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ABSTRACT

Analytical formulations and solutions are presented for the thermo-elastic analysis of
Functionally Graded Material (FGM) plates based on a set of higher order refined
shear deformation theories. The displacement components in these computational
models are based on Taylor’s series expansions, Which incorporates parabolic
variation of transverse strains across the plate thickness. The displacement model with
twelve degrees of freedom considers the effects of both transverse shear and normal
strain/stress while the other model with nine degrees of freedom includes only the
effect of transverse shear deformation. Besides these, a higher order model and a first
order model with five degrees of freedom that are developed by other investigators
and are reported in the literature are also used in the present investigation for
evaluation purposes. A simply supported FGM plate subjected to thermal load is
considered throughout as a test problem. The material properties are mathematically
modeled based on power law function. The temperature is assumed to vary
nonlinearly and obey one-dimensional steady state heat conduction equation
throughout the plate thickness while in-plane is sinusoidal. Along with this constant
and linearly varying temperatures are also considered in the study. The equations of
equilibrium are derived using the Principle of Minimum Potential Energy (PMPE)
and closed form solutions are obtained using Navier’s solution technique. Firstly,
numerical results obtained using various displacement models are compared with the
three-dimensional elasticity solutions available in the literature inorder to establish the
accuracy of higher order models considered in the study. After establishing the
accuracy of the solution method benchmark results and comparison of solutions are
presented for Monel/Zirconia, Titanium-Alloy/Zirconia and Aluminium/Alumina
FGM plate by varying edge ratio, slenderness ratio and power law parameter.
Numerical and graphical results are presented for in-plane, transverse displacements

and stresses for all the models by considering different temperature profiles.

Keywords: FGM Plate; Analytical solution; Navier’s technique; Higher Order

Theory; Shear Deformation; Thermal Load; Stress Analysis.
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NOMENCLATURE

Cartesian co-ordinate system for an FGM plate and is
named as FGM plate axes
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about y and x axes respectively
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plate space.
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x and z directions respectively at any point (X, y, 0) in
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of the FGM plate

Normal stresses at any point in the plate with reference
to the FGM plate axes.
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the FGM plate axes.
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Normal strains at any point in the plate with reference to
the plate axes.
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARY REMARKS

Laminated composite plates have established their potential applications in various
sectors like aerospace, marine, medical, nuclear and automotive industries as well as
in other fields involving advanced high performance materials. Developments in the
field of materials have revolutionized the application of multilayered composites with
a new innovative material called Functionally Graded Material (FGM). The smooth
variation of thermo-mechanical properties in FGM was found to be most efficient in
handling high temperature gradients than that of composite laminates. The rapid
change in material properties at the laminate interface promotes the development of
interlaminar stresses resulting in de-bonding of fibers and matrix, cracking and
delamination effects at elevated temperatures. These problems can be mitigated in
FGMs due to the smooth and continuous gradation of material properties through the
thickness and hence finding major use in high temperature applications viz., rocket
nozzles, heat exchange panels, space craft truss structures, bullet proof jackets, armor

plates, combustion chamber components in aircrafts and automobiles.

FGM are the advanced composite materials formed by continuous change in
composition of two or more constituent phases over a specified volume. FGMs can
also be defined as a material which possesses gradual variations in thermo-mechanical
properties due to material heterogeneity. The smooth gradation of physical properties
can be either unidirectional or multidirectional and also it can be continuously or
discontinuously varied between any two points or surfaces. Most commonly FGMs
are used as a thermal coating or a heat shielding material to resist high temperature
exposures and hence manufactured using ceramics and metals. A heat resisting
ceramic material is used on high temperature side and the material composition is
gradually graded to a tough metal with high thermal conductivity on the other side.

Such bi-material graded composites can incorporate most of the advantageous
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physical and chemical properties of both the materials, thereby increasing the bond
strength, fracture toughness, thermal properties and also by reducing the interfacial
stresses, thermal stresses, stress intensity factors and crack driving forces. Some of the
commonly used FGMs are Monel-Zirconia, Aluminium-Silicon Carbide, Titanium

Alloy-Zirconia, Aluminium-Alumina, Silicon Carbide-Carbon, Nickel-Zirconia, etc.

Structural analysis of FGM plates plays a vital role in predicting the static, dynamic
and stability behavior of plates subjected to mechanical / thermal loads. The
governing factors include thermo-physical properties, boundary conditions and
applied mechanical/thermal loads. In the present investigation, a continuously graded,
simply supported, ceramic-metal FGM plate subjected to thermal load is considered
for the analysis. The static responses are examined for different temperature profiles,

plate geometries and material compositions.

Most of the FGMs are found in high temperature resisting structural elements like
thermal shielding materials, combustion chamber parts and space shuttle components
involving very high surface temperatures of 2100K with a temperature gradient of
1600K across a section with less than 10mm thickness (Koizumi, 1997). Hence
mathematical modeling and analysis of these structural elements under thermal
environments have attracted substantial attention of researchers and consequently
aiming in developing a precise, accurate and efficient theoretical model for thermo-

elastic analysis of FGM plates.

Most of the modeling and analysis techniques used for FGM plates are the extensions
of composite laminate / isotropic plates. Classical Plate Theory (CPT) based analysis
was found to be inaccurate for FGM plate analysis, as it neglects the transverse
deformation effects. Hence refined theories were developed by incorporating the
effects of transverse shear stress/strain. The First Order Shear Deformation Theory
(FSDT) commonly known as Reissner-Mindlin’s plate theory assumes linear
variations of transverse displacements/stresses and hence a shear correction
coefficient has to be introduced to rectify the variation of shear stress/strain across the
thickness of the FGM plate. These limitations of FSDT forced the development of

higher-order refined theories. The second and third order theories involve additional



terms in the expression for the in-plane displacements which are parabolic and cubic
respectively in thickness direction coordinate. These higher order theories consider

the realistic parabolic variation of transverse shear stress through the plate thickness.

1.2 AIM AND SCOPE

Analytical modeling plays a vital role in the design and development of FGM plates
because experimental studies are not feasible to evaluate the stresses and
displacements, as the plate thickness is very small compared to the lateral dimensions.
Also, investigations related to ultimate stress, critical buckling load, failure analysis,
crack propagation, etc. can only be examined analytically but not experimentally.
Therefore, in recent decades many publications have been reported on the analytical
evaluation of thermo-elastic responses of FGM plates using various three-dimensional
(3-D) and two-dimensional (2-D) theories. Though 3-D methods of analysis are found
to be the most accurate, it is very difficult to obtain solutions for various plate
geometries, loading and boundary conditions. Hence a 3-D plate problem has to be
reduced to a 2-D plate problem using suitable assumptions and the accuracy of the
assumed 2-D plate theory has to be established by comparing the results obtained
using the theory with the 3-D exact elasticity solutions that are already reported in the
literature. Then the most accurate 2-D theory can be formulated using Finite Element
Methods (FEM) and can be further used for the development of commercial FEM

packages.

It has been found from the literature that in all the earlier investigations the through
the thickness temperature profiles assumed were either constant or linear. Moreover,
most of the studies using various two-dimensional theories for the thermo-elastic
analysis of FGM plates were confined towards establishing the accuracy of results
obtained using a particular model developed based on any two-dimensional theory by
comparing the results with that of three-dimensional exact solutions already available
in the literature. Analytical evaluation of various two-dimensional higher order
refined theories especially with higher order polynomial terms in the displacement
fields (viz., HSDT12, HSDT9) using more realistic non-linear variation of

temperature across the thickness (using heat conduction equation) in predicting the



different responses of FGM plates and also the evaluation with regard to their relative
accuracy in predicting the displacements and stresses have not been reported yet.
Owing to the above limitations, there is a need to evaluate analytically the various
higher order refined theories for the thermo-elastic analysis of FGM pales subjected to
different temperature profiles and to present the numerical results hitherto not
reported in the literature. Keeping this in view the aims and objectives set for the

present work are as follows:

1. To develop analytical formulations and solutions using a set of higher order
refined theories with twelve and nine degrees of freedom for the thermo-elastic
analysis of FGM plates.

2. To determine the various responses (Displacements, Stresses) of thermally
loaded FGM plates subjected to different temperature profiles namely non-linear,
linear and constant temperature.

3. To calculate the accuracy of the solutions obtained by comparing them with
the three-dimensional elasticity solutions wherever available in the literature, for
validating the accuracy of the displacement models considered in the study.

4. To evaluate the accuracy of the solution obtained in (1) in comparison to the
accuracy of solutions obtained by independently developing the analytical
formulations and solutions using other higher-order theory with five degrees of
freedom and the first-order theory already available in the literature and by comparing
the solutions of all the theories with exact 3-D elasticity solutions. The physical
interpretation of the calculated results are discussed though various example
problems.

5. To establish benchmark analytical solutions for the thermo-elastic analysis of
FGM plates using various theories, material properties and temperature profiles

considered in the present study.

For mathematical modelling purposes, the material properties are assumed to vary
across the thickness direction of the plate based on power law function, while the in-
plane variation is assumed to be isotropic. The temperature is assumed to vary
sinusoidally along the plane of the plate, while its variation across the thickness can

either be constant/linear or non-linear. One-dimensional steady state heat conduction
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equation is used to obtain the nonlinear variation of temperature across the plate
thickness.

The theories are applied to study the thermo-elastic response of FGM plates subjected
to different temperature profiles explained above. For all the problems a simply
supported plate is considered for the analysis. The equations of equilibrium using
different displacement models are obtained using the Principle of Minimum Potential
Energy (PMPE) and solutions in closed-form are obtained using Navier’s solution
technique by solving the Boundary Value Problem (BVP).

The scope of this study is restricted to small deformation thermo-elasto-static analysis
of simply supported FGM plate using Power-Law variation of material properties and
is subjected to constant, linear and nonlinear distribution of temperature profiles

across the plate thickness.

1.3 LAYOUT OF THE THESIS

The extensive work carried out in this investigation to achieve the above mentioned

aims and objectives is presented systematically in different chapters as follows:

Chapter 2 contains a detailed literature review of the research works concerning the
different methods of analysis to evaluate the thermal stresses in FGM plates using
various three-dimensional and two-dimensional plate theories. Based on the type of
temperature distribution adopted in the analysis, this has been presented under three
broad headings, viz., 1) Three dimensional temperature variation, 2) One dimensional
nonlinear temperature variation, 3) One dimensional constant and linear temperature
variation. Available literatures under both analytical and numerical methods are
reviewed to give a clear picture of research work carried out on the thermo-elastic

analysis of FGM plates.

Chapter 3 contains a list of various displacement models (theories) used in the present
investigation. Detailed theoretical formulation is presented for HSDT-12
displacement model only for brevity sake. Following the similar procedure adopted
for the model HSDT-12, the equilibrium equations obtained for the thermo-elastic

analysis using all other displacement models are given in Appendix - I.
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In Chapter 4 analytical solution method using Navier’s solution technique is presented
in detail for the thermo-elastic analysis of simply supported FGM plates using
HSDT-12 displacement model only. The same procedure is used to obtain solutions

using all other displacement models. The elements of the plate stiffness matrices

[Al, [A], [C;1,[B], [B1, [D], [D], [E]. [E], the coefficient matrix[X ], and the
elements of thermal force matrix {FT} using different displacement models are given

in Appendices II, I11 and IV respectively.

In Chapter 5 numerical results and discussion are presented for the thermo-elastic
analysis of FGM plates. The results obtained using various displacement models are
first compared with the available three dimensional elasticity solutions. After
establishing the accuracy of the model, parametric studies are performed for Monel-
Zirconia, Titanium Alloy-Zirconia and Aluminium-Alumina FGM plates. Benchmark
results are presented for nonlinearly, linearly and constantly varying temperature

profiles across the plate thickness.

Chapter 6 contains the general conclusions that are drawn from the present
investigation using the four computational models and also the suggestions for future

work.



CHAPTER 2

LITERATURE REVIEW

2.1 PRELIMINARY REMARKS

Generally, FGMs are the nonhomogeneous particulate composites formed by
continuous gradation of constituents with variable composition profile, which can be
tailored to achieve desired strength and stiffness. The concept of FGM was first
introduced at National Aerospace Laboratories of Japan in 1984 to create a thermal
barrier material for a space shuttle, which can withstand high surface temperature of
2100K with a temperature gradient of 1600K across a 10mm thick section. Often
FGMs are used in structures where extreme temperatures gradients are involved, due
to which structure confronts to sudden stretching and bending forces. Therefore it is
very important to understand the deformation characteristics and stress distribution
pattern for a wide range of temperatures. A remarkable effort has been devoted in the
recent decades for the development of computational models for studying the
responses of FGM structural elements/plates subjected to thermal loads. Many
mathematical modelling techniques with various degrees of freedom have been
evolved. Most of these theories are extensions of the models used in the analysis of
composite laminates/ isotropic plates. Thus various approaches used for the modelling
and analysis of FGM plates can be grouped into the following categories:

(1) Three-dimensional (3-D) elasticity theory
(2) Two-dimensional (2-D) plate theories
a) Classical Plate Theory (CPT)
b) First-Order Shear Deformation Theories (FSDTSs)
¢) Higher-Order Shear Deformation Theories (HSDTSs)

The exact solutions to boundary value problem using three-dimensional elasticity

theories are very difficult and tedious to solve. Analytical solutions to 3-D elasticity
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equations would not be feasible for plates with complex geometries and boundary
conditions. Further, solutions to functionally graded plates will still get complicated
with the use of power law function and three dimensional variations in temperature.
Therefore 3-D elasticity theories are simplified by making suitable assumptions based
on kinematics of deformation and constitutive behaviour, called as 2-D plate theories.
Most of these theories are reported in the literature and are based on displacement
fields and stress functions. The Classical Plate Theory (Reissner and Stavsky 1961)
which is an extension of Classical Plate Theory (Timoshenko and Woinowsky-
Krieger 1959, Szilard 1974) neglects the effect of out-of-plane strains. It was
observed that the CPT fails to predict accurately the static and dynamic response in
the case of FGM plates which are rather thick and/or exhibit high anisotropy ratios.
Thus the CPT is not suitable for modelling of FGM plates. Theories which include the
effects of transverse shear deformation effect and at times the transverse normal strain
effect become necessary. First-order shear deformation theory based on Riessner
(1945) and Mindlin (1951) assume linear displacement and/or stress variation across
the plate thickness direction. Since FSDT account for constant transverse shear stress,
shear correction coefficients are needed to rectify the unrealistic variation of the shear
strain/ stress through the thickness. Whitney and Pagano (1970) was the first to use
FSDT for the static analysis of laminated composite plates. The limitations
encountered in FSDT have been resolved in HSDTs by using higher-order terms in
the Taylor’s expansions of displacements in the thickness coordinate. The second and
third-order theories involve additional terms in the expression for in-plane
displacements which are parabolic and cubic respectively in thickness direction. Kant
(1982) was the first to derive the complete set of variationally consistent governing
equations for the flexure of a symmetrically laminated plate incorporating both
distortion of transverse normal and effects of transverse normal stress/strain by
utilizing the complete three-dimensional generalized Hooke’s law. Reddy (1984b)
derived a set of variationally consistent equilibrium equations for the kinematic
models originally proposed by Levinson (1980) and Murthy (1981). Rohwer et al.
(2001) were the first investigators to report the significance of using higher order
polynomials for the displacement fields for the thermo-elastic analysis of laminated

composite plates. Later, Kant and Swaminathan (2002), Swaminathan and
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Ragounadin (2004), Swaminathan et al. (2006), Swaminathan and Patil (2007)
presented analytical formulations and solutions using higher order refined
computational models for the stress analysis of composite and sandwich plates. The
deformation patterns of transverse normal according to various theories are

represented in Fig. 2.1.

undeformed

CLPT

FSDT

TSDT

Fig. 2.1. Deformation patterns of transverse normal according to the CLPT,
FSDT and TSDT. (Reddy, 1996)

The above theories that are discussed for laminated plates are extended for modelling
and analysis of FGM plates. Extensive investigations are reported in the literature on
the evaluation of various responses of FGM plates subjected to high temperature

gradients. Tanigawa (1995) reviewed the developments related to thermo-elastic



analysis of FGMs till the year 1995. It was found that the behaviour of FGMs can be
predicted more accurately through precise modeling of material nonhomogeneity and
thermal field. Markworth et al. (1995) discussed the various techniques that are
involved in modeling the microstructure dependent thermophysical properties of
FGMs. Based on review, some modeling methods were recommended for additional
studies and hence few approaches for the improvement were also suggested. The
behaviour of crack-tip fields in an FGM were dealt by Jin and Batra (1996) and its
fracture related problems were summarized based on crack-bridging concept and rule
of mixture. Jha et al. (2013) presented a review on aero thermo elastic and vibration
analyses on FGMs since 1998, in which historical development and its application
were also discussed. Swaminathan et al. (2014) presented a critical review of various
three dimensional and two dimensional theories based on analytical and numerical
methods; and its solution techniques that are employed for the stress, vibration and
buckling analyses of FGM plate subjected to mechanical and thermomechanical
loads. Thai and Kim (2015) reviewed various theories like CPT, First Order Shear
Deformation Theory (FSDT), Third Order Shear Deformation Theory (TSDT),
Higher Order Shear Deformation Theory (HSDT), Simplified Theories, Mixed
theories, three dimensional elasticity theories and CUF based models that are used for
modeling and analysis of FGM plates and shells. Wu and Liu (2016) presented an
overview of various semi-analytical numerical methods like Finite Layer Method,
State Space Method (SSM), Asymptotic Method, Sampling Surface method (SAS),
that are adopted for the analysis of laminated composite and sandwich functionally
graded elastic/piezoelectric materials plates and shells for various combination of
boundary conditions and micro mechanical schemes. In recent years, significant
research works have been published in analysis of FGM plates exposed to thermal
environments. In the following sections, an attempt has been made to include all the
important contributions related to thermal stress analysis of FGM plates and the
classification of all the available literature is done based on the different type of
temperature distribution as given below. The various analytical and numerical

methods are dealt in subsections.

1. Three dimensional temperature variation
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2. One dimensional nonlinear temperature variation
a. Analytical methods
b. Numerical methods
3. One dimensional constant and linear temperature variation
a. Analytical methods
b. Numerical methods

2.2 THERMAL STRESS ANALYSIS

The developments related thermal stress analysis of FGM plates are discussed based
on the type of temperature profile used for obtaining the solution. Generally, 3-D
exact methods adopt three dimensional distribution of temperature field which can be
obtained by solving heat equation. But 2-D plate theories adopt one dimensional
distribution of temperature field which varies only across the plate thickness direction
and can be assumed as constant, linear or nonlinearly varying. Thus various research
works related to the current study are presented in the following sequence: three
dimensional variation of temperature, one dimensional nonlinear variation of
temperature and one-dimensional constant and linear variation of temperature which
includes three-dimensional (3-D) elasticity theory, two-dimensional (2-D) plate
theory, finite element methods and meshless methods.

2.2.1 Three Dimensional Temperature Variation

Three dimensional elasticity solutions formulated based on 3-D temperature profiles
were found to be the most accurate methods for thermal analysis of FGM plates. Mian
and Spencer (1998) developed 3-D elasticity solutions for an inhomogeneous plate
across the thickness direction based on the two dimensional solutions of classical thin
plate theory for the equivalent plate. Theoretical formulations and solution methods
were presented for rectangular, cylindrical polar coordinates systems and radially
symmetric systems. Reddy and Cheng (2001a, 2001b) adopted asymptotic technique
for square and smart FGM plates with piezoelectric actuators subjected to thermal and
mechanical loads. It was found that the assumption of constant transverse
displacement across the plate thickness is not valid for plates subjected to thermal

loads and the maximum longitudinal compressive stress appears at the top surface of
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the plate. Wang et al. (2016) obtained asymptotic solutions for thin FGM plates
subjected to sudden change in temperature at the boundary based on Lord and
Shulman theory (L-S theory) with power law distribution of material properties. Vel
and Batra (2002) used power series method to study the thermomechanical
deformations of a simply supported rectangular plate, in which the material properties
were evaluated using either self consistent method or Mori-Tanaka method or the
combination of both. Parametric studies were performed and a comparative study with
CLPT, FSDT and HSDT models was presented. Significant difference was observed
in displacements and stresses obtained using exact solutions and 2-D plate theories. It
was observed that the results obtained using different material schemes agree
qualitatively but differ quantitatively. Later this work was extended to study transient
thermal stresses by Vel and Batra (2003), in which the transient longitudinal stress
was found to be nearly eight times greater than the steady state value for rapid time
dependent surface temperature condition. Ootao and Tanigawa (1999) adopted
exponential variation of material properties to study the transient thermal stresses in a
simply supported rectangular FGM plate subjected to partial heat supply. The work
was extended to study the plate behaviour under non-uniform heat supply by Ootao
and Tanigawa (2005, 2007). Analytical formulations were developed using heat
conduction, Laplace and Finite cosine transformations and the solutions were
obtained using series expansion of Bessel functions. It was found that the most precise
evaluation of transverse stresses is possible in transient state. Further, Ootao and
Ishihara (2013) adopted piece wise exponential law to study the response of two and
three layered rectangular plate models. It was concluded that the maximum value of
thermal stresses can be reduced by using multi layered FGM plates instead of single
layered FGM plates in transient analysis. Xu et al. (2010) presented exact thermo-
elastic solutions for a simply supported exponentially graded rectangular plate with
variable thickness using double fourier sinusoidal series expansions. Thermo elastic
solutions for circular FGM plates subjected to axisymmetric loads were studied by
Jabbari et al. (2014).

Ying et al. (2009) developed semi-analytical solutions for a FGM plate with one pair
of opposite edges simply supported using State Space Method (SSM). Solutions for
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Mori-Tanaka FGM plates were obtained using Levy’s method and Differential
Quadrature Method (DQM), which makes it feasible to treat non-simply supported
edges. Alibeigloo (2010) obtained 3-D elasticity solutions for an exponentially graded
rectangular plates with simply supported edges using Fourier series and SSM
technique. Further, it was extended for solid and annular circular FGM plates by
Alibeigloo (2012) and for sandwich circular plate with a layer of FGM core by
Alibeigloo (2016). Analytical solutions for various support conditions were obtained
using DQM technique. It was observed that, the neutral surface and middle surface
will not coincide with each other and it depends on the variation of young’s modulus
of elasticity across the plate thickness. Liu and Zhong (2011) presented Peano-Baker
series solution for an orthotropic simply supported and isothermal functionally graded
rectangular plate based on SSM method. It was observed that the material gradient
distribution significantly effects the total stiffness, deflection and temperature field
distribution of the plate. Jiang et al. (2017) developed analytical solution for three-
dimensional steady thermodynamic analysis of a piezoelectric laminated plate using
refined plate theory and Galerkin method. It was concluded that considering
geometrical nonlinearity would enlarge the stiffness of the piezoelectric laminated
plate and thus decreasing the magnitude of deflection and stresses.

2.2.2 One-Dimensional Nonlinear Temperature Variation

Most of the two-dimensional theories adopt nonlinear or parabolic variation of
temperatures across the plate thickness which are either based on heat conduction
equation or polynomial functions. The related studies are discussed under two
categories namely, analytical and numerical methods. The various analytical methods
using either two or three dimesnional theories are presented under analytical methods
whereas the finite element and the meshless methods are dealt under numerical

methods.
2.2.2.1 Analytical Methods

Tanigawa (1993) used transient heat conduction problem to study the associated
thermal stress problems for a nonhomogeneous FGM plate. Thereafter optimization

problems were discussed inorder to obtain optimum material composition for the
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purpose of reducing the thermal stress distribution. Noda and Jin (1993) discussed
stress intensity factors relating to crack development in an exponentially graded FGM
plates subjected to prescribed surface temperature and its responses due to thermal
shock were dealt by Jin and Noda (1994). It was found that, the crack close to heating
side of the strip will be more likely to be unstable than that of the cooling side. Noda
(1999) discussed crack propagation path, thermal stresses and thermal stress intensity
factors in FGM plates subjected to steady state temperature fields and thermal shocks.
Significant decrease in stresses was observed by adopting a precise and appropriate
gradation of material properties. Ravichandran (1995) studied the effect of residual
thermal stresses that arises during the fabrication of FGM system. Both temperature
dependent and independent gradation forms were evaluated for continuous and
discrete change in composition across the thickness direction. It was found that, the
residual stresses can be decreased by adopting multiple layers of FGM (greater than
11) plates with constant composition and thickness. Bouchafa et al. (2010) employed
exponential gradation of material properties to evaluate residual thermal stresses in
Al,O3-Ni FGM system. It was concluded that, the magnitude of stresses increases by
adding a fully ceramic or metal surface in the middle of graded regions and hence
should be kept minimum to avoid cracking at interfaces.

A new higher order micromechanical theory for FGM plates “HOTFGM” which
includes both local and global effects have been developed by Aboudi et al.
(19944a,1994b). The accuracy of the method has been established and proved to be
efficient tool for the analysis of FGM plates. Theoretical formulations were developed
in cartesian-coordinate system with temperature gradient across the thickness
direction. The theory was extended by Aboudi et al. (1995a, 1995b) to incorporate
partial homogenization scheme normal to the functionally graded direction and
temperature dependent response of the constituent phases respectively. Further it was
extended to develop a two dimensional frame work for modeling FGM plates by

enabling nonuniform spacing of fibers in two directions by Aboudi et al. (1996).

Reddy (2000) developed analytical formulations and Navier’s solutions for a simply
supported rectangular FGM plates which accounts the effects of thermomechanical

coupling, time dependency and geometric nonlinearity. The response of plates has
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been studied using HSDT and FSDT models for various loading and boundary
conditions. Woo and Meguid (2001) studied large deflection in FGM plates subjected
to steady state temperature field under different types of thermomechanical loads. The
nonlinear bending responses were investigated by Shen (2007), for simply supported
FGM plates with or without piezoelectric actuators and subjected to both thermal and
electrical loads. Also, Yang and Huang (2007) obtained asymptotic solutions for
nonlinear transient response of FGM plates with initial geometric imperfections using
improved perturbation technique. It was found that, the effect of heat conduction and
temperature dependency could not be neglected while evaluating the response of
FGM plates. Brischetto et al. (2008) presented Unified Formulations (UF) for simply
supported rectangular plates subjected to steady state thermal loads. The accuracy
with the exact solutions was achieved by using higher order expansion terms across
the thickness coordinate. Asymptotic solutions were formulated by Zhao et al. (2008)
for an infinite sandwich plate with double sided FGM coatings under convective
boundary conditions to investigate transient heat conduction and thermal stresses.
Some design rules were suggested for FGM cutting tools to resist high thermal
shocks. Based on layerwise theory and perturbation technique, Tahani and
Mirzababaee (2009) derived solutions for cylindrical bending of FGM plates
subjected to mechanical, thermal and thermomechanical loads. Significant increase in
the magnitude of transverse deflection was observed due to the effect of geometric
nonlinearity. Zenkour (2010, 2012) used Sinusoidal Shear Deformation Theory
(SSDT) to formulate solutions using power law function and exponentially function
for FGM plates subjected to hygro-thermo-mechanical loads respectively. Polynomial
form of temperature profile was assumed to evaluate static bending response of the
plate and hence the effects of temperature and moisture concentrations were
discussed. Further, the studies were extended for FGM sandwich plates by Zenkour
and Alghamdi (2010) and the results obtained from SSDT were compared with
HSDT, FSDT and CPT. Fahsi et al. (2012), Bouderba et al. (2013) and Zidi et al.
(2014) adopted a new four variable refined theory to study the bending behaviour of
FGM plates subjected to thermomechanical loads with or without resting on elastic
foundations. Further, the work was extended by Houari et al. (2013) and Tounsi et al.

(2013) for FGM sandwich plates. The accuracy of theory was established by
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comparing the results with various other theories that were reported in the literature.
Mantari and Granados (2015) obtained analytical solutions using quasi-3D hybrid
type HSDT with six unknowns for FGM sandwich plates subjected to generalized
nonlinear temperature field. The deflections and stresses were found to be highly
sensitive to polynomial forms adopted to define the temperature field. Ramos et al.
(2016) investigated thermoelastic response of a simply supported rectangular FGM
sandwich plates using Unified Formulations, which includes several shear strain
shape functions related to non-polynomial displacement fields like sinusoidal, hybrid
and hyperbolic deformation theories. Later, the author proposed a new set of plate
theories and by performing comparative studies it was revealed that, these theories are
effective in predicting similar results as that of classical polynomial based functions.
Dong and Li (2017) developed unified nonlinear analytical solutions for simply-
supported FG rectangular plates subjected to thermal load using temperature
dependent material properties. Effects of material heterogenity and thermal load are
discussed using various higher order shear deformtaion theories and mathematical
models based on P-FGM, S-FGM and E-FGMs. Li et al.(2017) adopted four variable
refined theory to study the responses in FGM sandwich plates with face sheets and
core. It was observed that the power index p and inhomogeneity parameter k play an
important role in eliminating interface problems of sandwich plates and thus the

stresses distributions remain continuous throughout the plate thickness.

Cheng and Batra (2000) presented 3-D solutions using Mori-Tanaka estimation and
asymptotic scheme to study the thermomechanical deformations of a rigidly clamped
FGM elliptical plate. Behravan and Shariyat (2016) and Behravan (2015) used semi-
analytical methods for the thermo-elastic analysis of exponentially graded plates
circular/ annular plates subjected to asymmetric loads and plates resting on gradient
hybrid foundation respectively. The inflence of thermal gradient index on
displacement and stresses were found to be more than the elastic grading indices.
Nosier and Fallah (2008) reformulated the bending and extension equations of
Mindlin—Reissner plate theory by relating to interior and edge zone problems of FGM
circular plates. The nonlinear behaviour of FGM circular plates subjected to
asymmetric thermo-mechanical loads were studied by Fallah and Nosier (2012) for
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various combinations of clamped and simply supported boundary conditions. Zhang
and Zhou (2015) used HSDT with multi-term Ritz method to evaluate the nonlinear
bending response of FGM circular plates. Temperature dependent material properties
are assumed according to power law function and solutions obtained for three
different cases of temperature fields. Kiani (2016) analyzed steady state thermo-
elastic response of rotating functionally graded nanoplates using surface elasticity
approach. Static bending problems in a thermally stressed annular and circular micro
plates were discussed by Eshraghi et al. (2016) using DQM. The effect of influencing
factors like applied loads, plate geometry ratios and material inhomogeneity were
discussed. Yang et al. (2017) carried out thermo-mechanical bending analysis of
functionally graded polymer nanocomposite circular and annular plates reinforced
with the graphene nanoplatelets (GPLs) by employing three- dimensional elasticity
theory and the generalized Mian and Spencer method. It was observed that, among the
three GPL distribution patterns adopted the parabolic distribution provides the best
reinforcing effect with smallest deflection, followed by uniform then linear

distribution patterns
2.2.2.2 Numerical Methods

Tanaka et al. (1993a) presented a new thermoelastic material design called Mori-
Tanaka’s theory to reduce thermal stresses in FGM plates. Incremental finite element
methods with direct sensitivity analysis and optimization techniques were used to
arrive at the optimal volume fraction of phases in FGM. Further, Tanaka et al.
(1993b) discussed improved solutions, which considered multiple design parameters
and accounted volume fraction dependence of material properties to estimate the
micro structural behaviour. The differences in optimized stresses predicted using
Mori-Tanaka’s theory was found to be small, because it predicts a lesser value of
ceramic rich FGM phase. Reddy and Chin (1998) performed parametric studies on
FGM cylinders and plates subjected to abrupt thermal loads using power law function.
Thermomechanical coupling effects were discussed by comparing the results of
coupled and uncoupled formulations. The static and dynamic thermo-elastic responses
for FGM plates including geometric nonlinear effects were discussed by Praveen and

Reddy (1998) and for FGM cylinders exposed to rapid heating conditions by Praveen
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et al. (1999). FEM models based on HSDT were developed by Reddy (2000), which
accounted the time dependency effect along with thermomechanical coupling and
geometric nonlinearity. Cho and Oden (2000) presented parametric studies for
thermally stressed FGM plates using Crank-Nicolson-Galerkin scheme. Significant
difference was observed in the thermal characteristics of transient and steady-state
responses. Apalak and Gunes (2005) adopted eight noded isoparamteric multilayered
finite element to study the effect of thermal residual stresses and discussed the method
to determine optimum material composition to reduce the effect of stresses. Muliana
(2009) introduced a new micromechanical modeling method by idealizing the spatial
distribution of spherical particles in a homogeneous matrix for predicting the thermo-
visco-elastic response of FGM plates. Static and dynamic characteristics of Reissner—
Mindlin plates were studied using Non-Uniform Rational B-spline (NURBS) based
iso-geometric FEM by Valizadeh et al. (2013) and cell-based smoothed FEM with
discrete shear gap technique by Natarajan et al. (2014) for Mori-Tanaka FGM plates.
Gulshan-Taj et al. (2013) used HSDT with C° continuous isoparametric Lagrangian
finite element with seven degrees of freedom at each node to study the static response
of FGM skew plates. Kulikov and Plotnikova (2015) dealt with the implementation of
sampling surfaces method and state space method to study the response of laminated
FGM plates. In three dimensional stress problems, convergence of results was
observed by introducing sampling surfaces inside each layer at Chebyshev polynomial
nodes. Thai et al. (2016) presented shear and normal deformation theory with four
unknown variables to predict the static and dynamic response of FGM isotropic and
sandwich plates using both Mori-Tanka and power law homogenization schemes.
FEM formulations were developed using NURBS based isogeometric analysis and are
discretized using C' continuity of displacement field. The accuracy of the model has
been established by comparing with various other models. Pandeya and Pradyumna
(2017) developed FEM formulations for FGM sandwich beams subjected to thermal
shock using layerwise higher order theory to study the transient stresses under various

geometric and thermal boundary conditions.

In recent decades, many investigations have been reported based on meshless or
meshfree based interpolation methods. Dai et al. (2005) presented dynamic response
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of FGM plates with piezoelectric sensors and actuators based on FSDT, and by using
element free Galerkin method and Moving Least Square method with C* continuity.
Golmakani and Kadkhodayan (2011) studied nonlinear large deflections of circular
and annular plates using power law function for temperature dependent and
temperature independent variation of material properties across the plate thickness.
The solutions for FSDT model were obtained using dynamic relaxation method
(DRM) and finite difference discretization technique. It was concluded that, the value
of deflections and stresses predicted for plates with simply supported edges are
greater than for plates with clamped edges. Wu et al. (2012) used meshless
collocation method based on the differential reproducing kernel (DRK) interpolation
technique for the analysis of multilayered FGM electro-thermo-elastic plates. Edge
cracking of FGM plates subjected to thermal shock has been discussed by Burlayenko
et al (2016). A meshless local Petrov—Galerkin (MLPG) approach have been adopted
by Sladek et al. (2013) for the bending analysis of circular piezoelectric FGM plates
under static and transient dynamic mechanical and thermal loads. The physical
quantities were approximated using Moving Least Square method and Local integral
equations. It was concluded that, the mechanical deflection and electric potential are
highly influenced by gradation of thermal expansion coefficient rather than other
parameters. Jafarinezhad and Eslami (2017) performed parametric studies on an
annular FGM annular plate subjected to lateral thermal shock load using FSDT and
Galerkin finite element method. The differences in the solutions obtained using
coupled and uncoupled theories are found to be very much different from each other
and the effect of large coupling coefficient has a major impact on the dynamic
behavior of the plate. Burlayenko et al. (2017) presented formulations and theoretical
framework to develop a graded finite element which can be applied for a coupled

thermo-mechanical analysis of FGM plates.

2.2.3 One-Dimensional Constant and Linear Temperature Variation

Few researchers carried out thermal stress analysis of FGM plates subjected to either
constant or linearly varying temperatures across the plate thickness. Some of the
articles dealing with the evaluation of both linear and nonlinear temperature profiles

are already discussed in the previous sections and hence for brevity they are not dealt
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here again. Based on the method of analysis, the reported research studies are grouped
under two sections namely analytical and numerical methods.

2.2.3.1 Analytical Methods

Fukui et al. (1993) studied thermal stresses for a thick walled FGM tubes subjected to
uniform thermal loads. It was found that the, distribution of stresses and strains
mainly depends upon the gradation of components in the radial direction. Tsukamoto
(2003) presented combined micro- and macro-mechanical approaches, for the
analyses of an FGM plate subjected to transient thermal stresses. In-plane and out-of-
plane micro stresses were derived using Eshelby’s equivalent inclusion method and
Mori-Tanaka’s mean-field approximation, and the macro-mechanical analysis is
carried out based on the CPT. The significance of considering inelastic deformations
for elastic, elastic-plastic and elastic-plastic-creep analysis has been discussed. Chung
and Chang (2008) obtained Fourier series solutions for a simply supported rectangular
plates using CPT by considering power-law function, exponential function and
sigmoidal function for material property variations. It was observed that FGMs based
on sigmoidal functions are most sensitive to the variations in the ratio of thermal

coefficient of expansions than that of power-law and exponential based functions.

Shen (2002) considered temperature dependence of material properties to study the
nonlinear bending response of a simply supported rectangular FGM plate. Governing
equations were derived for HSDT and the solutions were obtained using mixed
Galerkin-perturbation technique. This work was extended by Yang and Shen (2003)
for combined mechanical and thermal loads with different boundary conditions. It was
found that the material gradation, volume fraction, temperature variation, plate
geometry, boundary conditions, transverse shear deformations have significant effect
in determining the nonlinear bending behaviour of FGM plates, while the effect of in-
plane constraints were negligible. Matsunaga (2009) adopted higher order shear
deformation theory for the thermal stress analysis of a simply supported FGM plate
subjected to constant and linear variation of thermal loads. The effect of geometric
nonlinearity in FGM plates were examined by Kumar et al (2011). It was observed
that nonlinear deflections were more in plates subjected to thermal loads. Analytical
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and numerical models were developed by Sadowski et al. (2015) to study the response
of structural elements under thermal and mechanical loads. Accuracy of solutions
obtained by analytical formulations and finite element methods were found to be in
good correlation with each other. Trinh et al. (2017) adopted general quasi-3D and
higher-order shear deformation models to study the mechanical and thermal
behaviours of FG sandwich microplates. It was observed that, the thickness stretching
thermal strain induces out- of-plane thermal load in the thermal analysis which leads

to the higher deflections and stresses.
2.2.3.2 Numerical Methods

Apalak and Gunes (2005) discussed the effect of residual stresses in FGM plates
using 3D eight noded isoparamteric multilayered finite element with three degrees of
freedom at each node and with 2500 layers through the plate thickness. Bhandari and
Purohit (2015) adopted eight-node quadratic Lagrange element and performed
comparative studies on FGM plates subjected to thermomechanical loads for different
material gradient laws (power-law function, exponential function and sigmoidal
function) and boundary conditions (simply supported, clamped, free and combined)
using FSDT. The deflections and stresses were found to remain closer to each other
with increase in power law parameter in FGM plates with sigmoidal function than that
of other material gradation laws. Natarajan and Ganapathi (2012) considered
QUAD-8 shear flexible element to study the bending behaviour of sandwich plates
using zig-zag functions. The accuracy of HSDT with 13 degrees-of-freedom at each
node was established by comparing the results with other lower order models with 11,
9 and 5 degrees of freedom at each node. Sadowski et al. (2015) investigated
mechanical and thermal responses of structural elements using finite element method
for an airplane made of FGM. Comparative studies were performed with simplified
analytical models and a good conformability between the two methods was
established. Bui et al. (2016) developed FEM formulations to study the static bending
behaviour of heated FGM plates using HSDT and power law function. Parametric
studies were performed using ZrO,/SUS304, Al,O3/SUS304 and SizN4/SUS30, FGM

plates with different shape configurations. Due to the nonlinear behaviour of
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constituent phases and thermal expansion coefficients, the response predicted by
Zr0,/SUS30,4 was found to be quite different from other materials.

2.3 FINAL REMARKS

A literature review of various approaches used for the thermal stress analysis of FGM
plates has been presented in the preceding section. The general remarks from the

current literature survey are as follows:

1. The majority of the methodologies used for the investigation of FGM
plates are the extensions of the similar methodologies used either for laminated

composite plates / isotropic plates.

2. As a result of the coupling between bending and stretching, analytical
evaluation of static responses in FGM plates is exceptionally difficult, unless plate is

simply supported.

3. Three-dimensional theories can predict the three-dimensional stress
state at the boundaries more accurately than the 2-D plate theories, but their solution
methods involve mathematical complexities and are very difficult and tedious to

solve.

4. Based on suitable assumptions, several 2-D plate theories were
developed and are used to investigate the thermal response of FGM plates. However,
CPT, FSDT and most of the higher order theories considers only transverse shear
deformation effects. But to obtain accurate results in thermal analysis of FGM plates,
the effect of both transverse shear and transverse normal deformation are very

important.

5. Several investigations are reported on analytical evaluation of FGM
plates subjected to thermal loads using CPT and FSDT. It was observed that CPT fails
to predict accurate responses, whereas FSDT can provide reasonable accurate results
by using shear correction factor to rectify the nonlinear variation of shear stress/ strain

through the plate thickness.
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6. It has been concluded that, accurate prediction of thermal plate
responses using 2-D plate theories is only possible by using higher order polynomials

in the in-plane and transverse displacement expressions.

7. Exact solutions for the thermo-elastic analysis of FGM plates are still
not yet reported for simply supported FGM plates with power law variation of
material properties and steady state heat conduction type variation of temperature.

8. Micromechanical modelling methods adopted for the estimation of
material property gradation plays a vital role in predicting the structural behaviour of
FGM plates. The volume fraction index and anisotropy of the constituent phases are
the important factors which governs the material nonhomogeneity of FGM plates,

which further complicates the solution.

9. The distribution of temperature field has a direct impact in predicting
thermal response of FGM plates. Therefore during thermal analysis, three dimensional
evaluation of temperature field is found to be the most appropriate method for
obtaining accurate results. But obtaining solutions using 3-D heat conduction equation
is very complex in nature and hence in most of the 2-D plate analysis it is reduced to
one dimensional heat conduction equation, by assuming temperature variation only
across the plate thickness direction and in-plane being either constant / sinusoidal.
Several other forms of one dimensional temperature distributions are also reported

namely; constant distribution, linearly varying, polynomial form of variation, etc.

10. In most of the two-dimensional theories developed till date, the
accuracy of the solutions obtained using a particular theory was established by
comparing them with the results of three-dimensional elasticity theory, and a very few
studies are reported on the analytical evaluation of various higher order theories in
predicting the thermo-elastic responses of FGM plates subjected to different
temperature profiles through the thickness.

11. Because of complexities, analytical solutions for FGM plates exist for

plates with simple geometry, loading and boundary conditions. Therefore more
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emphasis has been placed on the use of numerical methods especially when the FGM
plate problem involves complex geometry, loading and boundary conditions.

12. 3-D thermal analysis of FGM plates using numerical methods (FEM/
Meshless) requires large computer core memory, computational effort and time as
compared to 2-D thermal analysis. Thus reducing a 3-D plate problem to a 2-D plate
problem can drastically reduce the cost incurred in the analysis with little

compromising in the accuracy of results.

13. Meshless methods have been proved by various researchers as one of
the best alternative to FEM methods for thermal analysis of FGM plates. But few
difficulties in computational methods, handling the boundary conditions and the

temperature effects still have to be resolved in meshless methods.

Most of the analytical 2-D higher order theories discussed till date consider only
transverse shear deformation effect and neglects normal deformation effects. But in
thermal analysis of FGM plates, the higher order polynomials in the transverse
displacement field plays a crucial role in predicting accurate results closer to that of
3-D exact solutions. Therefore in the present investigation, analytical formulations are
developed for higher order displacement model with twelve degrees (HSDT-12) of
freedom which includes the effect of transverse shear and normal stress/ strain.
Material modelling based on power law function and temperature profile based on
steady state heat conduction equation is not reported for simply supported flat panels
and hence adopted in the present study. Comparative studies using various
displacement models, material sets and temperature profiles that are already reported
in the literature are also included in the present investigation to emphasize the
accuracy of HSDT-12 displacement model in predicting thermal responses in an FGM

plate.
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CHAPTER 3

THEORETICAL FORMULATIONS

3.1 PRELIMINARY REMARKS

In this chapter a set of higher-order refined theories and their theoretical formulations
are presented for thermal stress analysis of geometrically thin and thick FGM plates.
The displacement model with 12 degrees-of-freedom (dof) includes the effect of both
transverse shear and normal strain/stress and the other model with 9 degrees of
freedom considers the effect of transverse shear deformation only. In addition to
above, another higher-order theory and the first-order theory both having five degrees
of freedom developed by other investigators and reported in the literature are also
considered. The theoretical formulation using the displacement model with 12 dof is
presented in detail. The governing equations of equilibrium using various theories for
the thermo-elastic analysis are derived using the Principle of Minimum Potential
Energy (PMPE). Rule of mixtures based on Power-Law estimation is used to obtain
the effective material properties across the thickness of the FGM plate. Through the
thickness variation of temperature is assumed to be nonlinear and obeys one
dimensional steady state heat conduction equation. Along with this constant and
linearly varying temperatures across the plate thickness are also considered during the
study. The complete theoretical formulations for the thermo-elastic analysis of FGM
plates based on the Higher Order Shear Deformation Theory with twelve degrees of

freedom (HSDT-12) only are presented in detail in the following sections.

3.2 DEFINITION OF DISPLACEMENT FIELD

The Taylor’s series expansion method is used to deduce a two-dimensional
formulation of a three-dimensional elasticity problem (Hildebrand et al. (1949)) and
the following set of equations are obtained by expanding the displacement
components u(x, y, z), v(x, Yy, z) and w(x, y, z) of any point in the FGM plate in terms

of the thickness coordinate, z, viz.,
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(3.1)

According to Reissner (1975) and Lo et al. (1977a, 1977b) it is sufficient to retain
only the first four terms for all displacements. The expansions of the in—plane
displacements u and v imply a nonlinear variation of these through the plate thickness.
Thus, the warping of the cross section is automatically incorporated. The expansions
of transverse displacement, w imply a non-vanishing transverse normal strain. Thus
the limitations of the usual Kirchhoff’s hypothesis Timoshenko and Woinoswsky-
Krieger (1959) as well as the Reissner (1945) /Mindlin (1951) type first-order shear
deformation theories are completely eliminated. The expressions given by
Equation 3.1 are now written in a concise form by grouping the terms corresponding

to membrane behaviour and flexure behaviour as follows:

Membrane Flexure
u(x,y,z)=u,(x,y)+ zzug (X, YY)+ 0 (x,y)+ 236: (X, Y) e
V(X,Y,2) =V, (x,y)+ zzvg (X, Y)+nnns 0, (X, y)+ 236; (X, Y) e
w(x,y,z)=20 (x,y)+ 239: (X, Y)+o Wy (X, )+ zzwz (X,Y)+ e

(3.2)

In the above relation, the terms u, v and w are the displacements of a general point
(X, Y, 2) in the plate domain in the x, y and z direction respectively, the parameters uo,

Vo, are the in-plane displacements and wy is the transverse displacements of a point
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(X, y) on the middle plane. The functions 6, 6, are rotations of the normal to the
middle plane about y and x axes respectively. The parameters
Ug, Vo, Wp, 0%, 6;‘,, 0, and 6, are the higher-order terms in the Taylor’s series
expansion and represent the transverse cross sectional deformation modes. The

geometry of an FGM plate with positive set of coordinate axes is shown in Fig. 3.1.

3.2.1 Displacement Models

The membrane-flexure coupling phenomenon exhibited by an FGM plate necessitates
the use of a displacement field containing both, membrane as well as flexural
deformation terms which contribute to the overall response of the plate. Thus, the
displacement field derived from the expanded Taylor’s series in terms of the thickness
coordinates z and defined by Equation 3.2 is considered. This displacement field
contains both, membrane as well as flexure terms. Further, if the variation of
transverse displacement component w(x, y, z) in Equation 3.2 is assumed to be
constant through the plate thickness and thus setting €z =0, then the displacement

field may be expressed as
u(x,y,z)=u,(xy)+z0 (x,y)+z°u;(x,y)+2°0 (x,y)
V(X,Y.2) =V (%,y)+20, (X, y)+2%v) (X, y)+270, (X, y)

w(X,y.z)=wg(X,y)

(3.3)

Finally, the first displacement model assumed for thermal stress analysis of FGM
plate is based on the higher order refined theory which includes the effects of both
transverse shear and normal strain/stress (i.e., Higher Order Shear Deformation theory
with 12 degrees of freedom, HSDT-12). The complete theoretical formulation is given

below with the reference literature in which the model was reported earlier.

HSDT-12 (Kant and Manjunatha 1988)

u(x,y,z)=u,(xy)+z0 (x,y)+z°u (x,y)+2°0 (x,y)
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V(X Y,2) =V (%,y)+20, (X, y)+2%vy (X, y)+270, (X, y)

W(X,Y,2) =W, (X,y)+20, (X,y)+Z°W (X,y)+Z°0 (x,y)
(3.4)

The second displacement model is Higher order Shear Deformation Theory with Nine
degrees of freedom (HSDT-9) which neglects the effect of transverse normal
strain/stress and is given below along with the reference literature in which the model

was reported earlier.

HSDT-9 (Pandya and Kant 1988)
u(x,y,z)=u,(xy)+z0 (x,y)+z°u (x,y)+2°0 (x,y)
V(X Y,2) =V, (X, y)+20, (X,Y)+2°V, (X, ) +2°0, (X,Y)

W(X,y,z) =Wy (X,y)
(3.5)

In addition to the above, the Higher order Shear Deformation Theory with Five
degrees of freedom (HSDT-5) and the First-order Shear Deformation Theory (FSDT)
developed by other investigators that are reported in the literature are also considered

during the study.

HSDT-5 (Reddy 1984)

u(xy,z)=uy(xy)+z| 6, (x,y)—%(%)z {ex (x,y)+%}

V(X,Y,2) =V, (xy)+2 0, (X, )—%(%T {ey (x,y)+%}

W(X,Y,z) =W (X,y)
(3.6)

28



FSDT (Whitney and Pagano 1970)

u(x,y,z)=u,(x,y)+z6 (x,y)
V(X,Y,2)=Vv, (X, y)+zey (%,y)

W(X,Y,z) =Wy (X,y)
(3.7)

In the following sections, the detailed formulations using the displacement model
HSDT-12 are presented for the analysis of FGM plates subjected to thermal loads.
The same procedure is followed for the formulations using all other displacement

models.

3.3 STRESS STRAIN RELATIONS FOR AN FGM PLATE

An FGM plate is assumed to behave as a homogeneous and orthotropic material with
three orthogonal planes of material symmetry. Generalized Hooke’s law based on
linear theory of elasticity relates the thermal stresses and strains in an FGM plate, and

can be written in contracted form as
o =Q.& —-Q. a. AT ; i,j=1to6

(3.8)
Where, o, is the stress vector, g Is the engineering strain vector and Qj is the

functionally graded material stiffness matrix. The coefficient of thermal expansion o
is assumed to vary across the thickness direction z, while in-plane remains constant.
Therefore, thermal expansion coefficients o;=a, =03 =0, and as=0s=0= 0. Also, AT is
the change in temperature from a stress free state. In Equation 3.8 the first three
components are normal stress and strains and last three components are shearing
stress and strains respectively. In an FGM plate there is no interaction between normal
stresses 01, G2, 03 and shearing strains yi2, Y23, Y31, and hence the coefficients of
stiffness matrix Qj; for an FGM plate can be written as follows
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ol [Qu Q, Q; 0 0 0|5 AT
o, Q, Qp Qp 0 0 0 &, ~-a, AT
O, |Qs Qp Qy 0 0 0 g, —a, AT
L 1o o o g, 0 o Y,
T, |0 0 0 Q. 0 v,
| [0 0 0 0 0 Q] Y
(3.9a)
Where,
E, (1—\/2) _
Qy =Qp =Qu = '
n
Ez _
Qus = Qus = Qs :m’
EZ (v +v2) _
Qu =Qy =Q, =Q, =Q5 =Qy, = n ’
_ 2 3
n—(1—3v -2v ) (3.9b)

In the above equation the material properties are defined using Power-Law function.
The volume fraction V; and power-law parameter p defines the gradation of material
from metal at bottom surface to the ceramic at the top surface of the plate. Through
the thickness variation of physical properties like young’s modulus of elasticity E;,
thermal coefficient of expansion o, thermal conductivity k, and volume fraction V¢
are evaluated using the relation given below,

E,=E, +(E,~E, )V

(3.10a)
o, =0 +(occ —Otm)pr

(3.10D)
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kZ:km+(kC—km)Vp

(3.10c)

(3.10d)

Temperature change from stress free state AT is assumed to vary sinusoidally across

the plane T(x,y) and nonlinearly across the thickness direction T, and is given by
AT=T(x,y,2)=T(z)xT(x,y) =T xT(X,Y)

(3.12)

The nonlinear variation of temperature across the thickness direction T, is obtained
by solving one dimensional steady state heat conduction equation with boundary
conditions at top and bottom surface of the plate as in Equation 3.12a. The solution

for heat conduction equation is given by Equation 3.12b.

g k a7 =0; T z:D =T and T z:-E =T
dz\ % dz 2 1 2 0
(3.123)
. (—1)"[(k°k_ k”‘)]n
Z_(:) ( np+1m) Vf(np+1)
Tz:TNL:To"'(Tl_To)m "
(_n[(kckm)}
o0 km
(3.12b)

In addition to above, constant and linear variation of temperature across the plate
thickness are also considered during the study. Constant temperature is achieved by
applying same temperatures at top and bottom surface i.e., To=T; in Equation 3.12b.
Linear temperature distribution from bottom to top surface is achieved by neglecting

higher order terms and retaining only first term in the series expansion of
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Equation 3.12b. Constant and linear variations of temperature across the plate
thickness are given by Equation 3.13a and 3.13b respectively.

T =T, =T =T,
(3.13a)
T =T =T, +(T1—T0)vf

(3.13b)
Where;

p = Power law parameter
Vs = Volume fraction.
Em = Young’s modulus of elasticity of metal (at bottom surface)
E. = Young’s modulus of elasticity of ceramic (at top surface).

m = Thermal conductivity of metal (at bottom surface)
k. = Thermal conductivity of ceramic (at top surface).
am = Thermal coefficient of expansion of metal (at bottom surface)
ac = Thermal coefficient of expansion of ceramic (at top surface).
To= Temperature at bottom surface of the plate.
T1= Temperature at top surface of the plate.

Tne, Te, To = Nonlinear, constant and linear variation of temperatures across

the thickness direction.

3.4 STRAIN DISPLACEMENT RELATIONS

The relationship between the strains at any point within the plate and the
corresponding deformations are functions of the assumed displacement fields. With
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the definitions of strains from linear theory of elasticity, the general linear strain
displacement relations are given as follows (Timoshenko and Goodier 1970)

ou ov ow
& =—, E _— €
X OX Yooy r 0z

=—+—"
Ty =y T ax Ve =5 T ox ¥y

ou oV _ou oW @+@
oz oy

(3.14)

The six quantities, three-unit elongations in three perpendicular directions (sx,ay,sz)

and three unit shear strains (yxy, Vi yyz) related to the three orthogonal planes are

called components of strain at a point. The component of strain displacement relations

for HSDT-12 model is discussed in the following sections.

3.4.1 Strain Expressions Corresponding to HSDT-12 Model

The strains corresponding to the displacement model in Equation 3.4 can be written as

e =¢ 47k +7% +72%
X XO X XO X

e =¢ +zk +72% +7%
y %y, y Yo y

* 2*
€ =€ +IK_+Z7¢
z z, z z,

vy =g +7K_+7%  +7°%
xy ~ xyy oy A xy

_ 2% | 3, *

yyz—d)erZKszrZ (|)y+Z K,

_ 2% | 3 *

yXZ_¢X+szZ+z <|>X+z K,
(3.15a)
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. o0 89y . 09 89y
(KX,K,K,K ): X L 2w, —X4+ 2
y' oy ox oy 0 oy  ox

* *
K,K , K
Xy

20" 00, a0" 00
* )= X , y ' X 4 y
4 oX oy oy OX

. . oW, oW, oW, oW,
(d) O, 0,0 )= 0 +—93 +—% 0 +—9 39 +—2C
oy X ox X ox Y ooy Y oy

. ox . 00 . 00 00" 00

(K K K, K )= 2u0+—z,2vo+—z,—z,—Z

Xeloyroxen vz OX oy oOx oy
(3.15b)

The strains expressions in Equation 3.15a can be represented in matrix form as
follows:

*
oS e *
8x *o KX *o Kx
€ € K £ *
Sy l_) Y y 2) Yo 3] Sy
Eug = = +Z +2Z . rtZ
€ € K € 0
z z, z z, X
Y K *
Xy 'nyo Xy SXyO Xy

_ 2 % 3
SMB—80+ZK+Z 80+Z K

&g = {vw}: {iy}+ Z{Kyz}+22 {$§}+ z8 {K}}
yXZ X KXZ X KXZ

_ 2 gk 3, %
e =0y 2K, +Z°¢ +27 K,

(3.16a)

(3.16b)

This completes the derivation of strain expressions for FGM plates based on
HSDT-12 displacement model. Same procedure is adopted to obtain the strain

expressions for other displacement models used for the thermal analysis of FGM
plates.
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3.5 STRESS-RESULTANT AND MIDDLE-PLANE-STRAIN RELATIONS

In this section, the membrane, the flexure and the shear stress resultants of an FGM
plate will be expressed as a function of the middle plane stretching, curvatures and
shear rotations strain terms respectively. The resulting equations are referred as plate

constitutive relation and are derived for HSDT-12 model as follows:

The total potential energy [1 of the plate with volume V middle surface A can

be written as, p

[[=U-W

or Hz%jstch—/J;utpdA

\Y

(3.17)

Where U is the strain energy stored in the plate, W represents the work done by
externally applied load and p is the vector of surface load intensities corresponding to
the generalized displacement vector u defined at the middle plane and these are

expressed as,
t
GZ(G,G,G,’C ,T ., T )
x' Ty Tz xy! Tyz! Txz

t
s:(sx, sy,sz,yxy,yyz,yxz)

u

(u,v, w)t

p=(p, B, |oz)t

(3.18)

The expressions for the strain components are substituted in Equation 3.17 and the
following relation results when an explicit integration is carried out through the plate
thickness,
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1, t_ _
nz—jg csolA—jut pdA
2A A
(3.19)
in which €, 6, U for the HSDT-12 model is written as follows:
3.5.1 Constitutive Relations for FGM Plate based on HSDT-12 Model.
6=(N, N, N NG ND NN NG MMM
y Xy X y Xy z z X y Xy
t
ML ME M MELQ,,Q,,Q,Q)1S,.S,. 8., )
E:(g € ,E_ ,E ,E ,E ,E ,E K ,K ,K_,
XO yO XyO XO yO XyO Z0 0 X y Xy
* * * * * * * * t
Kx’Ky’ny’Kz’d)x’¢y’q)x’d)y’sz’Kyz’sz’Kyz)
* * * * * * t
U=(u0,v0,w0,ex,6y,ez,uo,vo,wo,ex,ﬁy,ez)
NT:(NX,N N NSNS ONY N NS MM
T Yr XYt Xy Yr XYy Z7 27 X7 YT
t
M M MMM ,o,o,o,o,o,o,o,o)
XYy Xg Yt XYy Zr
(3.20)

The components of the stress resultant vector c for an FGM plate are defined as,

N N* o
X X X
N N* +h/2 | &
LT )

N, N | 2|6,
_ny Niy_ Ty

_Q11 le Q13 0 | ®x NXT NXT

h/2 x

:+_[ Q, Qp Qp 0 |8 (122) dz — NyT NyT

2| Qs Qp Qi O &, N, N:

T T

L0 0 0 Q|7 0 0

(3.21a)
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N N* i T
X X Q11 Q12 Q13 0
N* +h/2
yroo ¥ =J Qo % s O (1,22) o AT dz
* z
N, N ~h/2 Q13 st Q33 0
0 0 | 0 0 0 0
(3.21b)
M, M, o
M M* +h/2 | &
b= j " Hz,2%) dz
M, O —h2| %
_Mxy Miy_ Ty
Q11 Q12 Q13 0 Ex MXT X
:+}/2 le sz Q23 0 8y (Z 23) dz — MyT M;T
2| Qs Qo Qa0 |5 M, 0
i 0 0 0 Q44_ Ty 0 0
(3.21c)
‘M. M - :
X7 X7 Q11 le Q13 0
M* +h/2
Yr Yr =I Qu R @ O (2,23) o, AT dz
% z
M’ 0 2| Quz Qs Qg O
0 0 | 0 0 0 0]
(3.21d)
Q. Q° S S| +h2fg
S S ) dz
(3.21¢)
Upon integration, these expressions are rewritten in the matrix form as,
N D, D. 0 (e N,
_ t
M= D, Dy 0 |qxr=M;
Q 0 0 Dg|l¢) [0
(3.22)
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o (6} =[D){e} (N,

(3.234)
In which,
* * * *t
N:(N NN NSNS N* . N_.N )
X y' oxy' x oy’ xy' Tz oz
t
M:(M MM MMM ,M*)
X y' Uixy! U x Ty Uixy! Nz
t
Q=(Q,Q,:Q;.Q;:S,:S,.5,.5) )
. N . N t
82(8 ,€ ,€ . ,€ ,€ ,ye_ ,€ )
Xo Yo XYo Xg Yo XYy Iy %y
* * * *t
K=(K KKK K KK )
X X X X' V4
* * * * t
0= (00,0870 1 K  T)
t
NT=(N N NN ON*.N* N ,N*)
X ¥r Wp T T XN I %y
t
MT:(M M M MMM ,M*)
X7 Yt Xyt T Yt XYt Zr
(3.23b)
and
B 2 2 2]
Qll QlZ Qllz QlZZ 0 Ql3 Q13Z
Q22 O Q1222 QZZZZ 0 Q23 (?2322
Q, O 0 Q4422 0 0
h/2 4 4 2 4
D — J. Q11Z QlZZ 0 Q13Z Q13Z dZ
M -h/2 QZZZ4 0 Q2322 Q23Z4
symmetric Q2 O 0
Q33 Q3322
L Q33Z4
(3.23¢)
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Qe 0 QuZ’ 0 Qz 0 Qz® 0 |
2 3
Q55 O Q552 O Q55Z O Q55Z
4 3 5
Q66z 0 Q662 0 Qesz 0
4 3 5
D — hj‘z stz 0 stz 0 QSSZ dz
S Q2 0 Qg 0
_hi2 66 66
symmetric stz2 0 ()5524
Qsﬁz6 0
L QSSZG

(3.23d)

The coefficients of D¢ matrix can be obtained by multiplying the terms in matrix Dy
with z before integrating. Similarly the coefficients of Dg matrix can be obtained by

multiplying the terms in matrix Dy with z> before integrating.

3.6 EQUATIONS OF EQUILIBRIUM AND NATURAL BOUNDARY
CONDITIONS

The equilibrium equations for thermal stress analysis of FGM plates using various
displacement models are derived from Principle of Minimum Potential Energy
(PMPE) (Dym and Shames 1973, Reddy 1984a, b). This method is chosen due to its
simplicity and also its application gives simultaneously the natural boundary
conditions that are to be used with the theory. In the following sections, the equations
of equilibrium and the natural boundary conditions for the stress analysis of a simply
supported FGM plates subjected to thermal loads are presented using HSDT-12
displacement model. Same procedure is used to derive the equilibrium equations

using other displacement models also.

3.6.1 Thermal Stress Analysis

The potential energy I1 for the plate element is defined as,
H: U_Ws _Wex _Wey

(3.24)
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Where,

U = strain energy of the plate

W,= work done by surface tractions

Wex= work done by edge stress on edge x=constant

W,,= work done by edge stress on edge y=constant

For equilibrium, the total potential energy [ for the plate must be stationary,
i.e.,

8T1=5(U-W, - W, ~W, }=0

(3.25)
The individual terms of the above equations are evaluated as follows
oU = IJ.I(GXSSX + 0y88y +0,0e, + TxySny +7,,07,,+ ryzfiyyz )dx dydz
e (3.26)

Substituting the appropriate strain expressions using Equations 3.15a and 3.15b and
integrating through the thickness to get the stress resultants as defined in Equations
3.21a, 3.21b, 3.21c, 3.21d and 3.21e and then, integrating the resulting expressions by

parts transforms the Equation 3.26 into the following form

5U =§[ N, v, +N, 8 +Q, 5w, +M, 50, +M, 30 +S 56,

X

N SU +N SV +Q W + M 80" +M* 80" +S" 86*}dx
Xy 0 y 0 y 0 Xy X y y y z

+ [ N, U, + N, v, +Q, dw,+M, 86 +M, 86, +S, 50,
y
N7 v, + N, 8U) + Q) W), + M7, 867 + M 567, +S;, 50, | dy
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oN, N, oN, Q. Q
—X U+ | =L+ —L | v+ | —X+—L | dw
0 oy  oXx 0 oxX oy 0

oM~ oM

Mx 6Mxy y Xy
+—Y_Q |80 +| —L+—2-Q |80
ox oy x| o xl oy oax v

s, 0S ON" N \
—X+EY—NZ 862-0- 6—X+Wy—28>( 6“0
X

ON*  ON” . (o0t oQ: ol
_ Y, ¥ _95 JSV +( QX +—Y_2M ]SW
y oy z

oy  ox 0 OX 0

oM, oM ) [oMD oMy
X4 930" 1807 + | —L+—Y-3Q" | 50

ox oy x| T ey o y |y

oS: oS, ) .
—x 4+ Y _3N" | 80" | dxdy
oX oy z z

The work done by surface tractions, Ws may be calculated as follows,

S1T(pw) axay
Xy

Where w" is the transverse displacement at any point at the top surface of the plate

and is given by

w* =w_+h"0_+h™w. +h*™30"
0 z 0 z

Therefore,

%”{pg w,+(p; h*)0, +(p; h*2)w, +(p; h*?)e;} dxdy
Xy
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And the variation of W; for h*=h/2,

3
SW, ”{ (SW +-80, +h—6w e J} dx dy
4 8

(3.31)
The work done by the edge stresses is
= %”(c‘sx U+T V4T, w) dydz onan edge x = constant.
yz
(3.32)
1 _ _ — -
Wey = EH(TXV U+G V+T, W) dxdz onanedgey = constant.
Xz
(3.33)

Where, the bars on the quantities refer to edge values. On integration through the

thickness the variation of these expressions takes the form
SW,, = [(N, 8uy+ N, 8v,+Q, 5w, +M, 80, +M, 50, +§, 560,
+N_ du, + NXy dv,+Q dw, +M 86 + MXy 86y +3S, 662) dy

(3.34)

and
W, =j(NXy suy+N Sv, +Q dwy+M_50 +M 30 +S 50,
NS SUT+ NSOV + 0O W+ M 807 + M 80" +5 89*) dx
Xy 0 y 0 y 0 Xy ~ X y 'y y z
(3.35)

The variational Equation 3.25 takes the following form when the relevant foregoing

expressions are substituted for its individual terms.
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i

aN oN 0Q dQ
BU +| —+——F BV, +| X +—"+p; |dw
oy  ox ol ox oy F 0

oM M M M
n Xy Y 0 (50 + Y4y—2_Q |30
ox ay X X ay ox y y
oS oS h ON*  oN .
4| —2X4+—L-N +—p" |80 +| —X+—2-2S [du
ox oy t2) i |laxoey )0
oN"  oN” . [eqr oQ . h? \
+| —L+—2L-25 [V + &+—y—2M +h—p+ 3w
ay X y 0 Ox ay z 4 z 0
oM* oM’ L (oM oM R
4 —%+—2-3Q" 807 +| —L+—2-3Q" |36
OX ay X X ay OX y y
oS as* h3
+] —*4+ Y _3N° +—p dxdy
oX oy

+ gﬁ[(NXy Ny J8u, +(N, =Ny v, +(Q, ~Qy Jow, +(M,, ~ My )56,

X

+(M, —My |86, +(S —Sy |80, +(N" —ny5u+N*—Ny5v
(M, = )30, +(5, -8y o0, +(N;, ~Noy o +(N; -1y

+(Q;—6;)5wg+(|v| —Mxy)se +(|v| My)SO +(s* sy) }

y

# ] (N, =Nty (N, =Ny )3, +(Q, ~Qu Jaw, + (M, ~ My )30,
y

+(M, ~Mx )30, +(S, -5 )36, +(N —NX)Su +(N ny)éSv
+(Q) ~ Q. Jowg + (M~ M 367 + (M, ~ My 56] +s; —éx)se:} dy=0

(3.36)

The above Equation 3.36 will be an identity only if each of the coefficients of the
arbitrary variation vanishes. The vanishing of the surface integral defines twelve
equilibrium equations, while that of the line integrals defines the consistent natural
boundary conditions that are to be used with this theory along the two edges. Setting
the individual integral terms in Equation 3.36 to zero, the following equations of

equilibrium and the consistent boundary conditions are obtained.
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OX oy
oN oN
e A I
oy OxX ]
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and the boundary conditions on the edge x = constant

U, :UO or NX = NX v, :vo or ny = ny
W, =W, or QX = QX ex = GX or MX = MX
0 =0 or M =M 0 =0 or S =S
y y Xy Xy z z X X
u’(‘) =U; or Ni = N’)“( v; =V; or N;y = N:‘(y
w,=W, or Q =Q 0 =0 o M =M
0" =0" or M* =M"* 0" =0" or =5
y y Xy Xy z z X X
(3.38a)
On the edge y = constant
u, :UO or ny = ny A :vo or Ny = Ny
W, =W, or Qy = Qy 0, =6 or MXy = I\/IXy
0 =0 or M =M O =0 or S =S
y y y y z z y y
ug :US or N;“(y = N*X‘y vg :v; or N; = N;
W, =W, or Qy = Qy 0 =6 or MXy = MXy
0*=0" or M'=M" 0"=0" or =5
y y y y z z y y
(3.38h)

The same procedure is followed to obtain the equilibrium equations for FGM plates

using other displacement models and the corresponding equilibrium equations are
given in Appendix - I.
3.7 CLOSURE

In this chapter, detailed theoretical formulations for the thermal stress analysis of
FGM plates based on higher order refined theories which take into account the effects

of both transverse shear strain / stress and normal strain / stress are presented. Three-
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dimensional constitutive relations and the Principle of Minimum Potential Energy
(PMPE) are used to derive the governing equations of equilibrium. A modified and
reduced version of stress-strain constitutive relations is used for models that do not
consider the effect of transverse normal deformations. Theoretical formulations for
HSDT-12 displacement model are discussed in detail and the equations of equilibrium
obtained using other models are given in the appendix. In the following chapter,
analytical solution method using Navier’s solution technique is presented for the

different displacement models considered in the present study.
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Fig. 3.1: FGM plate geometry with positive set of reference axes and displacement
components
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Fig. 3.2: Variation of the generalized displacement components across the thickness
of an FGM plate using (a) HSDT-12, (b) HSDT-9, (c¢) HSDT-5 and (d) FSDT
displacement models.
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CHAPTER 4

ANALYTICAL SOLUTION METHOD

4.1 PRELIMINARY REMARKS

In order to solve the boundary value problem for stress analysis of FGM plates more
accurately an exact three dimensional elasticity solution is needed. But the
mathematical complexity involved in solving three dimensional problems necessitates
the simplification of three dimensional problems to two dimensional problems with
suitable assumptions, so that various two dimensional solution methods can be used
effectively without sacrificing much on the accuracy. The assumption that the stress
resultant rather than stresses are more reliable in the statement of governing equations
helps in reducing the 3-D problem to 2-D problem. Among the analytical methods
available, the Navier’s solution technique is very simple and easy to use for plates
with rectangular geometry with simply supported edge conditions. This method of
solution for various plate problems with rectangular geometry is well documented in
various texts (Timoshenko and Woinwsky-Krieger 1959, Szilard 1974, Reddy 1996).
The main objective of the present investigation is to evaluate analytically the accuracy
of various two dimensional theories. Therefore, for all the problems, a simply
supported FGM plate subjected to constant, linear and nonlinearly varying thermal
loads are considered for comparision purpose and the Navier’s solution technique
using double Fourier series is used to get the results with desired level of accuracy.
The geometry of the plate with a positive set of the coordinate axes and physical mid-
plane displacement terms are shown in Figure 3.1 in chapter 3. The various steps
involved in using the above technique for the thermo-elastic bending stress analysis of

FGM plates are discussed in this chapter.

4.2 NAVIER SOLUTION TECHNIQUE

In the following sections, the Navier’s solution technique using the double Fourier

series for the thermal stress analysis of FGM plates is presented. Various steps
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involved in using the above technique are discussed in detail for HSDT-12
displacement model. Same procedure is used to obtain the solutions using other

displacement models.

4.2.1 In-Plane Stresses

The FGM plate structure considered in the present work is a simply supported square /

rectangular plate. Such supports imply the following boundary conditions.
Atedgesx=0andx=a:

vV, =0; w, =0; 0, =0; 0, =0; M, =0;

(4.1)
Atedgesy=0andy=hb
Uy =0; w, =0; 0, =0; 0, =0; M, =0;
Uup=0;  wp=0; 6,=0 0,=0, M, =0
N,=0; Nj=0;
(4.2)

To satisfy the above boundary conditions the generalized displacement field is

expanded in double Fourier series as:

0 0
Uy = zlz Ug, COSaX sin By
m=

n=1

0 o0
Vo =D D Vo Sinox cosPy

m=1n=1
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o0 o0
Wy =D > W, sinax sinpy

m=1n=1

D6, sinax sinBy

Ug = iiugmn cosax sin By

m=1n=1

* i i *
Vo=, D Vo Sinax cospy

m=1n=1
Wo =D > W, sinax sinBy
m=1n=1
OO *
D6, cosax sinBy
* 0 il *
6, =>.>.6, sinox cosPy
i *
2.6, sinax sinBy
The transverse load and thermal loading term is expanded as,

p = ii p" sinax sinpy

Z
in=1 ™
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T, = iiﬂmﬂ sinax sinBy

m=1n=1

T, = ii 0, Sinox sinBy

m=1n=1

(4.4)
where a=m and B=n—;t m,n=1,3,5,7...... odd.
a
Now the expressions for the curvature and slopes (Equation 3.15a and 3.15b) are

substituted in the stress resultant-mid plane strain relationship (Equation 3.22) and the

relation between the stress resultant and the mid plane strain quantities can be written

as,
OX OX
Ny My Ny Ay
\ oy o oy oy
o (] |2 | |5
f OX a)i OX a)i
N * ou * ou
X Mg — Mo —
NZ ez % Ni—(y eZ %
* * 1l ox _ * OX
N, t=[A] ©: +[A} o {0z AT [C]; Xy :[B} 0, t+[B] 5
09 X Iley 00 X
MX X ay . X ay
M OX M OX
y o0 Y o0
. 20, -y 00, Py
M, oy OX EY ox
M . o0, . o0,
J 00, ayx 00, ayx
M, oX : OX .
o8, By o6, a8y
W OX E OX
W, W,
(4.5)
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GX ey ex ey
aw, Wy ow, A
OX oy OX oy
Qx ex ey Qy 9x ey
* 8W* 8W* * 8W* aw*
Qy =0 1= Qy | Mo
s =Pl o +[P [y =[BT +EN oy
X * . y . N
" 2, 2, y 26, o0,
ax* oy 5>i oy
99, 0, 00, 06,
OX ay OX ay
(4.6)
where,

* * t
Ouy, OV, 0Ug 0OV 0. o | -
ax ay aX ay Z Z

o0 0
ZZ{ —au, vy —au, Py, 6, 6, }smax sin By

m=1n=1
20, 0. 00" t
00 00 *
X y X y WO WO —
oXx oy ox oy
ZZ{ ~ab,  —BO, —ab, PO, W, W }sinocx sin By
m=1n=1

* * t
{ du, v, ouy vy }

oy oOx oy OX
21;{ Pug avy  Pug - avg }COSOLX cos By
m=1n=

* t
! 00, 0, o0, 00, ]

oy OX oy OX
ii{ o, b, PO, ab, }COSOLX cos By
m=1n=1
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m=1n=1

ow ow, |

{ Yy Yy } -
z Z{ eymn BWOmn e;mn BW"OCI'T'IH }Sinax COSBy
m=1n=1
* t
0, « 09
oy oy

(4.7)
The matrices [A], [A], [C;], [B], [B], [D], [D], [E]l, [E'] are the matrices of

plate stiffness whose elements are defined in Appendix-Il. The same procedure is
followed in obtaining the plate stiffness matrices of other models and they are also

defined under the same appendix.

To solve the equilibrium equations represented by Equations 3.37 following steps are

taken:

(1) Substitute the Equations 4.5, 4.6 and 4.7 in to the equilibrium Equations 3.37.
(ii) To solve for the unknowns ug, Vo, Wy, 6y, 6,, 0,, uz, v:;, W;, 9;, 9;, 6: for

some fixed values m=m and n=n, multiply the twelve equilibrium

equations by
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mmX nny mmX nry MmmX nny mnx . nNny

coOs—— sin—-— sin—— cos— sin—— sin—=— cos—— sin
a b a b | a b a ,
mmx nny . max . nny mnx . Nny . Mmmx nny

sin—— cos—= sin—— sin—= cos—— sin—— sin—— cos——
a b | a b | a b a b |
(117194 nry mmX nry mmx nny . MnxX . nNny

sin—— sin—= coOs—— sin—- sin—— cos— sin—— sin—=
a b a b a b a

respectively and let them be doubly integrated between the limits (0<x<a) and

(0<y<b)

(1ii) Apply following orthogonally conditions.

Ism—sm% dx =0 if mzm
= al2 if m=m
Ismw smnny dy =0 if n=n
= h/2 if n=n
Icos—cos% dx =0 if mzm
= a2 if m=m
J.cosw cos Y dy =0 if n=n
5 b
= Db/2 if n=n
and
& mmX mmX
j sin cosS dx = 0;
5 a a

mmX MmX
I cos—— sin—— dx = 0;
a a
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b _
I sinw cosM dy = 0;
5 b b

irrespective of the values m and n.

After following the steps (1) to (iii ) and collecting the coefficients, the solution for

the Fourier amplitudes is obtained in the following form ;

p
[X]12x12 x U; - 0 + {FT }12x1
0

3
12X1 h +

(4.8)
For any fixed values of m and n. The elements of the coefficient matrix [X] are given
in Appendix Il and the coefficients of thermal force matrix {Ft} are given in
Appendix IV. Similarly the elements of [X] and {F+} matrices of other models are

also given under the same appendix.

The Fourier amplitudes can be obtained by solving Equation 4.8. These amplitudes
are used to evaluate the generalized displacement components and their derivatives to
obtain the stress resultants by substituting in Equations 4.5 and 4.6. Further, these
values (generalized displacement components and their derivatives) are back
substituted into the strain-displacement relations i.e. in Equation 3.16a and 3.16b to

obtain the values of strains. The complete three dimensional Hooke’s law can be used
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to compute the in-plane stress, and the transverse stresses can then be calculated using

equilibrium equations.
4.2.1.1 Transverse Stress (Ty,, Tyz 0,)

The transverse stresses can be evaluated from the constitutive stress-strain relations,
but they will not satisfy the stress boundary conditions at top and bottom surfaces of
the plate. Whereas in-plane stress components are independent of boundary
conditions and are evaluated from the constitutive relations and hence these are used
for the computation of transverse stress components by integrating three dimensional
elasticity equilibrium equations. The three dimensional equations of equilibrium
without body forces are given by,

an 5’ny a‘txz
+ +

=0
oXx oy oz
Otxy N ooy N Otyz _0
oXx oy oz
Otxz N Otyz N 00z 0

oXx oy oz
(4.9)

The transverse stresses are derived by integrating the above 3-D equilibrium
equations across the thickness coordinate ‘z’ and are given by,

(4.10)
The above equilibrium equations are valid throughout the plate thickness from bottom

to top surface of the plate over the range of —h/2 to h/2.

57



The in-plane stresses o, , o, and t,, in Equation 4.10 are expressed in terms of

y y
expanded strain components from Equation 3.15a and 3.9a and thus the transverse

stresses takes the form,

z
sz:_.[
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— 1Qu €y, TLKy €y, Ky Qp &y, T 4Ky €y Ky
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+Qys (szO +ZK, +2 sZO) - (Qu+Qp,+Qy) a, AT}
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-h/2 OX
+% {st (¢y + 7K, + 270, + 2k, )}} dz
(4.11)

The general expression for transverse stresses in terms of expanded displacement

components are expressed as,
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4.3 CLOSURE

The various steps involved in obtaining analytical solutions for the thermal stress
analysis of FGM plates using Navier’s solution technique is presented in this chapter.
For brevity sake, Higher Order displacement model with twelve degrees of freedom
HSDT-12 is discussed in detail. The elements of plate stiffness matrices, the
coefficient matrix [X] and thermal force matrix {Fy} obtained using various
displacement models are given in Appendices. The numerical results obtained
considering the various displacement models and the discussion of results for various

plate problems using the above technique are presented in the following chapter.
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CHAPTER 5

NUMERICAL RESULTS AND DISCUSSIONS

5.1 PRELIMINARY REMARKS

In this chapter, various numerical examples solved are described and discussed for
establishing the accuracy of various theories related to thermo-elastic analysis of
FGM plates. For all the example problems, simply supported boundary condition is
considered for the analysis. The plates are subjected to nonlinear, linear and constant
variation of temperatures across the plate thickness, while in-plane is sinusoidal. The
equations of equilibrium are derived using the Principle of Minimum Potential Energy
(PMPE) and closed form solutions are obtained using Navier’s solution technique.
Firstly, the accuracy of the solutions obtained using the various displacement models
considered in the present study is established by comparing the displacements and
stresses with that of 3-D elasticity solutions wherever available in the literature. After
establishing the accuracy of each model, comparative studies have been carried out
and benchmark results using all the models are presented for FGM plates with
different material properties, length to breadth ratio, length to thickness ratio and

power law parameter.

For the solution of boundary value problem obtained using the various
displacement models and their theoretical formulation given in Chapter 3 and the
solution method given in Chapter 4, a set of computer codes using MATLAB-15
software were developed for numerical computation. In this investigation twelve
separate computer programmes were developed for the thermo-elastic analysis of
FGM plates. Out of twelve programmes, four each corresponds to nonlinear, linear
and constant variation of temperature. All the numerical results shown in tables and
figures using various displacement models are generated independently using various
computer programmes developed during the present investigation. The numerical
results of all the models compared are the in-plane/transverse displacements and

stresses. A shear correction factor of 5/6 is used for obtaining the results using
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Whitney-Pagano’s theory (Pagano and Hatfield, 1972). The various numerical
examples are solved, and the results obtained using various theories, material

properties and temperature profiles are discussed in detail in the following section.

5.2 THERMAL STRESS ANALYSIS

The following material set data are used in obtaining numerical results.

Material set - 1 (M1) [ Alibeigloo (2010)]
Monel-Zirconia FGM plate (70Ni-30Cu- ZrO,)

Em =227.24 GPa am =15%x10—-6 /K km =25 W/mK v=0.3
E. =125.83 GPa ac =10x10-6 /K ke =2.09 W/mK v=0.3.
Ec/ Em =0.5537 ac / am = 0.6667, Ke/ km = 0.0836

Material set - 2 (M2) [Praveen and Reddy. (1998)]
Aluminium-Alumina FGM plate (Al- Al,O3)

En =70 GPa om =23x10—6 /K, km =204 W/mK, v=0.3
Ec =380 Gpa, Ol =7.4X10_6 /K, k(; =104 W/mK, V:0.3
E./ Em =5.429, ac / om = 0.3217, ke / km =0.0510

Material-3 (M3) [Jabbari et. al. (2014)]
Titanium Alloy - Zirconia FGM plate (Ti-6Al-4V - ZrO,)

Em =66.2 GPa, am =10.3x10-6 /K, km =18.1 W/mK, v=0.322
E. =117 GPa, ac =7.11x10—-6 /K, ke =2.036 W/mK, v=0.322.
Ec./Em=1.7673, ac / om = 0.690, Kc / km =0.1125

Results that are reported in tables and plots are obtained using the following

nondimensionalized forms:

(0.V.7) = (u,v,w)E"
Pa
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— _ (Gx76y’Gz'Txy’Tx2!Tyz)
(GX,Gy,GZ, ’ny,’EXZ,‘EyZ,) =

PE"

o' T,
P

T=

Where, P = p,/E" for applied transverse mechanical load P, and pP=ao"/T, for

applied temperature T, at the top surface of the FGM plate. The scale factors

corresponding to coefficient of thermal expansion and young’s modulus of elasticity

are o =108 /K and E =1 Gpa respectively.

Unless otherwise specified within the table(s) or plot(s) the location (i.e. x- and y-
coordinates) for the maximum values of displacements and stresses for the present

evaluations are as follows:

In-plane displacement (u) : (0, b/2)
In-plane displacement (V) : (a/2, 0)
Transverse displacement (w) : (a/2, b/2)
In-plane normal stress (5,.) : (a/2, b/2)
In-plane normal stress (G, ) : (a/2, b/2)
Transverse normal stress (5,) : (a/2, b/2)
In-plane shear stress (T,,) : (0, 0)
Transverse shear stress (z,,) : (0, b/2)
Transverse shear stress (T,,) : (a/2, 0)

5.2.1 Description of Examples and Discussions

In this section, various examples related to thermo-elastic analysis of FGM plates are

described and discussed. Initially, through the thickness variation of thermo-physical

63



properties of various materials are presented and then the accuracy of the
displacement models is established by comparing with the 3-D elasticity solutions
available in the literature. Then the parametric studies are performed and results are
presented for Monel-Zirconia, Aluminium-Alumina and Titanium Alloy-Zirconia
FGM plates subjected to steady state thermal loads. Also the effect of temperature
distribution (viz., nonlinear, linear and constant) on displacements and stresses are

discussed.

Example 1: In this example, through the thickness variation of material properties
and temperature field distribution for various FGMs considered in the study are
presented. The effective material properties are evaluated using micromechanical
scheme based on power law function. The volume fraction (Vs) distribution of the
ceramic-metal constituent phases in an FGM plate is governed by power law
parameter p. Fig.5.1 shows through the thickness variation of volume fraction

distribution V¢ and temperature profile with increase in power law parameter p.

Three materials namely Monel-Zirconia (M1), Aluminium-Alumina (M2) and
Titanium Alloy-Zirconia (M3) are considered in the analysis. Through the thickness
variation of effective material properties like young’s modulus of elasticity, thermal
coefficient of expansion, thermal conductivity of M1, M2 and M3 using various
power law parameters are presented. Similarly the nonlinear temperature variation
obtained by solving steady state heat conduction equation is also presented. Through
the thickness variation the material properties for various power law parameters are
shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4 for Monel-Zirconia (M1), Aluminium-
Alumina (M2) and Titanium Alloy-Zirconia (M3) FGMs respectively. It is observed
that, the volume fraction of metal constituent phase in an FGM plate increases with
increase in p value and is purely ceramic for p equal to zero. Similar variations are
observed in young’s modulus of elasticity, thermal coefficient of expansion and
thermal conductivity of FGMs. Also, the ceramic surface is exposed to temperature
and is gradually reduced to reach zero / room temperature at the metal surface.
Through the thickness variation of temperature is nonlinear for p value greater than or

equal to one and is linear for p equal to zero.
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Example 2: In order to establish the accuracy of various displacement models, a
simply supported Monel-Zirconia (M1) FGM plate subjected to transverse sinusoidal
load of intensity p, at the top surface of the plate is considered. The numerical results
of displacements and stresses are compared with the three dimensional elasticity
solutions reported by Reddy and Cheng, (2001a). The nondimensionalized in-plane
displacement, transverse displacement w and in-plane normal stress G, at various
locations across the thickness of the FGM plate are given in Table 5.1, Table 5.2 and
Table 5.3 respectively along with the percentage error with respect to 3-D elasticity
solutions. The results clearly shows that the values obtained using HSDT-12 are in
close agreement with the 3-D elasticity solutions for all a/h ratios. For a/h ratio equal
to 4, HSDT-9 overpredicts the in-plane displacement u by 11.42% and transverse
displacement w by 5.64% at the top surface of the plate as compared with the exact
solutions. Whereas the in-plane normal stress o, at the top surface of the plate, are
underpredicted by HSDT-9, HSDT-5 and FSDT by 3.76%, 3.76% and 9.16%
respectively. Also, the maximum value of transverse shear stress T,, and transverse
normal stress o, at the middle surface of the plate are given in Table 5.4 along with
the percentage of error with respect to 3-D elasticity solutions. It can be seen that, for
all a/h ratios HSDT-12 gives better accuracy as compared to other displacement
models. For a/h ratio equal to 10, HSDT-12 overpredicts the transverse shear stress
T, by 0.14%, whereas transverse normal stress o, were predicted as accurate as exact
solutions. The accuracy of the models in predicting the displacements and stresses
increases with increase in slenderness ratio (a/h ratio). In all the parameters
considered, the percentage error in the results obtained from HSDT-12 is less than

2.5% and is found to be in excellent agreement with the 3-D elasticity solutions.

Example 3: In this example, accuracy of the displacement models in predicting the
thermal responses is established by comparing with the 3-D elasticity solutions
reported by Alibeigloo (2010). A simply supported Monel-Zirconia (M1) FGM plate
subjected to thermal load is considered. The temperature variation is assumed to be
nonlinear and obeys steady state heat conduction equation. Through the thickness
variation of nondimensionalized transverse displacement w, transverse shear stress

T, and transverse normal stress o, are compared with the 3-D elasticity solutions
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reported for a square FGM plate with side-to-thickness ratio (a/h ratio) 5, 10 and 20.
The graphical representations for the variation of transverse displacement w using
various a/h ratios are given in Fig. 5.5. The results clearly indicate that, only HSDT-
12 predicts the nonlinear variation of transverse displacement most accurately and it is
very much closer to the exact solutions whereas all other models predict the variation
as linear. The variation of nondimensionalized transverse shear stress T,, and
transverse normal stress G, across the plate thickness direction are depicted in Fig. 5.6
and Fig. 5.7 respectively. It shows that HSDT-12 predicts transverse stresses as
accurately as exact solutions, while all other models either underpredcits or
overpredicts the transverse stresses. The effect of nonlinear transverse shear and
normal stress / strain in HSDT-12 model has a significant effect in predicting the
displacement and stresses in FGM plates. Thus it can be clearly seen from the graphs
that for all values of a/h ratios considered, the transverse displacement and stresses
computed using HSDT-12 model is very much closer to exact solutions as compared
to other models considered for comparision. Therefore among various two
dimensional theories considered, the results obtained using HSDT-12 are in good
agreement with exact solutions and hence the same is used as reference for

establishing the accuracy of other models in the subsequent examples.

Example 4: In order to study the effect of variations in geometric and power law
parameters on displacements and stresses, a simply supported square / rectangular
Monel-Zirconia (M1) FGM plate subjected to nonlinear thermal loads (Tn.) is
considered. The nondimensionalized values of displacements @, v,w and stresses
Gy, Oy, Txys Txz» Tyz 1N @ thick (a/h equal to 4 and power law parameter equal to 3)
FGM plate with various values of length-to-breadth ratios (a/b ratios) are given in
Table 5.5 and Table 5.6 respectively. The difference in the values predicted using
HSDT-12 and those obtained using other models increases with the increase in the
value of length-to-breadth ratio and the minimum difference is observed in a square
plate (a/b ratio equal to 1). For a/b ratio equal to 2, the values of in-plane
displacements tand v predicted by HSDT-9, HSDT-5 and FSDT are 13.42%,
14.85%, 13.70% lower as compared to the values predicted by HSDT-12 and the
values of transverse displacement w predicted by HSDT-9, HSDT-5 and FSDT are
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52.34%, 59.78%, 52.45% lower as compared to the values predicted by HSDT-12.
For a square plate with a/b ratio equal to 1, the values of in-plane normal stresses
64 and G, predicted by HSDT-9, HSDT-5 and FSDT are 9.77%, 9.86%, 9.87% lower
as compared to the values predicted by HSDT-12, the values of in-plane shear stress
T4y predicted by HSDT-9, HSDT-5 and FSDT are 4.67%, 4.73%, 4.74% higher as
compared to the values predicted by HSDT-12 and the values of transverse shear
stresses Ty, and Ty, predicted by HSDT-9, HSDT-5 and FSDT are 33.02%, 78.81%
and 37.16% higher as compared to the values predicted by HSDT-12.

The nondimensionalized values of the in-plane displacement @ and in-plane normal
stress G, at bottom, middle and top surface of a rectangular (a/b ratio equal to 1.5)
FGM plate are given in Table 5.7 and Table 5.8 respectively. The results clearly show
that, the value of displacements and stress increase from bottom to top surface of the
plate. Whereas the percentage difference in the values predicted by HSDT-12 and
other models is found to be maximum at the bottom surface of the plate and minimum
at the middle surface of the plate for all a/h ratios and power law parameters
considered. For a/h ratio equal to 10 and power law parameter p equal to 2, the value
of in-plane displacement u predicted by HSDT-9, HSDT-5 and FSDT are 1.68%,
1.95%, 1.82% lower as compared to the values predicted by HSDT-12 at the top
surface of the plate. For a/h ratio equal to 10 and power law parameter p equal to 5,
the value of in-plane normal stress G, predicted by HSDT-9, HSDT-5 and FSDT are
48.21%, 60.42%, 51.04% higher as compared to the values predicted by HSDT-12 at
the bottom surface of the plate. For all cases considered, HSDT-9 is found to predict
closer results to HSDT-12 and with least percentage difference as compared to other
models.

In order to study the effect of displacements and stresses with increase in a/h ratio and
power law parameter p, a simply supported square FGM plate is considered. The
nondimensionalized values of in-plane displacement @ and transverse displacement
w are given in Table 5.9 and Table 5.10 respectively. For a/h ratio equal to 4 and
power law parameter p equal to 5, the value of in-plane displacement o predicted by
HSDT-9, HSDT-5 and FSDT are 6.38%, 6.65%, 6.13% lower as compared to the
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values predicted by HSDT-12 and the value of transverse displacement w predicted
by HSDT-9, HSDT-5 and FSDT are 31.16%, 35.52%, 31.14% lower as compared to
the values predicted by HSDT-12. The nondimensionalized values of in-plane normal

stress 6 , in-plane shear stress 7,, and transverse shear stress T,, are given in
Table 5.11, Table 5.12 and Table 5.13 respectively. For a/h ratio equal to 4 and power
law parameter p equal to 2, the value of in-plane normal stress &, predicted by
HSDT-9, HSDT-5 and FSDT models are 7.09%, 5.86% and 6.50% lower as
compared to the values predicted by HSDT-12, the value of in-plane shear stress 1,
predicted by HSDT-9, HSDT-5 and FSDT models are 5.98%, 6.98% and 6.46% lower
as compared to the values predicted by HSDT-12 and the value of transverse stress
T, predicted by HSDT-9, HSDT-5 and FSDT models are 11.48%, 34.21% and
14.02% higher as compared to the values predicted by HSDT-12. The percentage
difference in the values predicted by HSDT-12 and other displacement models
decreases with increase in a/h ratio and increases with increase in power law
parameter. For plates with a/h ratio 20 and above, the differences in the displacements
and stresses is found to be minimum. Among various models considered, the values
predicted by HSDT-9 are found to be with least percentage difference as compared to
HSDT-12 model.

Through the thickness variation of nondimensionalized in-plane displacements i and
v, transverse displacement w, in-plane shear stress 7, , in-plane normal stresses G,
and G, and transverse shear stresses T,, and T, for a rectangular plate with a/b ratio
equal to 3, a/h ratio equal to 4 and power law parameter p equal to 4 are shown in
Figs. 5.8 to 5.15 respectively. From the figures, it can be seen that considerable
difference in the values is observed between HSDT-12 and rest of the models. The
values predicted by HSDT-9, HSDT-5 and FSDT models are closer to each other and
are much different form HSDT-12. This clearly indicates that the effect of transverse
shear and normal strain / stress has a significant effect in predicting the overall

thermo-elastic responses in an FGM plates.

Example 5: A simply supported square / rectangular Aluminium-Alumina (M2) FGM

plate subjected to nonlinear thermal loads (Tn.) is considered. The behaviour of
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displacements and stresses at various locations of the plate is studied by varying
geometric parameters like a/b ratio and a/h ratio and power law parameter p. The
nondimensionalized values of in-plane/transverse displacements and stresses in a
rectangular (a/b ratio equal to 2 and p equal to 2) FGM plate for various values of
side-to thickness ratios (a/h ratios) are given in Table 5.14 and Table 5.15
respectively. For a/h ratio equal to 4, the values of in-plane displacements @and v
predicted by HSDT-9, HSDT-5 and FSDT are 10.52%, 13.01%, 9.47% lower as
compared to the values predicted by HSDT-12, the values of transverse displacement
w predicted by HSDT-9, HSDT-5 and FSDT are 55.24%, 81.18%, 54.31% lower as
compared to the values predicted by HSDT-12, the values of in-plane normal stresses
Gx predicted by HSDT-9, HSDT-5 and FSDT are 7.28%, 6.26%, 6.38% lower as
compared to the values predicted by HSDT-12, the values of in-plane normal stress
6, predicted by HSDT-9, HSDT-5 and FSDT are 28.15%, 23.74%, 24.26% lower as
compared to the values predicted by HSDT-12, the values of in-plane shear stresses
T4y predicted by HSDT-9, HSDT-5 and FSDT are 9.95%, 8.17%, 8.38% higher as
compared to the values predicted by HSDT-12, the values of transverse shear stress
Ty, and Ty, predicted by HSDT-9, HSDT-5 and FSDT are 18.51%, 56.37%, 10.00%
lower as compared to the values predicted by HSDT-12. It is observed that for all
parameters considered, the in-plane displacements and stresses predicted by HSDT-9.
HSDT-5 and FSDT are much closer to each other and deviate much from the values
predicted by HSDT-12. For plates with a/h ratio 20 and above, the values predicted by

all the models are almost same.

The nondimensionalized values of the in-plane displacement v and in-plane shear
stress Ty, at the bottom, middle and top surface of an FGM plate for a/h ratio 20 are
given in Table 5.16 and Table 5.17 respectively. The results clearly shows that, the
values of in-plane / transverse displacements and stresses predicted by all the models
are very close to each other throughout the plate thickness direction in both square
and rectangular plates and for various power law parameters. Hence, the percentage
differences in the results predicted by various models and HSDT-12 is very less. For
a/b ratio equal to 2 and power law parameter p equal to 3, the value of in-plane

displacement v and in-plane shear stress 1., predicted by HSDT-9, HSDT-5 and
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FSDT are 4.07%, 2.57%, 3.30% lower as compared to the values predicted by HSDT-
12 at the bottom surface of the plate.

In order to study the effect of displacements and stresses with increase in a/b ratio and
power law parameter p, a simply supported FGM plate with a/h ratio 10 is considered.

The nondimensionalized values of in-plane displacement T and transverse
displacement w are given in Table 5.18 and Table 5.19 respectively. For a/b ratio
equal to 1.5 and power law parameter p equal to 2, the value of in-plane displacement
u predicted by HSDT-9, HSDT-5 and FSDT are 1.32%, 1.58%, 1.19% lower as
compared to the values predicted by HSDT-12 and the value of transverse
displacement w predicted by HSDT-9, HSDT-5 and FSDT are 11.52%, 16.59%,
11.31% lower as compared to the values predicted by HSDT-12. The
nondimensionalized values of in-plane normal stress Gy , in-plane shear stress 7, and
transverse shear stress T,, are given in Table 5.20, Table 5.21 and Table 5.22
respectively. For a/b ratio equal to 2.5 and power law parameter p equal to 2, the
value of in-plane normal stress o, predicted by HSDT-9, HSDT-5 and FSDT models
are 2.52%, 2.98% and 2.28% higher as compared to the values predicted by HSDT-
12, the value of in-plane shear stress t,, predicted by HSDT-9, HSDT-5 and FSDT
models are 2.87%, 3.45% and 2.58% lower as compared to the values predicted by
HSDT-12 and the value of transverse stress 1., predicted by HSDT-9, HSDT-5 and
FSDT models are 37.15%, 24.20% and 40.53% higher as compared to the values
predicted by HSDT-12. The percentage difference in the values predicted by HSDT-
12 and other displacement models is found to be minimum in square plates and
increases with increase in a/b ratio and power law parameter p. Also, least difference

is observed in the results predicted by HSDT-9 as compared to other two models.

Figs. 5.16 to 5.20 shows through the thickness variation of nondimensionalized in-
plane displacement @, transverse displacement w, in-plane normal stresses o, in-
plane shear stress T,y and transverse shear stresses T, in a square FGM plate with a/h
ratio equal to 10 and power law parameter equal to 3. From the figures it can be seen
that the differences in the values predicted by HSDT-12 and all other models is found
to be more in transverse displacement and stresses than that of in-plane displacements
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and stresses. This indicates the need for higher order polynomials in the displacement
fields for accurate estimation of thermal displacements / stresses in an FGM plate.

Example 6: A simply supported square / rectangular Titanium Alloy-Zirconia (M3)
FGM plate subjected to nonlinear thermal loads (Tyy) is considered. The thermo-
elastic responses at various locations of the plate are studied by varying geometric and
power law parameters. The variation of nondimensionalized displacements and
stresses using various power law parameters are given in Table 5.23 and Table 5.24
respectively for a/b ratio equal to 2 and a/h ratio equal to 10. For power law parameter
p equal to 3, the values of in-plane displacement irand v predicted by HSDT-9, HDT-
5 and FSDT models are 2.09%, 2.57% and 2.14% lower as compared to the values
obtained using HSDT-12, the values of transverse displacement w predicted by
HSDT-9, HDT-5 and FSDT models are 14.26%, 18.85%, 14.32% lower as compared
to the values obtained using HSDT-12, the values of in-plane normal stress G,
predicted by HSDT-9, HDT-5 and FSDT models are 4.37%, 4.40%, 4.40% lesser as
compared to the values obtained using HSDT-12, the values of in-plane normal stress
6, predicted by HSDT-9, HDT-5 and FSDT models are 19.96%, 20.17%, 20.17%
lower as compared to the values obtained using HSDT-12, the values of in-plane
shear stress T, predicted by HSDT-9, HDT-5 and FSDT models are 2.11%, 2.15%,
2.15% higher as compared to the values obtained using HSDT-12, the values of
transverse shear stress T,, and T,, predicted by HSDT-9, HDT-5 and FSDT models
are 41.85%, 71.24%, 43.95% higher as compared to the values obtained using HSDT-
12. For all parameters considered the results predicted by HSDT-9 model are closer to
HSDT-12 and with least percentage difference compared to HSDT-5 and FSDT
models. It can also be noted that with increase in the value of power law parameter,
the difference in the values obtained using HSDT-12 and all other models increases.

The variation of nondimensionalized transverse displacement w and in-plane normal
stress G, at various locations across the plate thickness direction are given in Table
5.25 and Table 5.26 respectively. The effect of increase in a/b ratio and a/h ratio in a
plate with power law parameter p equal to 1 is studied. For a/b ratio equal to 2 and a/h

ratio equal to 4, the values of transverse displacement w predicted by HSDT-9, HDT-
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5 and FSDT models are 47.59%, 63.12%, 48.05% lower as compared to the values
obtained using HSDT-12 at the top surface of the plate. For a/b ratio equal to 1 and
a/h ratio equal to 4, the values of in-plane normal stress G, predicted by HSDT-9,
HDT-5 and FSDT models are 15.84%, 17.55%, 17.55% lower as compared to the
values obtained using HSDT-12 at the middle surface of the plate. For all parameters
studied across the thickness direction, the percentage difference in the results
decreases as the plate becomes thin and increases with increase in edge ratio (a/b
ratio). Though the values of transverse displacement w predicted by HSDT-12 and all
other models are almost same in thin plates, the values of in-plane stress o, deviate
much from HSDT-12. This clearly shows the need for including transverse shear and

normal deformation effects during the analysis.

Example 7: A simply supported rectangular plate subjected to nonlinear thermal load
(Tno) is considered for the analysis. Material sets like Monel-Zirconia (M1),
Aluminium-Alumina (M2) and Titanium Alloy-Zirconia (M3) are used. The plate
responses with increase in the ratio of young’s modulus of elasticity of ceramic-to-
metal, E. / En, ratio is studied for various a/h ratios and power law parameters. The
numerical results of in-plane / transverse displacements and stresses for a/b ratio equal
to 2 and power law parameter equal to 2 are given in Table 5.27 and Table 5.28. For
all Ec / En ratio studied, the percentage difference between HSDT-12 and other
models are more in thin plates with a/h ratio equal to 10 and is considerably less in
thick plates with a/h ratio equal to 50. The plate responses are dependent on overall
thermal and physical properties of the material, and hence remarkable variations with
increase in E¢/ Ep, ratio is not observed. In Titanium Alloy-Zirconia (M3, E. / En, ratio
equal to 1.7673) FGM plate with a/h ratio equal to 10, the in-plane displacement
and v predicted by HSDT-9, HSDT-5 and FSDT are 2.01%, 2.59%, 2.18% lower
than HSDT-12, the transverse displacement w predicted by HSDT-9, HSDT-5 and
FSDT are 13.67%, 18.12%, 13.78% lower than HSDT-12, in-plane normal stress o,
predicted by HSDT-9, HSDT-5 and FSDT are 5.48%, 5.61%, 5.61% lower than
HSDT-12, in-plane normal stress G, predicted by HSDT-9, HSDT-5 and FSDT are
28.92%, 29.93%, 29.96% lower than HSDT-12, transverse shear stress T, predicted

by HSDT-9, HSDT-5 and FSDT are 2.04%, 2.19%, 2.19% higher than HSDT-12 and
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transverse shear stress T, and 7,, predicted by HSDT-9, HSDT-5 and FSDT are
31.97%, 45.58%, 33.78% higher than HSDT-12. Table 5.29 and Table 5.30 shows the
variation of in-plane displacement o and in-plane normal stress G, predicted by
different models for various power law parameters. For all E./ E, ratios considered,
the percentage differences in the results predicted by HSDT-12 and other models is

found to increase with increase in power law parameter.

Example 8: A simply supported rectangular plate subjected to nonlinear thermal load
(Tnu) is considered for the analysis. Material sets like Monel-Zirconia (M1),
Aluminium-Alumina (M2) and Titanium Alloy-Zirconia (M3) are used. The plate
responses are studied for various parameters based on increase in the ratio of thermal
conductivity of ceramic- to-metal viz., k. / kny, ratio. The numerical results of in-plane /
transverse displacements and stresses for a/h ratio equal to 10 and power law
parameter equal to 2 are given in Table 5.31 and Table 5.32. For all k. / ky, ratio
studied, the percentage difference between HSDT-12 and other models are less in
square plate with a/b ratio equal to 1 and more in rectangular plate with a/b ratio equal
to 3. The plate responses are dependent on overall thermal and physical properties of
the material, and thus significant variation with increase in k. / ky ratio is not
observed. In Aluminium-Alumina (M2, k. / kn, ratio equal to 0.0510) FGM plate with
a/b ratio equal to 3, the in-plane displacement trand v predicted by HSDT-9, HSDT-5
and FSDT are 3.89%, 4.66%, 3.49% lower than HSDT-12, the transverse
displacement w predicted by HSDT-9, HSDT-5 and FSDT are 28.55%, 41.19%,
28.04% lower than HSDT-12, in-plane normal stress 6, predicted by HSDT-9,
HSDT-5 and FSDT are 1.80%, 1.52%, 1.55% lower than HSDT-12, in-plane normal
stress G, predicted by HSDT-9, HSDT-5 and FSDT are 16.37%, 13.71%, 13.99%
lower than HSDT-12, transverse shear stress T, predicted by HSDT-9, HSDT-5 and
FSDT are 3.57%, 2.98%, 3.04% higher than HSDT-12 and transverse shear stress
Tyz and 1y, predicted by HSDT-9, HSDT-5 and FSDT are 27.22%, 10.48%, 31.54%
higher than HSDT-12. Table 5.33 and Table 5.34 shows the variation of transverse

displacement w and in-plane normal stress G, predicted by different models for

various power law parameters. For all k. / ky, ratios studied, the percentage difference
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in the values predicted by HSDT-12 and other displacement models increases with

increase in power law parameter.

Example 9: In order to study the effect of different types of temperature profiles in
predicting the plate responses, a simply supported rectangular plate subjected to non-
linear (Tny), linear (T.) and constant (T¢) temperature distribution across the plate
thickness is considered. Material sets like Monel-Zirconia (M1), Aluminium-Alumina
(M2) and Titanium Alloy-Zirconia (M3) are used. The behaviour of displacements
and stresses with increase in E¢/En, ratio and a/b ratio is studied for a plate with a/h
ratio equal to 4 and power law parameter p equal to 2. The nondimensionalized in-
plane displacement @ and transverse displacement w at the top surface of the plate are
given in Table 5.35. For a Monel-Zirconia (M1, E./E, ratio equal to 0.5537) FGM
plate with a/b ratio equal to 1.5, the values of in-plane displacement o predicted by
HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature distribution
(TL) are found to be 36.83%, 34.88%, 37.85%, 37.63% higher and by using constant
temperature distribution (T¢) are found to be 40.02%, 26.93%, 31.87%, 29.00%
higher as compared to the values obtained using nonlinear temperature profile (Tn.)
and the values of transverse displacement w predicted by HSDT-12, HSDT-9, HSDT-
5 and FSDT models using linear temperature distribution (T.) are found to be
30.31%, 23.74%, 25.08%, 23.93% higher and by using constant temperature
distribution (T¢) are found to be 1.5 times lower as compared to the values obtained
using nonlinear temperature profile (Tn.). The nondimensionalized in-plane normal
stress 6, and G, at the middle surface of the plate are given in Table 5.36. For a
Titanium Alloy-Zirconia (M3, E./E, ratio equal to 1.7673) FGM plate with a/b ratio
equal to 1.5, the values of in-plane normal stress 6, predicted by HSDT-12, HSDT-9,
HSDT-5 and FSDT models using linear temperature distribution (T) are found to be
80.47%, 89.93%, 92.88%, 92.89% higher and by using constant temperature
distribution (T¢) are found to be approximately 2.5 times higher as compared to the
values obtained using nonlinear temperature profile (Tn.) and the values of in-plane
normal stress G, predicted by all the models using linear temperature distribution (T.)
are found to be approximately 1.5 times higher and by using constant temperature

distribution (T¢) are found to be approximately 3.5 times higher as compared to the
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values obtained using nonlinear temperature profile (Tn.). The nondimensionalized
values of in-plane shear stress T, at the top surface of the plate are given in Table
5.37. For a Aluminium-Alumina (M2, E./Ey, ratio equal to 5.429) FGM plate with a/b
ratio equal to 2.5, the values of in-plane shear stress 7, predicted by HSDT-12,
HSDT-9, HSDT-5 and FSDT models using linear temperature distribution (T.) are
found to be 33.02%, 28.48%, 33.03%, 32.71% higher and by using constant
temperature distribution (Tc) are found to be 32.82%, 10.90%, 15.29%, 12.75%
higher as compared to the values obtained using nonlinear temperature profile (Tny).
The nondimensionalized transverse shear stresses Ty, and Ty, at the middle surface of
the plate are given in Table 5.38. For all the parameters studied, the values of
transverse shear stresses 7,, and 7,, predicted by various displacement models using
linear temperature distribution (T.) and constant temperature distribution (T¢) are
found to be approximately 2-3 times higher as compared to the values obtained using
nonlinear temperature profile (Tyy). It was observed that, with increase in a/b ratio the
percentage difference in the values obtained using linear(T.) and constant (T¢)
temperature increases whereas no remarkable differences are observed with increase

in E./E, ratio.

The variation of nondimensionalized in-plane / transverse displacements and stresses
U, V, W, Oy, Oy, Ty, Ixzand Ty, across the thickness of a simply supported
rectangular Titanium Alloy-Zirconia (M3) FGM plate subjected to nonlinear (Tny),
linear (T) and constant (T¢) thermal loads are given in Figs. 5.21 to 5.28 respectively
for a/b ratio equal to 2, a/h ratio equal to 10 and power law parameter p equal to 2. It
can be noted that, displacements and stresses predicted using linear (T.) and constant
(Tc) temperature profiles deviate much from the results obtained using nonlinear
(Tnu) temperature profiles in all the models considered. Remarkable differences are
observed in the distribution pattern of displacements and stresses. The maximum
deviation is observed in the values obtained using constant temperature (T¢) variation

and FSDT model.

Example 10: A simply supported rectangular plate subjected to non-linear (Tny),

linear (T.) and constant (T¢) temperature distribution across the plate thickness is
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considered. Material sets like Monel-Zirconia (M1), Aluminium-Alumina (M2) and
Titanium Alloy-Zirconia (M3) are used. The behaviour of displacements and stresses
with increase in kc/kn, ratio and a/h ratio is studied for a plate with a/b ratio equal to 2
and power law parameter p equal to 2. The nondimensionalized values of in-plane
displacement @ and transverse displacement w at the top surface of the plate are
given in Table 5.39. For a Titanium Alloy-Zirconia (M3, k./kr, ratio equal to 0.1125)
FGM plate with a/4 ratio equal to 4, the values of in-plane displacement ' predicted
by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature
distribution (T.) are found to be 27.39%, 24.93%, 27.95%, 27.70% higher and by
using constant temperature distribution (Tc) are found to be 32.78%, 19.38%,
24.21%, 21.47% higher as compared to the values obtained using nonlinear
temperature profile (Tn.) and the values of transverse displacement w predicted by
HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature distribution
(T.) are found to be 21.81%, 9.92%, 8.35%, 11.61% higher and by using constant
temperature distribution (T¢) are found to be approximately 1.5 times lower as
compared to the values obtained using nonlinear temperature profile (Tn.). The
nondimensionalized values of in-plane normal stress 6, and o, at the middle surface
of the plate are given in Table 5.40. For a Monel-Zirconia (M1, k. / k, ratio equal to
0.0836) FGM plate with a/h ratio equal to 4, the values of in-plane normal stress G,
predicted by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature
distribution (T.) are found to be 86.08%, 89.38%, 92.17%, 92.17% higher and by
using constant temperature distribution (T¢) are found to be approximately 2.5 times
higher as compared to the values obtained using nonlinear temperature profile (Tn.)
and the values of in-plane normal stress G, predicted by HSDT-12, HSDT-9, HSDT-5
and FSDT models using linear temperature distribution (T.) are found to be
approximately 2 times higher and by using constant temperature distribution (T¢) are
found to be 4 times higher as compared to the values obtained using nonlinear
temperature profile (Tni). The nondimensionalized values of in-plane shear stress T,y
at the top surface of the plate are given in Table 5.41. For a Titanium Alloy-Zirconia
(M3, k/kn, ratio equal to 0.1125) FGM plate with a/h ratio equal to 20, the values of
in-plane shear stress 7, predicted by HSDT-12, HSDT-9, HSDT-5 and FSDT
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models using linear temperature distribution (T.) are found to be 27.70%, 27.57%,
27.71%, 27.70% higher and by using constant temperature distribution (T¢) are found
to be 22.05%, 21.37%, 21.57%, 21.47% higher as compared to the values obtained
using nonlinear temperature profile (Tno). The nondimensionalized values of

transverse shear stresses Ty, and T,, at the middle surface of the plate are given in

Table 5.42. For a Aluminium-Alumina (M2, k¢/ky, ratio equal to 0.0510) FGM plate

with a/h ratio equal to 4, the values of transverse shear stresses 7, and 7y, predicted

by HSDT-12, HSDT-9, HSDT-5 and FSDT models using linear temperature
distribution (T.) are found to be 2.5 times higher and by using constant temperature
distribution (T¢) are found to be very much higher as compared to the values obtained
using nonlinear temperature profile (Tn.). For all values of a/h ratio and k¢/kr, ratio,
the values obtained using nonlinear (Ty.) temperature and those predicted using linear
(TL) and constant (T¢) temperature distributions are very much different from each
other and the percentage differences are too high. Maximum percentage differences

are found to be more in FSDT models with constant (T¢) temperature distributions.

5.3 CLOSURE

The stress analysis results of FGM plates subjected to thermal loads are presented in
this chapter. A simply supported Monel-Zirconia / Aluminium-Alumina / Titanium
Alloy-Zirconia FGM plate with rectangular / square geometry is considered
throughout as a test problem. The distribution of temperature is considered to be
nonlinear / linear / constantly varying across the plate thickness direction, while in-
plane is sinusoidal. Discussion mainly focused on evaluating the accuracy of solutions
obtained using various displacement models and temperature profiles in predicting the
thermo-elastic plate responses. Based on various examples solved and the numerical
results obtained the general conclusions, and the suggestion for future work are

presented in the next chapter.
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Table 5.1. Nondimensionalized in-plane displacement (u) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a simply supported square FGM
(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical
load (m=n=1 and p=2)

u
alh | THEORY (0, b/2, -h/2) (0, b/2, 0) (0, b/2, h/2)
3D-Exact® -0.004069 -0.00008998 0.004021
HSDT-12 | -0.004067 [-0.05]" | -0.000091 [1.13] 0.00402 [-0.02]
4 | HSDT-9 -0.004172 [2.53] -0.00015 [66.70] | 0.00448 [11.42]
HSDT-5 -0.003999 [-1.72] | -0.000194 [115.60] | 0.004113 [2.29]
FSDT -0.003929 [-3.44] | -0.000149 [65.59] | 0.004228 [5.15]
3D-Exact® -0.02472 0.0007108 0.02617
HSDT-12 -0.024723 [0.01] 0.000711 [0.03] 0.026172 [0.01]
10 | HSDT-9 -0.024806 [0.35] 0.00093 [30.84] 0.02668 [1.95]
HSDT-5 -0.02463 [-0.36] 0.000981 [38.01] | 0.026305 [0.52]
FSDT -0.024557 [-0.66] | 0.000934 [31.04] | 0.026425 [0.97]
3D-Exact® -0.6141 0.0231 0.6603
HSDT-12 -0.6140 [0.01] 0.0231 [0.04] 0.6603 [0.00]
50 | HSDT-9 -0.6142 [0.01] 0.0234 [0.99] 0.6609 [0.09]
HSDT-5 -0.6140 [-0.02] 0.0234 [1.20] 0.6605 [0.03]
FSDT -0.6139 [-0.03] 0.0234 [1.00] 0.6606 [0.05]

"Numbers in parentheses are the percentage error with respect to 3-D elasticity values
¥Reddy, J. N. and Cheng, Z. Q. (2001a).
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Table 5.2. Nondimensionalized transverse displacement (w) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a simply supported square FGM
(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical
load (m=n=1 and p=2)

W

alh | THEORY | (a/2, b/2, -h/2) (a/2, b/2, 0) (a/2, b/2, hi2)
3D-Exact® -0.0127 -0.0137 -0.0135
HSDT-12 | -0.0127 [-0.02]" -0.0137 [0.04] -0.0135 [-0.01]

4 | HSDT-9 -0.0142 [11.70] -0.0142 [3.79] -0.0142 [5.64]
HSDT-5 -0.0104 [-17.95] | -0.0104[-23.76] | -0.0104 [-22.40]
FSDT -0.0142 [11.90] -0.0142 [3.98] -0.0142 [5.83]
3D-Exact® -0.1685 -0.1707 -0.1689
HSDT-12 -0.1685 [0.00] -0.1707 [-0.01] -0.1689 [-0.01]

10 |HSDT-9 -0.1719 [2.02] -0.1719 [0.70] -0.1719 [1.78]
HSDT-5 -0.1624 [-3.60] -0.1624 [-4.84] -0.1624 [-3.83]
FSDT -0.1719 [2.04] -0.1719[0.72] -0.1719 [1.79]
3D-Exact® -20.3200 -20.3300 -20.3200
HSDT-12 | -20.3139[-0.03] | -20.3246 [-0.03] | -20.3145 [-0.03]

50 | HSDT-9 -20.3333 [0.07] -20.3333[0.02] | -20.3333 [0.07]
HSDT-5 -20.2859 [-0.17] | -20.2859[-0.22] | -20.2859 [-0.17]
FSDT -20.3334 [0.07] -20.3334[0.02] | -20.3334 [0.07]

"Numbers in parentheses are the percentage error with respect to 3-D elasticity values
¥Reddy, J. N. and Cheng, Z. Q. (20014a).
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Table 5.3. Nondimensionalized in-plane normal stress (o) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a simply supported square FGM
(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical
load (m=n=1 and p=2)

6X
alh | THEORY | (a/2, b/2, -h/2) (a/2, b/2, 0) (a/2, b/2, hi2)
3D-Exact® 3.6310 -0.2037 -3.1540
HSDT-12 | 3.7336[2.83]" | -0.1976 [-2.98] -3.2077 [1.70]
4 | HSDT-9 3.7232[2.54] | -0.1230[-39.62] | -3.0355 [-3.76]
HSDT-5 3.7232[2.54] | -0.1230[-39.62] | -3.0355 [-3.76]
FSDT 3.5062 [-3.44] | -0.1246 [-38.81] | -2.8652 [-9.16]
3D-Exact® 22.0600 -0.8722 -18.1700
HSDT-12 | 21.8173[-1.10] | -0.8836[1.31] | -18.0287 [-0.78]
10 | HSDT-9 22.1360 [0.34] | -0.7774[-10.87] | -18.0816 [-0.49]
HSDT-5 21.9789 [-0.37] | -0.8182[-6.19] | -17.8264[-1.89]
FSDT 21.9139 [-0.66] | -0.7790 [-10.69] | -17.9078 [-1.44]
3D-Exact® 548.0000 -19.5600 -447.9000
HSDT-12 | 537.7070[-1.88] | -20.0571[2.54] | -442.2532[-1.26]
50 | HSDT-9 548.0710 [0.01] | -19.4729 [-0.45] | -447.8683 [-0.01]
HSDT-5 547.9140 [-0.02] | -19.5141[-0.23] | -447.6117 [-0.06]
FSDT 547.8481 [-0.03] | -19.4745[-0.44] | -447.6940 [-0.05]

"Numbers in parentheses are the percentage error with respect to 3-D elasticity values
¥Reddy, J. N. and Cheng, Z. Q. (2001a).
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Table 5.4. Nondimensionalized transverse shear stress (Ty,) and transverse normal
stress (o) at the middle (z=0) surface of a simply supported square FGM
(Monel-Zirconia, M1) plate subjected to transverse sinusoidal mechanical
load (m=n=1 and p=2)

alh | THEORY T, 5,
3-D Exact® -0.9500 -0.5130
HSDT12 -0.9458 [-0.44] " -0.5136 [0.12]
4 HSDT-9 -0.9452 [-0.51] -0.5137 [0.14]
HSDT-5 -0.9452 [-0.51] -0.5137 [0.14]
FSDT -0.9597 [1.03] -0.5150 [0.39]
3-D Exact® -2.3960 -0.5142
HSDT12 -2.3994 [0.14] -0.5142 [0.00]
10 HSDT-9 -2.3934 [-0.11] -0.5135 [-0.14]
HSDT-5 -2.3996 [0.15] -0.5137 [-0.10]
FSDT- -2.3994 [0.14] -0.5150 [0.19]
3-D Exact® -12.0000 -0.5141
HSDT12 -12.0290 [0.24] -0.5140 [-0.02]
50 HSDT-9 -11.9955 [-0.04] -0.5135 [-0.12]
HSDT-5 -11.9968 [-0.03] -0.5136 [-0.10]
FSDT -11.9967 [-0.03] -0.5150 [0.18]

" Numbers in parentheses are the percentage error with respect to 3-D elasticity values

¥Reddy, J. N.

and Cheng, Z. Q. (2001a).
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Table 5.5. Nondimensionalized in-plane displacements (i, v) and transverse
displacement (w) at the top (z = h/2) surface of a rectangular FGM
(Monel-Zirconia, M1) plate subjected to nonlinear (Tyn.) thermal load
(a/h=4 and p=3)

a/b THEORY u \Y W
HSDT-12 -1.9962 -1.9962 3.4373
HSDT-9 -1.8718 -1.8718 2.3811

' MspTs 18501 18501 22312
FSDT -1.8692 -1.8692 2.3788
HSDT-12 -1.2738 -1.9107 2.5193
HSDT-9 -1.1528 -1.7292 1.4661

15 Mhsprs 71,1403 717104 1.3166
FSDT -1.1502 -1.7254 1.4639
HSDT-12 -0.8664 -1.7327 2.0010
HSDT-9 -0.7501 -1.5003 0.9537

2 HSDT-5 -0.7377 -1.4754 0.8048
FSDT -0.7477 -1.4953 0.9515
HSDT-12 -0.6282 -1.5705 1.6959
HSDT-9 -0.5180 -1.2950 0.6584

25 sDTs5 -0.5057 -1.2643 0.5101
ESDT -0.5156 -1.2891 0.6562
HSDT-12 -0.4792 -1.4377 1.5007
HSDT-9 -0.3761 -1.1283 0.4778

3 MspTs -0.3640 -1.0919 0.3304
ESDT -0.3738 -1.1215 0.4758
HSDT-12 -0.3795 -1.3283 1.3638
HSDT-9 -0.2843 -0.9949 0.3611

33 MspTs -0.2723 -0.9532 0.2146
FSDT -0.2821 -0.9875 0.3591
HSDT-12 -0.3088 -1.2351 1.2590
HSDT-9 -0.2219 -0.8877 0.2818

4 [RsDTs -0.2102 -0.8407 0.1364
FSDT -0.2199 -0.8796 0.2799

82



Table 5.6. Nondimensionalized in-plane normal stresses (oy,Gy), in-plane shear
stress (Tyy) and transverse shear stresses (Ty,, Ty,) at the middle (z=0)

surface of a rectangular FGM (Monel-Zirconia, M1) plate subjected to
nonlinear (Tn.) thermal load (a/h=4 and p=3)

alb | THEORY 5, 5, Ty T -
HSDT-12 | 53965 | -539.65 | -46289 | 15674 | L5674
HSDT-9 | 48695 | -486.95 | -48451 | 20850 | 2.0850
1 MsDTs | 48645 | -48645 | -a8478 | 28027 | 2.8027
FSDT 48630 | 48630 | -4848L | 21498 | 2.1498
HSDT-12 | 73806 | -39131 | -416.10 | 13407 | 20112
HSDT-9 | 67355 | -30099 | -447.08 | 20459 | 3.0688
15 MsDTs | 67293 | -30004 | -44747 | 32083 | 48124
FSDT 67286 | 29093 | -44752 | 21498 | 32247
HSDT-12 | 85930 | -33638 | -34861 | 10372 | 20745
HSDT-9 | 77815 | -19721 | -387.29 | 19928 | 3.9856
2 HsbTs | 77738 | -19570 | 38779 | 37727 | 7.5454
FSDT 77728 | -19551 | -387.85 | 21498 | 4.2996
HSDT-12 | 94103 | -33331 | -289.39 | 06656 | L6639
HSDT-9 | 83854 | -137.78 | -33369 | 19275 | 48187
25 MSDT-5 | 83759 | -13561 | -33427 | 44928 | 11.2320
FSDT 83746 | -13532 | 33435 | 21498 | 53745
HSDT-12 | -100362 | -35686 | -24253 | 02319 | 06955
HSDT-9 | 87555 | -101.82 | -20015 | 18517 | 55550
3 hsbTs | 87440 298.95 29079 | 53645 | 16.0935
FSDT 87424 298.54 29089 | 21498 | 6449
HSDT-12 -1056.67 -392.08 -206.76 -0.2604 -0.9112
HSDT-9 | -899.56 78.89 25532 | 17675 | 6.1861
3% MsDT5 | -89823 7531 25602 | 6.3829 | 22.3402
FSDT -898.02 -74.76 -256.13 2.1498 7.5243
HSDT-12 -1104.39 -429.50 -179.97 -0.8088 -3.3249
HSDT-9 | -915.93 63.59 22729 | 16769 | 6.7076
4 MsoTs | 91442 '59.32 22802 | 7.5425 | 30.1700
FSDT -914.17 -58.62 -228.15 2.1498 8.5993
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Table 5.7. Nondimensionalized in-plane displacement (u) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Monel-Zirconia, M1)
plate subjected to nonlinear (Tn.) thermal load (a/b=1.5)

ah | p z HSDT-12 | HSDT-9 | HSDT-5 | FSDT
/2 0.0191 0.0281 0.0272 | 0.0287

2 0 -0.5193 05258 | -05262 | -0.5262
2 -1.1011 -1.0826 | -1.0796 | -1.0811

/2 -0.0402 00271 | -0.0293 | -0.0276

10| s 0 -0.6456 -0.6536 | -0.6532 | -0.6532
2 -1.3013 12780 | -12771 | -1.2789

/2 -0.0542 -0.0381 | -0.0410 | -0.0388

10 0 -0.7512 -0.7606 | -0.7600 | -0.7600
2 -1.5060 14793 | -14790 | -1.4812

/2 0.0263 0.0285 0.0283 | 0.0287

2 0 -0.5245 05261 | -05262 | -0.5262
2 -1.0862 -1.0815 | -1.0807 | -1.0811

/2 -0.0308 -0.0275 | -0.0280 | -0.0276

20 | 5 0 -0.6513 06533 | -0.6532 | -0.6532
2 -1.2845 12786 | -12784 | -1.2789

/2 -0.0427 -0.0387 | -0.0394 | -0.0388

10 0 -0.7578 07602 | -0.7600 | -0.7600
2 -1.4875 -1.4807 | -14807 | -1.4812

/2 0.0283 0.0287 0.0286 | 0.0287

2 0 -0.5250 05262 | -05262 | -05262
h -1.0819 -1.0812 | -1.0811 | -1.0811

/2 -0.0281 00276 | -0.0277 | -0.0276

50 | 5 0 -0.6529 06532 | -0.6532 | -0.6532
h -1.2798 12788 | -12788 | -1.2789

/2 -0.0395 -0.0388 | -0.0389 | -0.0388

10 0 -0.7597 07601 | -0.7600 | -0.7600
h -1.4822 14811 | -14811 | -1.4812
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Table 5.8. Nondimensionalized in-plane normal stress (o) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Monel-Zirconia, M1)
plate subjected to nonlinear (Tn.) thermal load (a/b=1.5)

ah | p z HSDT-12 | HSDT-9 | HSDT-5 FSDT
/2 24.00 -36.97 -35.73 -37.69

) 0 54552 | -527.46 | -526.01 -526.91
2 | -112469 | -1009.83 | -101201 | -1010.92

/2 24.00 35.57 38.50 36.25

10| s 0 -862.68 | -850.06 | -850.50 -850.48
h2 -897.16 | -867.70 | -868.31 -867.04

/2 -2.72 50.11 53.89 51.05

10 0 -995.68 | -1004.98 | -1005.80 | -1005.75
h2 57458 | 72117 | -721.43 -719.80

/2 16.14 -37.51 -37.20 -37.69

) 0 53064 | -527.05 | -526.1 -526.91
2 | -1136.65 | -1010.65 | -1011.19 | -1010.92

/2 12.74 36.08 36.81 36.25

0 | s 0 -854.82 | -850.37 | -850.49 -850.48
h/2 91024 | -867.20 | -867.35 -867.04

/2 -16.90 50.81 51.76 51.05

10 0 -986.29 | -100556 | -1005.76 | -1005.75
b2 -588.80 | -720.15 | -720.21 -719.80

/2 13.91 -37.66 -37.61 -37.69

2 0 53798 | -526.93 | -526.91 -526.91
2 | -1140.04 | -101088 | -1010.97 | -1010.92

/2 9.55 36.23 36.34 36.25

50 | 5 0 85261 | -850.46 | -850.48 -850.48
h2 91395 | -867.06 | -867.09 -867.04

/2 -20.91 51.01 51.16 51.05

10 0 -983.65 | -1005.72 | -1005.76 | -1005.75
h/2 -592.83 | -719.86 | -719.87 -719.80
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Table 5.9. Nondimensionalized in-plane displacement (i) at the top (z = h/2) surface
of a square FGM (Monel-Zirconia, M1) plate subjected to nonlinear (Tyy)

thermal load

alh 0 HSDT-12 | HSDT-9 | HSDT-5 FSDT
. 21916 20690 2.0532 20690

) 11,8058 ~1.7066 16803 71,6908

) 18782 17658 17471 71,7568

4 : 22140 20727 220668 2.0782

5 24473 2.2018 22,2888 23021

0 25567 2.3956 123925 224070

. 2.0893 220690 2.0666 20690

. 117098 16034 16891 "1.6908

) 17769 11,7583 17553 17568

10 : -2.1007 20772 22,0764 22,0782
5 23263 -2.3004 22.3001 23021

0 24319 24051 24047 224070

; 20741 22,0690 2.0684 20690

) 11,6955 16014 71,6004 "1.6908

) 17619 17572 17564 11,7568

20 : 20838 20779 20777 2.0782
o -2.3082 23017 2.3016 23021

0 24132 -2.4065 224064 224070

. 20698 20690 20689 2.0690

) 16915 71,6909 71,6907 11,6008

) 17576 17569 17568 11,7568

50 : 2.0791 2.0781 2.0781 2.0782
o 2.3031 2.3021 2.3021 23021

0 224080 24069 224069 24070

. 20692 20690 20690 72,0690

) 71,6910 71,6908 71,6907 11,6908

) 17570 17568 17568 11,7568

100 2.0784 2.0782 2.0781 2.0782
5 2.3024 2.3021 2.3021 2.3021

0 24072 224070 22.4070 -2.4070
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Table 5.10. Nondimensionalized transverse displacement (w) at the top (z = h/2)
surface of a square FGM (Monel-Zirconia, M1) plate subjected to
nonlinear (Ty.) thermal load

ah | p | HSDT-12 | HSDT-9 | HSDT5 | FSDT
5 3.7688 2,634 23923 2,634
. 3.2505 23122 21509 23107
) 3.2891 2.2991 21510 2.2962
e 3.7594 25880 2.4239 25889
5 41389 2.8475 2.6501 28522
10 43251 2.9781 2.7751 2.9843
0 7.0408 6.5859 6.4924 6.5859
. 6.1522 5.7773 57151 5.7767
o 2 6.1360 5.7417 5.6845 5.7405
: 6.9423 6.4719 6.4086 6.4723
5 76476 71286 7.0559 71306
10 7.9995 7.4582 73798 7.4607
0 13.3992 131718 | 131252 | 131718
. 117411 115538 | 115228 | 115535
o 2 116797 114815 | 11.4531 | 114810
: 131797 129444 | 129129 | 129446
5 145198 142602 | 142240 | 14.2611
10 | 151909 149201 | 148812 | 149214
0 33.0204 329294 | 329108 | 32,9294
) 28,9588 288839 | 288715 | 28.8837
o[ 28.7819 287026 | 286013 | 28.7024
: 32.4555 323613 | 323487 | 323614
5 35.7563 356524 | 356380 | 35.6528
0 | 374118 373030 | 372874 | 37.3035
0 65.9043 658588 | 658495 | 65.8588
) 57.8050 577675 | 57.7614 | 57.7675
) 574445 574049 | 57.3992 | 57.4048
100 64.7698 647228 | 647165 | 64.7228
5 713574 713055 | 712983 | 71.8057
10 | 746609 746067 | 745089 | 74.6069
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Table 5.11. Nondimensionalized in-plane normal stress (oy) at the top (z = h/2)
surface of a square FGM (Monel-Zirconia, M1) plate subjected to
nonlinear (Ty.) thermal load

ah | p | HSDT-12 | HSDT-9 | HSDT-5 FSDT
o | 55590 | -629.15 638.09 629.15

. | 8709 | -83sed 848,66 842.76

, |2 | 4 | s00% 810.94 805.45
s | 59071 | -627.09 630.38 623.99

e | -39830 | -503.34 505.03 49750

0 | 22387 | 4441 44644 438.30

o | 61708 | -629.15 630,53 629.15

L | 9m72 | 84z 843,67 842.76

, | 92298 | -804.60 806.30 805.45

0 = e85 624.50 624.97 623.99
s | 41976 | -498.48 29867 49750

0 | 29743 | -439.36 43956 438.30

o | 62611 | -629.15 629.49 629.15

L | 938a1 | 84238 842.99 842.76
T 805.67 805.45
s | 66822 | -624.12 624.23 623.99

e | 43043 | -497.75 29779 49750

0 | 30841 | -438.56 438 61 438.30

| 62866 | -629.15 629.20 629.15

L | 94086 | 84270 842.79 842.76

, | 9372 | 80542 805.49 805.45

0 T er106 624.01 624.02 623.99
e | 43344 | 49754 29755 49750

0 | 31150 | -43834 438.35 438.30

o | 62008 | -629.15 629.16 629.15

L | 9421 | sa2ia 842.77 842.76

, | 98509 | -805.45 805.46 805.45

100 = 67147 623.99 623.99 623.99
e | 43387 | 49751 29751 49750

0 | 81195 | -43831 23831 438.30
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Table 5.12. Nondimensionalized in-plane shear stress (T,) at the top (z =h/2)
surface of a square FGM (Monel-Zirconia, M1) plate subjected to
nonlinear (Tn.) thermal load

ah | p | HSDT-12 | HSDT-9 | HSDT5 | FSDT
. 66644 | -62915 | 62433 | -629.15

. 54912 | 51893 | 51095 | -514.13

) 57114 | 53696 | 53126 | -534.22

4 : 67324 | 63026 | -62849 | -63L93
. 74418 | -696.90 | 69598 | -700.04

0 | 77745 | 72847 | 72153 | 73192

) 63532 | -62915 | 62841 | -629.15

. 51990 | 51493 | 51364 | -51413

) 54033 | 53467 | 53376 | -534.22
10— 63880 | -63165 | -631.40 | -63L93
5 707.38 | -69951 | 69941 | -700.04

0| 73949 | 73134 | -73124 | -73L92

. 63070 | -62915 | -62896 | -629.15

. 51558 | 51433 | 51401 | -51413

) 53575 | 53433 | 53410 | -534.22

0 63366 | -63186 | -631.80 | -63L93
. 70188 | -699.91 | -699.88 | -700.04

0 | 73382 | -7at77 | 73175 | -731@2

) 62940 | -62915 | -62912 | -62915

. 51436 | 51416 | -51411 | -51413

) 53446 | 53424 | 53420 | -534.22
0 63221 | -63192 | 63101 | -63L93
. 70033 | 70002 | 70001 | -700.04

0 | 73222 | -7ate9 | 73189 | 73192

; 62921 | -62915 | -62914 | -629.15

. 51419 | 51414 | 51413 | -51413

) 53428 | 53422 | 53421 | 53422

100 63200 | -63193 | -631.93 | -63L93
. 70011 | -70008 | -70003 | -700.04

10 | 78199 | 73181 | 73191 | -73L92
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Table 5.13. Nondimensionalized transverse shear stress (T,,) at the middle (z =0)
surface of a square FGM (Monel-Zirconia, M1) plate subjected to
nonlinear (Ty.) thermal load

a/h p HSDT-12 HSDT-9 HSDT-5 FSDT
0 -0.5389 0.0000 0.6755 0.0000

1 2.8597 2.7923 3.4518 2.8261

4 2 3.0614 3.4130 4.1086 3.4906
5 -2.0179 -1.5943 -0.8574 -1.6120

8 -5.2314 -5.0354 -4.2561 -5.1570

10 -6.1622 -6.0309 -5.2102 -6.1925

0 -0.0354 0.0000 0.0418 0.0000

1 1.2742 1.1283 1.1691 1.1304

10 2 1.3548 1.3912 1.4344 1.3962
5 -0.6802 -0.6437 -0.5982 -0.6448

8 -1.9559 -2.0549 -2.0071 -2.0628

10 -2.3167 -2.4665 -2.4162 -2.4770

0 -0.0045 0.0000 0.0052 0.0000

1 0.6468 0.5650 0.5700 0.5652

20 2 0.6870 0.6975 0.7029 0.6981
5 -0.3307 -0.3223 -0.3166 -0.3224

8 -0.9678 -1.0304 -1.0245 -1.0314

10 -1.1474 -1.2372 -1.2309 -1.2385

0 -0.0003 0.0000 0.0003 0.0000

1 0.2598 0.2261 0.2264 0.2261

50 2 0.2759 0.2792 0.2795 0.2792
5 -0.1312 -0.1290 -0.1286 -0.1290

8 -0.3860 -0.4125 -0.4121 -0.4126

10 -0.4577 -0.4953 -0.4949 -0.4954

0 -0.0001 0.0000 0.0000 0.0000

1 0.1300 0.1130 0.1131 0.1130

100 2 0.1380 0.1396 0.1397 0.1396
5 -0.0655 -0.0645 -0.0644 -0.0645

8 -0.1929 -0.2063 -0.2062 -0.2063

10 -0.2288 -0.2477 -0.2476 -0.2477
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Table 5.14. Nondimensionalized in-plane displacements (U, v) and transverse
displacement (w) at the top (z = h/2) surface of a rectangular FGM
(Aluminium-Alumina, M2) plate subjected to nonlinear (Ty.) thermal
load (a/b=2 and p=2)

alh | THEORY u v W
HSDT-12 -0.8692 -1.7385 1.8592
, | HSDT-9 -0.6518 -1.3036 0.3396
HSDT-5 -0.5591 -1.1182 -0.5677
FSDT -0.6748 -1.3497 0.3618
HSDT-12 -0.7454 -1.4908 15837
, |HSDT-9 -0.6670 -1.3339 0.7089
HSDT-5 -0.6484 -1.2967 0.2980
FSDT -0.6748 -1.3497 0.7236
HSDT-12 -0.6873 -1.3746 2.1633
1o |HSDT-9 -0.6734 -1.3469 1.8025
HSDT-5 -0.6707 -1.3414 1.6434
FSDT -0.6748 -1.3497 1.8091
HSDT-12 -0.6780 -1.3560 3.7959
HSDT-9 -0.6745 -1.3490 3.6148
20 HSDT-5 -0.6738 -1.3476 3.5356
ESDT -0.6748 -1.3497 3.6181
HSDT-12 -0.6754 -1.3507 9.1164
- HSDT-9 -0.6748 -1.3496 9.0439
HSDT-5 -0.6747 -1.3494 9.0123
ESDT -0.6748 -1.3497 9.0453
HSDT-12 -0.6750 -1.3501 14.5169
eo | HSDT-9 -0.6748 -1.3497 14.4716
HSDT-5 -0.6748 -1.3496 14.4518
FSDT -0.6748 -1.3497 14.4724
HSDT-12 -0.6750 -1.3499 18.1261
Loo | HSDT-9 -0.6748 -1.3497 18.0898
HSDT-5 -0.6748 -1.3496 18.0740
FSDT -0.6748 -1.3497 18.0905




Table 5.15. Nondimensionalized in-plane normal stresses (Gy,y), in-plane shear
stress (Tyy) and transverse shear stresses (T, Ty,) at the middle (z=0)

surface of a rectangular FGM (Aluminium-Alumina, M2) plate subjected
to nonlinear (Ty.) thermal load (a/b=2 and p=2)

a/h | THEORY Gy o, Ty Tz Ty
HSDT.1o | 80503 | -43657 | -245.63 | -34.6069 | -69.2138
HSDT.0 64102 | 20625 | -289.85 | -11.4758 | -22.9517

S pe— 66253 | -248.30 | -276.16 | 20.0078 | 400155
— 65883 | -241.05 | 27852 | -16.0020 | -32.0041
HSDT.12 | -708.75 | 318.27 | -256.98 | -8.8901 | -17.7802
HSDT0 65249 | 22867 | 28255 | -7.2446 | -14.4892

il — 65967 | -242.71 | -277.98 | -38791 | -7.7582
— 65883 | -241.05 | -27852 | -8.0010 | -16.0020
HSDT.1o | 66454 | 25318 | 27424 | -21480 | -4.2962
HSDT0 657.68 | -238.80 | -279.25 | -3.1467 | -6.2935

e 65896 | 24131 | 27843 | -29437 | -5.8874
— 65883 | -241.05 | -27852 | -3.2004 | -6.4008
oDT.12 | 65861 | 24249 | -27742 | 09646 | -19292
HSDT0 65853 | -24048 | -278.70 | -15934 | -3.1868

Sl 65886 | 24111 | -2/850 | -15682 | -3.1365
— 65883 | -241.05 | -27852 | -16002 | -3.2004
HSDT.1o | -656.94 | 23943 | 27834 | -0.3734 | -0.7469
HSDT0 658.78 | -24096 | -27855 | -0.6396 | -12793

Sl — 65883 | -241.06 | -27851 | -0.6380 | -1.2761
— 65883 | -241.05 | 27852 | -0.6401 | -1.2802
<DT.12 | 65675 | 239.08 | -27845 | 02325 | -0.4650
HSDT0 65881 | 24101 | -27853 | -0.3999 | -0.7999

Sl I 65883 | -24105 | -27852 | -0.3996 | -0.7991
— 65883 | -241.05 | -27852 | -0.4001 | -0.8001
HSDT-12 | -656.70 | -239.00 | -27847 | -0.1859 | -0.3717
HSDT-0 65881 | -241.03 | -27852 | -0.3200 | -0.6400

100 I spT-5 65883 | -241.05 | -27852 | -0.3198 | -0.6396
FSDT 65883 | 24105 | -27852 | -0.3200 | -0.6401
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Table 5.16. Nondimensionalized in-plane displacement (V) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Aluminium-Alumina,
M2) plate subjected to nonlinear (Ty.) thermal load (a/h=20)

ab | p z HSDT-12 | HSDT-9 | HSDT-5 | FSDT
/2 -0.0493 | -0.0454 | -0.0462 | -0.0455

1 0 07742 | -0.7755 | -0.7755 | -0.7755
h2 -15085 | -1.5055 | -1.5048 | -1.5055

/2 -0.4008 | -0.394L | -0.3966 | -0.3954

1| 3 0 11360 | -1.1385 | -1.1379 | -1.1380
h2 -1.8840 | -1.8799 | -1.8793 | -1.8806

/2 05293 | -0.5200 | -05235 | -0.5215

8 0 15493 | -1.5537 | -15529 | -1.5528
h2 -25884 | -2.5829 | -25823 | -2.5841

/2 -0.0439 | -0.0362 | -0.0879 | -0.0364

1 0 06178 | -0.6204 | -0.6204 | -0.6204
h2 12104 | -1.2044 | -12029 | -1.2044

/2 03271 | -0.3138 | -0.3187 | -0.3163

> | 3 0 -0.9065 | -0.9113 | -0.9103 | -0.9104
h2 ‘15112 | -1.5032 | -15019 | -1.5045

/2 04327 | -04142 | -04212 | -0.4172

8 0 12354 | -1.2440 | -l2424 | -1.2422
h2 20759 | -2.0649 | -2.0636 | -2.0673

/2 00385 | -0.0270 | -0.0295 | -0.0273

1 0 -0.4614 | -0.4654 | -0.4653 | -0.4653
H2 09123 | -0.9033 | -0.9011 | -0.9033

/2 02534 | -0.2335 | -0.2408 | -0.2372

3 | 3 0 06771 | -0.6842 | -0.6827 | -0.6828
h2 11385 | -1.1264 | -1.1245 | -1.1284

/2 03360 | -0.3084 | -0.3188 | -0.3129

8 0 09215 | -0.9343 | -0.9319 | -0.9317
h2 -15633 | -1.5470 | -15450 | -1.5505
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Table 5.17. Nondimensionalized in-plane shear stress (Ty,) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Aluminium-Alumina,

M2) plate subjected to nonlinear (Tn) thermal load (a/h=20)

ab | p z HSDT-12 | HSDT-9 | HSDT-5 | FSDT
/2 -8.33 -7.68 -7.82 -7.70
1 0 42096 | -421.69 | -421.68 | -421.68
o | -1385.30 | -1382.55 | -1381.86 | -1382.54
/2 -67.80 | -66.67 | -67.08 | -66.88
1 3 0 29856 | -299.20 | -299.06 | -299.07
h2 | 173010 | -1726.38 | -1725.81 | -1726.99
/2 -89.53 | -87.96 | -8855 | -88.22
8 0 -266.62 | -267.37 | -267.23 | -267.22
ho | -2376.96 | -2371.92 | -2371.33 | -2373.00
/2 7.42 -6.13 -6.41 6.16
1 0 33591 | -337.36 | -337.34 | -337.34
o | -111153 | -1106.04 | -1104.67 | -1106.03
/2 5534 | 5308 | -5391 | -53.50
) 3 0 23824 | -23951 | -23924 | -239.26
o | -1387.80 | -1380.38 | -1379.23 | -138159
/2 7320 | -7007 | -7124 | -70.57
8 0 21259 | -21408 | -213.80 | -213.77
o | -1906.30 | -1896.25 | -1895.07 | -1898.40
/2 -6.51 -4.57 -5.00 -4.62
1 0 -250.87 | -25304 | -253.01 | -253.01
h2 -837.74 | -82953 | -827.48 | -829.53
/2 -42.86 | -3949 | -40.74 | -40.13
3 3 0 17793 | -179.82 | -179.41 | -179.44
o | -1045.46 | -1034.38 | -1032.65 | -1036.19
/2 -56.84 | 5218 | -5394 | -52.93
8 0 -15857 | -160.78 | -160.37 | -160.33
o | -1435.60 | -1420.59 | -1418.80 | -1423.80
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Table 5.18. Nondimensionalized in-plane displacement (u) at the top (z =h/2)
surface of a FGM (Aluminium-Alumina, M2) plate subjected to
nonlinear (Tn.) thermal load (a/h=10)

a/b p HSDT-12 HSDT-9 HSDT-5 FSDT
0 -1.5461 -1.5311 -1.5293 -1.5311

1 -1.5175 -1.5055 -1.5025 -1.5055

2 -1.6997 -1.6857 -1.6830 -1.6871

! 5 -2.2308 -2.2116 -2.2090 -2.2156
8 -2.6012 -2.5794 -2.5768 -2.5841

10 -2.7871 -2.7640 -2.7615 -2.7689

0 -0.9572 -0.9422 -0.9404 -0.9422

1 -0.9384 -0.9265 -0.9235 -0.9265

L5 2 -1.0507 -1.0368 -1.0341 -1.0382
' 5 -1.3786 -1.3595 -1.3569 -1.3634
8 -1.6073 -1.5856 -1.5829 -1.5902

10 -1.7221 -1.6991 -1.6966 -1.7039

0 -0.6273 -0.6124 -0.6106 -0.6124

1 -0.6141 -0.6022 -0.5992 -0.6022

2 -0.6873 -0.6734 -0.6707 -0.6748

2 5 -0.9013 -0.8823 -0.8797 -0.8862
8 -1.0506 -1.0290 -1.0264 -1.0336

10 -1.1256 -1.1028 -1.1002 -1.1076

0 -0.4371 -0.4224 -0.4206 -0.4224

1 -0.4271 -0.4153 -0.4123 -0.4153

2 -0.4778 -0.4640 -0.4613 -0.4654

25 5 -0.6261 -0.6073 -0.6047 -0.6112
8 -0.7297 -0.7083 -0.7056 -0.7129

10 -0.7817 -0.7591 -0.7565 -0.7638

0 -0.3209 -0.3062 -0.3044 -0.3062

1 -0.3128 -0.3011 -0.2981 -0.3011

2 -0.3496 -0.3360 -0.3333 -0.3374

3 5 -0.4579 -0.4393 -0.4366 -0.4431
8 -0.5335 -0.5123 -0.5096 -0.5168

10 -0.5715 -0.5491 -0.5464 -0.5538
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Table 5.19. Nondimensionalized transverse displacement (w) at the top (z = h/2)
surface of a FGM (Aluminium-Alumina, M2) plate subjected to
nonlinear (Tn.) thermal load (a/h=10)

alb p HSDT-12 | HSDT-9 | HSDT-5 | FSDT
0 52102 28735 | 48044 | 48735

) 4.9567 16479 | 45331 | 46474

) 18779 45160 | 43568 | 45226

: - 59596 54433 | 51802 | 54717

5 7.1408 65327 | 62200 | 65655

10 7.7930 71442 | 68183 | 7.1766

0 3.3357 29991 | 29300 | 29991

) 3.1691 28604 | 27457 | 28599

) 31360 27766 | 26174 | 27832

Lo - 3.8544 33394 | 30759 | 3.3672
5 26150 20076 | 36951 | 40403

10 5.0322 23841 | 40583 | 44164

0 2.2859 19494 | 18803 | 1.0494

) 21678 18504 | 17448 | 1.8590

: ) 21633 18025 | 16434 | 1.8091

c 26749 21611 | 18976 | 21887

5 3.1999 25037 | 22813 | 26262

10 3.4856 28385 | 25129 | 28706

5 16807 13424 | 12754 | 13444

) 1.5906 12825 | 11680 | 1.2820

o 2 16011 12412 | 10821 | 12476
' : 19943 14820 | 12187 | 15094

5 2.3836 17788 | 14666 | 18112

10 25035 19477 | 16224 | 1.9797

5 13108 09747 | 09057 | 09747

) 12375 09300 | 08155 | 0929

) 12570 08981 | 07392 | 09045

3 : 15775 10671 | 08040 | 10943
5 1.8838 12810 | 09690 | 1.3131

10 20474 14035 | 10785 | 1.4353
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Table 5.20. Nondimensionalized in-plane normal stress (oy) at the
surface of a FGM (Aluminium-Alumina, M2) plate

nonlinear (Tn.) thermal load (a/h=10)

top (z= h/2)
subjected to

ab | p HSDT-12 | HSDT-9 | HSDT-5 | FSDT
, 137801 | -140600 | -140009 | -1406.00
) 149308 | -144055 | -145466 | -1449.56
) 111808 | -114231 | -114691 | -1139.87
! - 330.81 24536 | -249.78 | -23859
5 1551.05 361.90 37741 369.86
10 2205.75 696.77 692.48 705.05
. 01151 | 194677 | -195075 | -1946.77
) 201828 | -198129 | -198788 | -198131
) 1707.09 | -173688 | -174483 | -1735.76
1> - 44372 | 102981 | -103554 | -1021.13
5 647.05 53304 | 53886 | -52284
10 123680 | -28355 | 28900 | -212.92
. 220301 | -224060 | -225482 | -2249.60
) 230696 | -221906 | -228771 | -2279.09
) 203124 | -207352 | -208136 | -2069.45
2 - 87079 | -147068 | -1478.26 | -1450.36
5 14803 | -104727 | -1054.97 | -1033.94
10 701.69 83446 | -84182 | -82058
. 236316 | -242414 | -243096 | -2424.14
) 246699 | -245067 | -246198 | -2450.71
) 221141 | 226705 | -227732 | -2261.78
2 - 110917 | -172660 | -173661 | -1711.93
5 13113 | 134580 | -185597 | -1328.52
10 40203 | -115423 | -1163.95 | -1136.23
. 245254 | 253080 | -253957 | -2530.80
) 255789 | -255554 | 257008 | -2555.60
, 231429 | 238601 | -239929 | -2379.31
3 - 124637 | -188498 | -1898.00 | -1866.28
5 29253 | -153058 | -154382 | -1508.54
10 22845 | -135208 | -1364.75 | -1329.13
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Table 5.21. Nondimensionalized in-plane shear stress (T,) at the
surface of a FGM (Aluminium-Alumina, M2) plate
nonlinear (Ty) thermal load (a/h=10)

top (z=h/2)
subjected to

alb 0 HSDT-12 | HSDT-9 HSDT-5 FSDT
. 141979 | -140600 | -140434 | -1406.00
. 139351 | -138255 | -1379.80 138254
) 156085 | -1547.99 | -154551 -1549.30
1 - 204855 | -203096 | -2028.58 22034.60
o 2388.76 | -2368.72 | -2366.30 -2373.00
0 255945 | 253826 | -2535.95 2542.72
. 131845 | -1207.85 | -1295.35 T1297.85
. 120259 | 127621 | -1272.08 1276.19
) 144736 | -1428.16 | -142444 | -1430.12
15 - 189892 | -187266 | -1869.06 "1878.10
. 221400 | 218406 | -2180.42 -2190.46
0 237212 | 234046 | -2336.98 234712
; 115212 | -1124.80 | -1121.48 T1124.80
) 112778 | -110605 | -1100.55 -1106.03
) 126229 | -1236.85 | -1231.86 1239.44
2 : 165528 | -162048 | -161565 | -1627.68
. 192960 | -1889.92 | -1885.02 -1898.40
0 206731 | 202535 | -2020.66 203417
; 71003.56 2969.66 296550 2969.66
. 298047 295350 194662 295348
) 109681 | -106528 | -1059.02 -1068.48
2:5 : 1143739 139424 | -1388.15 1403.18
. 167526 | -162603 | -1619.85 ~1636.55
0 179471 | 174265 | -1736.73 ~1753.60
; 883.93 843,60 838,62 843,60
. 86165 282956 82131 82953
) 2963.24 92578 91824 292958
3 : 126139 | -121015 | -1202.76 11220.76
5 146980 | -141129 | -1403.78 ~1423.80
10 157451 | -151260 | -1505.41 11525.63
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Table 5.22. Nondimensionalized transverse shear stress (T,,) at the middle (z =0)
surface of a FGM (Aluminium-Alumina, M2) plate subjected to
nonlinear (Tn.) thermal load (a/h=10)

alb p HSDT-12 | HSDT-9 | HSDT-5 | FSDT
; 200791 00000 | 00933 | 00000

. 0.4227 05714 | 06646 | 05734

) 19733 31787 | -3.0976 | -3.2004

! : 5.7803 82500 | -81806 | -8.3052

5 66672 89704 | -88872 | -9.0147

0 6.7567 89144 | -88314 | -89573

. 01281 00000 | 01516 | 0.000

. 03441 05701 | 07216 | 05734

) 2.0465 31653 | -3.0834 | -3.2004

Lo : 58336 82303 | -81029 | -8.3052
o 6.7086 89429 | -88077 | -90147

10 6.7946 88878 | -8.7529 | -89573

; 10,1963 00000 | 02330 | 00000

) 0.2347 05683 | 08013 | 05734

) 21481 31467 | 29437 | -3.2004

2 : 59078 81906 | -7.9942 | -8.3052
o 6.7663 89047 | 86965 | -9.0147

10 6.8475 88508 | -86431 | -89573

; 0.2830 00000 | 03376 | 00000

. 0.0953 05661 | 09036 | 05734

. ) 22773 31233 | 28285 | -3.2004
' 5 6.0022 81402 | 78547 | -8.30%2

5 6.8400 88561 | -85537 | -0.0147

10 6.9150 88036 | -85023 | -89573

. 103878 00000 | 04653 | 0.0000

. 20,0731 05633 | 10284 | 05734

; ) 24331 30953 | 26880 | -3.2004
: 61161 80795 | 76847 | -83052

5 69291 87973 | -8.3798 | -9.0147

10 6.9969 87466 | -8.3306 | -89573
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Table 5.23. Nondimensionalized in-plane displacements (U, V) and transverse
displacement (w) at the top (z = h/2) surface of a rectangular FGM
(Titanium Alloy-Zirconia, M3) plate subjected to nonlinear (Ty.) thermal
load (a/h=10 and a/b=2)

p | THEORY u v W
HSDT-12 -0.5229 -1.0458 2.0461
, | HsDT-9 -0.5129 -1.0258 1.7835
HSDT-5 -0.5093 -1.0187 1.7006
FSDT -0.5114 -1.0229 1.7808
HSDT-12 -0.5366 -1.0731 2.0146
, | HSDT-9 -0.5258 -1.0516 1.7393
HSDT-5 -0.5227 -1.0454 1.6495
FSDT -0.5249 -1.0498 1.7369
HSDT-12 -0.5610 -1.1220 2.0511
, | HSDT- -0.5493 -1.0986 1.7587
HSDT-5 -0.5466 -1.0933 1.6644
FSDT -0.5490 -1.0980 1.7573
HSDT-12 -0.6080 -1.2160 2.1716
s | HSDT-9 -0.5949 -1.1898 1.8494
HSDT-5 -0.5928 -1.1856 1.7502
FSDT -0.5953 -1.1905 1.8500
HSDT-12 -0.6455 -1.2910 2.2889
, |HSDT-9 -0.6313 -1.2626 1.9449
HSDT-5 -0.6296 -1.2592 1.8433
FSDT -0.6321 -1.2642 1.9466
HSDT-12 -0.6747 -1.3495 2.3884
g | HSDT- -0.6598 -1.3195 2.0281
HSDT-5 -0.6582 -1.3164 1.9254
FSDT -0.6608 -1.3216 2.0304
HSDT-12 -0.6869 -1.3739 2.4317
10 |HSDT-9 -0.6717 -1.3433 2.0647
HSDT-5 -0.6702 -1.3403 1.9616
FSDT -0.6727 -1.3455 2.0672
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Table 5.24. Nondimensionalized in-plane normal stresses (G, Gy ), in-plane shear
stress (Tyy) and transverse shear stresses (Ty,, Ty,) at the middle (z=0)

surface of a rectangular FGM (Titanium Alloy-Zirconia, M3) plate
subjected to nonlinear (Tw.) thermal load (a/h=10 and a/b=2)

p | THEORY 5, 5, Ty %, 7,
HSDT-12 | 17020 | -22.22 -98.65 0.7389 | 14777
HSDT.9 | -161.34 | -1049 | -10057 | 0.9975 | 1.9950

' Msprs | -16084 | -9.53 -100.87 | 10771 | 21543
FSDT -160.84 | -953 -100.87 | 10110 | 2.0220
HSDT-12 | -183.26 | -44.50 292,50 05577 | 1.1154
HSDT.9 | -17322 | -3163 -94.39 0.7360 | 1.4719

2 Misors | 17297 | -3118 -94.53 0.8119 | 1.6239
FSDT 17297 | -31.17 -94.53 0.7461 | 1.4922
HSDT-12 | -195.65 | -57.46 -92.13 0.2437 | 0.4874
HSDT.9 | -187.10 | -45.99 -94.07 0.3457 | 0.6913

> Misors | -187.04 | -4587 -94.11 0.4173 | 0.8346
FSDT -187.04 | -45.87 -94.11 0.3508 | 0.7015
HSDT-12 | -21251 | -68.33 29612 | -0.2593 | -0.5185
HSDT.9 | -208.38 | -61.03 -98.24 | -0.2380 | -0.4761

> hsprs | 20849 | -61.24 -98.17 | 01722 | -0.3445
FSDT 20851 | -61.26 -98.16 | -0.2401 | -0.4803
HSDT-12 | 22292 | -7117 | -10117 | -0.5512 | -1.1023
HSDT.9 | -222.64 | -6751 | -10342 | -0.5604 | -1.1209

" isprs | 22283 | 6787 | -10331 | -0.4980 | -0.9960
FSDT 22285 | -6791 | -10330 | -0.5666 | -1.1333
HSDT-12 | -229.89 | -7161 | -10552 | -0.7044 | -1.4086
HSDT.9 | 23229 | -70.48 | -107.87 | -0.7251 | -1.4501

> isprs | 23251 | 7092 | -107.73 | -0.6647 | -13294
FSDT 23254 | -7097 | -107.72 | -0.7337 | -1.4673
HSDT-12 | 23259 | -7157 | -107.35 | -0.7488 | -1.4976
HSDT.9 | -235.94 | -71.33 | -109.74 | -0.7718 | -15435

10 M eprs | -23618 | -7178 | -109.60 | -0.7121 | -1.4242
FSDT 23621 | -7183 | -10959 | -0.7812 | -1.5623
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Table 5.25. Nondimensionalized transverse displacement (w) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Titanium Alloy-

Zirconia, M3) plate subjected to nonlinear (Ty.) thermal load (p=1)

alb | ah z HSDT-12 | HSDT-9 | HSDT-5 | FSDT
/2 15276 | 17874 | 15729 | 1.7808

4 0 17193 | 17874 | 15729 | 1.7808

2 24434 | 17874 | 15729 | 1.7808

/2 43516 | 44547 | 4.3718 | 4.4520

1| 10 0 44285 | 44547 | 4.3718 | 4.4520
H 47173 | 44547 | 43718 | 4.4520

/2 222400 | 222606 | 222441 | 22.2601

50 0 22.2554 | 22.2606 | 22.2441 | 22.2601

h/2 223131 | 222606 | 22.2441 | 22.2601

/2 04584 | 0.7186 | 0.5057 | 0.7123

4 0 0.6464 | 0.7186 | 0.5057 | 0.7123

h2 13711 | 07186 | 05057 | 0.7123

/2 16801 | 17835 | 17006 | 1.7808

2 | 10 0 17570 | 17835 | 17006 | 1.7808
h 20461 | 17835 | 17006 | 1.7808

/2 8.8840 | 89046 | 8.8881 | 8.9040

50 0 8.8994 | 89046 | 8.8881 | 8.9040

H 89571 | 89046 | 8.888L | 8.9040

/2 0.1083 | 0.3619 | 0.1518 | 0.3562

4 0 0.2844 | 03619 | 0.1518 | 0.3562

h2 10024 | 03619 | 0.518 | 0.3562

/2 07893 | 0.8931 | 0.8104 | 0.8904

3 | 10 0 0.8661 | 0.893L | 0.8104 | 0.8904
h2 11556 | 0.8931 | 0.8104 | 0.8904

/2 44320 | 44526 | 4.4361 | 4.4520

50 0 44473 | 44526 | 4.4361 | 4.4520

h 45051 | 4.4526 | 4.4361 | 4.4520
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Table 5.26. Nondimensionalized in-plane normal stress (G,) at the bottom (z= -h/2),
middle (z=0) and top (z= h/2) surface of a FGM (Titanium Alloy-

Zirconia, M3) plate subjected to nonlinear (Ty) thermal load (p=1)

ab | ah z HSDT-12 | HSDT-9 | HSDT-5 | FSDT
/2 -2.58 -34.26 | -3266 | -36.83
4 0 10331 | -86.95 | -8518 | -85.8
h2 -552.48 | -529.01 | -541.17 | -533.79
/2 -13.39 3640 | -36.19 | -36.83
1 | 10 0 -93.31 8548 | -8518 | -85.18
h2 -587.19 | -532.99 | -534.93 | -533.79
/2 -15.45 -36.81 | -36.80 | -36.83
50 0 9144 | -8519 | -8518 | -85.18
h2 -593.74 | -533.76 | -533.84 | -533.79
/2 14.43 4053 | -3460 | -48.16
4 0 -53.48 -14.84 -9.53 -9.53
h/2 25448 | -305.98 | -344.46 | -320.50
/2 -19.55 -46.77 | -46.06 | -48.16
2 | 10 0 -22.22 -10.49 -9.53 -9.53
h2 -350.00 | -317.91 | -324.22 | -320.50
/2 -26.58 4811 | -48.08 | -48.16
50 0 -15.97 -9.57 -9.53 -9.53
h2 -379.84 | -320.39 | -320.64 | -320.50
/2 47.41 -37.65 | -2300 | -51.94
4 0 -63.70 5.5 15.69 15.69
h2 6331 | -221.38 | -30054 | -249.40
/2 -14.96 4901 | -4741 | -51.94
3 | 10 0 -4.43 13.67 15.69 15.69
h2 -263.61 | -243.95 | -257.41 | -249.40
/2 -30.00 5182 | 5176 | -51.94
50 0 8.93 15.61 15.69 15.69
h2 -307.74 | -249.17 | -249.72 | -249.40
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Table 5.27. Nondimensionalized in-plane displacements (U, V) and transverse
displacement (w) at the top (z = h/2) surface of a rectangular FGM

plate subjected to nonlinear (Ty.) thermal load (a/b=2 and p=2)

E/En | ah |THEORY U v W
HSDT-12 -0.7226 -1.4453 2.6937
HSDT-9 -0.7042 -1.4084 2.2974
g 0 HSDT-5 -0.7012 -1.4025 2.2402
55 FSDT 070271 14085 | 22962
= 3 HSDT-12 -0.7035 14071 | 11.5604
é HSDT-9 -0.7028 -1.4056 11.4812
50
HSDT-5 -0.7027 -1.4053 11.4608
FSDT -0.7027 -1.4055 11.4810
HSDT-12 -0.5366 -1.0731 2.0146
§ 0 HSDT-9 -0.5258 -1.0516 1.7393
= HSDT-5 -0.5227 -1.0454 1.6495
C% 2 FSDT -0.5249 -1.0498 1.7369
< S HSDT-12 -0.5254 -1.0508 8.7400
% oy | HSDTS -0.5250 -1.0499 8.6849
= HSDT-5 -0.5248 -1.0497 8.6671
FSDT -0.5249 -1.0498 8.6844
HSDT-12 -0.6873 -1.3746 2.1633
« HSDT-9 -0.6734 -1.3469 1.8025
§ 0 HSDT-5 -0.6707 -1.3414 1.6434
< 2 FSDT -0.6748 -1.3497 1.8091
§ 5 HSDT-12 -0.6754 -1.3507 0.1164
£ oy | HSDT9 -0.6748 -1.3496 9.0439
< HSDT-5 -0.6747 -1.3494 9.0123
FSDT -0.6748 -1.3497 9.0453

104




Table 5.28. Nondimensionalized in-plane normal stresses (Gy,y), in-plane shear
stress (Tyy) and transverse shear stresses (Ty,, Ty,) at the middle (z=0)

surface of a rectangular FGM plate subjected to nonlinear (Ty.) thermal
load (a/b=2 and p=2)

Ec/Ew | alh | THEORY | 35, 5, Ty T T,
HSDT.12 | -637.76 | -147.22 | -327.02 | 13167 | 2.6634
HSDT.o | -61748 | -117.53 | 33330 | 1.3838 | 2.7675
< 10 Mot | -616.77 | -116.14 | -333.75 | 14915 | 2.9831
,‘g > FSDT 616.77 | -116.13 | -333.75 | 1.3962 | 2.7925
e HSDT.12 | 627.94 | -127.72 | -333.48 | 0.2756 | 05512
5 | nsoro 616.79 | -116.19 | -333.73 | 0.2791 | 0.5583
HSDT.5 | 616.77 | -116.14 | -333.75 | 0.2800 | 0.5600
— 616.77 | -116.13 | -333.75 | 0.2792 | 0.5585
HSDT.12 | -18326 | 4450 | 9250 | 05577 | 11154
< HSDT.0 | -17322 | 3163 | 9439 | 0.7360 | 14719
g 10 Fcors | 17297 | -3L18 | -9453 | 0.8119 | 16239
Z o — 17297 | -3L17 | 9453 | 0.7461 | 14922
35
=5 HSDT.12 | -180.24 | 3857 | 9445 | 0.1260 | 0.2519
E HSDT-9 | -17298 | 3119 | 9453 | 0.1491 | 0.2983
.+|_§ 0 oors | 17297 | 3117 | -9453 | 0.1497 | 02995
— (17297 | -3117 | 9453 | 0.1492 | 0.2984
HSDT.12 | -66454 | -253.18 | -274.24 | -2.1481 | -4.2961
B HSDT. | 657.68 | -238.80 | -279.25 | -3.1467 | -6.2935
§ 10 Mcprs | -658.96 | 241.31 | 27843 | -2.9437 | -5.8874
< FSDT -658.83 | -241.05 | -27852 | -3.2004 | -6.4008
EG HSDT.12 | -656.94 | -239.43 | -278.34 | -0.3734 | -0.7469
£ HSDT.9 | 658.78 | -240.96 | -278555 | -0.6396 | -1.2793
< 0 I opTs | 65883 | 241.06 | -278.51 | -0.6380 | -1.2761
FSDT -658.83 | -241.05 | -278.52 | -0.6401 | -1.2802

105




Table 5.29. Nondimensionalized in-plane displacement (u) at the top (z =h/2)
surface of a square FGM plate subjected to nonlinear (Ty.) thermal load
(a/b=1.5 and a/h=10)

Ec/Enm p HSDT-12 | HSDT-9 | HSDT-5 FSDT
0 -1.2935 -1.2732 -1.2708 -1.2732
1 -1.0594 -1.0431 -1.0389 -1.0405
2 5 -1.1011 -1.0826 -1.0796 -1.0811
,‘g s 3 -1.1712 -1.1507 -1.1487 -1.1502
LW 5 -1.3013 -1.2780 -1.2771 -1.2789
é 4 -1.4008 -1.3757 -1.3752 -1.3772
9 -1.4755 -1.4493 -1.4489 -1.4511
10 -1.5060 -1.4793 -1.4790 -1.4812
0 -0.9352 -0.9206 -0.9188 -0.9206
2 1 -0.7983 -0.7883 -0.7847 -0.7868
% 5 -0.8193 -0.8085 -0.8053 -0.8076
o 3 -0.8566 -0.8449 -0.8422 -0.8446
S o
5 5 -0.9286 -0.9154 -0.9133 -0.9158
| 7 -0.9859 -0.9717 -0.9699 -0.9725
.‘g‘ 9 -1.0306 -1.0156 -1.0140 -1.0166
10 -1.0493 -1.0339 -1.0324 -1.0350
0 -0.9572 -0.9422 -0.9404 -0.9422
© 1 -0.9384 -0.9265 -0.9235 -0.9265
% 2 -1.0507 -1.0368 -1.0341 -1.0382
<o 3 -1.1707 -1.1547 -1.1521 -1.1573
ES 5 -1.3786 -1.3595 -1.3569 -1.3634
£ 7 -1.5400 -1.5190 -1.5163 -1.5235
2 9 -1.6676 -1.6452 -1.6426 -1.6500
10 -1.7221 -1.6991 -1.6966 -1.7039
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Table 5.30. Nondimensionalized in-plane normal stress (oy) at the top (z = h/2)
surface of a FGM plate subjected to nonlinear (Ty.) thermal load

(a/b=1.5 and a/h=10)

E/Em | p | HSDT-12 | HSDT-9 | HSDT-5 | FSDT
0 85535 | 87113 | 87291 | -87L13
| | 112387 | -103859 | -104168 | -1040.50
= , | -112469 | -1009.83 | -101201 | -1010.92
_g | 3 | -1060.23 | -960.31 | -96L75 | -960.62
2
- 897.16 | -867.70 | -868.3L | -867.04
2
s . 74899 | -796.61 | -796.92 | -795.49
S 62682 | -74305 | -74329 | -74L72
10 | 57458 | 72117 | 72143 | -719.80
0 564.63 | 57591 | 577.20 | -575.91
= ) 72168 | -669.48 | -672.00 | -670.52
8 ) 72743 | 65521 | -657.43 | -655.84
; I 69474 | 62942 | -631.33 | -629.66
=~ [ s 60510 | 57957 | -581.05 | -579.29
g . 51034 | -530.78 | -541.01 | -539.21
.+|_§ S 44593 | 50874 | -500.84 | -508.02
10 | 41376 | -49577 | -496.83 | -495.00
o | 191151 | -1946.77 | -1950.75 | -1946.77
} | | 201828 | -198129 | -1987.88 | -19813L
£ , | -1707.00 | -1738.88 | -1744.83 | -1735.76
<;ET o | 3 | 129315 | 147986 | 148545 | 147411
EG 5 44372 | -1029.81 | -103554 | -1021.13
£ . 31244 | 67932 | -68519 | -669.45
< S 95438 | -401.91 | -407.62 | -39L47
10 | 123680 | 28355 | -289.10 | -272.92
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Table 5.31. Nondimensionalized in-plane displacements (U, v) and transverse
displacement (w) at the top (z = h/2) surface of a FGM plate subjected

to nonlinear (Ty.) thermal load (a/h=10 and p=2)

ke/km | ab | THEORY ] v W
HSDT-12 -1.6997 -1.6997 4.8779

5 HSDT-9 -1.6857 -1.6857 4.5160
I " [hsoTs -1.6830 -1.6830 4.3568
< S FSDT -1.6871 -1.6871 4.5226
§ S HSDT-12 -0.3496 -1.0489 1.2570
£ HSDT-9 -0.3360 -1.0081 0.8981
< > Thsors -0.3333 -0.9999 0.7392
FSDT -0.3374 -1.0123 0.9045

HSDT-12 -1.7769 -1.7769 6.1380

HSDT-9 -1.7583 -1.7583 5.7417

£ " Thsors -1.7553 -1.7553 5.6845
Sk FSDT 17568 | -1.7568 5.7405
=3 HSDT-12 -0.3710 -1.1129 1.5454
S HSDT-9 -0.3528 -1.0585 1.1493
> Thsors -0.3499 -1.0496 1.0922

FSDT -0.3514 -1.0541 1.1481

HSDT-12 -1.3240 -1.3240 4.6200

2 HSDT-9 -1.3132 -1.3132 4.3447
g " Thsors -1.3101 -1.3101 4.2547
> 8 FSDT -1.3123 -1.3123 4.3422
<3 HSDT-12 -0.2739 -0.8218 1.1458
% , |HsDT -0.2633 -0.7900 0.8708
= HSDT-5 -0.2602 -0.7807 0.7812
FSDT -0.2625 -0.7874 0.8684
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Table 5.32. Nondimensionalized in-plane normal stresses (G, y), in-plane shear
stress (Tyy) and transverse shear stresses (Ty,, Ty,) at the middle (z=0)

surface of a FGM plate subjected to nonlinear (Ty.) thermal load
(a/h=10 and p=2)

ke/ky | a/b | THEORY S, Gy Ty T, T,
HSDT-12 | “452.23 | -452.23 | -345.96 | -1.9733 | -1.9733
- 1 HSDT-9 44925 | -449.25 | -34852 | -3.1787 | -3.1787
= -450.02 | -450.02 | -348.10 | -3.0976 | -3.0976
g HSDT-5
<|t :3) FSDT 44994 | -449.94 | -348.15 | -3.2004 | -3.2004
§ 2 HSDT-12 | -739-89 | -199.31 | -202.72 | -2.4331 | -7.2993
= -726.57 | -166.68 | -209.96 | -3.0953 | -9.2858
g . HSDT-9
< HSDT-5 -728.68 | -171.98 | -208.76 | -2.6880 | -8.0641
FSDT 72845 | -171.42 | -208.89 | -3.2004 | -9.6012
HSDT.12 | -383.36 | -383.36 | -413.77 | 1.3953 | 1.3953
1 HSDT-9 -366.88 | -366.88 | -416.96 | 1.3912 | 1.3912
§ HSDT-5 -366.45 | -366.45 | -417.19 | 1.4344 | 1.4344
£ o FSDT -366.45 | -366.45 | -417.19 | 1.3962 | 1.3962
N [e0]
?'J 2 HSDT.12 | -728.06 | -86.76 | -240.49 | 1.2549 | 3.7645
[
g ; HSDT-9 -701.37 | -35.64 | -249.65 | 1.3714 | 4.1141
HSDT-5 70021 | -32.72 | -250.31 | 1.5865 | 4.7596
FSDT -700.20 | -32.70 | -250.32 | 1.3962 | 4.1887
HSDT-12 | -111.09 | -111.09 | -117.14 | 0.6025 | 0.6025
§ 1 HSDT-9 2102.22 | -102.22 | -118.09 | 0.7420 | 0.7420
o HSDT-5 -102.07 | -102.07 | -118.17 | 0.7725 | 0.7725
N
c>|; 5 FSDT -102.07 | -102.07 | -118.17 | 0.7461 | 0.7461
z 2 HSDT-12 | -209.05 | -27.88 | -67.94 | 0.4843 | 1.4530
_§ HSDT-9 -197.01 | -851 | -70.69 | 0.7261 | 2.1783
[
.‘E" 3 MspTs 19661 | -755 | -70.90 | 0.8775 | 2.6326
FSDT 219660 | -754 | -70.90 | 0.7461 | 2.2383
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Table 5.33. Nondimensionalized transverse displacement (w) at the top (z = h/2)
surface of a square FGM plate subjected to nonlinear (Ty.) thermal load

(a/h=20)
Ke / K p | HSDT-12 | HSDT-9 | HSDT-5 | FSDT
0 9.9154 9.7471 97127 | 97471
1 9.4496 9.2950 92380 | 9.2948
é 5 9.2231 9.0419 8.9627 | 9.0453
<_£3| o 3 9.6578 9.4475 0.3480 | 9.4554
ES 5 111878 | 10.9294 | 107983 | 10.9434
% 7 127235 | 124318 | 122820 | 12.4480
< 9 140639 | 13.7485 | 135801 | 13.7650
10 146617 | 143369 | 141748 | 14.3532
0 133992 | 131718 | 131252 | 131718
1 117411 | 115538 | 115228 | 11.5535
= 5 116797 | 114815 | 114531 | 11.4810
S
Sg 3 121063 | 11.8945 | 11.8657 | 11.8940
= 5 131797 | 129444 | 129129 | 12.9446
2
g 7 141214 | 138686 | 138340 | 13.8694
9 148746 | 146090 | 145714 | 14.6101
10 151909 | 149201 | 148812 | 14.9214
0 9.6881 9.5236 94889 | 95236
= 1 9.0367 8.9054 8.8641 | 8.9040
é 5 8.8233 8.6857 8.6409 | 8.6844
Z 0 3 8.9336 8.7873 8.7403 | 8.7866
3 S
= O 5 9.4109 9.2496 9.2002 | 9.2499
s 7 9.9042 9.7320 0.6815 | 9.7329
-‘é 9 103313 | 101510 | 100998 | 10.1522
10 105185 | 103348 | 102835 | 10.3361

110




Table 5.34. Nondimensionalized in-plane normal stress (o) at the top (z = h/2)
surface of a square FGM plate subjected to nonlinear (Ty.) thermal load

(a/h=20)
Ke / K p HSDT-12 | HSDT-9 | HSDT-5 FSDT
0 139920 | -1406.00 | -1406.77 | -1406.00
) 1 150026 | -144956 | -1450.83 | -1449.56
o
= ) 113508 | -114048 | -114162 | -1139.87
<_t:| o 3 -654.38 -811.01 -812.08 -809.88
ES c 310.63 240.29 24138 238.59
§ . 1156.62 203.02 201.91 204.95
< S 1869.58 553.49 552.41 555.53
10 2182.26 702.97 701.92 705.05
0 626.11 -629.15 2629.49 -629.15
) -938.41 -842.38 -842.99 -842.76
e 5 -932.14 -805.24 -805.67 -805.45
o
£ 2 3 -855.02 741.96 742.23 742.02
18 c -668.22 62412 -624.23 -623.99
z
5 . -501.92 -533.97 -534.02 533.75
o -366.17 ~466.20 -466.25 ~465.94
10 -308.41 ~438.56 438,61 ~438.30
0 “413.79 415.94 741618 “415.94
= ] -592.30 -533.50 -534.07 -533.79
8 5 -504.55 515.38 515,81 51550
; 2 3 555,61 -482.85 -483.22 ~482.90
= o c -453.92 42021 ~420.49 -420.15
E . -358.62 -370.33 -370.57 -370.22
.‘E o 27781 33151 33171 -331.37
10 242,56 -315.30 -315.50 -315.15
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Table 5.35. Nondimensionalized in-plane displacement (u) and transverse

displacement (w) at the top (z=h/2) surface of a FGM plate
subjected to nonlinear (Tyn.), linear (T.) and constant (T¢) thermal
loads (a/h=4 and p=2)

u W

Ec/En | @b | Theory

TaL TL Tc TaL TL Tc

HSDT-12 | -1.1994 | -1.6411 | -1.6794 | 2.4042 | 3.1330 | 1.2947
le HSDT-9 | -1.0899 | -1.4701 | -1.3834 | 1.4160 | 1.7521 | -0.7766
"~ | HSDT-5 | -1.0714 | -1.4769 | -1.4129 | 1.2683 | 1.5864 | -0.5057
g FSDT -1.0811 | -1.4879 | -1.3946 | 1.4130 | 1.7512 | -0.7792
S HSDT-12 | -0.5929 | -0.8049 | -0.8806 | 1.6130 | 2.1379 | 1.6809
N ou"g ”s HSDT-9 | -0.4926 | -0.6508 | -0.6151 | 0.6363 | 0.7857 | -0.3469
- 0 ~ | HSDT-5 | -0.4750 | -0.6561 | -0.6433 | 0.4898 | 0.6215 | -0.0779
S FSDT -0.4846 | -0.6670 | -0.6252 | 0.6334 | 0.7850 | -0.3493
= HSDT-12 | -0.3595 | -0.4819 | -0.5567 | 1.2971 | 1.7247 | 1.7402
35 HSDT-9 | -0.2723 | -0.3508 | -0.3333 | 0.3493 | 0.4300 | -0.1890
~ | HSDT-5 | -0.2557 | -0.3542 | -0.3600 | 0.2046 | 0.2680 | 0.0771
FSDT -0.2652 | -0.3650 | -0.3421 | 0.3466 | 0.4295 | -0.1911
HSDT-12 | -0.8772 | -1.1189 | -1.1359 | 1.7599 | 2.1098 | 0.8008
o Le HSDT-9 | -0.8128 | -1.0226 | -0.9757 | 1.0747 | 1.1873 | -0.5484
= ~ | HSDT-5 | -0.7931 | -1.0141 | -0.9774 | 0.8429 | 0.9255 | -0.6015
o FSDT -0.8076 | -1.0313 | -0.9809 | 1.0689 | 1.1932 | -0.5460
N HSDT-12 | -0.4263 | -0.5419 | -0.5802 | 1.1601 | 1.4296 | 1.0694
§~§ ”E HSDT-9 | -0.3668 | -0.4544 | -0.4350 | 0.4846 | 0.5294 | -0.2469
<= ~ | HSDT-5 | -0.3476 | -0.4453 | -0.4362 | 0.2552 | 0.2696 | -0.2997
£ FSDT -0.3620 | -0.4623 | -0.4397 | 0.4791 | 0.5349 | -0.2448
= HSDT-12 | -0.2547 | -0.3212 | -0.3601 | 0.9199 | 1.1451 | 1.1100
= 35 HSDT-9 | -0.2023 | -0.2460 | -0.2365 | 0.2672 | 0.2878 | -0.1358
~ | HSDT-5 | -0.1839 | -0.2361 | -0.2371 | 0.0412 | 0.0309 | -0.1881
FSDT -0.1981 | -0.2530 | -0.2406 | 0.2622 | 0.2927 | -0.1339
HSDT-12 | -1.1118 | -1.4792 | -1.3736 | 1.9847 | 2.2247 | -0.8826
L5 HSDT-9 | -1.0300 | -1.3455 | -1.1519 | 1.0979 | 0.9166 | -2.8627
© ~ | HSDT-5 | -1.0116 | -1.3439 | -1.1518 | 0.6859 | 0.4345 | -3.1308
= FSDT -1.0382 | -1.3779 | -1.1706 | 1.1133 | 0.9784 | -2.8299
g HSDT-12 | -0.5322 | -0.7079 | -0.7069 | 1.3435 | 1.6337 | 0.5999
C HSDT-9 | -0.4579 | -0.5883 | -0.5079 | 0.4850 | 0.3820 | -1.2984
E X 25 "1SDT-5 | -0.4391 | -0.5841 | -0.5062 | 0.0757 | -0.1001 | -1.5666
£ FSDT -0.4654 | -0.6176 | -0.5247 | 0.4990 | 0.4386 | -1.2686
E HSDT-12 | -0.3122 | -0.4133 | -0.4404 | 1.0727 | 1.3543 | 1.0402
< 35 HSDT-9 | -0.2481 | -0.3122 | -0.2724 | 0.2606 | 0.1896 | -0.7203

HSDT-5 | -0.2287 | -0.3049 | -0.2688 | -0.1442 | -0.2911 | -0.9879

FSDT -0.2547 | -0.3380 | -0.2871 | 0.2731 | 0.2400 | -0.6941
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Table 5.36. Nondimensionalized in-plane normal stresses (Gy,y), at the middle
(z=0) surface of a FGM plate subjected to nonlinear (Ty.), linear (T.)

and constant (T¢) thermal loads (a/h=4 and p=2)

5 G

E./En | ab| Theory * ’
T TL Tc TaL TL Tc
HSDT-12 | -585.38 | -1122.97 | -2131.40 | -288.65 | -665.22 | -1164.41
HSDT-9 | -530.07 | -1040.88 | -1975.14 | -210.81 | -548.82 | -935.33
1.5 FHSDT5 | -526.93 | -1048.62 | -1980.28 | -206.03 | -560.61 | -943.15
< FSDT "526.91 | -1048.60 | -1980.32 | -205.99 | -560.57 | -943.22
S HSDT-12 | -759.95 | -1391.94 | -2698.52 | -243.74 | -579.56 | -996.08
S e , 5 | HSDT-9 | -673.46 [ -1252.05 [ -2430.06 | 7552 | -317.04 | -467.17
_© | “° [HSDT-5 | -668.60 | -1264.05 | -2438.08 | -6443 | -345.27 | -485.29
= FSDT _668.55 | -1264.00 | -2438.08 | -64.35 | -345.16 | -485.46
= HSDT-12 | -859.74 | -1546.57 | -3023.54 | -301.34 | -640.27 | -1146.28
o5 | HSDT-9 | -727.64 | -1326.32 [ -2505.13 | -30.93 | -220.43 | -286.50
~ "HSDT-5 | -720.73 | -1343.33 | -2606.39 | -12.40 | -266.10 | -316.72
FSDT ~720.67 | -1343.24 | -2606.50 | -12.23 | -265.91 | -317.04
HSDT-12 | -169.42 | -305.76 | -583.21 | -85.80 | -182.79 | -323.48
) L5 | HSDT-9 [ -14860 | -282.23 | -534.25 | 58.23 | -149.28 | -253.36
= ~ "HSDT-5 | -147.54 | -284.57 | -535.76 | -56.65 | -152.70 | -255.60
g FSDT 14752 | -28455 | -535.76 | -56.63 | -152.67 | -255.60
N HSDT-12 | -220.27 | -381.63 | -743.25 | -75.45 | -164.36 | -288.26
Z e , 5 | HSDT-9 | -180.33 [ -330.19 [ -657.05 | -20.19 [ -86.66 | -126.79
=~ | 7 [HSDT-5 | -187.67 | -342.80 | -659.42 | -1657 | -94.54 | -131.96
= FSDT _187.64 | -342.76 | -659.41 | -16.50 | -94.46 | -131.94
2 HSDT-12 | -250.93 | -428.16 | -840.93 | -94.37 | -185.61 | -340.15
g o5 | HSDT-9 | -204.81 | -350.08 | 70153 | -7.86 | -60.08 | -77.86
~ "HSDT-5 | -202.45 | -364.24 | -704.92 | -1.87 | -73.20 | -86.48
FSDT 20240 | -364.18 | -704.91 | -1.74 | -73.04 | -86.45
HSDT-12 | -617.07 | -1199.70 | -2220.79 | -364.04 | -775.99 | -1264.98
L5 | HSDT-9 [ -678.77 [ -1145.79 | -2065.95 | -30831 | -693.12 | -1042.75
< > "HSDT-5 | -584.49 | -1165.71 | -2078.83 | -317.02 | -723.45 | -1062.36
£ FSDT _583.84 | -1164.88 | -2078.37 | -316.04 | -722.19 | -1061.66
2 HSDT-12 | -761.82 | -1443.80 | -2774.16 | -307.50 | -670.28 | -1070.90
P HSDT-9 | -694.26 | -1330.98 | -2508.04 | -180.09 | -460.05 | -569.43
E S |25 1SDT-5 |-703.15 | -1361.68 | -2527.90 | -200.35 | -520.00 | -614.68
£ FSDT -702.04 | -1360.28 | -2527.13 | -197.83 | -526.80 | -612.91
E HSDT-12 | -842.77 | -1582.27 | -3085.40 | -325.84 | -681.92 | -1172.20
< 45 | HSDT-0 [ -734.61 [ -1301.10 [ -2665.43 | -125.02 | -344.66 | -375.84
~ "HSDT-5 | -747.30 | -1434.42 | -2693.48 | -159.00 | -460.95 | -451.14
FSDT 74553 | -1432.17 | -2692.23 | -154.34 | -454.91 | -447.80
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Table 5.37. Nondimensionalized in-plane shear stress (T,) at the top (z =h/2)
surface of a FGM plate subjected to nonlinear (Tn.), linear (T.) and

constant (T¢) thermal loads (a/h=4 and p=2)

Tyy

E./En alb Theory
TaL TL Tc

HSDT-12 _547.07 ~748.53 -765.99
HSDT-9 “497.12 -670.53 -631.02
L5 MisbTs 288.71 673.65 “644.45
o FSDT ~493.12 ~678.68 7636.11
S HSDT-12 ~450.74 ~611.86 2669.41
S ,5 |HSDT-9 -374.50 “494.77 “467.62
Lo ~ [HSDT-5 361.12 ~498.75 ~489.05
£ FSDT -368.43 -507.06 ~475.25
= HSDT-12 2382.59 512,01 _592.52
45 |HSDT9 289.77 ~373.38 _354.77
~ [HSDT-5 27212 -376.93 -383.15
FSDT 282.23 -388.43 -364.06
HSDT-12 2365.83 _466.64 _473.74
) L5 | HSDT9 -338.97 ~426.48 -406.93
£ < [HSDT-5 -330.75 ~422.93 ~407.62
g FSDT -336.80 ~430.10 ~409.10
N HSDT-12 ~296.34 -376.68 ~403.30
3 2 ,5 |HSDT-9 ~254.95 -315.87 -302.39
I 5 ~ [HSDT-5 241,64 -309.50 -303.20
£ FSDT 251,63 -321.34 -305.65
2 HSDT-12 247.82 312,55 -350.41
g 45 |HSDT9 ~196.89 -239.44 -230.16
~ [HSDT-5 ~178.96 ~229.80 -230.75
FSDT ~192.76 246.16 234.14
HSDT-12 _1531.41 ~2037.56 -1892.10
L5 | HSDT9 _1418.76 ~1853.37 -1586.64
< ~  [HSDT-5 ~1393.47 -1851.21 -1586.60
2 FSDT “1430.12 ~1897.85 ~1612.40
2 HSDT-12 ~1221.87 ~1625.30 ~1622.87
o HSDT-9 ~1051.33 ~1350.70 ~1165.93
E X 25 I'ispTs ~1007.99 ~1340.94 ~1162.07
£ FSDT -1068.48 -1417.93 -1204.67
g HSDT-12 -1003.43 ~1328.42 ~1415.37
< a5 |HSDT-9 ~797.43 -1003.44 -875.47
~ [HSDT-5 ~735.00 -979.93 -864.04
FSDT ~818.50 ~1086.19 ~922.82
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Table 5.38. Nondimensionalized transverse shear stresses (T, Ty,) at a distance 0.1h
from the bottom surface of a FGM plate subjected to nonlinear (Tny),
linear (T.) and constant (T¢) thermal loads (a/h=4 and p=2)

T

Xz

T,

E./En | a/b | Theory
T TL Tc T TL Tc
HSDT-12 2.9647 13.9793 24.2141 44471 20.9689 36.3211
HSDT-9 4.2094 15.5802 12.4761 6.3142 23.3703 18.7142
1.5 HSDT-5 3.7593 18.3006 11.8122 5.6390 27.4509 17.7183
s FSDT 4.7307 17.1951 13.6473 7.0961 25.7926 20.4710
§ HSDT-12 7.2219 20.3670 42.0790 18.0547 50.9175 105.1980
'El % 55 HSDT-9 3.7007 13.9550 11.2878 9.2518 34.8874 28.2194
?') g ’ HSDT-5 2.5808 19.6418 9.5857 6.4520 49.1046 23.9643
5 FSDT 4.7307 17.1951 13.6473 11.8268 42.9876 34.1184
b= HSDT-12 | 11.8694 | 27.0794 62.0890 41.5428 94.7780 217.3120
HSDT-9 3.1298 12.0521 9.8814 10.9543 42.1823 34.5849
3.5 HSDT-5 0.8474 21.6146 6.3110 2.9659 75.6510 22.0886
FSDT 4.7307 17.1951 13.6473 16.5575 60.1827 47.7657
HSDT-12 1.6290 7.3376 12.4362 2.4435 11.0064 18.6543
HSDT-9 1.4174 3.9790 3.0228 2.1261 5.9685 45342
g 1.5 HSDT-5 1.1814 4,9083 3.4302 1.7721 7.3624 5.1452
§ FSDT 1.5946 4.4188 3.3288 2.3919 6.6282 4,9932
.NT HSDT-12 4.0358 10.8290 21.6676 10.0894 27.0725 54.1690
E g 55 HSDT-9 1.2447 3.5394 2.7147 3.1117 8.8485 6.7868
< : ) HSDT-5 0.6812 5.5008 3.5529 1.7030 13.7521 8.8822
= FSDT 1.5946 4.4188 3.3288 3.9865 11.0470 8.3220
2 HSDT-12 6.6014 14.3757 31.6935 23.1048 50.3149 110.9270
-g 35 HSDT-9 1.0510 3.0289 2.3537 3.6784 10.6013 8.2379
) HSDT-5 0.0525 6.3700 3.7328 0.1838 22.2949 13.0649
FSDT 1.5946 4.4188 3.3288 5.5812 15.4657 11.6508
HSDT-12 | -12.8302 | -35.7072 | -45.9506 | -19.2453 | -53.5608 -68.9258
HSDT-9 -7.5103 | -27.9690 | -20.2461 | -11.2655 -41.9535 -30.3692
< 1.5 HSDT-5 -9.1016 | -32.2324 | -22.9816 | -13.6523 -48.3487 -34.4724
E FSDT -8.4188 | -31.3635 | -22.5009 | -12.6282 | -47.0453 -33.7513
= HSDT-12 | -17.6842 | -42.9192 | -68.6582 | -44.2104 | -107.2980 | -171.6450
<F Y HSDT-9 -6.6108 | -24.6150 | -18.0045 | -16.5270 | -61.5376 -45.0113
g 2 2.5 HSDT-5 -9.9273 | -33.2833 | -23.5630 | -24.8183 -83.2082 -58.9074
< FSDT -8.4188 | -31.3635 | -22.5009 | -21.0469 -78.4088 -56.2521
E HSDT-12 | -22.2336 | -49.1668 | -91.9541 | -77.8175 | -172.0840 | -321.8390
< HSDT-9 -5.5773 | -20.7730 | -15.4150 | -19.5205 -72.7054 -53.9526
3.5 HSDT-5 -11.1367 | -34.8223 | -24.4144 | -38.9784 | -121.8780 | -85.4505
FSDT -8.4188 | -31.3635 | -22.5009 | -29.4657 | -109.7720 | -78.7530

115




Table 5.39. Nondimensionalized in-plane displacement (u) and transverse
displacement (w) at the top (z=h/2) surface of a FGM plate
subjected to nonlinear (Tyy), linear (T.) and constant (T¢) thermal
loads (a/b=2 and p=2)

u W
Ko/ km | @h | Theory
Te TL Tc The T Tc
HSDT-12 | -0.7454 | -0.9920 | -0.9547 | 1.5837 | 1.8604 | 0.0750
4 HSDT-9 | -0.6670 | -0.8647 | -0.7430 | 0.7089 | 0.5766 | -1.8708

Aluminium - Alumina
0.0510

HSDT-5 | -0.6484 | -0.8618 | -0.7422 | 0.2980 | 0.0944 | -2.1391

FSDT -0.6748 | -0.8956 | -0.7609 | 0.7236 | 0.6360 | -1.8394

HSDT-12 | -0.6873 | -0.9129 | -0.7954 | 2.1633 | 2.0998 | -3.8037

HSDT-9 | -0.6734 | -0.8900 | -0.7577 | 1.8025 | 1.5637 | -4.6126

10 HSDT-5 | -0.6707 | -0.8903 | -0.7580 | 1.6434 | 1.3787 | -4.7154

FSDT -0.6748 | -0.8956 | -0.7609 | 1.8091 | 1.5899 | -4.5986

HSDT-12 | -0.6780 | -0.9000 | -0.7696 | 3.7959 | 3.4361 | -8.7981

20 HSDT-9 | -0.6745 | -0.8942 | -0.7600 | 3.6148 | 3.1666 | -9.2043
HSDT-5 | -0.6738 | -0.8942 | -0.7601 | 3.5356 | 3.0747 | -9.2554

FSDT -0.6748 | -0.8956 | -0.7609 | 3.6181 | 3.1799 | -9.1972

HSDT-12 | -0.8166 | -1.1135 | -1.1783 | 1.9055 | 2.5088 | 1.5512

4 HSDT-9 | -0.7111 | -0.9501 | -0.8959 | 0.9214 | 1.1391 | -0.5040
HSDT-5 | -0.6931 | -0.9562 | -0.9247 | 0.7742 | 0.9741 | -0.2339

2 FSDT -0.7027 | -0.9672 | -0.9065 | 0.9185 | 1.1383 | -0.5065
S HSDT-12 | -0.7226 | -0.9932 | -0.9550 | 2.6937 | 3.4031 | -0.4313
N § 10 HSDT-9 | -0.7042 | -0.9641 | -0.9046 | 2.2974 | 2.8461 | -1.2651
_ 2 HSDT-5 | -0.7012 | -0.9655 | -0.9093 | 2.2402 | 2.7820 | -1.1603
% FSDT -0.7027 | -0.9672 | -0.9065 | 2.2962 | 2.8457 | -1.2662
= HSDT-12 | -0.7078 | -0.9738 | -0.9188 | 4.7911 | 5.9705 | -2.1146
20 HSDT-9 | -0.7031 | -0.9664 | -0.9060 | 4.5930 | 5.6916 | -2.5318
HSDT-5 | -0.7024 | -0.9667 | -0.9072 | 4.5645 | 5.6597 | -2.4797

FSDT -0.7027 | -0.9672 | -0.9065 | 4.5924 | 5.6914 | -2.5324

HSDT-12 | -0.5922 | -0.7544 | -0.7863 | 1.3821 | 1.6835 | 0.9795

© 4 HSDT-9 | -0.5299 | -0.6620 | -0.6326 | 0.7004 | 0.7699 | -0.3572
IS5 HSDT-5 | -0.5105 | -0.6532 | -0.6341 | 0.4697 | 0.5089 | -0.4101
2 FSDT -0.5249 | -0.6703 | -0.6376 | 0.6948 | 0.7755 | -0.3549
’\ll 5 HSDT-12 | -0.5366 | -0.6851 | -0.6638 | 2.0146 | 2.3093 | -0.3440
> 10 HSDT-9 | -0.5258 | -0.6688 | -0.6367 | 1.7393 | 1.9364 | -0.8883
< 3 HSDT-5 | -0.5227 | -0.6677 | -0.6371 | 1.6495 | 1.8352 | -0.9088
= FSDT -0.5249 | -0.6703 | -0.6376 | 1.7369 | 1.9389 | -0.8873
2 HSDT-12 | -0.5279 | -0.6741 | -0.6442 | 3.6127 | 4.0633 | -1.5026
'CEU 20 HSDT-9 | -0.5251 | -0.6699 | -0.6374 | 3.4750 | 3.8765 | -1.7751

HSDT-5 | -0.5244 | -0.6697 | -0.6375 | 3.4303 | 3.8261 | -1.7853

FSDT -0.5249 | -0.6703 | -0.6376 | 3.4738 | 3.8777 | -1.7746
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Table 5.40. Nondimensionalized in-plane normal stresses (oy,G,) at the middle
(z=0) surface of a FGM plate subjected to nonlinear (Ty.), linear (T.)
and constant (T¢) thermal loads (a/b=2 and p=2)

5, 5
ke/km | ath | Theory d
T T Tc T TL Tc
HSDT-12 | -703.75 | -1345.28 | -2551.67 | -318.27 | -695.07 | -1100.16
4 HSDT-9 | -652.49 | -1264.99 | -2347.53 | -228.67 | -551.63 | -746.65
© HSDT-5 | -659.67 | -1289.92 | -2363.65 | -242.71 | -600.35 | -778.15
= FSDT -658.83 | -1288.84 | -2363.05 | -241.05 | -598.24 | -776.98
é’ 5 HSDT-12 | -664.54 | -1278.03 | -2394.78 | -253.18 | -595.95 | -834.85
F o 10 HSDT-9 | -657.68 | -1284.51 | -2360.24 | -238.80 | -589.78 | -771.49
% g HSDT-5 | -658.96 | -1289.01 | -2363.14 | -241.31 | -598.57 | -777.17
= FSDT -658.83 | -1288.84 | -2363.05 | -241.05 | -598.24 | -776.98
E HSDT-12 | -658.61 | -1267.72 | -2371.03 | -242.49 | -579.33 | -791.67
< 20 HSDT-9 | -658.53 | -1287.73 | -2362.33 | -240.48 | -596.08 | -775.58
HSDT-5 | -658.86 | -1288.88 | -2363.07 | -241.11 | -598.32 | -777.03
FSDT -658.83 | -1288.84 | -2363.05 | -241.05 | -598.24 | -776.98
HSDT-12 | -689.63 | -1283.23 | -2469.75 | -243.58 | -589.23 | -1008.77
4 HSDT-9 | -620.74 | -1175.57 | -2264.21 | -123.90 | -405.01 | -640.12
HSDT-5 | -616.80 | -1185.28 | -2270.66 | -116.19 | -423.99 | -652.72
! FSDT -616.77 | -1185.25 | -2270.72 | -116.13 | -423.92 | -652.83
§ HSDT-12 | -637.76 | -1204.09 | -2303.66 | -147.22 | -455.63 | -715.34
'E, § 10 HSDT-9 | -617.48 | -1183.51 | -2269.55 | -117.53 | -420.53 | -650.55
?') g HSDT-5 | -616.77 | -1185.25 | -2270.71 | -116.14 | -423.93 | -652.81
5 FSDT -616.77 | -1185.25 | -2270.72 | -116.13 | -423.92 | -652.83
= HSDT-12 | -630.09 | -1192.24 | -2278.98 | -132.03 | -434.21 | -668.65
20 HSDT-9 | -616.95 | -1184.80 | -2270.42 | -116.49 | -423.06 | -652.25
HSDT-5 | -616.77 | -1185.25 | -2270.71 | -116.14 | -423.92 | -652.82
FSDT -616.77 | -1185.25 | -2270.72 | -116.13 | -423.92 | -652.83
HSDT-12 | -199.53 | -350.44 | -677.58 | -74.11 | -164.45 | -286.17
© 4 HSDT-9 | -174.33 | -318.60 | -612.30 | -33.74 | -110.31 | -173.56
'g HSDT-5 | -173.00 | -321.51 | -614.21 | -31.22 | -115.79 | -177.17
2 FSDT -172.97 | -321.48 | -614.20 | -31.17 | -115.74 | -177.15
'\ll HSDT-12 | -183.26 | -325.32 | -624.60 | -44.50 | -123.38 | -196.19
2> § 10 HSDT-9 | -173.22 | -320.96 | -613.86 | -31.63 | -114.76 | -176.51
<=E g HSDT-5 | -172.97 | -321.48 | -614.20 | -31.18 | -115.75 | -177.16
s FSDT -172.97 | -321.48 | -614.20 | -31.17 | -115.74 | -177.15
é’ HSDT-12 | -180.90 | -321.61 | -616.81 | -39.88 | -116.84 | -181.97
-*E 20 HSDT-9 | -173.03 | -321.35 | -614.11 | -31.29 | -115.49 | -176.99
HSDT-5 | -172.97 | -321.48 | -614.20 | -31.17 | -115.74 | -177.15
FSDT -172.97 | -321.48 | -614.20 | -31.17 | -115.74 | -177.15
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Table 5.41. Nondimensionalized in-plane shear stress (T,) at the top (z =h/2)
surface of a FGM plate subjected to nonlinear (Tn.), linear (T.) and

constant (T¢) thermal loads (a/b=2 and p=2)

Txy

ke / kn | a/h Theory
T TL Tc

HSDT-12 -1369.02 -1822.00 -1753.37
4 HSDT-9 -1224.95 -1588.05 -1364.62
© HSDT-5 -1190.78 -1582.88 -1363.16
= FSDT -1239.44 -1644.80 -1397.42
<=E’ S HSDT-12 -1262.29 -1676.69 -1460.91
Do 10 HSDT-9 -1236.85 -1634.67 -1391.53
§ g HSDT-5 -1231.86 -1635.14 -1392.07
= FSDT -1239.44 -1644.80 -1397.42
E HSDT-12 -1245.23 -1652.91 -1413.52
< 20 HSDT-9 -1238.78 -1642.23 -1395.92
HSDT-5 -1237.55 -1642.40 -1396.09
FSDT -1239.44 -1644.80 -1397.42
HSDT-12 -496.62 -677.20 -716.58
HSDT-9 -432.48 -577.80 -544.83
4 HSDT-5 -421.50 -581.51 -562.38
.g FSDT -427.37 -588.19 -551.29
8 HSDT-12 -439.48 -604.03 -580.78
',5 § 10 HSDT-9 -428.28 -586.33 -550.13
i g HSDT-5 -426.46 -587.15 -553.02
% FSDT -427.37 -588.19 -551.29
b HSDT-12 -430.44 -592.21 -558.77
20 HSDT-9 -427.60 -587.72 -551.00
HSDT-5 -427.15 -587.93 -551.72
FSDT -427.37 -588.19 -551.29
HSDT-12 -329.32 -419.52 -437.22
= 4 HSDT-9 -294.68 -368.14 -351.80
g HSDT-5 -283.86 -363.23 -352.58
2 FSDT -291.90 -372.75 -354.56
'\|‘ HSDT-12 -298.37 -380.98 -369.12
2 § 10 HSDT-9 -292.39 -371.93 -354.06
EE ; HSDT-5 -290.65 -371.27 -354.25
= FSDT -291.90 -372.75 -354.56
é’ HSDT-12 -293.53 -374.83 -358.24
.E 20 HSDT-9 -292.02 -372.54 -354.43
HSDT-5 -291.59 -372.38 -354.48
FSDT -291.90 -372.75 -354.56
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Table 5.42. Nondimensionalized transverse shear stresses (T, Ty,) at a distance 0.1h
from the bottom surface of a FGM plate subjected to nonlinear (Tny),
linear (T.) and constant (T¢) thermal loads (a/b=2 and p=2)

Xz

A

Tyz

Ko/ km | @/h | Theory
T T Tc T TL Tc

HSDT-12 -15.1556 | -39.2069 | -56.6782 | -30.3112 | -78.4138 | -113.356
HSDT-9 -7.09127 | -26.4055 | -19.2031 | -14.1825 | -52.8109 | -38.4061
© 4 HSDT-5 -9.4648 | -32.6947 | -23.2373 | -18.9296 | -65.3894 | -46.4746
E FSDT -8.4188 | -31.3635 | -22.5009 | -16.8376 | -62.7271 | -45.0017
= HSDT-12 -3.6041 | -11.9304 | -11.4850 | -7.20822 | -23.8608 | -22.9700
<F % 10 HSDT-9 -3.2710 | -12.1843 -8.7610 -6.5419 | -24.3687 -17.522
g g HSDT-5 -3.4327 | -12.6285 -9.0463 -6.8653 | -25.2569 | -18.0925
E FSDT -3.3676 | -12.5454 | -9.0004 -6.7350 | -25.0908 | -18.0007
= HSDT-12 -1.5942 -5.6404 -4.8162 -3.1883 | -11.2808 -9.6325
N HSDT-9 -1.6715 -6.2267 -4.4697 -3.3429 | -12.4533 -8.9394
20 HSDT-5 -1.6919 -6.2831 -4.5059 -3.3838 | -12.5661 -9.0118
FSDT -1.6838 -6.2727 -4.5002 -3.3675 | -12.5454 -9.0004
HSDT-12 4,9468 16.9764 32.5046 9.8935 33.9528 65.0095
HSDT-9 3.9714 14.8264 11.9263 7.9427 29.6529 23.8526
4 HSDT-5 3.2414 18.8900 10.8338 6.4828 37.7800 21.6675
< FSDT 4.7307 17.1951 13.6473 9.4614 34.3901 27.2947
§ HSDT-12 0.0485 3.6964 4.5375 0.0971 7.3928 9.0750
'E‘ § 10 HSDT-9 1.8366 6.7074 5.3355 3.6733 13.4147 10.6710
?L g HSDT-5 1.7999 6.9833 5.2842 3.5998 13.9666 10.5683
5 FSDT 1.8923 6.8780 5.4589 3.7846 13.7560 10.9179
= HSDT-12 0.1862 1.5969 1.5937 0.3724 3.1937 3.1872
HSDT-9 0.9390 3.4173 2.7138 1.8781 6.8346 5.4275
20 HSDT-5 0.9346 3.4521 2.7077 1.8693 6.9042 5.4154
FSDT 0.9461 3.4390 2.7294 1.8923 6.8780 5.4589
HSDT-12 2.7529 8.9837 16.7417 5.5057 17.9674 33.4834
HSDT-9 1.3365 3.7747 2.8799 2.6731 7.5494 5.7599
.g 4 HSDT-5 0.9615 5.1688 3.4841 1.9229 10.3377 6.9682
g FSDT 1.5946 4.4188 3.3288 3.1892 8.8376 6.6576
.N_‘ HSDT-12 0.0500 1.8877 2.2813 0.1001 3.7753 4.5625
> § 10 HSDT-9 0.6189 1.7209 1.2992 1.2378 3.4419 2.5984
<=E g HSDT-5 0.5985 1.8142 1.3412 1.1970 3.6284 2.6824
g FSDT 0.6378 1.7675 1.3315 1.2757 3.5350 2.6631
'g HSDT-12 0.1170 0.8046 0.7861 0.2341 1.6091 1.5721
'E HSDT-9 0.3165 0.8778 0.6617 0.6330 1.7557 1.3233
20 HSDT-5 0.3140 0.8896 0.6670 0.6281 1.7791 1.3339
FSDT 0.3189 0.8838 0.6658 0.6378 1.7675 1.3315
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Fig. 5.2. Variation of effective material properties through the thickness (z/h) of
Monel-Zirconia (M1) FGM plate (a) Young’s modulus of elasticity, (b)
Thermal coefficient of expansion and (¢) Thermal conductivity.
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Fig. 5.3. Variation of effective material properties through the thickness (z/h) of
Aluminium-Alumina (M2) FGM plate (a) Young’s modulus of elasticity,
(b) Thermal coefficient of expansion and (c) Thermal conductivity.
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Fig.5.4. Variation of effective material properties through the thickness (z/h) of
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Fig. 5.5. Variation of nondimensionalized transverse displacement (w) through the
thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM

plate subjected to nonlinear thermal load for (a) a/h = 5, (b) a/h=10 and
(c) a/h=20. [*Alibeigloo, A. (2010)]
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Fig. 5.6. Variation of nondimensionalized transverse shear stress (T,,) through the
thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM
plate subjected to nonlinear thermal load for (a) a’h = 5, (b) a/h=10 and
(c) a/h=20. [*Alibeigloo, A. (2010)]
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Fig. 5.7. Variation of nondimensionalized transverse normal stress (c,) through the
thickness (z/h) of a simply supported square Monel-Zirconia (M1) FGM
plate subjected to nonlinear thermal load for (a) a’/h = 5, (b) a/h=10 and
(c) a/h=20. [*Alibeigloo, A. (2010)]
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Fig. 5.20. Variation of nondimensionalized transverse shear stress (ty,) through the
thickness (z/h) of a simply supported square Aluminium-Alumina (M2)
FGM plate subjected to nonlinear (Ty.) thermal load.
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Fig. 5.21. Variation of nondimensionalized in-plane displacement (u) through the

thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Tyy), linear (T.) and
constant (T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c)
HSDT-5 and (d) FSDT displacement models.
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Fig. 5.22. Variation of nondimensionalized in-plane displacement (v) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Tn.), linear (T.) and
constant (T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9,
(c) HSDT-5 and (d) FSDT displacement models.
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Fig. 5.23. Variation of nondimensionalized transverse displacement (w) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-Zirconia
(M3) FGM plate subjected to nonlinear (Tny), linear (T.) and constant
(Tc) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and
(d) FSDT displacement models.
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Fig. 5.24. Variation of nondimensionalized in-plane normal stress (G,) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Ty), linear (T.) and
constant (T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9,

(c) HSDT-5 and (d) FSDT displacement models.

137



=

-~

z/h

0.5 - 0.5 .
HSDT-12 HSDT-9
0.4+ FGM-M3 0.4+ FGM-M3
alb=2, ath=10 a/b=2, ath=10
0.3 0=2 0.3 p=2
0.2 0.2
0.1 0.1
0.0+ < 0.0
N
-0.14 -0.1-
-0.2- -0.2-
-0.3 '\ 03 [T T \
\ - TL \
\ \
-0.4- . -0.4- T .
\ c \
'05 T - '05 T T -
-400 0 200 -400 -200 0 200
Gy
(b)
0.5 - 0.5 -
HSDT-5 FSDT
0.4 FGM-M3 0.4 FGM-M3
a/b=2, a/lh=10 a/b=2, a’lh=10
0.3 0=2 0.3 p=2
0.2 0.2
0.1 0.1
0.0 < 0.0
N
-0.14 -0.14
-0.2- -0.2
-0.31 TNL \ -0.31 TNL \
04{ | L N 4] | I \
T, " T, Y
-05 r — -0.5 T —
-400 -200 0 200 -400 -200 0 200
Gy o'y
(©) (d)

Fig. 5.25. Variation of nondimensionalized in-plane normal stress () through the

thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Tny), linear (T.) and
constant (Tc) thermal loads based on (a) HSDT-12, (b) HSDT-9,
(c) HSDT-5 and (d) FSDT displacement models.
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Fig. 5.26. Variation of nondimensionalized in-plane shear stress (7,,) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-Zirconia
(M3) FGM plate subjected to nonlinear (Tn), linear (T.) and constant
(T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c) HSDT-5 and
(d) FSDT displacement models.
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Fig. 5.27. Variation of nondimensionalized transverse shear stress (T,,) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Ty.), linear (T.) and
constant (T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c)
HSDT-5 and (d) FSDT displacement models.
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Fig. 5.28. Variation of nondimensionalized transverse shear stress (T,,) through the
thickness (z/h) of a simply supported rectangular Titanium Alloy-
Zirconia (M3) FGM plate subjected to nonlinear (Tny), linear (T.) and
constant (T¢) thermal loads based on (a) HSDT-12, (b) HSDT-9, (c)
HSDT-5 and (d) FSDT displacement models.
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CHAPTER 6

CONCLUSION

6.1 GENERAL

Analytical formulations and solutions using a set of higher-order refined shear
deformation theories have been developed for the stress analysis of FGM plates
subjected to thermal loads. These theories consider the realistic parabolic distribution
of transverse shear strain across the plate thickness direction. The displacement model
with twelve degrees-of-freedom HSDT-12 considers the effects of both transverse
shear and normal stress/strain, while the other models include only the effects of
transverse shear deformation. The accuracy of the higher-order refined theories in
predicting the displacements and stresses is established by comparing the results with
the available 3D-Exact solutions in the literature. After establishing the accuracy,
numerical results are also compared with the results obtained by independently
developing the theoretical formulations and analytical solutions using the other higher
order and first order theory available in the literature to show the improvement in the
accuracy of higher-order refined theories in predicting the thermo-elastic responses in
an FGM plate. The accuracy of solutions obtained using nonlinear temperature
distribution with various displacement models, is evaluated by comparing with the
results obtained using other temperature distributions viz., linear and constant
profiles, to show the improvement in the accuracy of solutions using nonlinear

temperature distribution with various theories.

On the basis of the analysis carried out and the numerical results obtained, the

following conclusions are arrived

e For FGM plates subjected to mechanical load, the various static-flexural
responses predicted by HSDT-12 model are found to be most accurate as
compared to other displacement models used in this investigation and is less

than 2.5% for all parameters considered. This reveals the significance of
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considering both transverse shear and normal deformation effects in analysis
of FGM plates.

In cases of FGM plates subjected to thermal loads, the transverse stresses and
transverse displacement predicted by HSDT-12 model are as accurate as three
dimensional exact solutions while other models under predicts the transverse
normal stress and over-predicts the transverse shear stresses. This clearly
shows the need for using higher order polynomials in the in-plane and
transverse displacement fields to achieve the desired accuracy in the thermo-

elastic analysis of FGM plates.

The accuracy of solutions is found to decrease with the decrease in the total
number of functional degrees of freedom. Therefore there is a large deviation
of the displacements and stress values predicted by HSDT-9, HSDT-5 and
FSDT models compared to that HSDT-12. Comparatively least difference is
observed in the values predicted by HSDT-9 displacement model.

Considerable difference is observed in displacements and stresses predicted by
HSDT-12 and all other models. The percentage difference in values predicted
by the other models increases with the increase in power law parameter and
edge ratio (a/b ratio), while decreases with the increase in a/h ratio as
compared with HSDT-12 model.

Maximum percentage difference is observed in rectangular plate and the least
percentage difference in square plates. The percentage difference increases
with increase in a/b ratio. Also, for FGM thin plates with a/h ratio 50 and
above, the results predicted by all the models are almost same.

Though the values of in-plane displacements tandv are different, their
percentage differences remain same for all parameters. Similarly equal

differences are observed in the values of transverse shear stresses Ty, and Ty,.

In all the displacement models considered for the analysis of FGM plates, as
the thickness of the plate decreases the values of transverse deflection

increases but the percentage difference between the values decreases. This
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shows that the effect of transverse shear and normal strains in predicting the
deflection and stresses reduces in thin plates.

In most of the cases considered the maximum percentage difference in the
displacements and stresses are observed in Monel-Zirconia FGM plate and the
least percentage difference in Titanium Alloy-Zirconia FGM plates. This

indicates that FGM plate responses are sensitive to thermo-physical properties.

For any given displacement model and the material set, the thermal responses
predicted using nonlinear, linear and constant forms of temperature
distributions are found to be very much different from each other. This shows
the need for adopting an appropriate temperature field that can predict most

accurate thermal responses.

In case of thin plates, the differences in the results predicted by various models
are almost same, but significant differences are observed when different
temperature distributions are adopted for the same model during the analysis.
This shows that the type of thermal field adopted during the analysis has its
effect in both thin and thick plates.

The displacements and stresses predicted using nonlinear form of temperature
distribution are as accurate as three dimensional elasticity solutions when used
with HSDT-12 model. The accuracy of solutions reduces with other lower
order displacement models. Further the percentage difference in results
increases when the same plate is subjected to other form of temperature profile

namely linear or constant type of variation across the thickness.

The variation of in-plane / transverse displacements and stresses plotted across
the plate thickness using all the temperature profiles clearly indicates that
results obtained using linear and constant temperature profile are very much
different from those of nonlinear temperature distribution for all the models
considered. Remarkable differences are noticed in the distribution pattern also.
Among various models considered, maximum deviation is observed in FSDT

models.
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6.2 SUGGESTIONS FOR FUTURE WORK

e In the present investigation only the stress analysis of FGM plates subjected to
thermal loads has been carried out. Further studies can be extended for the
development of formulations and solutions for thermal vibration and thermal

buckling analyses of FGM plates using various displacement models.

e The analysis carried out here is for plates subjected to thermal loads only.
Other combination of loads such as thermomechanical, hygro-thermal,
thermo-peizo-electric, hygro-thermo-mechanical can also be incorporated to
study static, free vibration and stability analyses of FGM plates using different
theories.

e Static analysis is carried out in the present investigation. The work can be

extended towards developing formulations for transient analysis of flat panels.

e The plate geometry considered here is a flat panel. However, further
formulations can be developed for thermally loaded curved panels and

comparative studies can be carried out.

e Only plates with simply supported boundary conditions are considered in the
present investigation. Analytical formulations and solutions can be developed
for thermally stressed FGM plates with different combinations of boundary

conditions.

e The analytical model developed in the present investigation for HSDT-12
displacement model can be used for developing formulations and solutions
using numerical methods like Finite Element Methods (FEM) and Meshless
methods.
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Equilibrium equations obtained using various displacement models for stress

APPENDIX — |

analysis of FGM plates

Model - HSDT-9 ( Pandya and Kant 1988 )

dUg

v,

dw,

50

50

du,

oV,

00

X

50,

N, Ny _ o
OX oy
ON, ON,,
— 4+ —2 =
oy OX
0
an Qy + p;r =0
OX oy
oM

oM, N Y _Q, =0
OX oy
oM oM

y + Xy Qy =0
oy OX

* 0N,
N, + —2 -25 =0
OX oy
N, ON,
— + % -25, =0
oy oX

oM, .
oM, N Y _3Q) = 0
OX oy
oM, M, .

Y 4 Yo 3, =0
oy OX

157



APPENDIX - I (contd.)

Model — HSDT-5 (Reddy 1984)

duU,

v,

00

50

3w,

N, | Ny
OX oy
Ny, ANy
oy OX
oM . oMt oM
M, - _Qx+(i2jQx_( 42) l +—
ox oy h 3h ox oy
oM. oM 4N . 4\ aM® oM
o)
oy 0 h 3h oy OX
Q. . R (4 j Qy , R
OX oy h?)| ox oy
4 _aZM; o°M,,  8°My .
Tla?)| e Ty T | P
oy

Model - FSDT ( Whitney and Pagano 1970 )

dUg

v,

00

X

50

dw,

X

OX oy

oN oN

oN
aN n Xy

oy OX

X
y + y
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APPENDIX — 11

Elements of plate stiffness matrices [A], [A], [C,], [B], [B], [D], [D'], [E], [E] for various displacement models used in the

thermo-elastic analysis of FGM plates

e Model - HSDT-12 ( Kant and Manjunatha 1988 )

Qu Qu, Quz®  Qp7° Qus 3Qy37° QuZ Qq.2 Quz®  Qu7° 2Q,57 ]
Qo  Qn  QuZ Qpz®  Qxn  3Quz° Quz  Quz  QuZ’  Qpz’ 2Qu2

Quz’  Qupz®  Quz'  Quz*  Quz® 3Quz'  QuZ®  QuZ®  Qu°  QuZ°  2Q,7°
Quz®  Quz®  Quz'  Quz'  Quz®  3Quz'  Quz®  QuZ’  Qpz®  QuZ°  2Q,7°

Qi3 Qa3 Qusz”  Qu2’ Qs 3Qqs2” QusZ Q3Z Quz’  QuZ° 2Q;32
[A]: I Quz®  Quz®  Quz'  Quz'  Quz®  3Qgmz'  Quz’  Quz’  Quz°  Quz° 2Qg7° |dz
Q12 QqpZ Quz®  Qp7° Qy32 3Quz°  Quz®  Qupz®  Quz' Quzt  2Qu7°
Qy.2 Quz  QuZ’  Qp7’° QuZ  3Qu2°  Quz®  Quz®  Quz'  Quz'  2Qy7°
Quz’  QuZ®  Quz®  QupZ®  QuZ’  3Qu° Q' Quzt Qu®  Quz® 2Q,7°
Quz®  Quz’  Qupz°  QpZ°  QuZ’  3Qx2° Quz'  Quz'  QuZ°  Quz°  2Qu7°
| Qa2 QuZz  QuZ’  QuZ’  QuZ  3Quz’  Quz®  Quz® Q' Qy' 2Qq32° | —+
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APPENDIX - 11 (contd.)

Q1 +Qup +Qy
Q1 +Q + Qs
2 2 2
Qu1Z" + Q7" +Qy3Z

2 2 2
Q22" + Q42" + Q2

Qa1+ Qg + Qg3
h/2
2 2 2
[CT] = J. Q3lz + Q322 + Q332
“h/2
Qu1Z+Qppz+Qy;Z
Q212+ QpZ+ Q2

3 3 3
Qllz +Q122 +Q132

3 3 3
QZlZ + QZZZ + Q23Z

160

dz

| Q3Zz+Q3Z+QgZ |



Qus
h/2 2
8= ][>
—hi2| QuqZ
Qu2°

Qes

h/2 2

ol- ]|

-h/2| QgsZ

Qge2’

Q55

APPENDIX - 11 (contd.)

Qu2’ Qu* Q42 QuZ
Quz* Qu2* Qu?’ Qu?’
Q44Z3 Q4423 Q4422 Q44Z2
Qu2° Qu2° QuZ’ Qu2’
3Qes2” Qge2” 2Qg6Z
3Qg62" Qg2 2Qg62°
3Qg62° Qge2” 2Qg62°
3Qg62” Qgo2” 2Qge2"
3Qs52° Qss2” 2Qs5Z
3Qss2" Qss2 2Qq52°
3Qs52° Qss2° 2Qs52°
3Qs52° Qss2° 2Qs52"

dz

dz

dz



Model - HSDT-9 ( Pandya and Kant 1988 )

APPENDIX - 11 (contd.)

[AT=[BT=[D]=[ET=0

162

dz



h/2

-h/2

APPENDIX - 11 (contd.)

Qi +Qpp
Qi +Qx
2 2
QuZ° + Q2
h/2 le22 + sz22
[Ci]= I dz
-h/2 Qllz + lez
Q22+ Q2
3 3
QuZ”™ +Qyp2

3 3
| Q27 + Q7" |
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dz



APPENDIX - 11 (contd.)

QGG QGG 3Q66Z2 ZQGGZ
h/2
[D]= j QuZ®  Quz®  3QuZz"  2Q,72° |dz

-h/2

QSGZ Q66Z 3Q66Z3 2Q6622

Q55 Q55 3Q5522 2Q552
[E]= _[ Qsz”  Quz”  3Quz'  2Qg7’ |dz
Q5SZ QSSZ 3Q5523 2Q5522

[AT=[BT=[D]=[ET=0
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e Model - HSDT-5 (Reddy 1984)

Qll

Qp

APPENDIX - 11 (contd.)

Qll(z T
Q12 [Z T AaR2

Qu| 2

Q|2

Q| z

Q12 (Z_
sz (Z_

Qp| 2

Qx| 2z

Q| Z
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3h?

4z*
3h?

4z*
3h?

4z°
3h?

47°
3h?

iz
3n’

473 473
—] —Qy, an?

4z
-Qu an?

4

4z
—Qy, an?

4z°

g

47°
g

473

g

3

47
-Q,, an?

4z*
—Qp, an?

47°
-Q,, an?

g

47°
Qe gz

dz



Q44

Q44Z

3
Q44Z

Q44

Q44Z

3
Q44Z

[Ci]= J dz

APPENDIX - 11 (contd.)

Qu1+Qp,
Q1 +Qy
21 Quz+Qy,z
Q12+ Q2
Quz’+Qy,7°

3 3
| Q1227 + Q57" |

473 473 —87° |
QM(Z_WJ QM(Z_WJ Q44W

4z° 4z° -8z*
Q44 [ZZ _3? Q44 (ZZ _WJ Q443?

4z° 475 -87°
Q44 £Z4 W Q44 (24 _W] Q44 W_
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e Model - FSDT ( Whitney and Pagano 1970 )

APPENDIX - 11 (contd.)

47°
F

47%) |
Q55 [l_ FJ

[A]1=[B]=[D]=[E]=0

Qz
Q2
QZZZ
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QuZ QpZ

QlZZ QZZZ
2 2
Qllz QlZZ

2 2
QlZZ QZZZ _

dz

dz



APPENDIX - 11 (contd.)

[ Qu+Qyy |

izl Qpp +Qp
[Ci]= f dz
—hi2| QuZ +Qyyz

| Q122+ Q7 |

Qu Qu QuZ

2
—h/2 Q44Z Q44Z Q442

h/2

[D]= I [Qes Qs )0

-h/2
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Q44Z
2
Q442

dz



APPENDIX - 11 (contd.)

h/2

[E]= J [Qss Qs ]dz

-h/2

[AT=[B]=[D]=[ET=0
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APPENDIX - 111

Elements of the coefficient matrix [X] using various displacement models for

thermo-elastic analysis of FGM plates

e Model - HSDT-12 (Kant and Manjunatha 1988)

X =Ay o’ + BB ’
le3 =0

Xl’5 = A1,8 ap + Bl,6 ap
Xi7=R, a’ + Bl p*
Xio=Apa

K =AuyooB + B gop

_ 2 2
X2,2 - A2,2 B + Bl,Z a

Xya =Ry, 0B + B op

— 2 2
xz,s - A2,4 =+ B1,4 a

X2,10 = A2,9 ap + B1,7 of

171

X1,2 :Al’2 ap + BL2 ap

_ 2 2
X1,4 - A1,7 o+ Bl,5 B
X1,6 = _A1,5 o

Xig=Ay 0B+ B, ap

_ 2 2
X1,10 - A1,9 o + Bl,? B

Xos =Pog B+ Bis o’
X2,7 = A2,3 ap + Bl’3 ap
Ko ="AouB

X1 = Ao p* + Bg o
X33=Di, o’ + E,, p*

X3,5 = E1,1B



APPENDIX - 111 (contd.)

_ 2 2
X3,12 - D1,7 o + E1,7 B

Kys=HPrg0P + Bygop

_ 2 2
x4,7 B A7,3a + B3,3B + D1,5

x4,9 = _A7,110° + D1,4a

X ap + B, ap

411~ A7,1o

_ 2 2
X5,5 - As,s B + B3,ea + E1,1
XS’7 = A&3 ap + 83’3 ap

X5,9 = _As,nf’ + E1,4 B

X5,11

_ 2 2
Xe,s - A5,5 + D3,6 o+ Es,e B

Xe,a = _A5,4 B+ E3,5 p

Xe,lo = _A5,9 a + D3,3a

_ 2 2
X6,12 - A5,6 + D3,7 "+ E3,7 B

X =

78 —Agyeoc + 2D3‘7 a

_ 2 2
- A8|10B + B3,8a + E1,3
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_ 2 2
X3,9 - D1,4 a”+ El,4[3
X3,11 = E1,3 B
2 2
Xy =A770" + By +Dyy
Kag=Ars0 + Dyga
Xps=Py40P + By, 0

_ 2 2
X4,10 - A7,9 a” + B3,7 B + D1,3

X =

412 _A7,6 a + D1,7 o

X5,6 = _AS,SB + E1,6 B

_ 2 2
X5,8 - A8,4B + Ba,4°‘ + E1,5

X5,1o = A8,9 op + B3,7 op
X5,12 = _As,aﬁ + E1,7 p
X6,7 = —A5’3oc + D3,5a

_ 2 2
xeg - A5,11 + D3,4 o+ E3,4 ﬁ
Xe,u = _AS,lO B+ E3,3 B

x —

7.7 _As,sa + 2D3,6 o

X =

7.9 _A3,11 o+ 2 D3,4 o



APPENDIX - 111 (contd.)

_ 2 2
X7’10 = A3,9 o + 82’7 B + 2D3’3 X = A3'10 af + Bz,s of

741
_ 2 2

X2 = Agga + 2D, a X8,8 = A4,4 P + Bz,4 o+ 2E3,5

Kgo= A4 B +2E,,B Kg10 = Ayg0P + B, af

_ 2 2
X8,11 - A4,10 P+ Bz,s o+ 2E3,3 X8,12 = _A4,6 B+ 2E3,7 p

Xgo=2A;1;1t D,y o’ + B4 B* Xopo = 2Ape0 + D, 50
Xou = 2A50P + B 5B K12 = 2R+ Dy a’+ E,; p*
Xlo,lo - A9,9 a?+ B4,7 B*+ 3D2,3 Kioar = Ao @B + B gaP
Koz = Age® +3D,;a Xiaa = Aot B* -+ B, a’+ 3E,,
Xiggo = ~PoehP + 3B, B Xip12 = 3Rg6t Dy a’+ B, p*

and Xi,j = Xj’i (I, j:l to 12)

e Model - HSDT-9 (Pandya and Kant 1988 )

Xp=An a’+ B, p* X2 =A,0p +B, ,ap
X3=0 Xia=Ry a’+ B B
Xis=AgoB + B ap Xie=Pus o’ + B p*
Xi7=A 0P +B,  ap Xig= A a®+ B, p?
Xio= Ao+ Bgop KXo =P p* + B, o’
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APPENDIX - 111 (contd.)

XZ’3 =0
_ 2 2
X2,5 o Az,e B + Bl,6 a

— 2 2
X2,7 - A2,4B + Bl,4 o

_ 2 2
X2,9 - A2,8 B + Bl,8 a

X3,4 = D1,1 o
X3,6 = D1,4 o
Xyg= Dz

Xpa=Pss o’ + Bys B+ D1
Kas=Psa a’+ B.s B2+ D,
Xis=As7 o’ + B, B+ D5
Xes = Ao B+ Bie a’+ E
Ks1=Roa B+ B,, o+ Ei.
Koo = Agg B+ Big o’ + Eis
XG’7 = A3’4 ap + 5214 af

X6’9 = AS,S ap + Bz,8 ap

X, =A,, a + B, ap

7
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Kya=Ay50B + B jop
)(2,6 = A2’3 apy + 81,3 af
X2,8 = A2,7 ap + Bl,7 of

_ 2 2
X3,3 - D1,2 a” + E1,2 B

X3,5 = El,lB
X3,7 = E1,4 p
X3,9 = El,3B

X,5=Ass0B + B, ap
X4’7 = A5’4oc[3 + 83’401[3
X,o=Asq0B + By op

Xy 5= Agz0B + By o

X5,8 = AB‘7 ap + 83’7 of

Xs6= Ay o + B,, B% + 2D,,
X = Ay, a? + B,, B% + 2D,,
X,7=A,, B% + B,, a?+ 2E,,

_ 2 2
X7’9 = A4,sB + Bzygoc + 2E3’3



APPENDIX - 111 (contd.)

_ 2 2
Xs,g = A7’7 o+ B4,7 B+ 3D2’3 X89 = A7'8 of + B418 of

ng9 = Aa,s B? + B4’8 o+ 3E2,3 and Xij = Xj;i (i,j=1t09)

Model - HSDT-5 (Reddy 1984)

Xp=Ay ol + B i Xio=A 0B +B, of
Xia=A, o’ + B, p* Xia=A,0B+ B op
le5 = A1,5 ol + Al,G a’p + Bly5 af3? Xz,z = A2,2 B% + Bl,z a?
Koz = A,30B + B o Xoa =Ry, B+ B, o

— 2 3 2
X2|5 = A2’50c B+ AZ,GB + Bl,5a B

4 4
_ 2 2 2 2
X3,3 - Aa,sa + Bz,3B + D1,1 32 (As,sa + B3,3B ) Y D2,1

Xy, = A, aB +B,,of - A,,ap + By, aB)

av

4
_ 3 2 2
X3’5 = A3,5 o’ + A?”6 af + 82’5 af® + Dl,za — FDz,z o
4 3 2 2
57 (Ass@® + Ao+ B, op?)
4 4
_ 2 2 2 2
X4,4 - A4,4 ap” + Bz,4a +E1,1 32 (A6,4B + B3’4oc ) N h_ZEZ,l
4
- 2 3 2
X4,5 - A4,5OL B+ A4,6B + Bz,s P+ El,ZB 2 Ez,zB
4 2 3 2
~ 57 (Aes @B + AggB*+ Byga’p)
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APPENDIX - 111 (contd.)

_ 4 4 2 @2 2 2 4 2 2
X = ?)h—Z(AS’E)oc +A 0l BE A ol BI+A B +B ol B )

- ( D,,a?+ E,,B? )+ r;iz ( D,,a’+E,, BZ)

and Xi,j = Xj,i (I, j:]. to 5)

Model - FSDT (Whitney and Pagano 1970)

_ 2 2
X1,1 - Al,la + E”1,1[3

le3 =0

X5 = A 0f + B, op

X2,3 =0

— 2 2
Xz,s - A2,4 p*+ B1,4 o

X3,4 = Dl,la

XL2 = Al,2 ap + Bl,2 af
Xia=Ap a? + B p*
X2 =P B + B, o’
Xy =HAy30B + B joB
X33=Di, a’ + E, p*

Xs,s = El,lB

_ 2 2
X4,4 = A3’30c + BZ,SB + D1,1 Kys=Ag0B + B, af

Xss=A,, B% + B,, a?+ E., and Xij = X (i, j=1to 5)
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APPENDIX - IV

Elements of Thermal Force Matrix { Ft } for various displacement models used in the thermo-elastic analysis of FGM plates

e Model - HSDT-12 ( Kant and Manjunatha 1988 )

t * * * * * *
(F.] ={—oc N, BN, 0 -aM_ -BM,_ N, -aN, BN, 2M, -aM, -BM, 3NZT}
e Model - HSDT-9 (Pandya and Kant 1988 )
t * * * *
(F) :{—oc N, BN, 0 -aM_ $M_ -aN, -BN, —aM, B MyT}

e Model - HSDT-5 (Reddy 1984)
() :{—aNXT BN, —a(MXT +M’;T) —B(MyT M (O@M;T M )}
e Model - FSDT ( Whitney and Pagano 1970 )
{FT}t:{—oc N, BN, 0 -aM_ -p MyT}

T Yr T
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