11.4815 11.4531 11.4810 

3 12.1063 11.8945 11.8657 11.8940 

5 13.1797 12.9444 12.9129 12.9446 

7 14.1214 13.8686 13.8340 13.8694 

9 14.8746 14.6090 14.5714 14.6101 

10 15.1909 14.9201 14.8812 14.9214 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

0 9.6881 9.5236 9.4889 9.5236 

1 9.0367 8.9054 8.8641 8.9040 

2 8.8233 8.6857 8.6409 8.6844 

3 8.9336 8.7873 8.7403 8.7866 

5 9.4109 9.2496 9.2002 9.2499 

7 9.9042 9.7320 9.6815 9.7329 

9 10.3313 10.1510 10.0998 10.1522 

10 10.5185 10.3348 10.2835 10.3361 
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Table 5.34. Nondimensionalized in-plane normal stress       at the top (z = h/2) 

surface of a square FGM plate subjected to nonlinear (TNL) thermal load 

(a/h=20) 

kc / km p HSDT-12 HSDT-9 HSDT-5 FSDT 

A
lu

m
in

iu
m

 –
 A

lu
m

in
a 

0
.0

5
1
0
 

0 -1399.20 -1406.00 -1406.77 -1406.00 

1 -1509.26 -1449.56 -1450.83 -1449.56 

2 -1135.08 -1140.48 -1141.62 -1139.87 

3 -654.38 -811.01 -812.08 -809.88 

5 310.63 240.29 241.38 238.59 

7 1156.62 203.02 201.91 204.95 

9 1869.58 553.49 552.41 555.53 

10 2182.26 702.97 701.92 705.05 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

0 -626.11 -629.15 -629.49 -629.15 

1 -938.41 -842.38 -842.99 -842.76 

2 -932.14 -805.24 -805.67 -805.45 

3 -855.02 -741.96 -742.23 -742.02 

5 -668.22 -624.12 -624.23 -623.99 

7 -501.92 -533.97 -534.02 -533.75 

9 -366.17 -466.20 -466.25 -465.94 

10 -308.41 -438.56 -438.61 -438.30 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

0 -413.79 -415.94 -416.18 -415.94 

1 -592.30 -533.59 -534.07 -533.79 

2 -594.55 -515.38 -515.81 -515.50 

3 -555.61 -482.85 -483.22 -482.90 

5 -453.92 -420.21 -420.49 -420.15 

7 -358.62 -370.33 -370.57 -370.22 

9 -277.81 -331.51 -331.71 -331.37 

10 -242.56 -315.30 -315.50 -315.15 
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Table 5.35. Nondimensionalized in-plane displacement      and transverse 

displacement      at the top (z = h/2) surface of a FGM plate 

subjected to nonlinear (TNL), linear (TL) and constant (TC) thermal 

loads (a/h=4 and p=2) 

Ec / Em a/b Theory 
u  w  

TNL TL TC TNL TL TC 

M
o
n
el

 -
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

1.5 

HSDT-12 -1.1994 

 

-1.6411 

 

-1.6794 

 

2.4042 

 

3.1330 

 

1.2947 

 
HSDT-9 -1.0899 

 

-1.4701 

 

-1.3834 

 

1.4160 

 

1.7521 

 

-0.7766 

 
HSDT-5 -1.0714 

 

-1.4769 

 

-1.4129 

 

1.2683 

 

1.5864 

 

-0.5057 

 
FSDT -1.0811 

 

-1.4879 

 

-1.3946 

 

1.4130 

 

1.7512 

 

-0.7792 

 
2.5 

HSDT-12 -0.5929 

 

-0.8049 

 

-0.8806 

 

1.6130 

 

2.1379 

 

1.6809 

 
HSDT-9 -0.4926 

 

-0.6508 

 

-0.6151 

 

0.6363 

 

0.7857 

 

-0.3469 

 
HSDT-5 -0.4750 

 

-0.6561 

 

-0.6433 

 

0.4898 

 

0.6215 

 

-0.0779 

 
FSDT -0.4846 

 

-0.6670 

 

-0.6252 

 

0.6334 

 

0.7850 

 

-0.3493 

 
3.5 

HSDT-12 -0.3595 

 

-0.4819 

 

-0.5567 

 

1.2971 

 

1.7247 

 

1.7402 

 
HSDT-9 -0.2723 

 

-0.3508 

 

-0.3333 

 

0.3493 

 

0.4300 

 

-0.1890 

 
HSDT-5 -0.2557 

 

-0.3542 

 

-0.3600 

 

0.2046 

 

0.2680 

 

0.0771 

 
FSDT -0.2652 

 

-0.3650 

 

-0.3421 

 

0.3466 

 

0.4295 

 

-0.1911 

 

T
it

an
iu

m
 A

ll
o
y
 -

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

1.5 

HSDT-12 -0.8772 

 

-1.1189 

 

-1.1359 

 

1.7599 

 

2.1098 

 

0.8008 

 
HSDT-9 -0.8128 

 

-1.0226 

 

-0.9757 

 

1.0747 

 

1.1873 

 

-0.5484 

 
HSDT-5 -0.7931 

 

-1.0141 

 

-0.9774 

 

0.8429 

 

0.9255 

 

-0.6015 

 
FSDT -0.8076 

 

-1.0313 

 

-0.9809 

 

1.0689 

 

1.1932 

 

-0.5460 

 
2.5 

HSDT-12 -0.4263 

 

-0.5419 

 

-0.5802 

 

1.1601 

 

1.4296 

 

1.0694 

 
HSDT-9 -0.3668 

 

-0.4544 

 

-0.4350 

 

0.4846 

 

0.5294 

 

-0.2469 

 
HSDT-5 -0.3476 

 

-0.4453 

 

-0.4362 

 

0.2552 

 

0.2696 

 

-0.2997 

 
FSDT -0.3620 

 

-0.4623 

 

-0.4397 

 

0.4791 

 

0.5349 

 

-0.2448 

 
3.5 

HSDT-12 -0.2547 

 

-0.3212 

 

-0.3601 

 

0.9199 

 

1.1451 

 

1.1100 

 
HSDT-9 -0.2023 

 

-0.2460 

 

-0.2365 

 

0.2672 

 

0.2878 

 

-0.1358 

 
HSDT-5 -0.1839 

 

-0.2361 

 

-0.2371 

 

0.0412 

 

0.0309 

 

-0.1881 

 
FSDT -0.1981 

 

-0.2530 

 

-0.2406 

 

0.2622 

 

0.2927 

 

-0.1339 

 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

5
.4

2
9
 

1.5 

HSDT-12 -1.1118 

 

-1.4792 

 

-1.3736 

 

1.9847 

 

2.2247 

 

-0.8826 

 
HSDT-9 -1.0300 

 

-1.3455 

 

-1.1519 

 

1.0979 

 

0.9166 

 

-2.8627 

 
HSDT-5 -1.0116 

 

-1.3439 

 

-1.1518 

 

0.6859 

 

0.4345 

 

-3.1308 

 
FSDT -1.0382 

 

-1.3779 

 

-1.1706 

 

1.1133 

 

0.9784 

 

-2.8299 

 
2.5 

HSDT-12 -0.5322 

 

-0.7079 

 

-0.7069 

 

1.3435 

 

1.6337 

 

0.5999 

 
HSDT-9 -0.4579 

 

-0.5883 

 

-0.5079 

 

0.4850 

 

0.3820 

 

-1.2984 

 
HSDT-5 -0.4391 

 

-0.5841 

 

-0.5062 

 

0.0757 

 

-0.1001 

 

-1.5666 

 
FSDT -0.4654 

 

-0.6176 

 

-0.5247 

 

0.4990 

 

0.4386 

 

-1.2686 

 
3.5 

HSDT-12 -0.3122 

 

-0.4133 

 

-0.4404 

 

1.0727 

 

1.3543 

 

1.0402 

 
HSDT-9 -0.2481 

 

-0.3122 

 

-0.2724 

 

0.2606 

 

0.1896 

 

-0.7203 

 
HSDT-5 -0.2287 

 

-0.3049 

 

-0.2688 

 

-0.1442 

 

-0.2911 

 

-0.9879 

 
FSDT -0.2547 

 

-0.3380 

 

-0.2871 

 

0.2731 

 

0.2400 

 

-0.6941 
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Table 5.36. Nondimensionalized in-plane normal stresses          , at the middle 

(z = 0) surface of a FGM plate subjected to nonlinear (TNL), linear (TL) 

and constant (TC) thermal loads (a/h=4 and p=2) 

Ec / Em a/b Theory 
x

σ  y
σ  

TNL TL TC TNL TL TC 

M
o
n
el

 -
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

1.5 

HSDT-12 -585.38 

 

-1122.97 

 

-2131.40 

 

-288.65 

 

-665.22 

 

-1164.41 

 
HSDT-9 -530.07 

 

-1040.88 

 

-1975.14 

 

-210.81 

 

-548.82 

 

-935.33 

 
HSDT-5 -526.93 

 

-1048.62 

 

-1980.28 

 

-206.03 

 

-560.61 

 

-943.15 

 
FSDT -526.91 

 

-1048.60 

 

-1980.32 

 

-205.99 

 

-560.57 

 

-943.22 

 
2.5 

HSDT-12 -759.95 

 

-1391.94 

 

-2698.52 

 

-243.74 

 

-579.56 

 

-996.08 

 
HSDT-9 -673.46 

 

-1252.05 

 

-2430.06 

 

-75.52 

 

-317.94 

 

-467.17 

 
HSDT-5 -668.60 

 

-1264.05 

 

-2438.08 

 

-64.43 

 

-345.27 

 

-485.29 

 
FSDT -668.55 

 

-1264.00 

 

-2438.08 

 

-64.35 

 

-345.16 

 

-485.46 

 
3.5 

HSDT-12 -859.74 

 

-1546.57 

 

-3023.54 

 

-301.34 

 

-640.27 

 

-1146.28 

 
HSDT-9 -727.64 

 

-1326.32 

 

-2595.13 

 

-30.93 

 

-220.43 

 

-286.50 

 
HSDT-5 -720.73 

 

-1343.33 

 

-2606.39 

 

-12.40 

 

-266.10 

 

-316.72 

 
FSDT -720.67 

 

-1343.24 

 

-2606.50 

 

-12.23 

 

-265.91 

 

-317.04 

 

T
it

an
iu

m
 A

ll
o
y
 -

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

1.5 

HSDT-12 -169.42 

 

-305.76 

 

-583.21 

 

-85.80 

 

-182.79 

 

-323.48 

 
HSDT-9 -148.60 

 

-282.23 

 

-534.25 

 

-58.23 

 

-149.28 

 

-253.36 

 
HSDT-5 -147.54 

 

-284.57 

 

-535.76 

 

-56.65 

 

-152.70 

 

-255.60 

 
FSDT -147.52 

 

-284.55 

 

-535.76 

 

-56.63 

 

-152.67 

 

-255.60 

 
2.5 

HSDT-12 -220.27 

 

-381.63 

 

-743.25 

 

-75.45 

 

-164.36 

 

-288.26 

 
HSDT-9 -189.33 

 

-339.19 

 

-657.05 

 

-20.19 

 

-86.66 

 

-126.79 

 
HSDT-5 -187.67 

 

-342.80 

 

-659.42 

 

-16.57 

 

-94.54 

 

-131.96 

 
FSDT -187.64 

 

-342.76 

 

-659.41 

 

-16.50 

 

-94.46 

 

-131.94 

 
3.5 

HSDT-12 -250.93 

 

-428.16 

 

-840.93 

 

-94.37 

 

-185.61 

 

-340.15 

 
HSDT-9 -204.81 

 

-359.08 

 

-701.53 

 

-7.86 

 

-60.08 

 

-77.86 

 
HSDT-5 -202.45 

 

-364.24 

 

-704.92 

 

-1.87 

 

-73.20 

 

-86.48 

 
FSDT -202.40 

 

-364.18 

 

-704.91 

 

-1.74 

 

-73.04 

 

-86.45 

 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

5
.4

2
9
 

1.5 

HSDT-12 -617.07 

 

-1199.70 

 

-2220.79 

 

-364.04 

 

-775.99 

 

-1264.98 

 
HSDT-9 -578.77 

 

-1145.79 

 

-2065.95 

 

-308.31 

 

-693.12 

 

-1042.75 

 
HSDT-5 -584.49 

 

-1165.71 

 

-2078.83 

 

-317.02 

 

-723.45 

 

-1062.36 

 
FSDT -583.84 

 

-1164.88 

 

-2078.37 

 

-316.04 

 

-722.19 

 

-1061.66 

 
2.5 

HSDT-12 -761.82 

 

-1443.80 

 

-2774.16 

 

-307.50 

 

-670.28 

 

-1070.90 

 
HSDT-9 -694.26 

 

-1330.98 

 

-2508.04 

 

-180.09 

 

-460.05 

 

-569.43 

 
HSDT-5 -703.15 

 

-1361.68 

 

-2527.90 

 

-200.35 

 

-529.00 

 

-614.68 

 
FSDT -702.04 

 

-1360.28 

 

-2527.13 

 

-197.83 

 

-526.80 

 

-612.91 

 
3.5 

HSDT-12 -842.77 

 

-1582.27 

 

-3085.40 

 

-325.84 

 

-681.92 

 

-1172.20 

 
HSDT-9 -734.61 

 

-1391.10 

 

-2665.43 

 

-125.02 

 

-344.66 

 

-375.84 

 
HSDT-5 -747.30 

 

-1434.42 

 

-2693.48 

 

-159.09 

 

-460.95 

 

-451.14 

 
FSDT -745.53 

 

-1432.17 

 

-2692.23 

 

-154.34 

 

-454.91 

 

-447.80 

 
  



114 

 

Table 5.37. Nondimensionalized in-plane shear stress        at the top (z = h/2) 

surface of a FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads (a/h=4 and p=2) 

Ec / Em a/b Theory 
xy
τ  

TNL TL TC 

M
o
n
el

 -
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

1.5 

HSDT-12 -547.07 -748.53 -765.99 

HSDT-9 -497.12 -670.53 -631.02 

HSDT-5 -488.71 -673.65 -644.45 

FSDT -493.12 -678.68 -636.11 

2.5 

HSDT-12 -450.74 -611.86 -669.41 

HSDT-9 -374.50 -494.77 -467.62 

HSDT-5 -361.12 -498.75 -489.05 

FSDT -368.43 -507.06 -475.25 

3.5 

HSDT-12 -382.59 -512.91 -592.52 

HSDT-9 -289.77 -373.38 -354.77 

HSDT-5 -272.12 -376.93 -383.15 

FSDT -282.23 -388.43 -364.06 

T
it

an
iu

m
 A

ll
o
y
 -

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

1.5 

HSDT-12 -365.83 -466.64 -473.74 

HSDT-9 -338.97 -426.48 -406.93 

HSDT-5 -330.75 -422.93 -407.62 

FSDT -336.80 -430.10 -409.10 

2.5 

HSDT-12 -296.34 -376.68 -403.30 

HSDT-9 -254.95 -315.87 -302.39 

HSDT-5 -241.64 -309.50 -303.20 

FSDT -251.63 -321.34 -305.65 

3.5 

HSDT-12 -247.82 -312.55 -350.41 

HSDT-9 -196.89 -239.44 -230.16 

HSDT-5 -178.96 -229.80 -230.75 

FSDT -192.76 -246.16 -234.14 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

5
.4

2
9
 

1.5 

HSDT-12 -1531.41 -2037.56 -1892.10 

HSDT-9 -1418.76 -1853.37 -1586.64 

HSDT-5 -1393.47 -1851.21 -1586.60 

FSDT -1430.12 -1897.85 -1612.40 

2.5 

HSDT-12 -1221.87 -1625.30 -1622.87 

HSDT-9 -1051.33 -1350.70 -1165.93 

HSDT-5 -1007.99 -1340.94 -1162.07 

FSDT -1068.48 -1417.93 -1204.67 

3.5 

HSDT-12 -1003.43 -1328.42 -1415.37 

HSDT-9 -797.43 -1003.44 -875.47 

HSDT-5 -735.00 -979.93 -864.04 

FSDT -818.50 -1086.19 -922.82 
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Table 5.38. Nondimensionalized transverse shear stresses             at a distance 0.1h 

from the bottom surface of a FGM plate subjected to nonlinear (TNL), 

linear (TL) and constant (TC) thermal loads (a/h=4 and p=2) 

Ec / Em a/b Theory 
xz
τ  yz

τ  

TNL TL TC TNL TL TC 

M
o
n
el

 -
 Z

ir
co

n
ia

 

0
.5

5
3
7
 

1.5 

HSDT-12 2.9647 13.9793 24.2141 4.4471 20.9689 36.3211 

HSDT-9 4.2094 15.5802 12.4761 6.3142 23.3703 18.7142 

HSDT-5 3.7593 18.3006 11.8122 5.6390 27.4509 17.7183 

FSDT 4.7307 17.1951 13.6473 7.0961 25.7926 20.4710 

2.5 

HSDT-12 7.2219 20.3670 42.0790 18.0547 50.9175 105.1980 

HSDT-9 3.7007 13.9550 11.2878 9.2518 34.8874 28.2194 

HSDT-5 2.5808 19.6418 9.5857 6.4520 49.1046 23.9643 

FSDT 4.7307 17.1951 13.6473 11.8268 42.9876 34.1184 

3.5 

HSDT-12 11.8694 27.0794 62.0890 41.5428 94.7780 217.3120 

HSDT-9 3.1298 12.0521 9.8814 10.9543 42.1823 34.5849 

HSDT-5 0.8474 21.6146 6.3110 2.9659 75.6510 22.0886 

FSDT 4.7307 17.1951 13.6473 16.5575 60.1827 47.7657 

T
it

an
iu

m
 A

ll
o
y
 -

 Z
ir

co
n
ia

 

1
.7

6
7
3
 

1.5 

HSDT-12 1.6290 7.3376 12.4362 2.4435 11.0064 18.6543 

HSDT-9 1.4174 3.9790 3.0228 2.1261 5.9685 4.5342 

HSDT-5 1.1814 4.9083 3.4302 1.7721 7.3624 5.1452 

FSDT 1.5946 4.4188 3.3288 2.3919 6.6282 4.9932 

2.5 

HSDT-12 4.0358 10.8290 21.6676 10.0894 27.0725 54.1690 

HSDT-9 1.2447 3.5394 2.7147 3.1117 8.8485 6.7868 

HSDT-5 0.6812 5.5008 3.5529 1.7030 13.7521 8.8822 

FSDT 1.5946 4.4188 3.3288 3.9865 11.0470 8.3220 

3.5 

HSDT-12 6.6014 14.3757 31.6935 23.1048 50.3149 110.9270 

HSDT-9 1.0510 3.0289 2.3537 3.6784 10.6013 8.2379 

HSDT-5 0.0525 6.3700 3.7328 0.1838 22.2949 13.0649 

FSDT 1.5946 4.4188 3.3288 5.5812 15.4657 11.6508 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

5
.4

2
9
 

1.5 

HSDT-12 -12.8302 -35.7072 -45.9506 -19.2453 -53.5608 -68.9258 

HSDT-9 -7.5103 -27.9690 -20.2461 -11.2655 -41.9535 -30.3692 

HSDT-5 -9.1016 -32.2324 -22.9816 -13.6523 -48.3487 -34.4724 

FSDT -8.4188 -31.3635 -22.5009 -12.6282 -47.0453 -33.7513 

2.5 

HSDT-12 -17.6842 -42.9192 -68.6582 -44.2104 -107.2980 -171.6450 

HSDT-9 -6.6108 -24.6150 -18.0045 -16.5270 -61.5376 -45.0113 

HSDT-5 -9.9273 -33.2833 -23.5630 -24.8183 -83.2082 -58.9074 

FSDT -8.4188 -31.3635 -22.5009 -21.0469 -78.4088 -56.2521 

3.5 

HSDT-12 -22.2336 -49.1668 -91.9541 -77.8175 -172.0840 -321.8390 

HSDT-9 -5.5773 -20.7730 -15.4150 -19.5205 -72.7054 -53.9526 

HSDT-5 -11.1367 -34.8223 -24.4144 -38.9784 -121.8780 -85.4505 

FSDT -8.4188 -31.3635 -22.5009 -29.4657 -109.7720 -78.7530 
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Table 5.39. Nondimensionalized in-plane displacement      and transverse 

displacement      at the top (z = h/2) surface of a FGM plate 

subjected to nonlinear (TNL), linear (TL) and constant (TC) thermal 

loads (a/b=2 and p=2) 

kc / km a/h Theory 
u  w  

TNL TL TC TNL TL TC 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

0
.0

5
1
0
 

4 

HSDT-12 -0.7454 

 

-0.9920 

 

-0.9547 

 

1.5837 

 

1.8604 

 

0.0750 

 
HSDT-9 -0.6670 

 

-0.8647 

 

-0.7430 

 

0.7089 

 

0.5766 

 

-1.8708 

 
HSDT-5 -0.6484 

 

-0.8618 

 

-0.7422 

 

0.2980 

 

0.0944 

 

-2.1391 

 
FSDT -0.6748 

 

-0.8956 

 

-0.7609 

 

0.7236 

 

0.6360 

 

-1.8394 

 
10 

HSDT-12 -0.6873 

 

-0.9129 

 

-0.7954 

 

2.1633 

 

2.0998 

 

-3.8037 

 
HSDT-9 -0.6734 

 

-0.8900 

 

-0.7577 

 

1.8025 

 

1.5637 

 

-4.6126 

 
HSDT-5 -0.6707 

 

-0.8903 

 

-0.7580 

 

1.6434 

 

1.3787 

 

-4.7154 

 
FSDT -0.6748 

 

-0.8956 

 

-0.7609 

 

1.8091 

 

1.5899 

 

-4.5986 

 
20 

HSDT-12 -0.6780 

 

-0.9000 

 

-0.7696 

 

3.7959 

 

3.4361 

 

-8.7981 

 
HSDT-9 -0.6745 

 

-0.8942 

 

-0.7600 

 

3.6148 

 

3.1666 

 

-9.2043 

 
HSDT-5 -0.6738 

 

-0.8942 

 

-0.7601 

 

3.5356 

 

3.0747 

 

-9.2554 

 
FSDT -0.6748 

 

-0.8956 

 

-0.7609 

 

3.6181 

 

3.1799 

 

-9.1972 

 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

4 

HSDT-12 -0.8166 

 

-1.1135 

 

-1.1783 

 

1.9055 

 

2.5088 

 

1.5512 

 
HSDT-9 -0.7111 

 

-0.9501 

 

-0.8959 

 

0.9214 

 

1.1391 

 

-0.5040 

 
HSDT-5 -0.6931 

 

-0.9562 

 

-0.9247 

 

0.7742 

 

0.9741 

 

-0.2339 

 
FSDT -0.7027 

 

-0.9672 

 

-0.9065 

 

0.9185 

 

1.1383 

 

-0.5065 

 
10 

HSDT-12 -0.7226 

 

-0.9932 

 

-0.9550 

 

2.6937 

 

3.4031 

 

-0.4313 

 
HSDT-9 -0.7042 

 

-0.9641 

 

-0.9046 

 

2.2974 

 

2.8461 

 

-1.2651 

 
HSDT-5 -0.7012 

 

-0.9655 

 

-0.9093 

 

2.2402 

 

2.7820 

 

-1.1603 

 
FSDT -0.7027 

 

-0.9672 

 

-0.9065 

 

2.2962 

 

2.8457 

 

-1.2662 

 
20 

HSDT-12 -0.7078 

 

-0.9738 

 

-0.9188 

 

4.7911 

 

5.9705 

 

-2.1146 

 
HSDT-9 -0.7031 

 

-0.9664 

 

-0.9060 

 

4.5930 

 

5.6916 

 

-2.5318 

 
HSDT-5 -0.7024 

 

-0.9667 

 

-0.9072 

 

4.5645 

 

5.6597 

 

-2.4797 

 
FSDT -0.7027 

 

-0.9672 

 

-0.9065 

 

4.5924 

 

5.6914 

 

-2.5324 

 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

4 

HSDT-12 -0.5922 

 

-0.7544 

 

-0.7863 

 

1.3821 

 

1.6835 

 

0.9795 

 
HSDT-9 -0.5299 

 

-0.6620 

 

-0.6326 

 

0.7004 

 

0.7699 

 

-0.3572 

 
HSDT-5 -0.5105 

 

-0.6532 

 

-0.6341 

 

0.4697 

 

0.5089 

 

-0.4101 

 
FSDT -0.5249 

 

-0.6703 

 

-0.6376 

 

0.6948 

 

0.7755 

 

-0.3549 

 
10 

HSDT-12 -0.5366 

 

-0.6851 

 

-0.6638 

 

2.0146 

 

2.3093 

 

-0.3440 

 
HSDT-9 -0.5258 

 

-0.6688 

 

-0.6367 

 

1.7393 

 

1.9364 

 

-0.8883 

 
HSDT-5 -0.5227 

 

-0.6677 

 

-0.6371 

 

1.6495 

 

1.8352 

 

-0.9088 

 
FSDT -0.5249 

 

-0.6703 

 

-0.6376 

 

1.7369 

 

1.9389 

 

-0.8873 

 
20 

HSDT-12 -0.5279 

 

-0.6741 

 

-0.6442 

 

3.6127 

 

4.0633 

 

-1.5026 

 
HSDT-9 -0.5251 

 

-0.6699 

 

-0.6374 

 

3.4750 

 

3.8765 

 

-1.7751 

 
HSDT-5 -0.5244 

 

-0.6697 

 

-0.6375 

 

3.4303 

 

3.8261 

 

-1.7853 

 
FSDT -0.5249 

 

-0.6703 

 

-0.6376 

 

3.4738 

 

3.8777 

 

-1.7746 

 
  



117 

 

Table 5.40. Nondimensionalized in-plane normal stresses           at the middle 

(z = 0) surface of a FGM plate subjected to nonlinear (TNL), linear (TL) 

and constant (TC) thermal loads (a/b=2 and p=2) 

kc / km a/h Theory 
x  

y  

TNL TL TC TNL TL TC 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

0
.0

5
1
0
 

4 

HSDT-12 -703.75 -1345.28 -2551.67 -318.27 -695.07 -1100.16 

HSDT-9 -652.49 -1264.99 -2347.53 -228.67 -551.63 -746.65 

HSDT-5 -659.67 -1289.92 -2363.65 -242.71 -600.35 -778.15 

FSDT -658.83 -1288.84 -2363.05 -241.05 -598.24 -776.98 

10 

HSDT-12 -664.54 -1278.03 -2394.78 -253.18 -595.95 -834.85 

HSDT-9 -657.68 -1284.51 -2360.24 -238.80 -589.78 -771.49 

HSDT-5 -658.96 -1289.01 -2363.14 -241.31 -598.57 -777.17 

FSDT -658.83 -1288.84 -2363.05 -241.05 -598.24 -776.98 

20 

HSDT-12 -658.61 -1267.72 -2371.03 -242.49 -579.33 -791.67 

HSDT-9 -658.53 -1287.73 -2362.33 -240.48 -596.08 -775.58 

HSDT-5 -658.86 -1288.88 -2363.07 -241.11 -598.32 -777.03 

FSDT -658.83 -1288.84 -2363.05 -241.05 -598.24 -776.98 

M
o
n
el

 -
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

4 

HSDT-12 -689.63 -1283.23 -2469.75 -243.58 -589.23 -1008.77 

HSDT-9 -620.74 -1175.57 -2264.21 -123.90 -405.01 -640.12 

HSDT-5 -616.80 -1185.28 -2270.66 -116.19 -423.99 -652.72 

FSDT -616.77 -1185.25 -2270.72 -116.13 -423.92 -652.83 

10 

HSDT-12 -637.76 -1204.09 -2303.66 -147.22 -455.63 -715.34 

HSDT-9 -617.48 -1183.51 -2269.55 -117.53 -420.53 -650.55 

HSDT-5 -616.77 -1185.25 -2270.71 -116.14 -423.93 -652.81 

FSDT -616.77 -1185.25 -2270.72 -116.13 -423.92 -652.83 

20 

HSDT-12 -630.09 -1192.24 -2278.98 -132.03 -434.21 -668.65 

HSDT-9 -616.95 -1184.80 -2270.42 -116.49 -423.06 -652.25 

HSDT-5 -616.77 -1185.25 -2270.71 -116.14 -423.92 -652.82 

FSDT -616.77 -1185.25 -2270.72 -116.13 -423.92 -652.83 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

4 

HSDT-12 -199.53 -350.44 -677.58 -74.11 -164.45 -286.17 

HSDT-9 -174.33 -318.60 -612.30 -33.74 -110.31 -173.56 

HSDT-5 -173.00 -321.51 -614.21 -31.22 -115.79 -177.17 

FSDT -172.97 -321.48 -614.20 -31.17 -115.74 -177.15 

10 

HSDT-12 -183.26 -325.32 -624.60 -44.50 -123.38 -196.19 

HSDT-9 -173.22 -320.96 -613.86 -31.63 -114.76 -176.51 

HSDT-5 -172.97 -321.48 -614.20 -31.18 -115.75 -177.16 

FSDT -172.97 -321.48 -614.20 -31.17 -115.74 -177.15 

20 

HSDT-12 -180.90 -321.61 -616.81 -39.88 -116.84 -181.97 

HSDT-9 -173.03 -321.35 -614.11 -31.29 -115.49 -176.99 

HSDT-5 -172.97 -321.48 -614.20 -31.17 -115.74 -177.15 

FSDT -172.97 -321.48 -614.20 -31.17 -115.74 -177.15 
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Table 5.41. Nondimensionalized in-plane shear stress        at the top (z = h/2) 

surface of a FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads (a/b=2 and p=2) 

kc / km a/h Theory 
xy  

TNL TL TC 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

0
.0

5
1
0
 

4 

HSDT-12 -1369.02 -1822.00 -1753.37 

HSDT-9 -1224.95 -1588.05 -1364.62 

HSDT-5 -1190.78 -1582.88 -1363.16 

FSDT -1239.44 -1644.80 -1397.42 

10 

HSDT-12 -1262.29 -1676.69 -1460.91 

HSDT-9 -1236.85 -1634.67 -1391.53 

HSDT-5 -1231.86 -1635.14 -1392.07 

FSDT -1239.44 -1644.80 -1397.42 

20 

HSDT-12 -1245.23 -1652.91 -1413.52 

HSDT-9 -1238.78 -1642.23 -1395.92 

HSDT-5 -1237.55 -1642.40 -1396.09 

FSDT -1239.44 -1644.80 -1397.42 

M
o
n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

4 

HSDT-12 -496.62 -677.20 -716.58 

HSDT-9 -432.48 -577.80 -544.83 

HSDT-5 -421.50 -581.51 -562.38 

FSDT -427.37 -588.19 -551.29 

10 

HSDT-12 -439.48 -604.03 -580.78 

HSDT-9 -428.28 -586.33 -550.13 

HSDT-5 -426.46 -587.15 -553.02 

FSDT -427.37 -588.19 -551.29 

20 

HSDT-12 -430.44 -592.21 -558.77 

HSDT-9 -427.60 -587.72 -551.00 

HSDT-5 -427.15 -587.93 -551.72 

FSDT -427.37 -588.19 -551.29 

T
it

an
iu

m
 A

ll
o
y
 –

 Z
ir

co
n
ia

 

0
.1

1
2
5
 

4 

HSDT-12 -329.32 -419.52 -437.22 

HSDT-9 -294.68 -368.14 -351.80 

HSDT-5 -283.86 -363.23 -352.58 

FSDT -291.90 -372.75 -354.56 

10 

HSDT-12 -298.37 -380.98 -369.12 

HSDT-9 -292.39 -371.93 -354.06 

HSDT-5 -290.65 -371.27 -354.25 

FSDT -291.90 -372.75 -354.56 

20 

HSDT-12 -293.53 -374.83 -358.24 

HSDT-9 -292.02 -372.54 -354.43 

HSDT-5 -291.59 -372.38 -354.48 

FSDT -291.90 -372.75 -354.56 
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Table 5.42. Nondimensionalized transverse shear stresses             at a distance 0.1h 

from the bottom surface of a FGM plate subjected to nonlinear (TNL), 

linear (TL) and constant (TC) thermal loads (a/b=2 and p=2) 

kc / km a/h Theory 
xz  

yz  

TNL TL TC TNL TL TC 

A
lu

m
in

iu
m

 -
 A

lu
m

in
a 

0
.0

5
1
0
 

4 

HSDT-12 -15.1556 

 

-39.2069 

 

-56.6782 

 

-30.3112 

 

-78.4138 

 

-113.356 

 

HSDT-9 -7.09127 

 

-26.4055 

 

-19.2031 

 

-14.1825 

 

-52.8109 

 

-38.4061 

 

HSDT-5 -9.4648 

 

-32.6947 

 

-23.2373 

 

-18.9296 

 

-65.3894 

 

-46.4746 

 

FSDT -8.4188 

 

-31.3635 

 

-22.5009 

 

-16.8376 

 

-62.7271 

 

-45.0017 

 
10 

HSDT-12 -3.6041 

 

-11.9304 

 

-11.4850 

 

-7.20822 

 

-23.8608 

 

-22.9700 

 

HSDT-9 -3.2710 

 

-12.1843 

 

-8.7610 

 

-6.5419 

 

-24.3687 

 

-17.522 

 

HSDT-5 -3.4327 

 

-12.6285 

 

-9.0463 

 

-6.8653 

 

-25.2569 

 

-18.0925 

 

FSDT -3.3676 

 

-12.5454 

 

-9.0004 

 

-6.7350 

 

-25.0908 

 

-18.0007 

 
20 

HSDT-12 -1.5942 

 

-5.6404 

 

-4.8162 

 

-3.1883 

 

-11.2808 

 

-9.6325 

 

HSDT-9 -1.6715 

 

-6.2267 

 

-4.4697 

 

-3.3429 

 

-12.4533 

 

-8.9394 

 

HSDT-5 -1.6919 

 

-6.2831 

 

-4.5059 

 

-3.3838 

 

-12.5661 

 

-9.0118 

 

FSDT -1.6838 -6.2727 

 

-4.5002 

 

-3.3675 

 

-12.5454 

 

-9.0004 

 

M
o

n
el

 –
 Z

ir
co

n
ia

 

0
.0

8
3
6
 

4 

HSDT-12 4.9468 16.9764 32.5046 9.8935 33.9528 65.0095 

HSDT-9 3.9714 

 

14.8264 

 

11.9263 

 

7.9427 

 

29.6529 

 

23.8526 

 

HSDT-5 3.2414 

 

18.8900 

 

10.8338 

 

6.4828 

 

37.7800 

 

21.6675 

 

FSDT 4.7307 

 

17.1951 

 

13.6473 

 

9.4614 

 

34.3901 

 

27.2947 

 
10 

HSDT-12 0.0485 3.6964 4.5375 0.0971 7.3928 9.0750 

HSDT-9 1.8366 

 

6.7074 

 

5.3355 

 

3.6733 

 

13.4147 

 

10.6710 

 

HSDT-5 1.7999 

 

6.9833 

 

5.2842 

 

3.5998 

 

13.9666 

 

10.5683 

 

FSDT 1.8923 

 

6.8780 

 

5.4589 

 

3.7846 

 

13.7560 

 

10.9179 

 
20 

HSDT-12 0.1862 1.5969 1.5937 0.3724 3.1937 3.1872 

HSDT-9 0.9390 

 

3.4173 

 

2.7138 

 

1.8781 

 

6.8346 

 

5.4275 

 

HSDT-5 0.9346 

 

3.4521 

 

2.7077 

 

1.8693 

 

6.9042 

 

5.4154 

 

FSDT 0.9461 

 

3.4390 

 

2.7294 

 

1.8923 

 

6.8780 

 

5.4589 

 

T
it

an
iu

m
 A

ll
o

y
 –

 Z
ir

co
n

ia
 

0
.1

1
2

5
 

4 

HSDT-12 2.7529 8.9837 16.7417 5.5057 17.9674 33.4834 

HSDT-9 1.3365 3.7747 2.8799 2.6731 7.5494 5.7599 

HSDT-5 0.9615 5.1688 3.4841 1.9229 10.3377 6.9682 

FSDT 1.5946 4.4188 3.3288 3.1892 8.8376 6.6576 

10 

HSDT-12 0.0500 1.8877 2.2813 0.1001 3.7753 4.5625 

HSDT-9 0.6189 1.7209 1.2992 1.2378 3.4419 2.5984 

HSDT-5 0.5985 1.8142 1.3412 1.1970 3.6284 2.6824 

FSDT 0.6378 1.7675 1.3315 1.2757 3.5350 2.6631 

20 

HSDT-12 0.1170 0.8046 0.7861 0.2341 1.6091 1.5721 

HSDT-9 0.3165 0.8778 0.6617 0.6330 1.7557 1.3233 

HSDT-5 0.3140 0.8896 0.6670 0.6281 1.7791 1.3339 

FSDT 0.3189 0.8838 0.6658 0.6378 1.7675 1.3315 
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 (a) 

 
 (b) 

  

 
(c) 

 

 Fig. 5.2. Variation of effective material properties through the thickness (z/h) of 

Monel-Zirconia (M1) FGM plate (a) Young’s modulus of elasticity, (b) 

Thermal coefficient of expansion and (c) Thermal conductivity. 
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 (a) 

 
 (b) 

  

 
(c) 

Fig. 5.3. Variation of effective material properties through the thickness (z/h) of 

Aluminium-Alumina (M2) FGM plate (a) Young’s modulus of elasticity, 

(b) Thermal coefficient of expansion and (c) Thermal conductivity. 
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 (a) 

 
 (b) 

  

 
(c) 

Fig.5.4. Variation of effective material properties through the thickness (z/h) of 

Titanium Alloy-Zirconia (M3) FGM plate (a) Young’s modulus of 

elasticity, (b) Thermal coefficient of expansion and (c) Thermal 

conductivity.  
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 (a) 

 
  (b) 

 
 (c) 

Fig. 5.5. Variation of nondimensionalized transverse displacement      through the 

thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM 

plate subjected to nonlinear thermal load for (a) a/h = 5, (b) a/h=10 and 

(c) a/h=20. [
$
Alibeigloo, A. (2010)]  
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 (a) 

 
  (b) 

 
 (c) 

Fig. 5.6. Variation of nondimensionalized transverse shear stress        through the 

thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM 

plate subjected to nonlinear thermal load for (a) a/h = 5, (b) a/h=10 and 

(c) a/h=20. [
$
Alibeigloo, A. (2010)]  
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 (a) 

 
 (b) 

 
 (c) 

Fig. 5.7. Variation of nondimensionalized transverse normal stress       through the 

thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM 

plate subjected to nonlinear thermal load for (a) a/h = 5, (b) a/h=10 and 

(c) a/h=20. [
$
Alibeigloo, A. (2010)]  
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Fig. 5.20. Variation of nondimensionalized transverse shear stress        through the 

thickness (z/h) of a simply supported square Aluminium-Alumina (M2) 

FGM plate subjected to nonlinear (TNL) thermal load. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.21. Variation of nondimensionalized in-plane displacement      through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) 

HSDT-5 and (d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.22. Variation of nondimensionalized in-plane displacement      through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, 

(c) HSDT-5 and (d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.23. Variation of nondimensionalized transverse displacement      through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-Zirconia 

(M3) FGM plate subjected to nonlinear (TNL), linear (TL) and constant 

(TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and 

(d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c)  

 (d) 

Fig. 5.24. Variation of nondimensionalized in-plane normal  stress       through  the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, 

(c) HSDT-5 and (d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.25. Variation of nondimensionalized in-plane normal stress       through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, 

(c) HSDT-5 and (d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.26. Variation of nondimensionalized in-plane shear stress        through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-Zirconia 

(M3) FGM plate subjected to nonlinear (TNL), linear (TL) and constant 

(TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and 

(d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.27. Variation of nondimensionalized transverse shear stress        through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) 

HSDT-5 and (d) FSDT displacement models. 
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 (a) 

 
 (b) 

  

 
 (c) 

 
 (d) 

Fig. 5.28. Variation of nondimensionalized transverse shear stress        through the 

thickness (z/h) of a simply supported rectangular Titanium Alloy-

Zirconia (M3) FGM plate subjected to nonlinear (TNL), linear (TL) and 

constant (TC) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) 

HSDT-5 and (d) FSDT displacement models. 
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CHAPTER 6 

CONCLUSION 

6.1 GENERAL 

Analytical formulations and solutions using a set of higher-order refined shear 

deformation theories have been developed for the stress analysis of FGM plates 

subjected to thermal loads. These theories consider the realistic parabolic distribution 

of transverse shear strain across the plate thickness direction. The displacement model 

with twelve degrees-of-freedom HSDT-12 considers the effects of both transverse 

shear and normal stress/strain, while the other models include only the effects of 

transverse shear deformation. The accuracy of the higher-order refined theories in 

predicting the displacements and stresses is established by comparing the results with 

the available 3D-Exact solutions in the literature. After establishing the accuracy, 

numerical results are also compared with the results obtained by independently 

developing the theoretical formulations and analytical solutions using the other higher 

order and first order theory available in the literature to show the improvement in the 

accuracy of higher-order refined theories in predicting the thermo-elastic responses in 

an FGM plate. The accuracy of solutions obtained using nonlinear temperature 

distribution with various displacement models, is evaluated by comparing with the 

results obtained using other temperature distributions viz., linear and constant 

profiles, to show the improvement in the accuracy of solutions using nonlinear 

temperature distribution with various theories.  

On the basis of the analysis carried out and the numerical results obtained, the 

following conclusions are arrived 

 For FGM plates subjected to mechanical load, the various static-flexural 

responses predicted by HSDT-12 model are found to be most accurate as 

compared to other displacement models used in this investigation and is less 

than 2.5% for all parameters considered. This reveals the significance of 
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considering both transverse shear and normal deformation effects in analysis 

of FGM plates. 

 In cases of FGM plates subjected to thermal loads, the transverse stresses and 

transverse displacement predicted by HSDT-12 model are as accurate as three 

dimensional exact solutions while other models under predicts the transverse 

normal stress and over-predicts the transverse shear stresses. This clearly 

shows the need for using higher order polynomials in the in-plane and 

transverse displacement fields to achieve the desired accuracy in the thermo-

elastic analysis of FGM plates.  

 The accuracy of solutions is found to decrease with the decrease in the total 

number of functional degrees of freedom. Therefore there is a large deviation 

of the displacements and stress values predicted by HSDT-9, HSDT-5 and 

FSDT models compared to that HSDT-12. Comparatively least difference is 

observed in the values predicted by HSDT-9 displacement model.  

 Considerable difference is observed in displacements and stresses predicted by 

HSDT-12 and all other models. The percentage difference in values predicted 

by the other models increases with the increase in power law parameter and 

edge ratio (a/b ratio), while decreases with the increase in a/h ratio as 

compared with HSDT-12 model.  

 Maximum percentage difference is observed in rectangular plate and the least 

percentage difference in square plates. The percentage difference increases 

with increase in a/b ratio. Also, for FGM thin plates with a/h ratio 50 and 

above, the results predicted by all the models are almost same. 

 Though the values of in-plane displacements           are different, their 

percentage differences remain same for all parameters. Similarly equal 

differences are observed in the values of transverse shear stresses              . 

 In all the displacement models considered for the analysis of FGM plates, as 

the thickness of the plate decreases the values of transverse deflection 

increases but the percentage difference between the values decreases. This 



145 

 

shows that the effect of transverse shear and normal strains in predicting the 

deflection and stresses reduces in thin plates.  

 In most of the cases considered the maximum percentage difference in the 

displacements and stresses are observed in Monel-Zirconia FGM plate and the 

least percentage difference in Titanium Alloy-Zirconia FGM plates. This 

indicates that FGM plate responses are sensitive to thermo-physical properties. 

 For any given displacement model and the material set, the thermal responses 

predicted using nonlinear, linear and constant forms of temperature 

distributions are found to be very much different from each other. This shows 

the need for adopting an appropriate temperature field that can predict most 

accurate thermal responses. 

 In case of thin plates, the differences in the results predicted by various models 

are almost same, but significant differences are observed when different 

temperature distributions are adopted for the same model during the analysis. 

This shows that the type of thermal field adopted during the analysis has its 

effect in both thin and thick plates. 

 The displacements and stresses predicted using nonlinear form of temperature 

distribution are as accurate as three dimensional elasticity solutions when used 

with HSDT-12 model. The accuracy of solutions reduces with other lower 

order displacement models. Further the percentage difference in results 

increases when the same plate is subjected to other form of temperature profile 

namely linear or constant type of variation across the thickness. 

 The variation of in-plane / transverse displacements and stresses plotted across 

the plate thickness using all the temperature profiles clearly indicates that 

results obtained using linear and constant temperature profile are very much 

different from those of nonlinear temperature distribution for all the models 

considered. Remarkable differences are noticed in the distribution pattern also. 

Among various models considered, maximum deviation is observed in FSDT 

models. 
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6.2 SUGGESTIONS FOR FUTURE WORK 

 In the present investigation only the stress analysis of FGM plates subjected to 

thermal loads has been carried out. Further studies can be extended for the 

development of formulations and solutions for thermal vibration and thermal 

buckling analyses of FGM plates using various displacement models. 

 The analysis carried out here is for plates subjected to thermal loads only. 

Other combination of loads such as thermomechanical, hygro-thermal, 

thermo-peizo-electric, hygro-thermo-mechanical can also be incorporated to 

study static, free vibration and stability analyses of FGM plates using different 

theories. 

 Static analysis is carried out in the present investigation. The work can be 

extended towards developing formulations for transient analysis of flat panels.  

 The plate geometry considered here is a flat panel. However, further 

formulations can be developed for thermally loaded curved panels and 

comparative studies can be carried out. 

 Only plates with simply supported boundary conditions are considered in the 

present investigation. Analytical formulations and solutions can be developed 

for thermally stressed FGM plates with different combinations of boundary 

conditions. 

 The analytical model developed in the present investigation for HSDT-12 

displacement model can be used for developing formulations and solutions 

using numerical methods like Finite Element Methods (FEM) and Meshless 

methods. 
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APPENDIX – I 

Equilibrium equations obtained using various displacement models for stress 

analysis of FGM plates 

 

 Model – HSDT-9  ( Pandya and Kant 1988 ) 
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APPENDIX - I (contd.) 

 Model – HSDT-5 (Reddy 1984) 
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 Model – FSDT  ( Whitney and Pagano 1970 ) 
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APPENDIX – II 

Elements of plate stiffness matrices 
T[A],  [A ],  [C ], [B],  [B ],  [D],  [D ],  [E],  [E ]     for various displacement models used in the 

thermo-elastic analysis of FGM plates 

 Model – HSDT-12  ( Kant and Manjunatha 1988 ) 
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APPENDIX - II (contd.) 
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APPENDIX - II (contd.) 
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h/2 66 66 66 66 66 66 66

3 3 5 5 4 4 6
66 66 66 66 66 66 66

Q Q 3Q z Q z 2Q z Q z Q z

Q z Q z 3Q z Q z 2Q z Q z Q z
D dz

Q z Q z 3Q z Q z 2Q z Q z Q z

Q z Q z 3Q z Q z 2Q z Q z Q z



 
 
 
 
 
 
 
 



 

 

 

2 2 3
55 55 55 55 55 55 55

2 2 4 4 3 3 5h/2
55 55 55 55 55 55 55

3 3 2 2 4
h/2 55 55 55 55 55 55 55

3 3 5 5 4 4 6
55 55 55 55 55 55 55

Q Q 3Q z Q z 2Q z Q z Q z

Q z Q z 3Q z Q z 2Q z Q z Q z
E dz

Q z Q z 3Q z Q z 2Q z Q z Q z

Q z Q z 3Q z Q z 2Q z Q z Q z



 
 
 
 
 
 
 
 

  
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[A ]   [B ]    [D ]    [E ]     0      

 

 

 

 Model – HSDT-9  ( Pandya and Kant 1988 ) 

 

 

2 2 3 3

11 12 11 12 11 12 11 12

2 2 3 3

12 22 12 22 12 22 12 22

2 2 4 4 3 3 5 5

11 12 11 12 11 12 11 12

2 2 4 4 3 3 5 5

12 22 12 22 12 22 12 22

3 3 2 2 4 4

11 12 11 12 11 12 11 12

12 22 12

Q Q Q z Q z Q z Q z Q z Q z

Q Q Q z Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z
A

Q z Q z Q z Q z Q z Q z Q z Q z

Q z Q z Q z



h/2

h/2

3 3 2 2 4 4

22 12 22 12 22

3 3 5 5 4 4 6 6

11 12 11 12 11 12 11 12

3 3 5 5 4 4 6 6

12 22 12 22 12 22 12 22

dz

Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


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APPENDIX - II (contd.) 

 

 

11 12

12 22

2 2
11 12

2 2h/2
12 22

T

h/2 11 12

12 22

3 3
11 12

3 3
12 22

Q Q

Q Q

Q z Q z

Q z Q z
C dz

Q z Q z

Q z Q z

Q z Q z

Q z Q z



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

 

 

2 2 3 3

44 44 44 44 44 44 44 44

2 2 4 4 3 3 5 5h/2
44 44 44 44 44 44 44 44

3 3 2 2 4 4
h/2 44 44 44 44 44 44 44 44

3 3 5 5 4 4 6 6

44 44 44 44 44 44 44 44

Q Q Q z Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z
B dz

Q z Q z Q z Q z Q z Q z Q z Q z

Q z Q z Q z Q z Q z Q z Q z Q z



 
 
 
 
 
 
 
 

  
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 

2

66 66 66 66
h/2

2 2 4 3

66 66 66 66

h/2
3 2

66 66 66 66

Q Q 3Q z 2Q z

D Q z Q z 3Q z 2Q z dz

Q z Q z 3Q z 2Q z


 
 
 
 
 
 



 

 

 

2

55 55 55 55
h/2

2 2 4 3

55 55 55 55

h/2
3 2

55 55 55 55

Q Q 3Q z 2Q z

E Q z Q z 3Q z 2Q z dz

Q z Q z 3Q z 2Q z


 
 
 
 
 
 



 

 

[A ]   [B ]    [D ]    [E ]     0         
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APPENDIX - II (contd.) 

 

 Model – HSDT-5  (Reddy 1984) 

 

 

3 3 3 3

11 12 11 12 11 122 2 2 2

3 3 3 3

12 22 12 22 12 222 2 2 2

4 4 4 4
2 2

11 12 11 12 11 122 2 2 2

2

12 22 12

4z 4z 4z 4z
Q Q Q z Q z Q Q

3h 3h 3h 3h

4z 4z 4z 4z
Q Q Q z Q z Q Q

3h 3h 3h 3h

4z 4z 4z 4z
Q z Q z Q z Q z Q Q

3h 3h 3h 3h
A

Q z Q z Q z

   
      

   

   
      

   

   
      

   



4 4 4 4

2

22 12 222 2 2 2

6 6 6 6
3 3 4 4

11 12 11 12 11 122 2 2 2

6 6 6 6
3 3 4 4

12 22 12 22 12 222 2 2 2

4z 4z 4z 4z
Q z Q Q

3h 3h 3h 3h

4z 4z 4z 4z
Q z Q z Q z Q z Q Q

3h 3h 3h 3h

4z 4z 4z 4z
Q z Q z Q z Q z Q Q

3h 3h 3h 3h














         
   




          
   

   
      

   

h/2

h/2

dz




















 
 
 
 
 


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APPENDIX - II (contd.) 

 

 

11 12

12 22

h/2
11 12

T

h/2 12 22

3 3
11 12

3 3
12 22

Q Q

Q Q

Q z Q z
C dz

Q z Q z

Q z Q z

Q z Q z



 
 
 
 
 
 
 
 
 
 
  

  

 

 

3 3 3

44 44 44 44 442 2 2

h/2 4 4 4
2 2

44 44 44 44 442 2 2

h/2

6 6 6
3 3 4 4

44 44 44 44 442 2 2

4z 4z 8z
Q Q Q z Q z Q

3h 3h 3h

4z 4z 8z
B Q z Q z Q z Q z Q dz

3h 3h 3h

4z 4z 8z
Q z Q z Q z Q z Q

3h 3h 3h



     
     

    
 

    
      

    
 

     
     

    


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APPENDIX - II (contd.) 

 

 
L 1

L

2 2

55 552 2
zNL

4 4L 1 z
2 2

55 552 2

4z 4z
Q 1 Q 1

h h
E dz

4z 4z
Q z Q z

h h





    
     

    
  

    
     

    

 

 

 

[A ] [B ] [D ] [E ] 0        

 

 Model – FSDT  ( Whitney and Pagano 1970 ) 

 

 

11 12 11 12

h/2
12 22 12 22

2 2
h/2 11 12 11 12

2 2

12 22 12 22

Q Q Q z Q z

Q Q Q z Q z
A dz

Q z Q z Q z Q z

Q z Q z Q z Q z



 
 
 
 
 
 
  

  
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APPENDIX - II (contd.) 

 

 

11 12

h/2
12 22

T

h/2 11 12

12 22

Q Q

Q Q
C dz

Q z Q z

Q z Q z



 
 
 
 
 
 
  

  

 

 
h/2

44 44 44 44

2 2
h/2 44 44 44 44

Q Q Q z Q z
B dz

Q z Q z Q z Q z

 
  

  
  

 

   
h/2

66 66

h/2

D Q Q dz


   
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APPENDIX - II (contd.) 

 

   
h/2

55 55

h/2

E Q Q dz


   

 

[A ]   [B ]    [D ]    [E ]     0        
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APPENDIX – III 

Elements of the coefficient matrix [X] using various displacement models for 

thermo-elastic analysis of FGM plates 

 

 Model - HSDT-12 (Kant and Manjunatha 1988) 

 2 2

1,1 1,1 1,1
X A     B       

1,2 1,2 1,2
X A        B       

 
1,3

X 0
 

2 2

1,4 1,7 1,5
X   A     B       

 
1,5 1,8 1,6

X A        B       
1,6 1,5

X    A      

 2 2

1,7 1,3 1,3
X A        B       

1,8 1,4 1,4
X A        B       

 
1,9 1,11

X    A    
 

2 2

1,10 1,9 1,7
X A        B       

 
1,11 1,10 1,8

X A        B       
1,12 1,6

X    A      

 2 2

2,2 2,2 1,2
X A        B       

2,3
X 0  

 
2,4 2,7 1,5

X A        B     
 

2 2

2,5 2,8 1,6
X A     B       

 
2,6 2,5

X A      
2,7 2,3 1,3

X A       B       

 2 2

2,8 2,4 1,4
X   A     B       

2,9 2,11
X    A    

 

 
2,10 2,9 1,7

X A        B     
 

2 2

2,11 1,10 1,8
X A        B       

 
2,12 2,6

X    A      2 2

3,3 1,2 1,2
X D     E       

 
3,4 1,1

X   D     
3,5 1,1

X   E     

 2 2

3,6 1,6 1,6
X D        E     

 3,7 1,5
X   D     
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APPENDIX - III (contd.) 

 
3,8 1,5

X E     2 2

3,9 1,4 1,4
X   D     E       

 
3,10 1,3

X   D     
3,11 1,3

X   E   
 

 2 2

3,12 1,7 1,7
X D        E     

 
2 2

44 7,7 3,5 1,1X   A     B   D    
 

 
4,5 7,8 3,6

X   A        B     
 46 7,5 1,6X    A        D      

 

 2 2

4,7 7,3 3,3 1,5
X   A        B        D      

4,8 7,4 3,4
X   A        B     

 

 
4,9 7,11 1,4

X    A        D      
 

2 2

4,10 7,9 3,7 1,3
X   A        B     D    

 

 
4,11 7,10 3,8

X A        B     
 4,12 7,6 1,7

X    A        D      
 

 2 2

5,5 8,8 3,6 1,1
X   A         B     E      

5,6 8,5 1,6
X    A        E      

 

 
5,7 8,3 3,3

X   A        B     
 

2 2

5,8 8,4 3,4 1,5
X   A        B        E      

 
5,9 8,11 1,4

X    A        E        
5,10 8,9 3,7

X   A        B     
 

 2 2

5,11 8,10 3,8 1,3
X   A        B     E    

 5,12 8,6 1,7
X    A        E      

 

 2 2

6,6 5,5 3,6 3,6
X   A   D     E      

 6,7 5,3 3,5
X           D      

 

 
6,8 5,4 3,5

X           E      
 

2 2

69 5,11 3,4 3,4
X   A   D     E      

 

 
6,10 5,9 3,3

X           D      
 6,11 5,10 3,3

X           E      
 

 2 2

6,12 5,6 3,7 3,7
X   A D    E      

 7,7 3,5 3,6
X    A        2 D      

 

 
7,8 3,6 3,7

X    A        2 D      
 7,9 3,11 3,4

X    A        2 D        
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 2 2

7,10 3,9 2,7 3,3
X   A        B        2 D    

 7,11 3,10 2,8
X   A        B       

 
7,12 3,6 3,7

X    A        2 D        2 2

8,8 4,4 2,4 3,5
X   A        B       2 E      

 
8,9 4,11 3,4

X    A        2 E      
 8,10 4,9 2,7

X   A        B       

 2 2

8,11 4,10 2,8 3,3
X   A       B     2 E    

 8,12 4,6 3,7
X    A          E       

 

 2 2

9,9 11,11 2,4 2,4
X   2 A   D     E        

9,10 11,9 2,3
X             D        

 
9,11 11,10 2,3

X             E        2 2

9,12 11,6 2,7 2,7
X   2 A   D     E        

 2 2

10,10 9,9 4,7 2,3
X   A     B     3 D      

10,11 9,10 4,8
X   A        B       

 
10,12 9,6 2,7

X    A        3 D        2 2

11,11 10,10 4,8 2,3
X   A     B     3 E      

 
11,12 10,6 2,7

X    A        3 E        2 2

12,12 6,6 4,7 4,7
X   3 A   D     E         

 and  Xi,j  =  Xj,i  (i, j=1 to 12) 

 

 Model – HSDT-9  ( Pandya and Kant 1988 ) 

 2 2

1,1 1,1 1,1
X   A   B       

1,2 1,2 1,2
X A       B       

 
1,3

X 0
 

2 2

1,4 1,5 1,5
X   A     B     

 

 
1,5 1,6 1,6

X   A        B       2 2

1,6 1,3 1,3
X   A   B       

 
1,7 1,4 1,4

X A       B       2 2

1,8 1,7 1,7
X   A   B     

 

 
1,9 1,8 1,8

X   A        B     
 

2 2

2,2 2,2 1,2
X   A        B       
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2,3

X 0  
2,4 2,5 1,5

X   A        B       

 2 2

2,5 2,6 1,6
X   A        B       

2,6 2,3 1,3
X   A        B       

 2 2

2,7 2,4 1,4
X   A     B     

 2,8 2,7 1,7
X   A        B     

 

 2 2

2,9 2,8 1,8
X   A        B       2 2

3,3 1,2 1,2
X D        E       

 
3,4 1,1

X D     
3,5 1,1

X E   
 

 
3,6 1,4

X D   
 3,7 1,4

X E     

 
3,8 1,3

X   D     
3,9 1,3

X   E     

 2 2

4,4 5,5 3,5 1,1
X A     B       D      

4,5 5,6 3,6
X   A        B       

 2 2

4,6 5,3 3,3 1,4
X   A     B      D    

 4,7 5,4 3,4
X   A        B     

 

 2 2

4,8 5,7 3,7 1,3
X   A   B     D      

4,9 5,8 3,8
X   A        B       

 2 2

5,5 6,6 3,6 1,1
X   A       B       E      

5,6 6,3 3,3
X   A        B     

 

 2 2

5,7 6,4 3,4 1,4
X   A       B     E    

 5,8 6,7 3,7
X   A        B     

 

 2 2

5,9 6,8 3,8 1,3
X   A     B     E    

 
2 2

6,6 3,3 2,3 3,4
X   A     B     2 D    

 

 
6,7 3,4 2,4

X   A        B       2 2

6,8 3,7 2,7 3,3
X   A         B        2 D      

 
6,9 3,8 2,8

X   A        B       2 2

7,7 4,4 2,4 3,4
X   A        B     2 E    

 

 
7,8 4,7 2,7

X   A         B     
 

2 2

7,9 4,8 2,8 3,3
X   A        B       2 E      
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APPENDIX - III (contd.) 

 2 2

8,8 7,7 4,7 2,3
X   A     B     3 D      

89 7,8 4,8
X   A        B       

 2 2

9,9 8,8 4,8 2,3
X   A        B       3 E      and   Xi,j  =  Xj,i   (i, j=1 to 9) 

 

 Model - HSDT-5 (Reddy 1984) 

 2 2

1,1 1,1 1,1
X   A     B       1,2 1,2 1,2

X   A       B     
 

 2 2

1,3 1,3 1,3
X   A     B     

 1,4 1,4 1,4
X   A        B       

 3 2 2

1,5 1,5 1,6 1,5
X   A        A        B        

 
2 2

2,2 2,2 1,2
X   A        B       

 
2,3 2,3 1,3

X   A        B     
 

2 2

2,4 2,4 1,4
X   A     B       

 2 3 2

2,5 2,5 2,6 1,5
X   A        A        B         

 

  2 2 2 2

2 23,3 3,3 2,3 1,1 5,3 3,3 2,1

4 4
X   A     B       D          A   B           D

3h h
         

 

  23,4 3,4 2,4 5,4 3,4

4
X   A        B            A        B  

3h
       

 

 

 

3 2 2

23,5 3,5 3,6 2,5 1,2 2,2

3 2 2

2 5,5 5,6 3,5

4
X   A        A        B        D         D  

h

4
      A        A   B  
3h

         

       

  2 2 2 2

2 24,4 4,4 2,4 1,1 6,4 3,4 2,1

4 4
X   A        B       E          A        B          E

3h h
         

 

 

 

2 3 2

24,5 4,5 4,6 2,5 1,2 2,2

2 3 2

2 6,5 6,6 3,5

4
X   A        A        B         E           E  

h

4
      A        A     B  
3h

           

       
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APPENDIX - III (contd.) 

 
 

   

4 2 2 2 2 4 2 2

25,5 5,5 5,6 6,5 6,6 3,5

2 2 2 2

21,2 1,2 2,2 2,2

4
X        A   A A A B

3h

4
   D     E         D   E  

h

            

          

 and   Xi,j  =  Xj,i   (i, j=1 to 5) 

 

 Model - FSDT (Whitney and Pagano 1970) 

 2 2

1,1 1,1 1,1
X   A     B       

1,2 1,2 1,2
X   A        B     

 
1,3

X 0
 

2 2

1,4 1,3 1,3
X   A        B     

 

 
1,5 1,4 1,4

X   A        B     
 

2 2

2,2 2,2 1,2
X   A        B       

 
2,3

X 0
 2,4 2,3 1,3

X   A        B     
 

 2 2

2,5 2,4 1,4
X   A        B     

 
2 2

3,3 1,2 1,2
X D        E     

  

 
3,4 1,1

X   D   
 3,5 1,1

X   E   
 

 2 2

4,4 3,3 2,3 1,1
X   A     B        D    

 4,5 3,4 2,4
X   A        B     

 

 2 2

5,5 4,4 2,4 1,1
X   A     B     E      and   Xi,j  =  Xj,I   (i, j=1 to 5) 
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APPENDIX – IV 

Elements of Thermal Force Matrix { FT } for various displacement models used in the thermo-elastic analysis of FGM plates 

 

 Model – HSDT-12  ( Kant and Manjunatha 1988 ) 

   
T T T T T T T T T T T

t
* * * * * *

T x y x y z x y z x y z
F N N 0 M M N N N 2M M M 3N          

 Model – HSDT-9  ( Pandya and Kant 1988 ) 

   
T T T T T T T T

t
* * * *

T x y x y x y x y
F N N 0 M M N N M M          

 Model – HSDT-5  (Reddy 1984) 

        
T T T T T T T T

t
* * 2 * 2 *

T x y x x y y x y
F N N M M M M M M          

 Model – FSDT  ( Whitney and Pagano 1970 ) 

   
T T T T

t

T x y x y
F N N 0 M M      
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