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ABSTRACT 

Evapotranspiration (ET) plays an important role in efficient crop water management. 

Accurate estimation of ET is a challenging task in developing countries like India, 

where the availability of meteorological data is often minimal. This study makes an 

attempt to evaluate the potential and applicability of hybrid Wavelet-Artificial 

Intelligence (AI) models for estimating reference crop evapotranspiration (ETo) in 

arid and semi-arid regions of India. The hybrid models were developed by using 

wavelet decomposed subseries of meteorological variables as inputs to the ANN, 

ANFIS and LS-SVM models. Performance of the proposed hybrid models was then 

compared to the classical AI models. 

The study used forty year weekly dataset from Jodhpur and Pali (arid region) 

weather station. Also, daily data for six years were obtained from Hyderabad and 

Kurnool weather station (semi-arid region). In absence of lysimeter data, ETo values 

are calculated by FAO-56PM equation. Prior to the development of models, factor 

analysis test was employed to identify the input combination that may yield more 

efficient model under limited data scenario. Additionally, the effectiveness of using 

ETo data from another station in the same climatic region (extrinsic data) was also 

evaluated. It is expected that the proposed hybrid models together with extrinsic input 

variables would provide efficient ETo estimation models. 

The performance of hybrid and classical AI models were compared using RMSE, 

NSE and threshold statistics. Scatter plots were used to evaluate the accuracies of the 

models and box plots were used to analyze the spread of the data points estimated by 

the models. The results show that the proposed AI models worked better at estimating 

weekly ETo in arid regions compared to estimating daily ETo in semi-arid regions. 

The hybrid AI models displayed a better performance compared to the classical AI 

models at all the stations. It was found that hybrid W-LSSVM was the best model for 

estimating ETo in both arid and semi-arid region. Further, it was observed that the use 

of extrinsic inputs delivered good results only in arid regions. It was also observed 

that in semi-arid regions, use of wavelet decomposed extrinsic data deteriorated the 

performance of some hybrid models. 

Keywords : Evapotranspiration; Arid Region; Semi-arid Region; Factor Analysis; 

Wavelet Transform; ANN; ANFIS; LS-SVM 
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CHAPTER 1 

INTRODUCTION 

1.1  INTRODUCTION 

In agriculture sector, evapotranspiration (ET) is closely related to crop water 

demand. ET is the process that returns water from the earth's surface to the 

atmosphere and therefore completes the hydrological cycle. ET is a combination of 

water evaporated from surfaces such as soil and water bodies, combined with the 

water transpired from the vegetation. ET is an important process in the water cycle 

and is responsible for 15% of the atmosphere’s water vapor. Without this input of 

water vapor, precipitation would never occur. ET is a highly complex phenomenon, 

depending on various factors and comprising different processes. A number of factors 

affect ET, including weather parameters (solar radiation, temperature, relative 

humidity and wind speed), crop factors (crop type, stage of growth, variety and plant 

density) and management and environmental factors (soil fertility, salinity, pest and 

disease control). Additionally, ET is heavily influenced by land use changes and 

climate variations regionally and globally. The currently well-evidenced global 

warming characterized by increasing temperature has the potential to alter the 

hydrological cycle. Generally, it can be easily and readily accepted that increasing 

temperature can cause increased evaporation (Oki and Kanae 2006). However, 

observations indicate decreasing trend in pan evaporation and ET (Zhang et al. 2007) 

leading to more complexity and ambiguity in modeling these processes. Accurate 

estimation of ET plays a key role in successful management of irrigation systems. 

Additionally, accurate estimation of ET plays a very vital role in hydrological 

modeling, conducting water balance studies and environmental assessment works.  

Considering the significance of accuracy in estimating ET, hydrologists over the 

time have mainly focused on developing more reliable and accurate methods for ET 

estimation. ET can be directly measured by conducting a soil water balance with 

lysimeters. Lysimeters measure ET by isolating a soil-plant system from its 

environment and evaluating the components of the water balance by measuring 

incoming and outgoing water fluxes. Use of lysimeters is limited due to the fact that 
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this technique is very expensive and demanding in terms of accuracy in measurement. 

Owing to the difficulties in direct measurement, several equations were developed for 

ET estimating. A concept of ‘reference crop evapotranspiration’ (ETo) avoided the 

need to calibrate a separate ET equation for different vegetation and moisture 

availability. ETo refers to the rate of ET from a hypothetical grass reference crop with 

specific characteristics. The concept of the reference evapotranspiration was 

introduced to study the evaporative demand of the atmosphere independently of crop 

type, crop development and management practices. The Food and Agricultural 

Organization of United Nations (FAO) has accepted the FAO Penman-Monteith 

(FAO-56PM) as the standard equation for estimating evapotranspiration (Allen et al. 

1998). However, large amounts of climatic variables, including solar radiation, wind 

speed, humidity and temperature has made the use of FAO-56PM equation difficult in 

developing countries like India where, availability of meteorological records has often 

been minimal. 

In the nineteenth century, several empirical and semi-empirical equations needing 

fewer climatic variables were developed for estimating ET. The empirical equation 

that needed fewer data included, the radiation-based models include Turc equation 

(Turc 1961), Priestley-Taylor equation (Priestley and Taylor 1972) and the FAO-24 

radiation equation (Doorenbos and Pruitt 1977). The temperature-based models 

include Thornthwaite equation (Thornthwaite 1948), FAO-24 Blaney-Criddle 

equation and FAO-56 Hargreaves model (Allen et al. 1998). The Pan Evaporation 

model given by Doorenbos and Pruitt (1977) used pan coefficient for converting pan 

evaporation to ET. Different methods for estimation of pan coefficient include Snyder 

Pan Coefficient (Snyder 1992) and FAO-56 Pan Coefficient method (Allen et al. 

1998). The simple empirical equations requiring fewer data like temperature, radiation 

and pan evaporation can be used to estimate ET, but these models have reported to 

generate inconsistent results when tested under different climatic and data availability 

condition. Hargreaves equation is good in estimation of ET for the arid and semiarid 

regions, while the Turc equation is found to perform better in the humid region 

(Nandagiri and Kovoor 2006; Martinez and Thepadia 2010). This may be for the 

reason that these equations were developed for different data availability conditions 

and for a specific climatic region. Considering the limitations and disadvantages of 
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the conventionally applied modeling techniques, they need to be further refined by 

implementing new or different methods to achieve improved performance.  

1.2 ARTIFICIAL INTELLIGENCE 

In recent years, application of artificial intelligence (AI) techniques in modeling 

hydrological processes like evapotranspiration has received much attention from the 

researchers. AI algorithms provide explanation of an externally driven process 

without a need of complex physical models. Literature reports use of AI 

methodologies like artificial neural network (ANN), adaptive neuro-fuzzy inference 

system (ANFIS) and least square support vector machine (LS-SVM) for modeling the 

process of evapotranspiration. 

1.2.1 Artificial neural network 

ANN is an information system, stimulating the ability of human brain to sort out 

patterns and learn from trial and error. ANN has an ability to extract relationships that 

exist within the data with which it is presented. This approach is faster, robust in 

noisy environments, flexible in the range of problems it can solve and highly adaptive 

to the new environments. Due to these established advantages, currently the ANN has 

numerous real world applications such as image processing, speech processing, 

robotics and stock market predictions. There has been research on its implementation 

in the system engineering related fields such as time series prediction, rule based 

control, etc. In recent years, ANN methods have been successfully applied to many 

studies in the field of water resources engineering. 

1.2.2 Adaptive Neuro-fuzzy inference system 

Jang (1993) proposed a method that used neural network learning algorithm for 

constructing a set of fuzzy if-then rules, with appropriate membership functions from 

the stipulated input output pairs. An ANFIS model combines the transparent and 

linguistic representation of a fuzzy system with learning ability of ANN. This 

incorporates the generic advantages of artificial neural networks like massive 

parallelism, robustness and learning in data-rich environments. The modeling of 

imprecise and qualitative knowledge as well as the transmission of uncertainty is 

possible through the use of fuzzy logic. ANFIS comes with an additional benefit of 

being able to provide a set of rules on which the model is based. 
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1.2.3 Least square support vector machine 

Vapnik (1995) developed the foundation of support vector machines (SVM). SVM 

gained popularity due to many promising features like better empirical performance 

and providing globally optimal solutions. The formulation embodies structural risk 

minimization (SRM) principle, which has shown better performances than the 

empirical risk minimization principle (ERM), employed by conventional neural 

networks. SRM minimizes an upper bound on the expected risk, as opposed to ERM 

that minimizes the error on the training data. It is this difference, which equips SVM 

with a greater ability to generalize and achieve the goal of statistical learning. LS-

SVM is a reformulation of the principles of SVM, which involves equality instead of 

inequality constraints.  

1.2.4 Hybrid Wavelet-AI models 

Performance of any AI model largely depends on the user’s understanding of the 

model, along with the quantity and quality of inputs presented to it. 

Evapotranspiration, like many other hydrological processes operate under a large 

range of scales varying from one hour to several months leading to a non-linear and 

non-stationary behavior of the dataset. AI models alone may not be able to cope with 

these characteristics of the dataset if, input and/or output data is not preprocessed. 

Furthermore, there is also a need for working towards enhancing the performance of 

these models. Use of hybrid models may help in increasing the accuracy of ANN, 

ANFIS and LS-SVM models.  

Wavelet theory (Mallat 1989) first developed at the end of 1980s is being widely 

applied in many engineering fields, such as signal processing, image compression, 

pattern recognition, hydrology, earthquake investigation, etc. Since the last decade, 

wavelet transform has become a popular technique for analyzing variations, 

periodicities, and trends in time series. Wavelet Transform decomposes original time 

series into wavelet subseries of different resolution in the time domain. Wavelet pre-

processed data may increase the efficiency of an AI model by providing useful 

information about original data set at various resolution levels (Wang and Luo 2008; 

Deka and Prahlada 2012).  

1.3 PLANNING THE PRESENT STUDY 
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This study proposes a hybrid Wavelet-AI model to model the process of ETo. Hybrid 

Wavelet-ANN (W-ANN), Wavelet-ANFIS (W-ANFIS) and Wavelet- least square 

support vector machine (W-LSSVM) models are developed for estimating ETo at 

daily and weekly time step. Further, performance of the classical and hybrid AI 

models are compared to select the best model for estimating ETo. 

India’s arid and semiarid lands constitute more than 50 percent of the country’s 

geographic area and are home to 60 percent of the rural population where agriculture 

is the primary occupation. The arid and semiarid region in India is spread over six 

States, viz., Rajasthan, Gujrat, Haryana, Maharashtra, Karnataka and Andhra Pradesh. 

Arid and semi-arid regions are the regions where the precipitation is highly variable, 

sporadic and unpredictable (Jhajharia et al. 2015). This makes it necessary to focus on 

developing efficient models for estimating ETo in arid and semi-arid region. This 

study makes an attempt to model ETo at Jodhpur and Pali stations in arid regions. 

Additionally, data from Hyderabad and Kurnool weather stations were used to model 

ETo of the semi-arid region. Further, an attempt is made in this study to evaluate the 

effectiveness of using ETo values from a particular place to model the ETo of another 

place in the same climatic region. Use of such extrinsic inputs may help in improving 

the efficiency of AI models for accurate estimation of ETo in limited data scenario. 

1.4 ORGANIZATION OF THE THESIS 

This thesis comprises of five chapters as follows: 

 Chapter 1 (Introduction) presents the relevant information pertaining to ETo 

and further deals with an overview of the conceptual basis for the research. 

 Chapter 2 (Literature Review) deals with a brief discussion about the work 

carried out by researchers for estimating evapotranspiration and other 

hydrological parameters. 

 Chapter 3 (Methodology and Model Development) describes the basics of 

wavelet transform, ANN, ANFIS and LS-SVM. This also deals with the 

procedure for developing classical and hybrid AI models. The procedure used 

for selecting relevant inputs is discussed in this chapter. Further, a brief 

discussion about the study area is also included. 
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 Chapter 4 (Results and Discussion) describes the method of evaluation and 

goes on to present the analysis of the results obtained from the developed 

models. 

 Chapter 5 (Conclusions) presents a summary and conclusions of the research 

work. Limitations and future scope of the study are included towards the end.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Considering the significance of accuracy in estimating ET, hydrologists over the time 

have mainly focused on developing more reliable and accurate methods. In the 

following sections, various techniques employed by researchers for estimating ET 

under different climatic and data availability conditions are discussed. Application of 

physical based and empirical equations is presented in the first section.  In the 

subsequent sections recent reviews of AI applications in modeling ETo and other 

hydrological  processes are presented. 

2.2 PHYSICAL AND EMPIRICAL MODELS 

Until recent years empirical and semi empirical equations were the most widely used 

models for estimating ET. These models are used to estimate ET under limited data 

scenario. Nandagiri and Kovoor (2006) evaluated the performance of various 

empirical methods for estimating ET in different climatic regions of India. The study 

aimed at quantifying differences in ETo estimates influenced by climatic conditions 

and identify methods that yield results closest to the FAO-56PM method. In the study 

different ETo estimating methods, representing temperature based, radiation-based, 

pan evaporation-based and combination-type equations were compared with the FAO-

56PM method using daily and monthly climate data from four stations located one 

each in arid, semiarid, subhumid and humid climates of India. The study concluded 

that, among all the ETo models evaluated, the Hargreaves (temperature-based) 

method yielded ETo estimates closer to the FAO-56PM ETo values in all the climates 

except the humid climate. In the humid region, Turc (radiation- based) method was 

found to be performing better.  

 In a similar study, Lopez-Urrea et al. (2006) evaluated the performance of 

different methods for calculating daily ETo values. The study found that FAO-56PM 

was the best method to estimate lysimeters readings. The Hargreaves equation showed 

good performance in estimating ETo at semiarid regions. Good performance of the 

Hargreaves equation in both high and low evaporative demand periods affirmed the 
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importance of temperature related variables in estimating ETo at semi-arid climates. 

In contrast to the earlier results Xystrakis and Matzarakis (2011) found that in dry 

climates, the radiation based equations performed better than the temperature based 

equations. Kostinakis et al. (2011) developed Visual Basic software that was used for 

estimating daily ETo by the means of FAO-56PM equation and thirteen additional 

empirical equations. The developed software had an additional feature of calculating 

goodness of fit for comparing and detecting the empirical equations that has a 

minimum bias of estimation against the FAO-56PM equation.  

Rojas and Sheffield (2013) found that in case of missing wind data, using wind 

speed data from a nearby station provided better results compared to the method of 

using global default wind speed, as proposed by Allen et al. (1998). This study 

emphasized on the use of data from nearby stations in case of data unavailability.  It 

was also observed that in humid climates, Turc and Priestley-Taylor equations 

underestimated ETo values, whereas the Hargreaves equation overestimated them. 

2.3 ARTIFICIAL NEURAL NETWORK  

In recent years, the AI models are being widely used for estimating various 

hydrological parameters (Gocić et al. 2015; Kisi et al. 2015; Shiri et al. 2015). Some 

studies related to the use of neural networks in estimating ET are discussed below. 

  Sudheer et al. (2003) employed a radial-basis function (RBF) type ANN for 

computing daily values of evapotranspiration. The study was carried out to estimate 

ET under limited data scenario. Various ANN models with different input (weather 

parameters) combination were developed to estimate evapotranspiration measured by 

lysimeter. The study revealed that, as the number of input variables reduced, the 

performance of the model deteriorated. This demonstrated the impact of individual 

climatic variable in estimating ET. Further, it was found that the ANN model with 

temperature data alone could satisfactorily estimate ET. The study concluded that 

crop evapotranspiration can be successfully estimated using limited data by 

employing the ANN approach.  

Kisi (2006) used generalized regression neural network to model ETo. The study 

compared four combinations of input variables to estimate ETo. Starting from a single 

input model of solar radiation, four different models were tested by adding one 
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variable to the earlier model. The degree of effect of each of the variables (solar 

radiation, air temperature, relative humidity and wind speed) on estimation of ETo 

was evaluated in respect of the reduction or increment in error statistics. However, as 

discussed by Aksoy et al. (2007) sensitivity of variables were not studied before 

adding a variable to the model. The study concluded that the four input model 

performed better than the Hargreaves and Turc methods in estimation of FAO-56PM 

ETo. 

Rahimikhoob (2007) compared the performance of temperature based Hargreaves 

and ANN method to estimate ETo. The data used for training of ANN models were 

used for calibration of Hargreaves model while the calibrated Hargreaves estimates 

were compared to the ANN estimates. The ANN model used backpropagation 

algorithm with Levenberg-Marquardt optimization technique. A trial and error 

procedure was used to determine optimum number of nodes in the hidden layer. The 

results of the study concluded that temperature based ANN models can be 

successfully used to estimate ETo values in semi-arid regions when radiation, relative 

humidity and wind data are not available. In a similar study, Rahimikhoob (2010) 

examined the potential of ANN model to estimate ETo in subtropical climate based 

only on air temperature data. 

Zanetti et al. (2007) showed that an ANN model using maximum and minimum 

air temperatures, extraterrestrial radiation and daylight hours as inputs can be 

successfully used to estimate ETo. Out of all the inputs used, extraterrestrial radiation 

and daylight hours inputs were calculated as a function of either the local latitude or 

the Julian date. In a similar study, Kumar et al. (2008) found that the learning 

performance of ANN models does not improve with increased nodes in hidden layers, 

but depends on the number of inputs used and the climatic variables corresponding to 

the nodes.  

 Kim and Kim (2008) developed a genetic algorithm (GA) embedded generalized 

regression neural network (GRNN) model to estimate pan evaporation and ETo. In 

this study GA was employed to optimize centers, widths and connection weights of 

the GRNN model. Uncertainty analysis of the input layer variables for developing an 

optimum GRNN-GA model was also carried out using a simulation-based step-by-

step method. This analysis helped in eliminating the input variables that are not 
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significant in modeling the process of ET. Results of the uncertainty analysis revealed 

that maximum temperature and sunshine hours are the most important climatic 

parameters for development of GRNN-GA model. The study also attempted to derive 

a linear regression model between pan evaporation and ETo values. Further, pan 

evaporation and evapotranspiration maps were also constructed to provide reference 

data for drought analysis. 

Aytek et al. (2008) derived explicit neural network formulation for estimating ETo 

by multiplying each input and output variable with the corresponding model weights 

obtained from trained neural network. The results revealed that ENNF model has 

good generalization capabilities and can be used over a larger area without changing 

formulations. The study concludes that the proposed models performed marginally 

better than the multiple linear regression model and can be successfully used to 

estimate ETo. 

Chauhan and Shrivastava (2009) attempted to find the best method for estimating 

ETo under limited data scenario. They compared the performance of various 

empirical equations to estimate ETo for the Mahanadi Reservoir Project command 

area. The study also compared the performance of ANN models to the empirical 

equations. Analysis of the results suggested that ANN models performed better than 

the climatic based methods and temperature based ANN models can effectively model 

ETo values.  

Abudu et al. (2010) used ANN for infilling missing daily ET measured by eddy-

covariance method. Several ANN models were evaluated for infilling different 

combinations of missing data percentages and different gap sizes. The results from 

this study suggest that infilling of daily ET using ANN and readily available weather 

data where the ET observations exist before and after the gap is a reliable and 

convenient method for infilling missing ET data.  

Marti et al. (2010) tried to generalize a four inputs ANN model. In the training 

model proposed by Zanetti et al. (2007), two more exogenous inputs of RH and ETo 

from location having same indexes of continentality (k) were added. The 

continentality indexes proposed in this study tried to quantify the scale of thermal 

oscillation that takes place in a yearly data set. Models were developed by supplanting 

the missing climatic variables for one location, with those from a secondary 
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continentally similar location. The results showed that the supplanted models 

performed better than the original four inputs ANN model. 

Ozkan et al. (2011) used artificial bee colony optimization algorithm to train ANN 

models (ANN-ABC). The performance of this model was compared with empirical 

and semi-empirical equations to predict daily ETo under limited data condition. 

Artificial bee colony (ABC) is an optimization algorithm that mimics the foraging 

behavior of honey bees. ABC tries to find the position of the most profitable food 

source (solution in the space) by searching the food source space. The results showed 

that the ANN-ABC models performed better than other ANN and empirical equations. 

Additionally, the results of the cross-station applications indicated that the ANN-ABC 

models are more accurate than the ANN models in estimation of daily ETo using 

nearby station data.  

Tabari and Talaee (2012) employed multilayer perceptron (MLP) to model ETo 

under a limited data scenario in semiarid regions of Iran. They tested various input 

combinations with different learning algorithms and activation functions. It was found 

that different learning algorithms worked well for different models and the ‘tanh’ 

activation function performed better than the ‘sigmoid’ and ‘linear’ activation 

functions. This study demonstrated the potential of MLP modeling for estimating 

ETo.  

Wang et al. (2013) developed a generalized artificial neural network model for 

ETo estimation using weather data from four locations representing different climatic 

patterns. The proposed model exhibited high accuracy under both arid and humid 

conditions when compared to multivariate linear regression model and empirical 

equations. The analysis showed that ANN model resulted in slightly larger errors in 

arid and semi-arid climate. It was concluded that longer time series data from more 

stations located  in different climatic zones can develop a better neural networks for 

modeling ETo. 

2.4 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

An ANFIS model combines the transparent and linguistic representation of a fuzzy 

system with learning ability of ANN. This allows them to be trained to perform 

input/output mapping as an ANN model (Petković et al. 2015; Shiri et al. 2014a). 

ANFIS comes with an additional benefit of being able to provide a set of rules on 
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which the model is based. Many studies have concluded that the ANFIS model exhibit 

better performance than the ANN model. However, many contradictory results can 

also be found in the literature wherein the performance of ANN model was found to 

be better than the ANFIS model. Some recent studies that employed ANFIS models to 

estimate ET are discussed below.  

Kisi and Ozturk (2007) compared the ETo estimation capabilities of ANFIS 

models to the empirical and ANN models. Two models, with two and four inputs 

were compared and cross-validated at two different stations. The results showed that 

the ANFIS models outperformed the conventional and ANN models in terms of 

performance criteria. The calibrated Hargreaves and Ritchie model performed better 

than the two input ANN model. It was seen that, in coastal areas relative humidity and 

wind speed are important in estimating ETo.  

Cobaner (2011) investigated the potential of grid partition based fuzzy inference 

system (G-ANFIS) and subtractive clustering based fuzzy inference system (S-

ANFIS) in modeling ETo. Based on the comparisons, it was found that the S-ANFIS 

model performed slightly better than G-ANFIS and MLP models in modeling the ETo 

process. Aytek (2009) proposed co-active neuro-fuzzy inference system (C-ANFIS) 

for daily ETo modeling. The C-ANFIS model was trained and tested using three 

station data from different geographical locations in California. Based on the 

statistical performance measurements the study concluded that C-ANFIS could be 

used as an alternative to existing conventional models for ETo modeling. 

Abyaneh et al. (2011) compared ANN and ANFIS models with lysimeter data for 

computing garlic crop ET in semiarid region of Iran.  Several ANN models were 

tested, but the feed forward back-propagation type ANN model with Levenberg-

Marquet (LM) learning algorithm was found to be the best. ANFIS model using the 

standard back-propagation (SBP) methodology and three membership functions was 

also used to estimate ET. It was seen that ANN model performed slightly better than 

ANFIS model. This was because LM is more powerful and faster than the SBP 

algorithm and has less chance of getting trapped in local minima when compared to 

SBP. It was also seen that on comparing with the lysimeter data ANN and ANFIS 

models performed better than the crop coefficient method for estimating actual 

evapotranspiration from garlic crop.  
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Shiri et al. (2013) studied the capabilities of generalized neuro-fuzzy models for 

cross-station assessment of ETo values using weather data from Spain and Iran. The 

data from these humid (Spain) and non-humid (Iran) regions were pooled to evaluate 

the generalization capability of ANFIS model using grid partitioning identification 

method. Accordingly, different ANFIS models were trained using data from Spanish 

stations and subsequently tested in Iranian stations. From the observed results, it was 

concluded that the proposed methodology would allow for more accurate estimations 

of ETo than conventional approaches without the need to train ANFIS model in the 

test region.  

Karimaldini and Shui (2012) investigated the potential of modeling daily ETo 

using ANFIS under arid conditions. Techniques like Gamma-test, M-test and K-fold 

cross-validation method were used to overcome the major drawback in soft 

computing of not having the ability to preprocess data before modeling. The gamma 

test technique initially introduced by Stefansson et al. (1997) was used to find the best 

combination of inputs and sufficient size of data. The M-test technique was used to 

decide how many data points are sufficient for training a model. A K-fold cross-

validation method was used to address the problem of choosing a proper training 

dataset. It was found that the trend of the results from the ANFIS models for different 

input combinations was the same as that of the gamma test results. Hence, it was 

concluded that using gamma test helps to save a great amount of time for choosing 

proper input combinations and appropriate number of data points that are required for 

calibration of a model. It was also found that ANFIS models performed better than the 

corresponding empirical ETo equations. 

Kisi (2010) used fuzzy genetic (FG) approach to model ETo. GA was used to 

adjust the membership functions. Fuzzy Genetic model performed well in estimating 

ETo when compared to the Penman model. Also, it outperformed two-parameter 

Hargreaves and Turc equations in estimating ETo (FAO-56PM) values. Moreover, on 

comparing with the best feed-forward ANN (sigmoid activation function) model, the 

FG models perform better. This may be because ANN model can very easily be 

trapped in a local minimum when using the backpropagation methodology for 

adjusting the weights. GA combines elements of directed and stochastic search, 

providing global optimum without being trapped in local optima. In a similar study by 
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Kisi and Cengiz (2013) for the Mediterranean region of Turkey, FG approach worked 

better than the ANN model for estimating ETo.  

2.5 SUPPORT VECTOR MACHINES 

SVM achieves an optimum network structure by minimizing the upper bound to 

generalization error instead of minimizing the training error. In addition, SVM is 

equivalent to solving a linear constrained quadratic programming problem, which 

always generates a unique and globally optimal solution (Raghavendra and Deka 

2014). Recently, many studies have used SVM models to estimate ET.  

 Khan and Coulibaly (2006) used SVM for three to twelve months ahead lake 

water level predictions. The results were compared to ANN model and multiplicative 

seasonal autoregressive model. They found that SVM training consists of solving a 

uniquely solvable quadratic optimization problem, which is much more attractive 

because it guarantees to find a global minimum of the error surface. Wherein, the 

error referred to the difference between the desired response and the output of the 

SVM. In the study, it was found that radial basis kernel function was the most 

appropriate kernel function for SVM model. The proposed method showed some 

promising results and proved to be competitive with the widely used MLP model. 

Kisi and Cimen (2009) found that the SVM model with four inputs performed 

better than the empirical and ANN models. Whereas, the two inputs (solar radiation 

and temperature) SVM model performed better than the Hargreaves, Ritchie and Turc 

model. The results also brought to notice that the comparison of AI models and 

uncalibrated empirical methods is not fair as the empirical methods are independent. 

This study also recommended the use of SVM models as a module for estimating ET 

in hydrological modeling studies.  

Sungwon and Hung (2011) introduced εSVM-NNM (Neural network model) 

regression model to estimate FAO-56PM ETo. The accuracy of εSVM-NNM 

regression was largely dependent on the selection of model parameters such as cost 

function (C) and Gamma function (γ). A grid search and pattern search approach were 

used for finding optimal parameter values.  Additionally, a cross-validation method 

was used to overcome the over-fitting problems in the models. From the results, it was 

found that climatic parameters like temperature, sunshine duration and relative 
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humidity were more effective than wind speed in the modeling of ETo.  In this study, 

the performance of proposed models were found to be better than those of MLP-NNM 

models. 

Tabari et al. (2012) studied the potential of SVM, ANFIS, multiple linear 

regression (MLR) and multiple nonlinear regression (MNLR) models for estimating 

ETo in a semi-arid highland environment. In addition to this, four temperature-based 

and eight radiation-based ETo equations were also tested against the FAO-56PM 

model. The SVM and ANFIS models yielded better results than the regression and 

climate based models. Furthermore, it was also seen that the SVM training process 

always searched a global optimized solution and tried to prevent over-fitting that 

eventually led to better generalization performance than the ANN model. SVM was 

able to select the support vectors in the training process and remove the non-support 

vectors automatically from the model. This helped the model to cope with noisy 

conditions. 

Tabari et al. (2013) studied the applicability of SVM and ANFIS models to 

estimate potato crop ET. This study was undertaken to test the performance of 

empirical equations, ANFIS models and SVM models for estimating crop ET when 

lysimeter measurements or the complete weather data for applying the FAO method 

are not available. The results indicated that, the ANFIS models with two membership 

functions performed better. Also, the radial basis function was found to be the best 

kernel for all SVM models. In this study, the SVM models were found to be 

performing better than the ANFIS models. 

Wen et al. (2015) employed SVM models to estimate ETo in extremely arid 

regions using limited climatic data. The performance of the SVM model was 

compared to the ANN model and three different empirical models. From the results, it 

was found that the performance of SVM model with limited climatic data was similar 

to the conventional FAO-56PM equation employing the full complement of 

meteorological data. Further, it was also found that temperature and extraterrestrial 

radiation were enough to estimate daily ETo values satisfactorily. The study 

concluded that SVM models were best among all the other tested models. 

Kisi (2012) examined the accuracy of LS-SVM in modeling ETo. LS-SVM 

proposed by Suykens and Vandewalle (1999) is originated from SVM. LS-SVM 
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changes the inequality constraints of a SVM into a set of equality constraints and 

forces the sum of squared error loss function to become an experience loss function of 

the training set. This allows the problem to be solved as a linear programming 

problem. When compared to the empirical equations and conventional feed-forward 

ANN, LS-SVM was found to be superior.  

Mellit et al. (2013) proposed LS-SVM model for short-term prediction of 

meteorological time series like solar radiation, air temperature, relative humidity, 

wind speed and wind direction. The authors employed K-fold cross-validation and 

Kolmogorov–Smirnov test for checking the generalization capability of LS-SVM 

model. The results showed that the LS-SVM model produced significantly better 

results than different ANN architectures.  

Goyal et al. (2014) investigated the abilities of LS-SVM, fuzzy logic, ANN and 

ANFIS models to improve the accuracy of daily pan evaporation estimation in sub-

tropical climates of India. Prior to model development, Gamma-test was used to 

derive estimates of the noise variance for each input–output set in order to identify the 

most useful predictors for use in the AI approaches. This study found that Gamma-test 

can be successfully used for input selection while developing an AI model. It was also 

found that LS-SVM and Fuzzy logic performed better than the other models. 

2.6 HYBRID ARTIFICIAL INTELLIGENCE MODELS  

Conventional AI models are found to be weak in dealing with nonlinear and non-

stationarity datasets resulting due to the climate change effect, anthropogenic 

influences and seasonal changes. Various hybrid models tested have yielded good 

results (Feng et al. 2016; Shamshirband et al. 2016). Recently, wavelet transform has 

become a popular time series analysis tool due to its ability to simultaneously present 

both spectral and temporal information within the signal (Daubechies 1990). Some 

recent literature on development of hybrid Wavelet-AI models are included below.  

Wang and Luo (2008) proposed a neural network based wavelet network model 

(W-ANN) for forecasting ETo time series. In this study, delay parameters of average 

ETo data were calculated according to correlation analysis. Then Db3 wavelet from 

Daubechies mother wavelet was applied to transform ETo into wavelet subseries. 

These decomposed wavelet subseries were then used as inputs to the ANN models. 
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This study concluded that the use of wavelet transform in conjunction with ANN 

model can produce fine results for forecasting ETo. 

Partal and Cigizoglu (2008) estimated daily-suspended sediment yield in rivers by 

combining wavelet transform and ANN method. The measured data were 

decomposed into wavelet components using discrete wavelet transform, and the new 

wavelet series, consisting of the sum of selected wavelet components, was used as 

input for the ANN model. It was found that the W-ANN model provided a good fit to 

observed data for both training and testing period. It was observed that the number of 

inaccurate sediment estimations decreased significantly and the cumulative sediment 

sum was closely approximated with the W-ANN method. Their proposed model was 

also found to be more efficient in predicting peak sediment values when compared to 

the conventional ANN model. 

Izadifar (2010) used cross wavelet analysis to explore correlation between 

evapotranspiration and meteorological variables. Wavelet analysis was used to 

differentiate between predictive abilities of various models from a new time-scale 

variations perspective. Results of the cross wavelet analysis indicated that, the cause 

and effect relationship between ET and meteorological variables vary based on the 

time-scale variation under consideration. At smaller time-scales (hourly), significant 

linear correlations were observed between ET and climatic variables like net 

radiation, relative humidity, and wind speed. While at larger time-scales, significant 

linear correlations were observed between ET and climatic variables like net 

radiation, relative humidity, ground temperature and air temperature. 

Kisi and Cimen (2011) investigated the accuracy of wavelet and SVM conjunction 

model for monthly streamflow forecasting. They proposed the conjunction model by 

combining discrete wavelet transform with SVM, and then compared the performance 

of this model to single SVM model. The results revealed that conjunction model could 

increase the forecasting accuracy of the SVM in monthly streamflow. It was also 

found that the presence of only a small number of training patterns in peak flow was 

the reason behind underestimation of the peak values.  

Adamowski et al. (2012) proposed a method based on coupling discrete wavelet 

transforms and ANN for urban water demand forecasting. The proposed model was 

used for modeling urban water demand forecasting at lead times of one day. The 
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performance of the model was compared to multiple linear regression, multiple 

nonlinear regression, autoregressive integrated moving average and ANN models. 

From the results it was determined that the use of wavelet decomposed subseries as 

inputs to ANN models helps in providing accurate forecasts of daily urban water 

demand. The results of this study indicated that coupled W-ANN model was a 

promising new method of short-term water demand forecasting. 

Campisi-Pinto et al. (2012) used ANN coupled with wavelet-denoising for 

forecasting urban water demand. The study measured the impact of using five 

different wavelet filter-banks (Haar and Daubechies of type Db2, Db3, Db4, and Db5) 

on the performance of neural network. In this study wavelet analysis was used to 

decompose water demand into a few selected component series that carried most of 

the information. The data were then selectively used in forecasting the water demand. 

This allowed most of the noisy data to be removed and facilitated the extraction of 

quasi-periodic and periodic signals in the water demand time series. Results showed 

that the W-ANN models provided more accurate results than the ANN models. This 

may be because the wavelet transforms provided useful decompositions of the 

original time series and the wavelet-transformed data improved the ANN forecasting 

performance by capturing detail information on various wavelet resolution levels.  

Deka and Prahlada (2012) developed hybrid W-ANN models for ocean wave  

height forecasting. Firstly, main time series of significant wave height data was 

decomposed to multiresolution time series using discrete wavelet transformations. 

Then, the multiresolution time series data were used as input to the ANN for 

forecasting the significant wave height at different multistep lead times. The results 

showed that the wavelet-ANN model made use of multiresolution time series as 

inputs allowed for more accurate and consistent predictions compared to the classical 

ANN models.  

Kisi and Cimen (2012) proposed a new wavelet-support vector machine 

conjunction model for daily precipitation forecasting. This study investigated the 

performance of wavelet and support vector machine conjunction model for one-day 

ahead precipitation forecasting. The performance of proposed model was compared to 

single SVM and ANN model. From the study it was found that SVM performed better 
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than the ANN model. Additionally, it was also found that combining discrete wavelet 

transform and SVM improved the performance of the single SVM model.  

Moosavi et al. (2013) evaluated the performance of ANN, ANFIS, W-ANN and 

W-ANFIS for forecasting monthly ground water level. It was found that W-ANFIS 

models were more accurate than other models. The W-ANFIS model was found to be 

more accurate for 1 and 2 months ahead forecasting than for 3 and 4 months.  Further, 

it was found that decomposition level in wavelet transform should be determined 

according to the periodicity and seasonality of the data series. This study confirmed 

that the optimum number of neurons in the hidden layer cannot be always determined 

by using a specific formula. 

Shirmohammadi et al. (2013) carried out a study to evaluate the ability of W-ANN 

and W-ANFIS techniques for meteorological drought forecasting in Iran. The study 

demonstrated that wavelet transform improved meteorological drought modeling. In 

the first step, the original SPI data were decomposed into a series of details using 

discrete wavelet transform. The decomposition process was iterated with successive 

approximation signals being decomposed in turn. In this way, the original time series 

was broken down into many lower resolution components. From the study it was 

observed that W-ANFIS models provided more accurate predictions than W-ANN 

models 

Nayak et al. (2013) investigated the potential of using Wavelet-neural network 

model to simulate river flow of the Malaprabha river basin for a period of 20 years. 

The input data was decomposed into details and approximations and they were then 

used as input to ANN model. The results were compared with the standard ANN 

model. The study concluded that the proposed model performed better at estimating 

the hydrograph characteristics. Wei et al. (2013) utilized W-ANN modeling method to 

predict monthly river flow in the Wei River basin, China. The performance of the W-

ANN model was compared with that of the ANN model. They noted that 

decomposing the input data with wavelets increased the accuracy of the ANN model. 

Falamarzi et al. (2014) proposed wavelet neural network model for forecasting 

daily ETo values from temperature and wind speed data. The proposed ANN model 

used one hidden layer and wavelet function as an activation function. The study 
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concluded that the use of wavelet function as activation function enhanced the 

performance of ANN models.   

The ability of W-SVM model for predicting ground water level was studied by 

Suryanarayana et al. (2014). They employed discrete wavelet transform with two 

coefficients (Db2 wavelet) for decomposing the input into wavelet series. The 

performance of the hybrid model was compared with SVM, ANN and the traditional 

auto regressive integrated moving average models. The results indicated that W-SVM 

model was more accurate in predicting groundwater levels compared to other models. 

2.7 SUMMARY OF LITERATURE 

The literature review suggests that AI models can be successfully used for modeling 

various hydrological processes like evapotranspiration. Various studies undertaken 

found that for estimating evapotranspiration, AI models have performed better than 

the empirical equations. The hybrid models combining the advantages of different AI 

techniques have performed well. However, there is a need for further investigation on 

the behavior of these models under different climatic and data availability condition.  

 AI models are data driven models and limited availability of datasets has been 

always a concern while using these models. There is a need to address this issue by 

testing different input combinations. 

2.8 RESEARCH QUESTIONS 

• Can hybrid wavelet-AI models be developed which are able to better handle the 

complex statistical behaviour of the hydrological processes like 

evapotranspiration? 

• What will be the strategy to address the difficulty of limited data availability 

scenario in developing countries like India?    

2.9 PROBLEM FORMULATION 

 Accurate estimation of evapotranspiration is of a great importance in arid and 

semi-arid regions where the evaporation losses often exceed the amount of 

precipitation, leading to exploitation of ground water resources and further 

degradation of the ecosystem. As India’s arid and semiarid lands constitute more 
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than 50 percent of the country’s geographic area, modeling ET in arid and semi-

arid regions becomes imperative. 

 ET is affected by a number of factors including; weather parameters, crop factors 

and environmental factors. Additionally, evapotranspiration is also heavily 

influenced by human interventions, which further increases the complexity of the 

process.  

 As ET is a complex and nonlinear phenomenon depending on many 

interdependent factors which exhibits significant variability in both space and 

time, developing models for this extremely complex process is a difficult task.  

 Owing to the difficulties associated with nonlinear model structure identification 

and parameter estimation of the complex evapotranspiration process, most of the 

models that have been developed are empirical in nature. These empirical methods 

which use fewer inputs are not found to be performing well when tested under 

different data availability and climatic conditions. 

 Recently, significant progress in the fields of AI has made possible to use models 

like ANN, ANFIS, SVM and ELM to be widely used in various engineering 

fields. 

 ET, like many other hydrological processes operate under a large range of scales 

varying from one hour to several months leading to a non-linear and non-

stationary behavior of the dataset. Classical AI techniques may not be able to cope 

with these characteristics of the dataset if, input and/or output data is not pre-

processed. Data preprocessing techniques which facilitate stabilization of mean 

and variance, and seasonality removal, are often applied to remove non 

stationarity in data used to deal with AI models.  

 Recently, wavelet transform analysis has become a popular analysis tool due to its 

ability to elucidate simultaneously both spectral and temporal information within 

the signal. Wavelet transforms provide useful decompositions of original time 

series, so wavelet-transformed data improve the ability of a forecasting model by 

capturing significant information on various resolution levels. 

 In view of the above aspects, there is a need to take up a study on utilization of 

hybrid wavelet-AI models for modeling the process of evapotranspiration. A 
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comparative study on performance evaluation of different hybrid AI models also 

needs to be undertaken. 

 

2.10 HYPOTHESIS OF THE STUDY 

 Use of hybrid Wavelet-AI models can help in better estimation of ETo values. 

 Use of meteorological data from nearby weather stations (within similar climatic 

zone) to estimate ETo at weather stations of our interest (having limited data) can 

help in obtaining better estimates of ETo values. 

2.11 OBJECTIVES OF THE STUDY 

The objective of this study is to study the applicability of hybrid AI models in 

hydrological modeling. The objectives of this study are 

 Development of hybrid models combining wavelet transform and AI model (W-

ANN, W-ANFIS and W-LSSVM) to estimate daily and weekly ETo in arid and 

semi-arid regions of India. 

 Performance evaluation of developed hybrid models to select the best model with 

reference to FAO-56PM for estimating ETo. 

 Assessing the impact of using extrinsic ETo values for modeling the process of 

ETo.  
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CHAPTER 3 

METHODOLOGY AND MODEL DEVELOPMENT 

As this study is based on developing hybrid AI models for estimating ET in arid and 

semiarid regions, the basics of various modeling paradigms like artificial neural 

network, adaptive neuro-fuzzy inference system, least-square support vector machines 

and wavelet transform are discussed in this chapter. Further, the study area, input 

selection and input combinations used for development of various models are also 

discussed in this chapter.  

 3.1  ARTIFICIAL NEURAL NETWORK   

Neural network is a group of interconnected artificial neurons that can be used as a 

computational model for information processing. These are non–linear statistical data 

modeling tools used to develop a relationship between input and output. 

Mathematically, an ANN can be treated as universal approximators having ability to 

learn from examples without the need of explicit physics.  

3.1.1 Feed-forward backpropagation (FFBP) 

A FFBP network has an input layer an output layer and one or more hidden layers 

between the input and output layer. Information in a neural network passes from the 

input to the output side (figure 3.1). Hidden layers enhance the network’s ability to 

model complex functions. The data passing through the connections from one neuron 

to another are manipulated by weights that control the strength of a passing signal. 

The neurons in one layer are connected to those in the next, but not to those in the 

same layer. Thus, the output of a node in a layer is only dependent on the inputs it 

receives from previous layers and the corresponding weights.  

The strength of the signal passing from one neuron to the other depends on the 

weight of the interconnections. Each node multiplies every input by its weight, sums 

the product, and then passes the sum through a transfer function to produce its result 

(figure 3.1). This transfer function is generally a steadily increasing S-shaped curve, 

called a sigmoid function. The attenuation at the upper and lower limbs of the ‘S’ 
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constrains the raw sums smoothly within fixed limits. The transfer function also 

introduces a nonlinearity that further enhances the network’s ability to model complex 

functions.  

3.1.2 Training a neural network 

The process of training ANN models involves optimization of various parameters and 

is similar to calibration of a hydrological model. Generally, ANN models do not have 

any prior knowledge about the problem. The data enters the network through the input 

layer. The nodes in the input layer are not computational nodes and simply broadcast 

the data over weighted connections to the hidden nodes. The ANNs are trained with a 

set of known input and output pairs called the training set. 

Figure 3.1 Architecture of feedforward backpropagation network used in the 

study 

In the training process, the weights are optimized to get a specific response from 

ANN. The network weights are initialized based on some previous experience or with 

a set of random values. These initial values of weights are then corrected during a 

training (learning) process. The weights in the hidden and output layer neurons are 

calculated using Eqs. 3.1 and 3.2, respectively 

𝑤(𝑁 + 1) = 𝑤(𝑁) − 𝜂𝛿𝜙          (3.1) 
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𝑤(𝑁 + 1) = 𝑤(𝑁) + 𝜂𝑥 ∑ 𝛿𝑞
𝑟
𝑞=1              (3.2) 

Where 𝑤 is training weight, 𝑁 is the number of iteration, 𝑥 is input value, 𝜂 is 

learning weight and 𝜙 is the output. 𝛿 is defined as 2𝜀𝑞𝜕𝜙/𝜕𝐼, where 𝐼 is the sum of 

the weighted inputs, 𝑞 is neuron index of the output layer, and 𝜀𝑞is error signal. The 

above training method is the standard backpropagation training method. The 

architecture of a typical FFBP network used in this study is also shown in figure 3.1.  

In the training process, estimated outputs are compared to the known outputs, then the 

errors occurred are back propagated to obtain the appropriate weight adjustments 

necessary in minimizing the errors. The neural network model stops iteration for 

training when the error becomes smaller than the target error. This error signal is 

propagated back and the weights are adjusted to reduce the difference between desired 

and computed outputs. The process of adjusting weights is continued until the 

required level of accuracy is obtained between target values and computed outputs. 

After learning, the weights are frozen. Then a dataset that the ANN has not 

encountered before is presented to validate its performance. Depending on the 

outcome, the ANN has to be either retrained or can be implemented for its designated 

use.  

A number of training algorithms were developed for error back propagation 

learning. A three layered feed-forward backpropagation network with LM algorithm 

for weight optimization was used in this study. LM is a combination of steepest 

descent and Gaussian-Newton method. LM algorithm has fast convergence among 

other algorithms and it is able to obtain lowest mean square error in many cases (Kisi 

2006). Referring to the recommendations given by researchers, all the ANN models in 

this study used only one hidden layer. Different ANN architectures for modeling daily 

ETo were tested by varying the number of neurons in the hidden layer. A trial and 

error procedure was adopted to find the optimum number neurons in the hidden layer. 

Performance of the sigmoid activation function in the hidden layer with linear 

activation function at the output layer was also studied.  

3.2 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

 Jang (1993) proposed a method that used neural network learning algorithm for 

constructing a set of fuzzy if-then rules from stipulated input output pairs. 
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Fundamentally, ANFIS is a functional equivalent of fuzzy inference systems endowed 

with neural learning capabilities. An ANFIS model combines the transparent and 

linguistic representation of a fuzzy system with learning ability of ANN. This allows 

them to be trained in performing input/output mapping as an ANN model. ANFIS 

comes with an additional benefit of being able to provide a set of rules on which the 

model is based.  

Figure 3.2 Architecture of ANFIS model used in the study 

Typically, an ANFIS network architecture consists of five different layers (figure 

3.2). Each layer contains several nodes described by the node function. Let 𝑂𝑖
𝑗
 denote 

the output of the ith node in layer j. 

Each node in Layer 1 is an adaptive node with node output defined as 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥), for i=1,2…              (3.3) 

𝑂𝑖
1 = 𝜇𝐵𝑖(𝑦), for i=3,4…              (3.4)  

Where x (or y) is the input to the node; and 𝐴𝑖 (or 𝐵𝑖) is a linguistic label associated 

with this node. The membership function for 𝐴𝑖 and 𝐵𝑖  can be represented by various 

functions. 

In layer 2, each node П multiplies incoming signal and output is the product of all the 

incoming signals. 
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𝑂𝑖
2 = 𝜔𝑖 = 𝜇𝐴𝑖(𝑥)𝜇𝐵𝑖(𝑦), for i=1,2..           (3.5) 

Each node output represents the firing strength of a rule. 

In layer 3, each node N calculates the ratio of the ith rules firing strength to the sum of 

all rule’s firing strengths. 

𝑂𝑖
3 = 𝜔𝑖̅̅ ̅ =

𝜔𝑖

𝜔1+𝜔2
 , for i=1,2…             (3.6) 

The normalized firing strengths are the output from this layer. 

In layer 4, each node calculates the contribution of the ith rule to the overall output 

𝑂𝑖
4 = 𝜔𝑖̅̅ ̅𝑓

𝑖 = 𝜔𝑖̅̅ ̅(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖), for i=1,2…         (3.7) 

Where 𝜔𝑖̅̅ ̅ is the output of layer 3 and (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is the parameter set. The parameter of 

this layer are known as consequent parameters. 

In layer 5, the signal node calculates the final output as the summation of all input 

signals 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝑜𝑢𝑡𝑝𝑢𝑡 = ∑𝜔𝑖̅̅ ̅ 𝑓𝑖 =

∑ 𝜔𝑖𝑖 𝑓𝑖

∑ 𝜔2𝑖
           (3.8) 

Thus, an adaptive network is functionally equivalent to a sugeno-type fuzzy inference 

system. In this study, a hybrid approach combining least square error and 

backpropagation methodology was adopted to develop all the ANFIS models. Based 

on the literature it was decided to evaluate the performance of three and five number 

of membership functions (MFs) with triangular, trapezoidal, Gaussian, generalized 

bell-and spline shapes to determine the most efficient ANFIS model. 

3.3 LEAST SQUARE SUPPORT VECTOR MACHINE 

The foundation of support vector machines (SVM) has been developed by Vapnik, 

(1995) and is gaining popularity due to many attractive features and promising 

empirical performances. The formulation embodies SRM principle, which has shown 

better performances than ERM which is employed by conventional neural networks. 

SRM minimizes an upper bound on the expected risk, as opposed to ERM that 

minimizes the error on the training data. It is this difference, which equips SVM with 
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a greater ability to generalize, thus, achieving the goal of statistical learning. SVM 

comes with an advantage of using kernel trick to minimize both model complexities 

and prediction errors simultaneously. SVMs were initially developed to solve the 

classification problems, but recently they have been extended to the domain of 

regression problems. LS-SVM provides fast implementation of the traditional SVM. 

Further details about the LS-SVM model are briefly discussed in the sections below. 

3.3.1 SVM algorithm for nonlinear function estimation 

Considering a training dataset  

𝐷 = {(𝑥1, 𝑦1),… , (𝑥𝑘 , 𝑦𝑘),… , (𝑥𝑛, 𝑦𝑛)}, 𝑥𝑘 ∈ 𝑅
𝑛, 𝑦𝑘 ∈ 𝑅       (3.9) 

with a nonlinear function 

𝑓(𝑥) = ⟨𝜔,𝜑(𝑥)⟩ + 𝑏                (3.10) 

where ⟨∙,∙⟩ denotes the dot product; 𝜔 ∈ 𝑅𝑛𝑘  is the weight vector in primal weight 

space; 𝜑(∙): 𝑅𝑛 → 𝑅𝑛𝑘 is the nonlinear function that maps the input space to a so-

called high dimensional feature space where linear regression is performed; b is the 

bias term.  

The optimization problem is given  

minimize        
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑘 + 𝜉𝑘

∗𝑁
𝑘=1 )    (3.11)  

Subjected to   {

𝑦𝑘 − ⟨𝜔,𝜑(𝑥𝑘)⟩ − 𝑏 ≤  ε +  𝜉𝑘
⟨𝜔,𝜑(𝑥𝑘)⟩ + 𝑏 − 𝑦𝑘  ≤  ε +  𝜉𝑘

∗

𝜉𝑘, 𝜉𝑘
∗  ≥ 0

}       (3.12) 

With ε-insensitive loss function 

|𝑦 − 𝑓(𝑥, 𝜔)|𝜀  = {
0,                                   if |𝑦 −  𝑓(x, ω)|  ≤  ε 
|𝑦 −  𝑓(x, ω)| − ε,                         otherwise 

    (3.13) 

where  ε is the approximation accuracy that can be violated by means of the slack 

variables 𝜉, 𝜉∗ for the non-feasible case. Constant C > 0 determines trade-off between 

flatness of 𝑓 and the amount up to which deviations larger than ε are tolerated. A 

smaller value of C tolerates a larger deviation. 
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The Lagrangian function is given by equation (3.14), where 𝛼, 𝛼∗, 𝜂, 𝜂∗ ≥  0 are 

Lagrange multipliers. To find the saddle point, one obtains the partial derivate of 

𝐿𝑆𝑉𝑀 with respect to the primal variable (𝜔, 𝑏, 𝜉, 𝜉∗) by equation (3.15). 

𝐿𝑆𝑉𝑀 =
1

2
‖𝜔‖2 + 𝐶 ∑ (𝜉𝑘 + 𝜉𝑘

∗𝑁
𝑘=1 ) − ∑ 𝑎𝑘

𝑁
𝑘=1 (𝜀 + 𝜉𝑘 − 𝑦𝑘 + ⟨𝜔,𝜑(𝑥𝑘)⟩ + 𝑏) −

  ∑ 𝑎𝑘
∗𝑁

𝑘=1 (𝜀 + 𝜉𝑘
∗ + 𝑦𝑘 − ⟨𝜔,𝜑(𝑥𝑘)⟩ − 𝑏) − ∑ (𝑁

𝑘=1 𝜂𝑘𝜉𝑘 + 𝜂𝑘
∗𝜉𝑘

∗    (3.14) 

{
  
 

  
 
𝛿𝐿𝑆𝑉𝑀

𝛿𝜔
= 0 ⟶ 𝜔 = ∑ (𝑁

𝑘=1 𝛼𝑘 − 𝛼𝑘
∗)𝜑(𝑥𝑘)

𝛿𝐿𝑆𝑉𝑀

𝛿𝑏
= 0 ⟶ ∑ (𝑁

𝑘=1 𝛼𝑘
∗−𝛼𝑘) = 0

𝛿𝐿𝑆𝑉𝑀

𝛿𝜉𝑘
= 0 ⟶ 𝐶 − 𝛼𝑘 − 𝜂𝑘) = 0

𝛿𝐿𝑆𝑉𝑀

𝛿𝜉𝑘
∗ = 0 ⟶ 𝐶 − 𝛼𝑘

∗ − 𝜂𝑘
∗) = 0

    (3.15) 

The condition for optimality yield the following dual problem 

𝑚𝑎𝑥𝛼,𝛼∗𝑄 = −
1

2
∑ (𝛼𝑘 − 𝛼𝑘

∗)(𝛼𝑙 − 𝛼𝑙
∗)𝑁

𝑘,𝑙=1 ⟨𝜑(𝑥𝑘),𝜑(𝑥𝑙)⟩ − 𝜀 ∑ (𝛼𝑘 −
𝑁
𝑘=1

𝛼𝑘
∗) +∑ 𝑦𝑘(𝛼𝑘 − 𝛼𝑘

∗)𝑁
𝑘=1                (3.16) 

    

Subject to {
∑ (𝛼𝑘 − 𝛼𝑘

∗) = 0𝑁
𝑘=1

𝛼𝑘, 𝛼𝑘
∗ ∈ [0, 𝐶]

 

The parameter b can be computed by exploiting the so-called KKT conditions which 

states that, at the optimal solution, the product between dual variables and constrains 

has to vanish. 

{
𝛼𝑘[𝜀 + 𝜉𝑘 − 𝑦𝑘 + 〈𝜔, 𝜑(𝑥𝑘)〉 + 𝑏] = 0

𝛼𝑘
∗[𝜀 + 𝜉𝑘

∗ + 𝑦𝑘 − 〈𝜔, 𝜑(𝑥𝑘)〉 − 𝑏] = 0
           (3.17) 

{
𝜂𝑘𝜉𝑘 = (𝐶 − 𝛼𝑘)𝜉𝑘 = 0

𝜉𝑘
∗𝜉𝑘
∗ = (𝐶 − 𝛼𝑘

∗)𝜉𝑘
∗ = 0

               (3.18) 

From (3.17) it follows that only for |𝑓(𝑥𝑘) − 𝑦𝑘| ≥ 𝜀 the Lagrange multipliers may be 

nonzero, or in other words, all samples inside 𝜀-tube the 𝛼𝑘, 𝛼𝑘
∗  vanish. So one gets a 

sparse expansion of 𝜔, and samples that come with non-vanishing coefficients are 

called support vectors. 
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In the end, the resulting SVM for nonlinear function estimation take form: 

𝑓(𝑥) = ∑ (𝑁
𝑘=1 𝛼𝑘 − 𝛼𝑘

∗)⟨𝜑(𝑥), 𝜑(𝑥𝑘)⟩ + 𝑏          (3.19) 

According to Mercer’s condition, the inner product ⟨𝜑(𝑥), 𝜑(𝑥𝑘)⟩ can be defined 

through a kernel 𝐾(𝑥, 𝑥𝑘) so the equation (3.19) can be expressed as  

𝑓(𝑥) = ∑ (𝑁
𝑘=1 𝛼𝑘 − 𝛼𝑘

∗)𝐾(𝑥, 𝑥𝑘)  + 𝑏      (3.20) 

3.3.2  LS-SVM for nonlinear function estimation 

In least square support vector machine for function estimation, the optimization 

problem is formulated as, 

min 𝐽(𝜔, 𝑒) =
1

2
‖𝜔‖2 + 

1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1             (3.21) 

Subject to 𝑦𝑘 = ⟨𝜔, 𝜑(𝑥𝑘)⟩ + 𝑏 + 𝑒𝑘,  k=1,…N 

where 𝑒𝑘𝜖𝑅 are error variables; 𝛾 ≥ 0 is regularization constant. Smaller 𝛾 can avoid 

overfitting in case of noisy data. The Lagrangian is given by  

𝐿𝐿𝑆−𝑆𝑉𝑀 =
1

2
‖𝜔‖

2
+
1

2
𝛾 ∑ 𝑒𝑘

2𝑁
𝑘=1 − ∑ 𝑎𝑘

𝑁
𝑘=1 {⟨𝜔, 𝜑(𝑥𝑘)⟩ + 𝑏 + 𝑒𝑘 − 𝑦𝑘}  (3.22) 

with Lagrange multipliers  𝛼𝑘𝜖𝑅. The conditions for optimality are given by 

{
  
 

  
 

𝛿𝐿𝐿𝑆−𝑆𝑉𝑀

𝛿𝜔
= 0 ⟶ 𝜔 = ∑ 𝛼𝑘

𝑁
𝑘=1 𝜑(𝑥𝑘)

𝛿𝐿𝐿𝑆−𝑆𝑉𝑀

𝛿𝑏
= 0 ⟶ ∑ 𝛼𝑘

𝑁
𝑘=1 = 0

𝛿𝐿𝐿𝑆−𝑆𝑉𝑀

𝛿𝑒𝑘
= 0 ⟶ 𝛼𝑘 = 𝛾𝑒𝑘), (𝑘 = 1,…𝑁)

𝛿𝐿𝐿𝑆−𝑆𝑉𝑀

𝛿𝛼𝑘
= 0 ⟶ ⟨𝜔,𝜑(𝑥𝑘)⟩ + 𝑏 + 𝑒𝑘 − 𝑦𝑘

         (3.23) 

These conditions are similar to standard SVM optimality conditions (3.15), except for 

the condition 𝛼𝑘 = 𝛾𝑒𝑘. After elimination of 𝜔, 𝑒 one obtains the following linear 

equation  

[
0 1𝑉

𝑇

1𝑣 Ω + 𝐼/𝛾
] [
𝑏
𝛼
] = [

0
𝑦
]               (3.24) 

where 𝑦 = [𝑦1, … , 𝑦𝑛], 1𝑣 = [1,… ,1], 𝛼 = [𝛼1, … , 𝛼𝑁] and on applying the Mercer’s 

condition again 
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Ω𝑘𝑙 = ⟨𝜑(𝑥𝑘), 𝜑(𝑥𝑙)⟩ = 𝐾(𝑥𝑘, 𝑥𝑙) 𝑘, 𝑙 = 1,… ,𝑁 (3.25) 

Although the choices of the kernel function in LS-SVM are the same as those in 

SVM, more emphasis has been put on the powerful Gaussian radial basis function 

kernel which is given as  

𝐾(𝑥, 𝑥𝑘) = exp (−‖𝑥 − 𝑥𝑘‖
2/2𝜎2            (3.26) 

 The resulting LS-SVM model for function estimation becomes 

𝑓(𝑥) = ∑ 𝛼𝑘𝐾(𝑥, 𝑥𝑘) + 𝑏
𝑁
𝑘=1               (3.27) 

where  𝛼, 𝑏 are solution to (3.24). 

On comparing (3.11) to (3.21) we can see that LS-SVM is a reformulation of the 

principles of SVM, which involves equality instead of inequality constraints. 

Furthermore, LS-SVM uses the least squares loss function instead of the e-insensitive 

loss function. In this way, the solution follows a linear KKT system instead of a 

computationally hard quadratic programming problem. Therefore, it is easier to 

optimize with shorter computational time. Also, the dual problem of LS-SVM 

corresponds to solving a linear KKT system, which is a square system with a global 

and possibly unique solution if the matrix has full rank.  

Choice of kernel functions and hyper-parameters are some critical issues needed 

to be addressed before the application of LS-SVM. Radial basis function (RBF) a 

more compactly supported kernel function is able to reduce the computational 

complexity of the training process and provides a good performance. Hence, the RBF 

kernel function was employed in this study. Different techniques for tuning of the 

hyper-parameters related to the regularization constant are available in the literature. 

In this study the regularization parameter gamma (𝛾) and kernel function parameter 

(𝜎2) were obtained by grid search technique based on leave-one-out cross validation. 

3.4 WAVELET TRANSFORM 

The existing literature reveals that ETo, like many other hydrological processes 

operate under a large range of scales varying from one hour to several months leading 

to non-linear and non-stationary behavior of the dataset. Classical AI models alone 

may not be able to cope with these characteristics of the dataset if input and/or output 
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data are not preprocessed. Wavelet is a time series analysis tool, which provides 

simultaneous time and frequency information about the time series. Use of wavelet 

per-processed data provides useful decompositions of the original time series and may 

enhance the performance of AI models by capturing detail information on various 

wavelet resolution levels  

Signals whose frequency content changes with time are called non-stationary 

signals. In other words, the frequency content of non-stationary signal changes in 

time. Hence, it becomes important to know which frequency component exists at what 

time. Wavelet transform is widely used for the analysis of non-stationary time series. 

In wavelet transform, the original time series is broken down into its ‘wavelets’ which 

is a scaled and shifted version of the mother wavelet. The main advantage of using 

wavelet transform is that it provides both time and frequency information 

simultaneously. This time-frequency representation of wavelet transform is not 

available in traditional Fourier transform (FT) and Short Term Fourier Transform 

(STFT). FT of a signal in time domain gives information about how much of each 

frequency exists in the raw signal without giving the information about time. 

Therefore, FT is not suitable for analysis of non-stationary data. On the other hand, 

STFT provides a measure of time and frequency resolutions, but the use of a fixed 

window size at all times and for all frequencies is a limitation of this method. 

3.4.1 Discrete wavelet transform 

Wavelet transform (WT) addresses the above limitation by partitioning the time- 

frequency plane using a range of window sizes. At high frequencies, the wavelet 

transform gives up some frequency resolution compared to the Fourier transform. 

Figure 3.3 shows a representation of FT, STFT and WT. Wavelet transform provides 

multi resolution analysis of a time signal. At low scales (high frequency) it gives a 

better time resolution (represented by compact width of time window) and poor 

frequency resolution (represented by wider width of scale window) while, at high 

scales (low frequency) it gives a better frequency resolution and poor time resolution. 

In actual practice, this information is important for analysis of the time series signals. 

The lower scales (compressed wavelet) traces the abrupt change or high frequency 

component of a signal while the higher scales (stretched wavelet) traces slowly 
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progressing occurrences or low-frequency component of the signal. Using this 

method, wavelet transform breaks the signal into wavelets (small wave) which are 

scaled and shifted versions of the original wavelet (mother wavelet). The wavelet 

transformation can be divided into following two types: 

Figure 3.3 Fourier transform, short time Fourier transform and wavelet 

transform 

3.4.1.1 Continuous wavelet transform (CWT) 

The basic objective of the CWT is to achieve a complete time-scale representation of 

localized and transient phenomenon occurring at different time scales. The CWT of a 

signal is given by the equation 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√𝑎
∫ 𝑥(𝑡)
∞

−∞
𝜓∗ (

𝑡−𝑏

𝑎
)𝑑𝑡 (3.28) 

In the equation above, the transformed signal is a function of two variables, a, the 

scale factor  and b, the translation function of the function ψ(𝑡). While, * corresponds 

to the complex conjugate, ψ(𝑡) the transforming function called mother wavelet is 

defined as  

∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
                 (3.29) 

 The term translation is related to the location of the window, as the window is 

shifted through the signal. This term, obviously, corresponds to time information in 
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the transform domain. The scale parameter is defined as the reciprocal of frequency. 

Low frequencies (high scales) correspond to the global information of a signal (that 

usually spans the entire signals) whereas, high frequencies (low scales) correspond to 

a detailed information of a hidden pattern in the signal (that usually lasts a relatively 

short time).  

 The CWT is computed by changing the scale of the analysis window, shifting the 

window in time, multiplying by the signal, and integrating over all times. The original 

signal is reconstructed using the inverse wavelet transform which is given as 

𝑥(𝑡) =
1

𝑐𝜓
∫ ∫

1

√𝑎
𝜓

∞

0
(
𝑡−𝑏

𝑎
)

∞

−∞
𝐶𝑊𝑇(𝑎, 𝑏)

𝑑𝑎.𝑑𝑏

𝑎2
         (3.30) 

where 𝑐𝜓 is the admissibility constant. 

3.4.1.2 Discrete wavelet transform (DWT) 

Calculating the CWT coefficients at every possible scale is a fair amount of work, and 

generates a large amount of data. CWT produces 𝑁2 coefficients from a dataset of 

length N. If one chooses scales and positions based on the powers of two (dyadic 

scales and positions) then the analysis becomes more efficient and accurate. Also, it 

provides N transform coefficients. This transform is called discrete wavelet, and has 

the form 

𝜓𝑚,𝑛(𝑡) =
1

√𝑎𝑜
𝑚𝜓(

𝑡−𝑛𝑏𝑜𝑎𝑜
𝑚

𝑎𝑜
𝑚 )              (3.31) 

where m and n are integers that control the wavelet dilation and translation, 

respectively; 𝑏𝑜 is the location parameter and must be greater than zero; 𝑎𝑜 is a 

specified fixed dilation step greater than 1. The most common and simplest choice of 

parameters 𝑎𝑜 and 𝑏𝑜 are 2 and 1 (time steps), respectively. This power of two 

logarithmic scaling of the translations and dilations is known as the dyadic grid 

arrangement (Mallat, 1989) and is defined as 

𝜓𝑚,𝑛(𝑡) = 2−𝑚/2𝜓(2−𝑚𝑡 − 𝑛)             (3.32) 

For discrete time series, xt, where xt occurs at discrete time t, the discrete wavelet 

transform becomes  



35 

 

𝑊𝑚,𝑛 = 2
−𝑚/2∑ 𝜓𝑁−1

𝑖=0 (2−𝑚𝑡 − 𝑛)𝑥𝑡           (3.33) 

Where 𝑊𝑚,𝑛 is wavelet coefficient for the discrete wavelet of scale a = 2m and location 

b = 2mn. Eq.(3.33) considers a finite time series xt (t=0,1,2,…,N-1), and N is an integer 

power of 2: N = 2M; n is time translation parameter. This gives the range of m and n 

as, respectively, 0 < n < 2M-m - 1 and 1 < m < M. At the largest wavelet scale (i.e. 2m 

where m = M) only one wavelet is required to cover the time interval, and only one 

coefficient is produced. At the next scale (2m-1), two wavelets cover the time interval, 

hence two coefficients are produced, and so on down to m = 1. At m = 1, the a scale is 

21, i.e. 2M-1 or N/2 coefficients are required to describe the signal at this scale. The 

total number of wavelet coefficients for a discrete time series of length N = 2M is then 

1 + 2 + 4 + 8+ …+ 2M-1 = N-1. 

In addition to this, a signal smoothed component, 𝑊̅, is left, which is the signal mean. 

Thus, a time series of length N is broken into N components, i.e. with zero 

redundancy. (Mallat, 1998) gives the inverse discrete transform as 

𝑥𝑡 = 𝑊̅ + ∑ ∑ 𝑊𝑚,𝑛
2𝑀−𝑚−1
𝑛=0

𝑚
𝑚=1 2−𝑚/2𝜓(2−𝑚𝑡 − 𝑛)       (3.34) 

 

which can be written as, 

𝑥𝑡 = 𝑊̅(𝑡) + ∑ 𝑊𝑚(𝑡)
𝑀
𝑚=1                (3.35) 

where  𝑊̅(𝑡) is the approximation sub-signal at level M and 𝑊𝑚(𝑡) are detail sub-

signals at level m = 1,2,….,M. The detail wavelet coefficients 𝑊𝑚(𝑡)  can capture 

small features of interpretational value in the data. The residual term 𝑊̅(𝑡) represents 

background information of data. 

DWT operates two sets of function; high-pass filter (wavelet function) and low-

pass filters (scaling function). The original time series are passed through high-pass 

and low-pass filters (as shown in figure 3.4) and down sampled by two  (Deka and 

Prahalada, 2012). After passing the signal through high pass and low pass filters, 

detailed (D1, D2,…., Dn, which are high frequency components of the original signal) 

and approximation coefficients (A1, A2,….An, which are low frequency components 

of the original signal) are obtained. At any nth decomposition level, there will be one 

series of approximation coefficients at nth level (i.e. An) and n series of detailed 
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coefficients (i.e. D1, D2,….,Dn). Therefore, there will be total n+1 coefficients and 

the sum of An + D1 + D2 + ……+ Dn is equal to the original signal x (t).    

Figure 3.4 Discrete wavelet transform decomposition tree 

3.4.1.3 Selection of mother wavelet 

For developing hybrid W-ANN, W-ANFIS and W-LSSVM models input datasets 

were first decomposed into subseries using DWT. Then, these wavelet-decomposed 

subseries were used as inputs to improve the efficiency of ANN, ANFIS and LS-SVM 

models. During wavelet analysis, selection of appropriate mother wavelet functions 

becomes crucial. As dyadic wavelet transform was used in this study, orthogonal 

mother wavelets were employed for wavelet decomposition. The choice of mother 

wavelet depends on the data to be analyzed. In this study, the performance of various 

Db wavelets was evaluated. Daubechies wavelets are a family of orthogonal wavelets 

defining a discrete wavelet transform. They are further sub classified according to the 

number of vanishing moments they have. For Db family wavelets, the smoothness of 

scaling and wavelet function increases with the number of vanishing moments. 

Daubechies wavelets Db2, Db3, Db4 and Db5 are used in this study (refer figure 3.5). 

All Daubechies wavelets of order N (DbN) are asymmetric, orthogonal and 

biorthogonal. They are compactly supported wavelets with extremal phase and 

highest number of vanishing moments for a given support width. Daubechies wavelets 

have a compact support, which is suitable for local analysis of the signal.  

(Input signal) 
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Figure 3.5 Wavelet from Daubechies family 

Another important concern in the use of wavelet transform is the selection of 

optimum decomposition level. The effect of using various decomposition levels on 

the performance of W-ANN model was also investigated. The maximum level of 

decomposition was selected using the formula L = int [log (N)], where L and N are 

decomposition level and number of time series data respectively. In this study, the 

time series of various climatic variables were decomposed into one, two and three 

levels using the mother wavelets mentioned earlier. Figure 3.6 presents a second level 

decomposition of a time series using Db3 mother wavelet. In the figure ‘s’ represents 

the raw signal (maximum temperature at the Jodhpur weather station), a2 represents 

the approximation at level 2 while d1 and d2 represent the details at level 1 and 2 

respectively. As mentioned earlier the sum of a2, d2 and d1 is equal to the value of the 

original signal ‘s’. 
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Figure 3.6 Wavelet decomposition of maximum temperature time series for 

Jodhpur weather station 

3.5 FAO-56PM METHOD FOR ESTIMATING REFERENCE CROP 

EVAPOTRANSPIRATION 

The procedure for estimation of ET rates from agricultural crops involves 

computation of ETo using regularly recorded climatological data. Several equations, 

broadly classified as temperature-based, radiation-based and combination-type have 

been proposed for ETo computations. Majority of the studies carried out to evaluate 

the performance of various ETo estimation equations have found the physically-based 

Penman-Monteith equation as the best estimator of ETo across a wide range of 

climates. The recent version of the internationally accepted FAO methodology for 

estimation of crop water requirements (Allen et al. 1998), recommends the sole use of 

the Penman-Monteith (hereafter referred as FAO-56PM) equation for ETo 

computations. 

As per Allen et al. (1998), the recommended form of the FAO-56PM equation is  

𝐸𝑇𝑜 =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇𝑚𝑒𝑎𝑛 + 273

𝑢2(𝑒𝑠 − 𝑒𝑎)

Δ + 𝛾(1 + 0.34𝑢2)
                                        (3.36)   
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where ETo is reference crop ET (mm/day) defined as ‘ the evapotranspiration from a 

hypothetical reference crop with an assumed crop height of  0.12 m, a fixed surface 

resistance of 70 s/m and an albedo of 0.23’, where Rn is net radiation at crop surface 

(MJ/m2/d), G is soil heat flux density (MJ/m2/d), Tmean is mean air temperature (°C) at 

two meter height, U2 is wind speed (m/s) at two meter height, es is saturation vapor 

pressure (kPa), ea is actual vapor pressure (kPa), (es-ea) is saturation vapor pressure 

deficit (kPa), ∆ is slope of vapor pressure versus temperature curve at temperature T 

(kpa/°C) and 𝛾 is the psychrometric constant (kPa/°C). Application of the FAO-56PM 

requires standard ground-based climatological data of solar radiation or sunshine, air 

temperature, humidity and wind speed and site details of latitude and altitude. The 

structure of the equation suggests that, except wind speed and air temperature none of 

the other inputs appears explicitly in computation of ETo. In other words, use of this 

equation involves conversion of measured parameters into a number of estimated 

parameters. FAO-56PM describes the procedures to be adopted to compute these 

parameters. Various alternative methods for estimating these parameters in missing 

data scenario are also mentioned in Allen et al. (1998). 

3.6 STUDY AREA AND DATASETS 

India’s arid and semiarid lands constitute more than 50 percent of the country’s 

geographic area and are home to 60 percent of the rural population where agriculture 

is the primary occupation. Aridity is usually expressed as a function of rainfall and 

temperature. A useful representation of aridity is the following climatic aridity index; 

𝐴𝑟𝑖𝑑𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =
𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑣𝑎𝑝𝑜𝑡𝑟𝑎𝑛𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
          (3.37) 

where, potential evapotranspiration is calculated by FAO-56PM. 

Arid regions (aridity index 0.03 to 0.2) and semi-arid regions (aridity index 0.2 to 

0.5) are the regions where a combination of high temperature and low rainfall causes 

evaporation that exceeds precipitation. Also, the precipitation received is highly 

variable, sporadic and unpredictable, making it almost impossible to produce crops 

without irrigation. Considering these factors, it was intended to carry out the study for 

arid and semi-arid regions of India. 



40 

 

Figure 3.7 Arid and semi-arid zones of India   

3.6.1 Datasets used for arid region 

In this study, weekly climatic data from Jodhpur (26°28’N latitude and 73°02’E 

longitude) and Pali (25°77’N latitude and 73°33’ E longitude) weather stations were 

used. The data were obtained from the Central Arid Zone Research Institute. Both 

these stations are located in The Thar Desert which is classified as Arid Region (BW) 

according to the Koppen climate classification. Extreme heat in summer and cold 

winters are the characteristics of the desert and the study area being no exception, the 

temperature may vary from a maximum of 49 0C in summer to a minimum of 1 0C in 

winter. The study area receives an annual average rainfall of about 326 mm and the 

rainy days are often limited to 30 days. The soil here can be classified mainly as 

sandy and loamy. The data samples covered forty years (1970-2009) of weekly 

records of climatic parameters. All the models were trained using first thirty years 
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(1970 to 1999) data while the remaining ten years (2000 to 2009) data were used for 

validation and testing the models. 

The weekly weather data used in this study were maximum air temperature [Tmax 

(0C)], minimum air temperature [Tmin (
0C)], maximum relative humidity [RHmin (%)], 

minimum relative humidity in percentage [RHmin (%)], sunshine duration (hours) and 

wind speed measured at 2 meters height above the ground level [U2 (m/sec)]. Solar 

radiation [Rs (MJ/m/d)] is an important parameter for estimating ETo (Tabari et al. 

2016). As solar radiation (Rs) measuring instruments such as pyranometer were not 

available, Rs was estimated using Angstrom formula, which relates solar radiation to 

extraterrestrial radiation and relative sunshine duration (n/N). 

Table 3.1 Statistical properties of weekly dataset in arid region. 

Station Variable Xmax Xmin Xmean Sx Cv Csx 

Correlation 

with ETo 

Jodhpur 

Tmax 46.20 19.60 33.91 05.5 0.16 -0.32 0.82 

Tmin 32.40 05.30 20.37 06.41 0.31 -0.32 0.75 

RHmax 96.30 15.70 58.16 17.88 0.31 0.01 -0.15 

RHmin 85.90 03.90 28.54 16.87 0.59 1.02 -0.10 

U2 07.31 00.00 01.83 01.04 0.57 1.02 0.77 

Rs 26.72 10.74 18.77 03.57 0.19 0.06 0.70 

ETo 12.83 01.24 05.23 02.15 0.41 0.61 1.00 

         

Pali 

Tmax 47.00 19.50 34.22 05.42 0.16 -0.19 0.81 

Tmin 32.80 2.80 19.11 07.51 0.39 -0.36 0.73 

RHmax 98.70 13.90 63.19 17.57 0.28 -0.22 -0.45 

RHmin 88.90 03.30 33.01 17.97 0.54 0.90 -0.29 

U2 07.08 00.00 02.20 01.09 0.50 1.06 0.73 

Rs 29.79 10.41 19.80 04.08 0.21 0.31 0.72 

ETo 14.59 02.20 05.64 02.36 0.42 0.72 1.00 

The statistical properties of each climatic variable for the entire dataset at Jodhpur 

and Pali weather stations are given in table 3.1. In the table the Xmax, Xmin, Xmean, Sx, 

Cv and Csx denote the maximum, minimum, mean, standard deviation, variation 

coefficient and skewness, respectively. It can be observed in table 3.1 that the 

statistical properties of the Jodhpur and Pali station are quite similar. This may be due 

to the proximity (about 65 Km apart) of the weather stations. The wind speed and ETo 

show a skewed distribution. For both the stations, maximum temperature has the 

highest correlation with ETo followed by the wind speed and solar radiation. 
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Furthermore, a high correlation of 0.86 was also seen between the ETo values of both 

stations.  

3.6.2 Datasets used for semi-arid region 

Daily climatic data from Hyderabad (17°27’N latitude and 78°28’E longitude) and 

Kurnool (15°50’N latitude and 78°04’ E longitude) weather station were used in this 

study. The Hyderabad weather station is located in the Deccan plateau and rises to an 

average height of 536 meters above sea level. The soil type in Hyderabad is mainly 

classified as red sandy soil. It also features rock formations which are amongst the 

oldest and hardest rocks in the world. Kurnool weather station is located on the banks 

of the Tungabhadra river at an altitude of 281 meters above sea level. Kurnool 

weather station is situated about 200 km away from the Hyderabad weather station. 

The soil here is mainly made of mixed red and black soil. The study area under 

consideration (Hyderabad and Kurnool) is classified as semi-arid region according to 

the Koppen climate classification and receives an annual rainfall of about 700 mm 

from the south-west monsoon winds. 

 Daily weather data  for a period of six years (2004 to 2009) was obtained from the 

surface observatories operated and maintained by the India Meteorological 

Department, Government of India. Out of the six years data obtained, four years data 

(2004 to 2007) were used for training, while the remaining two years data (2008 to 

2009) were used for validation and testing.  Both the stations are equipped with 

standard ground based instruments; alcohol and wet-bulb thermometers, sunshine 

recorder, cup anemometer and mercury thermometers. The individual data records 

received from IMD were subjected to screening and integrity checks as per the 

procedures described in FAO-56PM. 

 The climatic data received from IMD included Tmax, Tmin, U2, sunshine hours and 

dew point temperature [Tmin (
0C)]. Unfortunately, good quality sunshine records were 

not available for the entire period considered; the solar radiation was calculated as a 

function of maximum and minimum temperature using the Hargreaves radiation 

formula. The statistical properties of daily datasets obtained from Hyderabad and 

Kurnool weather stations are given in table 3.2. It is clear from the table that the 
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statistical properties of the weather data at Hyderabad and Kurnool station are 

identical. The wind data at both the station show high positive skewness.  

Table 3.2 Statistical properties of daily dataset in semi-arid region. 

Station Variable Xmax Xmin Xmean Sx Cv Csx 
Correlation 

with ETo 

Hyderabad 

Tmax 43.98 22.60 33.01 3.93 15.42 0.46 0.77 

Tmin 29.70 8.70 20.72 3.88 15.02 -0.51 0.56 

Tdew 27.60 1.60 16.46 4.78 22.82 -0.50 -0.12 

U2 7.78 0.28 2.62 1.18 1.40 0.94 0.41 

Rs 27.65 6.93 18.60 4.56 20.82 -0.47 0.66 

ETo 13.25 2.12 5.67 1.65 2.71 0.83 1.00 

        

 Tmax 45.30 23.60 34.34 3.75 14.06 0.42 0.72 

Kurnool 

Tmin 31.00 12.70 22.88 3.51 12.33 -0.33 0.72 

Tdew 27.60 1.60 16.45 4.77 22.73 -0.50 0.23 

U2 5.94 0.00 1.18 0.91 0.82 1.12 0.69 

Rs 27.08 7.14 18.53 2.90 8.41 -0.17 0.65 

ETo 8.87 1.61 4.62 1.35 1.83 0.34 1.00 

It can be observed from the table that Tmax and Tmin show very good correlation 

with the ETo data. Further, it can also be observed that Rs at both the weather station 

has a significant correlation with the ETo values. This high correlation between Rs 

and ETo in semi-arid region can be attributed to the fact that the Rs values are 

calculated using the temperature values. A high correlation of 0.73 was observed 

between the ETo values of Hyderabad and Kurnool weather station. This highlights 

the similarity of climatic conditions prevailing in the study area considered. 

3.7 INPUT SELECTION USING FACTOR ANALYSIS 

An essential task in developing any AI model is to determine the dependent (output) 

and independent variables (inputs). As this study focuses on developing AI models 

under limited data availability scenario, the most influential climatic parameters in the 

process of ETo (for the proposed site) were used as inputs to the AI models. Choosing 

influential input variables would provide a better predictive model under limited data 

availability scenario thus making data collection and processing easier. In this study, 

the input variables were selected based on factor analysis. 

 

 



44 

 

3.7.1 Factor analysis 

When several variables are measured, the correlation between each pair of variables 

can be arranged in an R- matrix which is a table of correlation coefficients between 

the variables. The existence of clusters of large correlation coefficients between 

subsets of variables suggests that those variables could be measuring the aspects of 

the same underlying dimension. These underlying dimensions are known as factors. 

Factor analysis is a technique by which datasets of a group of interrelated variables 

are reduced into a smaller set of uncorrelated factors. It is a statistical technique that 

can be used to analyze the matrix of correlation coefficients of a set of variates and 

provide a better understanding and interpretability of the structure of the matrix. The 

method employs eigenvalue-eigenvector analysis to derive a smaller number of 

derived variables, from the matrix of correlation. The elements of the transformed 

eigenvector matrix are called factor loadings and are indicative of the amount by 

which each original variable contributes to the total variance. A factor can be 

described in terms of the variable measured and the relative importance fof them for 

that factor. As such 

𝐹𝑎𝑐𝑡𝑜𝑟1 = 𝛽1𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 + 𝛽2𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2+. . . . . 𝛽𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑛     (3.38) 

The β in the equation represents factor loading and indicates the relative importance 

of each variable to a particular factor. 

It is possible to obtain as many factors as there are variables and each has an 

associated Eigenvalue. The Eigenvalue associated with a factor indicates the 

substantive importance of that factor. Therefore, factors only with large Eigenvalue 

can be retained as significant factors. In this study factors with Eigenvalue more than 

one were considered for further analysis. Once the factors are extracted it is possible 

to calculate the loading of the variable on each factor. Generally, it is found that most 

variables have high loadings on the most important factor and small loading on all 

other factors. This characteristic makes interpretation difficult and so a technique 

called factor rotation, by which factor axis are effectively rotated such that variables 

are loaded maximally to only one factor. In other words, the large elements in the 

factor loadings are made as large as possible and the small elements are made as small 

as possible. In this study varimax rotation was used in this study as it is a good 

general approach that simplifies the interpretation of factors. Independent variables 
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that have a high loading in a factor in which the dependent variables also has high 

loadings may then be identified as important variables in the underlying process. 

3.7.2 Results of factor analysis 

The analysis was performed separately for all the four weather stations considered. As 

lysimeter data from the weather station used as case study were not available, ETo 

estimated by the FAO-56PM method was used as dependent variable. The 

independent variables considered were the climatic variables used for computation of 

FAO-56PM ET. Tmax, Tmin, RHmax RHmin, Rs and U2 were used as independent variables 

in arid regions, whereas Tmax, Tmin, Tdew, Rs and U2 were used in semi-arid region. 

Table 3.3 Results of factor analysis for the Jodhpur and Pali stations 

Station Variable 

Rotated component matrix 

Component 

1 2 

Jodhpur 

Tmax 0.91 -0.10 

Tmin 0.89 0.34 

RHmax -0.04 0.96 

RHmin 0.03 0.97 

U2 0.78 0.17 

Rs 0.58 -0.68 

ETo 0.95 -0.10 

    

Pali 

Tmax 0.85 -0.30 

Tmin 0.92 0.22 

RHmax -0.05 0.94 

RHmin 0.18 0.93 

U2 0.83 0.10 

Rs 0.49 -0.75 

ETo 0.86 -0.47 

For all the four stations considered, two-factor rotation (decided using scree plot) 

provided the best solution for interpreting the relative importance of independent 

variables on the dependent variable. The results for Jodhpur and Pali stations are 

shown in table 3.3. 

Considering the rotated two-factor solution for Jodhpur and Pali site (arid region), 

it can be seen that ETo has the highest loading in the first factor in which Tmax and 

Tmin have high loading. Additionally, these two variables exhibit a high degree of 

correlation with the ETo values (Table 3.1). This implies that these two climatic 
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variables have the most dominant effect on ETo estimates of these sites. The variable 

having next highest loading on ETo is the wind speed and solar radiation. The second 

component has a very small loading on the dependent variable and may therefore be 

ignored. In summary, the result of factor analysis and correlation analysis for the arid 

Jodhpur and Pali site indicate that temperature (Tmax and Tmin) and to a lesser degree 

wind speed and solar radiation explain most of the variability associated with FAO-

56PM estimated in arid regions. 

Table 3.4 Results of factor analysis for the Hyderabad and Kurnool stations 

Station Variable 

Rotated component matrix 

Component 

1 2 

Hyderabad 

Tmax 0.90 0.07 

Tmin 0.51 0.75 

Tdew -0.24 0.84 

U2 0.06 0.72 

Rs 0.81 -0.34 

ETo 0.92 0.24 

    

Kurnool 

Tmax 0.98 0.02 

Tmin 0.58 0.62 

Tdew -0.20 0.82 

U2 0.12 0.82 

Rs 0.94 -0.12 

ETo 0.75 0.60 

Using a similar reasoning, the two-factor solution for Hyderabad and Kurnool 

station can be interpreted from table 3.4. The loading for ETo is quite high in the first 

factor. Variables Tmax, Rs, and Tmin exhibit high loading in the first factor. Use of an 

indirect method employing temperature values to estimate Rs values may be the 

reason behind high loading of solar radiation. Further, a high correlation was observed 

between temperature and ETo values of Hyderabad as well as Kurnool weather 

station. Considering this, it can be concluded that air temperature is an important 

component in estimating ETo of the semi-arid region also. 

To the knowledge of the authors, in most of the studies undertaken earlier, the inputs 

to ET models are chosen according to the similarity between the empirical models and 

the defined AI model. However, different input combinations may work well for 

different sites. In this study, factor analysis and correlation analysis was employed to 
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identify the input combination that will yield a more efficient model under limited 

data condition. Results of factor analysis suggested that solar radiation is the second 

most influencing climatic variable in the process of ET at arid region. However, to 

limit the use of climatic variables and still develop a better model it was decided to 

use extra-terrestrial radiation (Ra) as an input instead of solar radiation (Rs).  Ra 

which can be easily calculated by a formula and proves to be an important parameter 

in estimating ET under limited data condition. Use of Ra as input eliminates the need 

of measuring sunshine hours but still provides an idea about solar radiation to the 

model. From the results, it was decided to use maximum temperature, minimum 

temperature and extra-terrestrial radiation (Ra) values for modeling ETo in both 

regions.  

Many researchers (Sudheer et al. 2003, Nayak et al. 2013) have used statistical 

properties like autocorrelation of the data to identify unique input vector that can best 

represent the process to be modeled. In this study, a high degree of autocorrelation 

was found between the ETo values of every station considered. The autocorrelation 

coefficient (ACF) for one week lag at both Jodhpur and Pali weather station was 

found to be 0.91. Similarly, for Hyderabad station the ACF was 0.80 and at Kurnool 

station the ACF observed was 0.91. The figure 3.8 presents a variation in the ACF for 

different lags at the Jodhpur station. 

Figure 3.8 ACF for Jodhpur weather station 
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 From the analysis of ACF at all the four weather stations, it was decided to use 

antecedent ETo values along with maximum and minimum temperature for modeling 

the process of ETo. In arid region one and two week antecedent values were used as 

inputs whereas, for semiarid region one and two day antecedent values were used as 

inputs. These inputs may help in improving the efficiency of only temperature based 

models. 

In developing countries like India, the network of weather stations capable of 

measuring all the climatic variables necessary to estimate ETo by FAO-56PM 

equation is sparse. However, small weather stations capable of measuring only few 

parameters like air temperature are ample in number. This makes it necessary to 

develop a proficient ETo estimation system which can derive benefit from such set-

up. As mentioned earlier a high degree of correlation was observed between the ETo 

values of stations in a particular climatic region (0.86 between Jodhpur and Pali, and 

0.73 between Hyderabad and Kurnool).  Also, using nearby weather station (within 

the same climatic region) data is most important because in some circumstances the 

weather data of one station may be missing (Shiri et al. 2014b). A model using locally 

available climatic data together with ETo values from a place situated in the same 

climatic region (extrinsic data) may help in improving the efficiency of ET 

estimation. Such a model may perform better as it can use data from weather stations 

capable of estimating ETo using FAO-56PM equation to model ETo of a place where 

only few climatic parameters can be recorded. In this study, an attempt was made to 

evaluate the effectiveness of using temperature data from a particular place in 

conjunction with extrinsic ETo values for modeling the process of ETo. 

Table 3.5 presents the input combinations used for estimating ETo at all the four 

stations considered. In table 3.5, ETo represents the weekly evapotranspiration 

(calculated by FAO-56PM) value for Jodhpur and Pali weather station while, in 

Hyderabad and Pali weather station ETo represents daily values. ETo-1 and ETo-2 

represent lagged ETo values (lag in weeks for arid region, whereas lag in days for 

semi-arid region). WT represents use of wavelet-decomposed inputs (using db2, db3, 

db4, and db5 at level 1, 2 and 3). 
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Table 3.5 Input combinations used in the study 

Input 

combinations 
Inputs Models 

Combination 1 Tmax, Tmin and Ra 

Hargreaves, ANN1, ANFIS1 

and LS-SVM1 

Combination 2 Tmax, Tmin, Ra and ETo-1 ANN2, ANFIS2 and LS-SVM2 

Combination 3 Tmax, Tmin, Ra, ETo-1 and ETo-2 ANN3, ANFIS3 and LS-SVM3 

Combination 4 Tmax, Tmin, Ra and extrinsic ETo  ANN4, ANFIS4 and LS-SVM4 

Combination 5 
Tmax, Tmin, Ra, extrinsic ETo and 

extrinsic ETo-1 
ANN5, ANFIS5 and LS-SVM5 

Combination 6  Tmax(WT), Tmin(WT), Ra 
W-ANN1, W-ANFIS1, and W-

LSSVM1 

Combination 7 
Tmax (WT), Tmin,(WT), ETo-1(WT),  

Ra 

W-ANN2, W-ANFIS2, W-

LSSVM2 

Combination 8 
Tmax (WT), Tmin, (WT),ETo-1(WT), 

ETo-2(WT), Ra 

W-ANN3, W-ANFIS3, W-

LSSVM3 

Combination 9 
Tmax(WT), Tmin(WT), Ra and extrinsic 

ETo(WT)  

W-ANN4, W-ANFIS4 and W-

LSSVM4 

Combination 10 
Tmax(WT), Tmin(WT), Ra, extrinsic 

ETo(WT) and extrinsic ETo-1(WT) 

W-ANN5, W-ANFIS5 and W-

LSSVM5 

In this study, an attempt is made to evaluate the performance of different AI 

models for estimating ET in arid and semi-arid regions. The performance of ANN, 

ANFIS and LS-SVM were compared to the hybrid W-ANN, W-ANFIS and W-

LSSVM models for studying the effectiveness of using wavelet transform as 

preprocessing technique. The study is carried out separately in arid (Jodhpur and Pali 

weather station) and semi-arid (Hyderabad and Kurnool weather station) regions. 

Flow chart for the process involved in the developing the models is presented in 
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figure 3.9. The results obtained from various models are discussed in subsequent 

chapters. 

 

Figure 3.9 Flow chart of the methodology used in the study 

3.8 MODEL PERFORMANCE CRITERIA 

In this study root mean square error (RMSE) was used to evaluate the performance of 

the models. RMSE is frequently used to measure the difference between actual values 

and values predicted by the model.  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑋𝑖 − 𝑌𝑖)2
𝑁
𝑖=1               (3.39) 
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where X = observed/actual values, Y = computed values and N = total number of data 

points. The lowest RMSE results in the best model. 

  In order to test the robustness of the developed model it is also necessary to test 

the model using some other performance evaluation indicators like Nash–Sutcliffe 

model efficiency coefficient (NSE) and threshold statistics (TS). The Nash–Sutcliffe 

coefficient was used to access efficiency of the models. NSE for a model can range 

from -1 to 1. An efficiency of 1 (NSE = 1) corresponds to a perfect match between 

estimate and observations.  

𝑁𝑆𝐸 = 1 −
∑ (𝑋𝑖−𝑌𝑖)

2𝑁
𝑖=1

∑ (𝑋𝑖−𝑋̅)
2𝑁

𝑖=1

               (3.40) 

where 𝑋̅ is the mean of actual data. 

  RMSE show the average of error in model and dosen’t give any information about 

the error distribution. So to test the robustness of the output result, it is important to 

test the model using some other performance evaluation criterion such as threshold 

statistics (TS). The TS not only gives the performance index in terms of predicting 

ETo but also the distribution of errors. The TS for a level of x% is a measure of the 

consistency in estimating errors from a particular model. The TS is represented as 

TSx and expressed as a percentage. The threshold statistic for a level of absolute 

relative error (ARE) of x% (represented as TSx and expressed as a percent) is 

computed as follows:  

𝑇𝑆𝑥 =
𝑛𝑥

𝑁
× 100                 (3.41) 

where 𝑛𝑥 = number of data points whose absolute relative error value is less than x%. 

In the present study, TS for absolute relative error of 5, 10 and 15 percent (TS5, TS10 

and TS15) were used to measure the effectiveness of the models regarding their 

ability to accurately predict data from the calibrated model. 

 Scatter plots were also used to evaluate the accuracies of the models, while boxplots 

were used to analyze the spread of the data points estimated by the models. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this part of the study, performance of the proposed models for estimating daily and 

weekly ETo at arid and semi-arid regions of India are analyzed and discussed. An 

attempt is made to identify efficient models for estimating ETo using different input 

combinations. The results for arid region are discussed first, followed by semi-arid 

region.  

4.1 RESULTS FOR JODHPUR STATION (ARID REGION) 

4.1.1 ANN results for Jodhpur station  

The results for ANN models at Jodhpur weather station are presented in table 4.1. 

Table shows the optimum ANN structure, training and testing RMSE and testing NSE 

values. 

Table 4.1 Results of ANN models at Jodhpur weather station. 

Model 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

 ANN1 3-5-1 0.80 0.76 0.85 

ANN2 4-7-1 0.63 0.61 0.90 

ANN3 5-6-1 0.63 0.60 0.91 

ANN4 4-5-1 0.56 0.53 0.93 

ANN5 5-8-1 0.53 0.50 0.94 

The models presented in table 4.1 can be divided into three major groups, namely; 

the temperature based models (ANN1), the intrinsic data based models (ANN2 and 

ANN3) and the models using extrinsic data (ANN4 and ANN5). Out of all the ANN 

models tested for Jodhpur station the ANN1 model using Tmax, Tmin and Ra as 

inputs has yielded poor performance. The results show that the temperature data along 

with antecedent ETo values of the same station (intrinsic data) was successfully used 

for estimating ETo. On comparing the performance of ANN2 and ANN3 model, it is 

found that, despite having good autocorrelation, adding more inputs to the model does 
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not guarantee good performance. ANN2 and ANN3 models showed almost similar 

performance in terms of RMSE and NSE statistics. A similar trend was found in the 

results of models using ETo data from another station in the same climatic region 

(extrinsic inputs). Among these models, ANN4 model yielded an RMSE of 0.56 

mm/day and the ANN5 model yielded an RMSE of 0.50 mm/day. Further, it was 

observed that the performance of models (ANN4 and ANN5) using extrinsic ETo data 

(ETo values from Pali station in this case) was better than the models using intrinsic 

antecedent ETo values. This may be because the dataset of both the weather stations 

exhibit similar statistical characteristics.  

A time series plot for the proposed models in testing phase (year 2005) is 

presented in figure 4.1 below. The plot represents the time series plot for the best 

models (ANN1, ANN3 and ANN5) in the earlier mentioned three major input 

categories.  

Figure 4.1 Time series plot of ANN models for testing period at Jodhpur station 

The figure showed that ANN5 model overestimated the ETo values up to the 

twentieth week. It was also observed that the performance of this model was good 
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during the monsoon and post-monsoon period. On the other hand, performance of 

temperature based ANN1 model was not good during these periods. This may be 

because the components like humidity and wind speed significantly influence the 

process of ETo during these periods. The ANN1 and ANN3 models overestimated the 

smaller ETo values and underestimated the larger ETo values.  

It is clear from table 4.1 that ANN5 is the best ANN model for estimating ETo in 

terms of RMSE and NSE statistics. This model used five inputs (refer table 3.5); eight 

nodes in the hidden layer and ETo calculated using FAO-56PM as the output. As 

mentioned in the methodology, a trial and error method is used for determining the 

optimum number of nodes in the hidden layer. The figure 4.2 below presents the 

variation in testing RMSE of ANN5 model on using different number of nodes in the 

hidden layers.   

Figure 4.2 Variation in Testing RMSE of ANN5 model 

The figure above does not depict a specific trend in model performance with the 

change in number of nodes in hidden layers. Similar behavior was observed in all the 

ANN models tested in this study. This result highlights the suitability of using trial 

and error method for finding the optimum number of nodes in the hidden layer. 
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Figure 4.3 Threshold statistics for ANN models at Jodhpur weather station 

Threshold statistics (TS) is an important parameter in evaluating the model 

performance. The bar diagram presented in figure 4.3 presents the TS statistics for the 

ANN models. Similar to the RMSE and NSE results presented in table 4.1, the TS 

statistics also reveal the superiority of ANN5 model. The ANN5 model performed 

slightly better than all the other ANN models tested for Jodhpur station. The 

performance of ANN1 model is inferior to all the other models tested. The TS15 

values of ANN1 model observed was around sixty whereas, all the other models 

yielded TS15 value of more than seventy. The result shows that for Jodhpur weather 

station, the temperature based models displayed inferior performance, but use of 

antecedent ETo values with temperature data yielded good results.  

The scatter plots and box plot for the ANN models presented in figure 4.4 makes 

it clear that the temperature based ANN1 model is not as good as other models in 

estimating ETo. ANN1 model overestimated the smaller ETo values and 

underestimated the larger ETo values.  
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Figure 4.4 Scatter plots and box plot of ANN models for Jodhpur weather station. 

The ANN2 and ANN3 model displayed similar performance. These models are 

good at estimating lower and average ETo values, but displayed a poor performance 

while estimating larger ETo values. The larger ETo values are both overestimated and 
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underestimated by these models and the data points are sparsely located from the 45° 

line. On comparing the box plots, it was observed that ANN3 model performed better 

than other models at estimating lower ETo values. The scatter plot and box plot 

results confirm that ANN4 and ANN5 are the best ANN models in estimating weekly 

ETo at Jodhpur station. The scatter plot shows that these models slightly 

overestimated the ETo models. The box plot for ANN5 model indicates 

overestimation of larger ETo values. Good performance of this model may be due to 

the use of ETo values from Pali weather station (extrinsic inputs).  

4.1.2 W-ANN results for Jodhpur weather station  

Table 4.2 presents the results of W-ANN models for Jodhpur station. Hybrid W-ANN 

models were developed by decomposing the input data using wavelet transform and 

then presenting it to ANN models as input. As discussed in the methodology, different 

mother wavelets were used to decompose the input variables. Table 4.2 presents the 

results for best performing W-ANN model with the mother wavelet used and the level 

of decomposition (e.g. Db3 L2 represents Db3 mother wavelet at second level of 

decomposition).  

Table 4.2 Results of W-ANN models at Jodhpur weather station 

Model 
Mother 

wavelet 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

W-ANN1 Db3 L2 7-10-1 0.65 0.62 0.90 

W-ANN2 Db3 L2 10-13-1 0.42 0.39 0.96 

W-ANN3 Db3 L2 13-16-1 0.45 0.43 0.95 

W-ANN4 Db5 L3 13-15-1 0.45 0.42 0.95 

W-ANN5 Db3 L2 13-17-1 0.44 0.45 0.95 

Results presented in table 4.2 revels that hybrid W-ANN models perform better 

than the conventional ANN models. A significant enhancement in the performance of 

ANN model is observed when the input variables are pre-processed by wavelet 

transform. The table makes it clear that the W-ANN2 model using Db3 mother 

wavelet with second level of decomposition is the best W-ANN model for estimating 
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weekly ETo at Jodhpur weather station. The architecture of W-ANN2 model used 10 

input nodes and 13 nodes in the hidden layer.   

On comparing the performance of ANN1 and W-ANN1 models at Jodhpur 

station, it is observed that the W-ANN1 model yielded an RMSE of 0.65 mm/day, 

which is about 19% lesser than the ANN1 model. Similar enhancement is also 

observed in other ANN models. However, the W-ANN2 and W-ANN3 have 

displayed better results compared to the W-ANN4 and W-ANN5 model. This result 

contrasts with the results obtained in table 4.1 where the ANN models using extrinsic 

ETo values perform better than the models using intrinsic inputs. This may be due to 

the use of wavelet decomposed intrinsic data used as inputs.  

Table 4.3 Performance of W-ANN2 model using different mother wavelet at various 

decomposition levels 

Mother 

wavelet 

Optimum 

ANN structure 

RMSE (mm/day) Correlation coefficient (r) 

Training Testing Training Testing  

Db2 L1 7-9-1 0.50 0.44 0.97 0.98 

Db3 L1 7-10-1 0.49 0.40 0.97 0.98 

Db4 L1 7-8-1 0.48 0.43 0.98 0.98 

Db5 L1 7-10-1 0.46 0.45 0.98 0.97 

      

Db2 L2 10-12-1 0.46 0.41 0.98 0.98 

Db3 L2 10-13-1 0.42 0.39 0.98 0.98 

Db4 L2 10-14-1 0.43 0.40 0.98 0.98 

Db5 L2 10-12-1 0.41 0.41 0.98 0.98 

      

Db2 L3 13-18-1 0.42 0.44 0.98 0.97 

Db3 L3 13-14-1 0.44 0.39 0.98 0.98 

Db4 L3 13-15-1 0.41 0.40 0.98 0.98 

Db5 L3 13-13-1 0.43 0.41 0.98 0.98 

 

The table 4.3 above represents the performance of various W-ANN2 models at 

different decomposition levels. The performance is examined using RMSE and 

correlation coefficient. Table 4.3 shows that Db3 L2 is the most efficient wavelet for 
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input pre-processing. The level of decomposition has shown a significant impact on 

the performance of models. The performance of the model enhanced with the increase 

in the decomposition level. It is observed that the performance of hybrid AI models at 

the second and third level of decomposition is better than the performance at the first 

level of decomposition. Further, the table shows that the testing performance of Db3 

L2 wavelet is similar to the testing performance of Db3 L3. Nevertheless, Db3 L2 is 

considered as the best model because, the DB3 L2 model uses lesser inputs compared 

to the model using inputs decomposed by Db3 L3 wavelet. As the number of inputs 

plays an important role in model performance, generally lesser number of inputs are 

preferred. Further, it is observed that Db3 and Db5 wavelets display better overall 

performance in all the models tested. 

A time series plot of the W-ANN models are presented in figure 4.5 below. 

Results for only the best models using temperature data (W-ANN1), intrinsic data 

(W-ANN2) and extrinsic data (W-ANN5) are displayed in this figure. This is because, 

the models using same kind of data set exhibited similar performance, making it 

apparent to compare only the best performing models. 

Figure 4.5 Time series plot of W-ANN models for testing period at Jodhpur station 
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On comparing the time series plot for ANN and W-ANN models, it is clear that 

wavelet preprocessing has helped in improving the performance of ANN models. It is 

further observed that the overall performance of W-ANN2 model is better than the 

other models. The W-ANN1 model overestimated the smaller values and 

underestimated the larger ETo values. Additionally, a similar trend was observed in 

the performance of W-ANN1 and W-ANN2 models. The W-ANN5 model initially 

overestimated the lower ETo values, but the amount of overestimation was lower 

when compared to the ANN5 model. On comparing the performance of W-ANN2 and 

W-ANN5 models, it is clear that the W-ANN2 model could not estimate the sudden 

spikes in the time series, whereas the W-ANN5 modeled the spikes but 

underestimated the ETo values.  

Figure 4.6 Threshold statistics for W-ANN models at Jodhpur weather station 

The threshold statistics for the W-ANN models are presented in figure 4.6. The 

threshold statistics highlight the enhancement in performance of hybrid W-ANN 

models due to the use of wavelet preprocessed input datasets. The TS15 value of 

ANN2 model was about fifty, whereas the TS15 value for W-ANN2 model is 

hundred. This implies that all the estimated ETo values fall below 15% absolute 
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relative error. W-ANN models show a considerable increase in the TS5 values when 

compare to ANN models. Further, it is seen that increasing the number of inputs (in 

case of W-ANN3 and W-ANN5) deteriorated the performance of hybrid models.   

 The Scatter plot (Figure 4.7) reveals that the W-ANN1 model overestimated the 

smaller and average ETo values, whereas underestimated the larger ETo values. The 

W-ANN2 and W-ANN3 models accurately estimated the smaller ETo values, 

whereas the larger ETo values are both underestimated and overestimated. 

Additionally, most of the larger values are sparsely located around the 45° line. The 

W-ANN4 and W-ANN5 models are found to be good at estimating ETo values 

according to the scatter plots and box plots. The box plot for W-ANN1 represents 

poor performance of the model in estimating smaller as well as larger ETo values. 

The box plot for W-ANN5 model indicates presence of outliers. Presence of outliers 

may be due to the use of extrinsic inputs. 

 

Figure 4.7 Scatter plots and box plot of W-ANN models for Jodhpur weather station. 
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4.1.3 ANFIS results for Jodhpur station 

As mentioned earlier the performance of three and five membership functions (MFs) 

with triangular, trapezoidal, Gaussian and Spline shapes was evaluated to determine 

the most efficient ANFIS model. Table 4.4 presents the results for ANFIS models at 

the Jodhpur weather station. 

Table 4.4 Results of ANFIS models at Jodhpur weather station. 

Model 
Membership 

function 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

ANFIS1 Gaussian 0.79 0.79 0.84 

ANFIS2 Gaussian 0.63 0.61 0.90 

ANFIS3 Gaussian 0.62 0.60 0.90 

ANFIS4 Gaussian 0.54 0.52 0.93 

ANFIS5 Gaussian 0.54 0.48 0.94 

 

It is clear from table 4.4 that the Gaussian membership function works best for all 

the models. Further, it is observed that, all the ANFIS models worked slightly better 

than the ANN models except for the ANFIS1 models where the performance of 

ANN1 model was found to be slightly better than the ANFIS1 model. Inferior 

performance of ANFIS1 model may be due to the inability of ANFIS model to 

formulate sufficient rules using only the temperature data. The ANFIS5 model (0.48 

mm/day testing RMSE and 0.94 NSE) was found to be the best ANFIS model for 

estimating ETo at Jodhpur weather station. In comparison to the ANN5 model, the 

ANFIS5 model delivered a lower RMSE during the testing period.  

The performance of the ANFIS5 model using trimf, trapmf, gaussmf, gbellmf and 

pimf for three and five membership function is presented in table 4.5. The results of 

the models are compared using RMSE statistics for the testing period. From the 

results it is clear that, the models using three number of membership functions (3MF) 

yielded better results. This may be because use of five membership functions results 

in more number of rules thus increasing the complexity of the model. 
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Table 4.5 Results of ANFIS5 models for Jodhpur station using different MFs. 

Membership function 
Testing RMSE (mm/day) 

3MF 5MF 

Trimf 0.75 0.66 

Trapmf 0.64 0.75 

Gbellmf 0.61 0.68 

Gaussmf 0.48 0.57 

Pimf 0.66 0.72 

Table 4.5 makes it clear that Gaussian shaped membership function performed 

better than all the other membership functions. The Gaussian function has performed 

well in all the ANFIS models tested at the Jodhpur station (table 4.4). The results also 

suggest that increasing the number of membership functions in ANFIS models does 

not necessarily enhance the ANFIS model performance. This may be because more 

number of membership functions generate many rules, thus resulting in a complex 

model. 

Figure 4.8 Time series plot of ANFIS models for testing period at Jodhpur 

station 



65 

 

Figure 4.8 represents the time series plot for the best ANFIS models at Jodhpur 

weather station. The performance of ANFIS models is similar to the ANN models. 

The figure shows that the ANFIS5 is the best ANFIS model to estimate ETo at 

Jodhpur weather station. ANFIS5 model initially overestimated the ETo values, but 

after the 25th week, this model almost accurately estimated all the ETo values. The 

ANFIS1 and ANFIS3 models also overestimated the ETo values, but the performance 

of ANFIS3 model is better than the ANFIS1 model. A slight shift towards left is 

observed in the time series of ETo estimates for the first half of the year, while for the 

rest of the year the shift is on the right side.   

Figure 4.9 Threshold statistics for ANFIS models at Jodhpur weather station 

The performance of ANFIS models in terms of threshold statistics is presented in 

figure 4.9. According to the threshold statistics, performance of ANN and ANFIS 

models tested at Jodhpur station is found to be similar. At Jodhpur station the ANN 

models using extrinsic data performed well however, in case of ANFIS models, both 

the intrinsic and extrinsic data based models displayed similar performance. 

Compared to the ANN5 model, the ANFIS5 model delivered a lower RMSE but the 

performance of ANFIS5 model was inferior to the ANN5 model when compared in 

terms of TS statistics. 
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Figure 4.10 Scatter plots and box plot of ANFIS models for Jodhpur weather station. 

Scatter plot and box plot for ANFIS models at Jodhpur weather station are 

presented in figure 4.10. The scatter plot shows that the ANFIS1 model overestimated 

the ETo values. The larger values are sparsely located around the 45° line. The 
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intrinsic data based ANFIS2 and ANFIS3 models underestimated as well as 

overestimated the ETo values. The results of ANFIS models are similar to the ANN 

models. It can be interpreted from the scatter that ANFIS4 and ANFIS5 are the most 

efficient ANFIS models for estimating the ETo values at Jodhpur weather station. 

These models overestimated the smaller ETo values, but are found to be good at 

estimating the greater ETo values. 

4.1.4 W-ANFIS results for Jodhpur station 

Use of grid partitioning was not possible while developing the W-ANFIS models. 

Grid partitioning generates rules by enumerating all possible combinations of 

membership functions using all the inputs. Use of grid partitioning even when using a 

moderate number of inputs may result in a large number of rules, leading to a problem 

referred as “curse of dimensionality”. In the present study, it was decided to use 

subtractive clustering instead of grid partitioning for all W-ANFIS models at every 

weather station under consideration. The results of hybrid W-ANFIS are presented in 

table 4.6. 

Table 4.6 Results of W-ANFIS models at Jodhpur weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

W-ANFIS1 Db3 L2 0.80 0.74 0.86 

W-ANFIS2 Db3 L2 0.43 0.38 0.96 

W-ANFIS3 Db3 L2 0.53 0.46 0.95 

W-ANFIS4 Db3 L2 0.54 0.48 0.94 

W-ANFIS5 Db5 L3 0.54 0.48 0.94 

The W-ANFIS2 model was found to be the best model for estimating ETo using 

hybrid W-ANFIS model. The W-ANFIS1 model has shown the least amount of 

improvement in performance (0.74 mm/day RMSE) when using wavelet preprocessed 

inputs. It is clear from table 4.2 and table 4.6 that using wavelet decomposed datasets, 

as inputs, enhanced the efficiency of both ANN and ANFIS models. However, in the 

case of W-ANFIS models increase in the efficiency was not appreciable when 
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compared to the W-ANN models. This could be because of the inability of ANFIS 

models to deal with the large number of inputs. It is observed that Db3 wavelet at 

second level of decomposition worked well for all the models except the W-ANFIS5 

model. For W-ANFIS5 model Db5 wavelet at third level of decomposition has 

worked well. On comparing the performance of W-ANFIS4 and W-ANFIS5 model, it 

is observed that increasing the number of inputs did not enhance the model 

performance. Hence, the W-ANFIS2 model is considered as the best W-ANFIS model 

to estimate ETo at Jodhpur weather station. 

Figure 4.11 Time series plot of W-ANFIS models for testing period at Jodhpur 

Figure 4.11 represents the time series plot for W-ANFIS1, W-ANFIS2 and W-

ANFIS4 model. The figure makes it clear that the W-ANFIS2 model performed better 

than the other models. This model underestimated the peak values, but was good at 

estimating the smaller ETo values. W-ANFIS5 model overestimated the smaller ETo 

values, but was good at estimating the peak values. A significant enhancement in the 

performance of model using intrinsic data is observed. However, no significant 

improvement in the performance models using extrinsic inputs is observed. 
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Figure 4.12 Threshold statistics for W-ANFIS models at Jodhpur weather station 

Threshold statistics of the W-ANFIS models is presented in figure 4.12. The TS 

values for the models reveals that the performance of W-ANFIS2 and W-ANFIS3 

models are similar. Additionally, it is observed that there is a significant increase in 

the TS5 values of W-ANFIS models when compared the ANFIS models. Further, a 

similarity in the performance of hybrid ANN and hybrid ANFIS models was also 

observed.  

 Scatter plots and box plots for W-ANFIS models are presented in figure 4.13. The 

scatter plot presents overestimation of the ETo values by the temperature based W-

ANFIS1 model. Whereas, the larger ETo values are underestimated by this model. 

The intrinsic data based W-ANFIS2 and W-ANFIS3 models underestimated as well 

as overestimated the ETo values. The smaller ETo values are predicted more 

accurately by these two models. The W-ANFIS4 and W-ANFIS5 models 

overestimated the lower ETo values, but were found to be good at estimating the 

larger values. The box plot for the W-ANFIS models demonstrate overestimation of 

smaller ETo values by the W-ANFIS1 and W-ANFIS4 models. These models 

displayed significant underestimation of larger ETo values. 
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Figure 4.13 Scatter plots and box plot of W-ANFIS models for Jodhpur weather 

station. 
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4.1.5 LS-SVM results for Jodhpur station 

The results for estimating weekly ETo at Jodhpur weather station using LS-SVM 

model are presented in table 4.7. The LS-SVM model work on the principle of 

structural risk minimization, which equips it with a greater generalization capacity. 

From the table it is clear that the performance of LS-SVM model is better than the 

ANN and ANFIS model. Except for the first input combination, LS-SVM has 

outperformed all the other ANN and ANFIS models. 

Table 4.7 Results of LS-SVM models at Jodhpur weather station. 

Model 
Training 

RMSE (mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

LS-SVM1 0.79 0.77 0.85 

LS-SVM2 0.60 0.59 0.91 

LS-SVM3 0.54 0.55 0.92 

LS-SVM4 0.48 0.48 0.94 

LS-SVM5 0.48 0.46 0.94 

The LS-SVM3 (0.55 mm/d RMSE) model is found to the best model for 

estimating ETo using intrinsic inputs. This model used temperature data along with 

one and two week antecedent ETo values. The LS-SVM5 (0.46 mm/d training RMSE) 

was found to be the best model for estimating ETo at Jodhpur weather station. The 

results show that use of extrinsic inputs delivered good results for estimating ETo 

values. A considerable difference in the RMSE values of the LS-SVM3 and LS-

SVM5 model is observed, but the NSE values of the models are similar. The results 

confirm the fact that LS-SVM is the best model for estimating ETo. Input 

combination five is found to be the most efficient input combination for estimating 

ETo using conventional AI models (ANN, ANFIS and LS-SVM). 

The time series plot of the best LS-SVM models for the testing period is presented 

in figure 4.14. Compared to time series plot for ANN and ANFIS models, it is 

observed that all the LS-SVM models performed well. The LS-SVM1 and LS-SVM3 

models exhibited similar performance. These models overestimated the ETo values 
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for most part of the year. The LS-SVM5 model also overestimated the ETo values, 

but was found to be good at estimating the peaks. A slight shift (towards left for the 

first half of the year and towards right for the other half) in the time series of the 

models is observed in the time series plot. The performance of the LS-SVM5 model is 

considerably better than LS-SVM1 and LS-SVM3 models for twenty-fifth to thirty-

fifth week. All the LS-SVM models were good at estimating the peak values when 

compared to the ANN and ANFIS models.  

Figure 4.14 Time series plot of LS-SVM models for testing period 

Threshold statistics for the LS-SVM model is presented in figure 4.15. From the 

RMSE results, it is clear that ANN1 model is slightly better than the ANFIS1 and LS-

SVM1 model, but when compared based on NSE and TS statistics the performance of 

LS-SVM1 model is slightly better than the ANN1 model. The TS5 values of the LS-

SVM models are more than the ANN and ANFIS models for all the combinations 

tested. Further, it is observed that the threshold statistics performance of the models 

using intrinsic as well as extrinsic inputs is almost similar.  
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Figure 4.15 Threshold statistics for LS-SVM models at Jodhpur weather station 

 Figure 4.16 presents scatter plot and box plot for the LS-SVM models tested at 

Jodhpur station. The scatter plot highlights the superiority of the LS-SVM models. 

The scatter plot for the LS-SVM1 shows a better ETo estimation by the LS-SVM 

model compared to the ANN1 and ANFIS1 model. The LS-SVM1 model 

overestimated the smaller ETo values and underestimated the larger ETo values. The 

LS-SVM2 and LS-SVM3 model were good at estimating the smaller ETo values. The 

larger ETo values were both underestimated as well as overestimated by these models 

and the points are sparsely located around the 45° line. The LS-SVM4 and LS-SVM5 

models performed alike and are found to be better than all the other models tested. A 

slight overestimation of all the ETo values is observed in scatter plot these models. 

All the other LS-SVM models presented similar spread of the data points in the box 

plots. Box plot for LS-SVM2 and LS-SVM3 models show overestimation of smaller 

ETo values and underestimation of greater ETo values.  
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Figure 4.16 Scatter plots and box plot of LS-SVM models for Jodhpur weather station 
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4.1.6 W-LSSVM results for Jodhpur station 

Table 4.8 presents the results of hybrid W-LSSVM model for estimating ETo at 

Jodhpur weather station. The results show substantial enhancement in performance of 

hybrid W-LSSVM models when compared to LS-SVM models. 

Table 4.8 Results of W-LSSVM models at Jodhpur weather station.  

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE 

W-LSSVM1 Db3 L3 0.70 0.71 0.87 

W-LSSVM2 Db3 L2 0.40 0.38 0.96 

W-LSSVM3 Db3 L2 0.40 0.38 0.96 

W-LSSVM4 Db5 L3 0.47 0.45 0.95 

W-LSSVM5 Db5 L1 0.47 0.45 0.95 

It is observed that W-ANN1 is the best model to estimate ETo using only 

temperature data. The W-ANN1 model performed better than the W-ANFIS1 and W-

LSSVM1 model. From table 4.8 it is clear that the hybrid W-LSSVM models are the 

best models for estimating ETo at Jodhpur weather station. W-LSSVM3 (0.38 mm/d 

testing RMSE) is found to be the best model for estimating ETo at Jodhpur weather 

station. Performance of both W-LSSVM2 and W-LSSVM3 models is similar 

according to the RMSE and NSE performance statistics, but considering the TS 

statistics, it can be concluded that W-LSSVM3 is the best model among all the 

models tested at Jodhpur weather station. Similarly, the performance of W-LSSVM4 

and W-LSSVM5 is alike, but considering the fact that the W-LSSVM4 model uses 

more number of inputs (third level of decomposition), W-LSSVM5 can be considered 

as the best model for estimating ETo using extrinsic data. Db3 is found to be working 

better with the temperature and intrinsic data based models. However, it is observed 

that the Db5 mother wavelet has worked better in case of extrinsic data based models. 

Similar results were observed in the case of W-ANN and A-ANFIS models were Db5 

wavelet decomposition has worked better with W-ANN4 and W-ANFIS5 models. 

From the results, it is concluded that hybrid W-LSSVM models are the best 



76 

 

performing models for estimating weekly evapotranspiration at the Jodhpur weather 

station. 

 Figure 4.17 Time series plot of W-LSSVM models for testing period 

Figure 4.17 presents time series plots of the W-LSSVM models for the testing 

period. The plot presents a considerable enhancement in the performance of W-

LSSVM models when compared to the LS-SVM models. The W-LSSVM3 model has 

underestimated the peak ETo values, but is found to be performing well at estimating 

the smaller ETo values. On the other hand, the W-LSSVM5 model overestimated the 

smaller ETo values, but was found to be good at estimating the peak values. This 

result highlights the effeciency of using extrinsic inputs in estimating the peak ETo 

values. The temperature based W-LSSVM1 model overestimated almost all the ETo 

values.  

The Scatterplot and box plot for the W-LSSVM models is presented in figure 

4.18. The figure also shows the proficiency of hybrid W-LSSVM models in 

estimating the ETo values. The scatter plot for W-LSSVM1 model presents 

overestimation of smaller ETo values and underestimation of the peak values. 

 



77 

 

Figure 4.18 Scatter plots and box plot of W-LSSVM models for Jodhpur weather 

station 
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The W-LSSVM2 and W-LSSVM3 models are found to be performing better than the 

other models when compared in terms of the scatter plot. However, these models, 

marginally underestimate the peak values. The W-LSSVM4 and W-LSSVM5 models 

have overestimated the smaller ETo values, but are good at estimating the peak values 

when compared to the W-LSSVM2 and W-LSSVM3 models. 

  Figure 4.19 presents the TS values for the W-LSSVM models. It is observed that 

the performance of some models is similar in terms of RMSE and NSE statistics. In 

such cases, the threshold statistics prove to be a good option for selecting the best 

model.  

Figure 4.19 Threshold statistics for W-LSSVM models at Jodhpur weather 

station 

The threshold statistics present the superiority of intrinsic data based models in 

estimating the ETo values at Jodhpur weather station. The TS statistic plot shows that 

the performance of W-LSSVM3 model is better than the W-LSSVM2 model. Thus, it 

is concluded that W-LSSVM3 is the best model for estimating the weekly ETo at 

Jodhpur weather station. 
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4.1.7 Temperature based models for Jodhpur station  

Nandagiri & Kovoor (2006) compared the performance of various empirical 

equations over a range of different Indian climates. They found that Hargreaves 

equation works best for estimating evapotranspiration in arid regions of India. The 

Hargreaves equation is given as 

ETh = 0.0023 (Tmean+17.8) (Tmax – Tmin) 
0.5* Ra         (4.1) 

As the input variables used by ANN1, ANFIS1 and LS-SVM1 and Hargreaves 

equation are same, the results of classical AI models are compared to the temperature 

based Hargreaves equations. At Jodhpur weather station, the Hargreaves equation 

yielded an RMSE of 0.90 mm/day, which is higher than all the AI models tested. This 

confirms the superiority of the AI model over the conventional models.   

Figure 4.20 Scatter plot for temperature based models at Jodhpur station 

 

The Scatter plots for Hargreaves model and the AI models using only temperature 

data for the Jodhpur station is presented in figure 4.20. On comparing these results, it 
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is clear that the performance of AI models is better than the conventional Hargreaves 

equation. It is found that the Hargreaves equation overestimates the smaller values 

and underestimates the larger ETo values. It is also observed in the scatter plot of 

Hargreaves equation that, the points are sparsely located around the 45° line. The 

performance of ANN1, ANFIS1, and LS-SVM1 model is more or less similar. The AI 

models marginally overestimated the smaller value of ETo, but the overestimation is 

less in case of ANN1 model. The average ETo values are both overestimated and 

underestimated by the AI models. The larger values of ETo are underestimated by all 

the AI models. 

4.2 RESULTS FOR PALI STATION (ARID REGION) 

4.2.1 ANN results for Pali station 

As mentioned in the methodology chapter, Pali is the second weather station in arid 

region used for evaluating the performance of proposed models and to generalize the 

conclusion in arid region. The results for ANN models at the Pali weather station is 

presented in table 4.9. The results show that the performance of ANN models at the 

Pali weather station is better than the Jodhpur weather station.  

Table 4.9 Results of ANN models at Pali weather station. 

Model 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10  TS15 

 ANN1 3-6-1 0.79 0.74 0.89 28 54 69 

ANN2 4-9-1 0.71 0.62 0.92 34 63 79 

ANN3 5-5-1 0.65 0.59 0.93 36 68 85 

ANN4 4-8-1 0.43 0.34 0.98 51 82 94 

ANN5 5-7-1 0.42 0.35 0.98 53 81 92 

  The results show that the ANN4 is the best model for estimating ETo at Pali 

weather station. The ANN4 model used four inputs (Tmax, Tmin Ra and extrinsic 

ETo values), eight nodes in the hidden layer and FAO-56PM ETo value as the output. 

Similar to the results obtained at Jodhpur weather station, the models using extrinsic 

data have performed well at Pali station. Performance of extrinsic data based ANN 

models (ANN4 and ANN5) is found to be better than the intrinsic data (ANN2 and 
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ANN3) based models. In terms of threshold statistics the TS15 value of ANN4 model 

is better than the TS15 value of ANN3 model. ANN3 model is found to be the best 

model for estimating ETo using intrinsic antecedent ETo data at Pali weather station. 

The performance of this mode is slightly better than the ANN2 model. The ANN4 

model delivered an RMSE of 0.34 mm/day and NSE of 0.98. This performance is 

better than the best performing ANN5 model (RMSE of 0.53 and NSE 0.94) at 

Jodhpur station. The performance of temperature based ANN1 model at Pali weather 

station is also found to be slightly better than the ANN1 model at Jodhpur station. 

The scatter plot and box plot for the ANN models at Jodhpur station are presented 

in figure 4.21. The scatter plot reveals that the ANN1 model has overestimated the 

smaller and average ETo values. Except for the smaller ETo value points all the other 

points are sparsely located around the 45° line of ANN1 model scatter plot. A similar 

trend is observed in the performance of ANN2 and ANN3 models. The ANN4 and 

ANN5 models have performed better than the other models. These models have 

estimated the ETo values well and the points are well distributed. These models have 

underestimated as well as overestimated the ETo values. The box plot also suggests 

overestimation of smaller ETo values by all the models except the ANN2 model. The 

ANN4 and ANN5 models are found to be performing better at estimating the peak 

ETo values. The 75 percentile line in the box plot of the ANN1, ANN2 and ANN3 

models is slightly higher than that of FAO-56PM box plot. The ANN4 and ANN5 

models are found to be performing well, however, the 50 percentile line of the all the 

models are found to be at the same level. The 25 percentile line of the box plot for all 

the models is at the same level and highlights the ability of AI models to efficiently 

estimate the smaller ETo values. The scatter plot and the box plot highlights the 

ability of the AI models to effectively estimate the ETo values at Pali weather station. 

Also, it is observed that the ETo values from another station (extrinsic data) can be 

successfully used to develop efficient ETo estimation AI models. 
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Figure 4.21 Scatter plots and box plot of ANN models for Pali weather station. 
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4.2.2 W-ANN results for Pali station 

The results of W-ANN models are presented in table 4.10. Use of wavelet transform 

for input preprocessing has enhanced the performance of W-ANN models. However, 

an appreciable increase in the performance of W-ANN4 and W-ANN5 models was 

not observed. Further, it is observed that the Db3 wavelet mother wavelet at second 

level of decomposition has worked well in all the models. This result is in line with 

the results observed at Jodhpur station where, Db3 mother wavelet has worked well 

for almost all the models.  

Table 4.10 Results of W-ANN models at Pali weather station. 

Model 
Mother 

wavelet 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANN1 Db5 L2 7-11-1 0.68 0.65 0.92 33 54 69 

W-ANN2 Db3 L2 10-11-1 0.43 0.39 0.97 51 82 94 

W-ANN3 Db3 L2 13-14-1 0.47 0.42 0.97 52 83 93 

W-ANN4 Db3 L2 10-16-1 0.37 0.32 0.98 57 84 93 

W-ANN5 Db3 L2 13-17-1 0.42 0.34 0.98 53 81 92 

The performance of W-ANN1 model at Pali station is found to be better than the 

ANN1 model. Compared to Jodhpur station the temperature based ANN1 model has 

performed better at Pali station. However, it is observed that the performance of W-

ANN1 model at Jodhpur station is better than the W-ANN1 model at Pali station. A 

Similar trend is also observed in the performance of intrinsic data based models. The 

result makes it clear that extrinsic data based W-ANN3 (testing RMSE= 0.32 

mm/day) model has performed better than all the W-ANN models at Pali weather 

station. This model architecture comprised of ten input nodes, sixteen hidden nodes 

and FAO-56PM ETo values as the output. Unlike the results at Jodhpur station where 

intrinsic data based hybrid models have performed well, at Pali weather station the 

extrinsic data based models have performed better than the other models. The 

threshold statistics also indicate good results for the hybrid models where the TS5 

value of all the models is more than 50. 
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Figure 4.22 Scatter plots and box plot of W-ANN models for Pali weather 

station. 
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The scatter plot for the W-ANN models at Pali station are presented in figure 4.22. 

The scatter plot presents overestimation of smaller and underestimation of larger ETo 

values by the W-ANN1 model. The points are sparsely located around the 45° line. 

This behavior was also observed for all the temperature-based models tested earlier at 

Jodhpur station. The intrinsic data based W-ANN2 and W-ANN3 models are good at 

estimating the smaller values, but the greater values are largely underestimated. 

Undoubtedly, the W-ANN4 and W-ANN5 models have performed better than the 

other models. The smaller ETo values are marginally overestimated by these models. 

The greater ETo values are underestimated by these models, but to a smaller extent 

compared to the intrinsic data based models. 

4.2.3 ANFIS results for Pali station 

Similar to the study carried out at Jodhpur weather station, ANFIS models were also 

tested at Pali station. The results of ANFIS models using different input combinations 

are presented in table 4.11. 

Table 4.11 Results of ANFIS models at Pali weather station. 

Model 
Membership 

Function 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

ANFIS1 Trapezoidal 0.81 0.78 0.88 28 54 69 

ANFIS2 Gaussian 0.67 0.62 0.92 34 65 81 

ANFIS3 Gaussian 0.62 0.59 0.93 36 65 82 

ANFIS4 Gaussian 0.42 0.35 0.98 51 82 94 

ANFIS5 Gaussian 0.43 0.37 0.97 54 85 94 

The performance of all the ANFIS models at Pali weather station is better than the 

ANFIS models tested at Jodhpur station. The ANFIS2 model has a lower RMSE 

value, but when compared in terms of NSE statistics the ANFIS2 model at Pali station 

has performed better than the ANFIS2 model at Jodhpur station. Further, it is 

observed that the performance of extrinsic data based models is better than the 

intrinsic data based model. The RMSE of ANFIS4 model (0.35 mm/day) is almost 

half of the ANFIS2 model (0.62 mm/day).  
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Figure 4.23 Scatter plots and box plot of ANFIS models for Pali weather station. 
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ANFIS4 model is the best ANFIS model for estimating ETo at Pali station.  This 

model used three numbers of Gaussian membership function and delivered an RMSE 

of 0.35 mm/day. The threshold statistics of this model also highlight the superiority of 

this model. The TS5 value of ANFIS4 model represents that around fifty percent of 

data points estimated have less than five percent absolute relative error.  

The scatter plot and box plot for the ANFIS models are presented in figure 4.23. 

The temperature based ANFIS1 model has mostly overestimated the ETo values. 

However, this model underestimated the peak values. The intrinsic data based 

ANFIS2 and ANFIS3 models were better at estimating smaller ETo values, but did 

not perform well in estimating greater values. The extrinsic data based ANFIS4 and 

ANFIS5 model slightly overestimated the smaller ETo values, but were good at 

estimating the peak values. The box plot also suggests that the ANFIS2 and ANFIS3 

model were good at estimating the smaller ETo values while the ANFIS4 and 

ANFIS5 model were good at estimating peak values. 

4.2.4 W-ANFIS results for Pali station 

The results for W-ANFIS models are discussed in this section. For developing W-

ANFIS models for Pali section too, subtractive clustering was used instead of the grid 

search method. The results in terms of RMSE, NSE and threshold statistics are 

presented in table 4.12. 

Table 4.12 Results of W-ANFIS models at Pali weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANFIS1 Db5 L1 0.79 0.75 0.89 22 46 68 

W-ANFIS2 Db3 L2 0.45 0.40 0.97 54 80 93 

W-ANFIS3 Db3 L2 0.48 0.45 0.96 51 80 91 

W-ANFIS4 Db3 L1 0.38 0.36 0.97 50 82 91 

W-ANFIS5 Db3 L2 0.40 0.36 0.97 50 81 91 
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The table reveals an enhancement in the performance of ANFIS models on using 

wavelet decomposed input data. Except for the extrinsic data based models, a 

substantial enhancement in the performance of temperature and intrinsic data based 

models is observed. For most of the models, decomposition by Db3 mother wavelet 

has performed well. The performance of temperature based W-ANFIS1 models 

(RMSE 0.75 mm/day) is found to be slightly better than the W-ANN1 model (RMSE 

0.65 mm/day). Also, the enhancement in the performance of this model is very less 

when compared to the performance of ANFIS1 model of Pali station. It is observed 

that in case of W-ANFIS1 models the Db5 wavelet transform at first level of 

decomposition has performed better. Use of wavelet transform has enhanced the 

performance of W-ANFIS2 and W-ANFIS3 models when compared to the respective 

ANFIS models. The performance of W-ANFIS4 and W-ANFIS5 model is almost 

same. However, considering the lesser number of inputs used by the W-ANFIS4 

models, it can be concluded that W-ANFIS4 is the best hybrid W-ANFIS model for 

estimating ETo at Pali weather station.  

Scatter plots and box plots of W-ANFIS models for Pali station are presented in 

figure 4.24. Like ANFIS1 model the W-ANFIS1 model also overestimates the ETo 

values, but the performance of this model is slightly better. The intrinsic data based 

W-ANFIS2 and W-ANFIS3 models performed well at estimating the larger ETo 

values when compared to ANFIS2 and ANFIS3 models. This highlights the 

applicability of using wavelet transform for enhancing the performance of ANFIS 

models. The performance of W-ANFIS4 and W-ANFIS5 is found to be alike and best 

among all the W-ANFIS models tested at Pali station. These models slightly 

overestimated the very small ETo values, but are good at estimating the greater 

values. The box plot shows that the ANFIS2 and ANFIS3 models overestimated the 

ETo values, whereas the hybrid W-ANFIS2 and W-ANFIS3 models using wavelet 

transformed data inputs have performed better than the conventional ANFIS models. 

The box plot shows underestimation of greater ETo values by W-ANFIS3 model 

when compared to the box plot of other models. The box plot for the W-ANFIS4 

model shows a very good resemblance to the box plot of the FAO-56PM ETo. Hence, 

this model can be considered as the best W-ANFIS model for estimating ETo at Pali 

station. 
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Figure 4.24 Scatter plots and box plot of W-ANFIS models for Pali weather 

station. 
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4.2.5 LS-SVM results for Pali station 

The LS-SVM models is found to be the best AI model for estimating ETo at the 

Jodhpur weather station. The results for LS-SVM models at Pali weather station are 

discussed in this section. Table 4.13 presents the RMSE, NSE and threshold statistics 

for the LS-SVM models tested at Pali weather station. The results reveal that, except 

for the temperature-based model, performance of LS-SVM models is better than all 

the other AI models tested at this station. The intrinsic data based LS-SVM model has 

performed better than the ANN and ANFIS models. The results suggest that the 

performance of both the LS-SVM4 and LS-SVM5 models is similar. However, 

considering the lesser number of inputs used by the LS-SVM4 model, this model can 

be considered as the best LS-SVM model to estimate ETo at Pali weather station.  

Table 4.13 Results of LS-SVM models at Pali weather station. 

Model 
Training 

RMSE (mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

LS-SVM1 0.78 0.73 0.89 25 50 69 

LS-SVM2 0.62 0.58 0.93 38 65 83 

LS-SVM3 0.60 0.56 0.94 40 68 85 

LS-SVM4 0.38 0.33 0.98 55 86 93 

LS-SVM5 0.37 0.33 0.98 55 85 94 

 Scatter plots for all the LS-SVM models tested at the Pali station are presented in 

figure 4.25. The scatter plot and box plot suggests that the performance of all the LS-

SVM model is better than the ANN and ANFIS models. The LS-SVM1 model 

overestimated the ETo values. The LS-SVM2 and LS-SVM3 models performed better 

at estimating the smaller values of ETo but slightly overestimated the greater values. 

Similar performance is also observed in case of intrinsic inputs based ANN and 

ANFIS models. The performance of LS-SVM4 and LS-SVM5 models tested at Pali 

station is found to better than other LS-SVM models tested at Jodhour station. 
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Figure 4.25 Scatter plots and box plot of LS-SVM models for Pali weather 

station. 
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4.2.6 W-LSSVM results for Pali station 

The results for W-LSSVM model tested at Pali station are presented in table 4.14. 

Except for the temperature based model, the hybrid W-LSSVM models have 

performed better than all the other models tested at Pali station. From the W-ANN 

results, it is also observed that the performance of W-ANN1 model is better than the 

W-ANFIS1 and W-LSSVM1 model. 

Table 4.14 Results of LS-SVM models at Pali weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-LSSVM1 Db3 L3 0.74 0.71 0.90 22 50 69 

W-LSSVM2 Db3 L2 0.42 0.39 0.97 54 85 96 

W-LSSVM3 Db3 L2 0.48 0.42 0.96 58 83 96 

W-LSSVM4 Db5 L3 0.35 0.32 0.98 54 85 95 

W-LSSVM5 Db3 L2 0.36 0.33 0.98 54 87 94 

The table shows that W-LSSVM4 is the best hybrid model for estimating ETo at 

Pali weather station. The model used inputs decomposed by Db5 mother wavelet at 

second level of decomposition. It is seen that the enhancement in the performance of 

W-LSSVM4 model when compared to the LS-SVM4 model is very small. Both the 

models delivered same NSE of 0.98. The threshold statistics also indicated similar 

performance by both the models. Further, it is observed that out of all the models 

tested, W-LSSVM4 is the most efficient model for estimating ETo at Pali weather 

station. This model used temperature data along with the extrinsic ETo values as 

inputs. 

 Figure 4.26 presents scatter plots and box plots for the W-LSSVM models. The 

scatter plot for W-LSSVM1 model shows overestimation of all the ETo values. The 

intrinsic data based W-LSSVM2 and W-LSSVM3 models performed better than the 

extrinsic data based W-LSSVM4 and W-LSSVM5 models. It can also be observed 

that the intrinsic data based models were poor at estimating the larger ETo values. 

These models underestimated as well as overestimated the ETo values. The extrinsic 
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data based models underestimated the smaller ETo values, but were good at 

estimating the larger values. 

Figure 4.26 Scatter plots and box plot of W-LSSVM models for Pali weather 

station. 
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4.2.7 Temperature based models for Pali station. 

On comparing the performance of temperature based Hargreaves, ANN1, ANFIS1 

and LS-SVM1 based models, it is observed that the performance of Hargreaves model 

is poor (RMSE of 0.99 mm/day) compared to all the AI models. The result reveals the 

superiority of AI models over the Hargreaves equation. Figure 4.27 presents the 

scatter plots of the temperature based models. The scatter plots clearly highlight the 

efficiency of the AI models. The AI models slightly overestimated the smaller ETo 

values. The Hargreaves model underestimated the greater values ETo. The 

underestimation was very high compared to the AI models. The AI models are good 

at estimating the larger ETo values and the performance of LS-SVM1 models is good 

when compared to the ANN1 and ANFIS1 model. It is observed that data points with 

greater ETo values are sparsely  distributed around the 45° line.   

Figure 4.27 Scatter plot for temperature based models at Pali weather station 

 



95 

 

4.3 RESULTS FOR HYDERABAD STATION (SEMI-ARID REGION) 

As stated in the methodology, the performance of proposed hybrid AI models for 

estimating daily ETo in semi-arid region is also analyzed in this study. The results for 

Hyderabad station are discussed in this section.  

4.3.1 ANN results for Hyderabad station 

The performance of ANN models for estimating ETo at Hyderabad station are 

presented in table 4.15. The results reveal that the performance of ANN models in 

semi-arid region is inferior to the performance of ANN models in arid region. This 

may be due to the inefficiency of ANN to model ETo using the given input variables 

or due to the input data properties like high coefficient of variation. 

Table 4.15 Results of ANN models at Hyderabad weather station. 

Model 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10  TS15 

 ANN1 3-5-1 1.07 0.92 0.71 26 54 68 

ANN2 4-7-1 0.96 0.87 0.74 29 51 72 

ANN3 5-8-1 0.98 0.89 0.72 30 52 72 

ANN4 4-9-1 1.23 1.04 0.62 27 47 62 

ANN5 5-9-1 1.21 1.13 0.56 26 44 63 

The temperature based ANN1 model delivered a testing RMSE of 0.92 mm/day 

and NSE of 0.71. This result is found to be poorer than the performance of 

temperature based ANN models in arid regions. Similar trend is observed in the 

performance of other ANN models tested for the Hyderabad station. The performance 

of intrinsic inputs based ANN2 and ANN3 model is found to be better than the 

extrinsic inputs based ANN4 and ANN5 model. The temperature based ANN1 model 

has performed better than ANN4 and ANN5 models. This reveals the inability of 

extrinsic inputs to model ETo at the selected weather stations. Display of poor 

performance by extrinsic inputs based models may be due to the large distance 

between stations selected for the study. The scatter plot and box plot for the ANN 

models is presented in figure 4.28. The scatter plot and box plot also reveal that 

ANN2 is the best model for estimating ETo at Hyderabad weather station. It is further 

observed that this model did not perform well in modeling higher ETo values. 
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Figure 4.28 Scatter plots and box plot of ANN models for Hyderabad weather 

station. 
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4.3.2 W-ANN results for Hyderabad station 

The results for hybrid W-ANN models are presented in this section. Use of wavelet 

decomposed input variables have shown an enhancement in the performance of AI 

models at arid region. However, in case of semi-arid region, use of wavelet 

decomposed inputs did not show a significant enhancement in the performance. The 

results for W-ANN models are presented in table 4.16. 

Table 4.16 Results of W-ANN models at Hyderabad weather station. 

Model 
Mother 

wavelet 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANN1 Db5 L2 5-8-1 1.04 0.90 0.72 30 52 70 

W-ANN2 Db3 L2 10-14-1 0.76 0.66 0.85 41 68 83 

W-ANN3 Db3 L2 13-16-1 0.54 0.48 0.92 59 82 92 

W-ANN4 Db3 L2 10-17-1 1.10 1.09 0.59 29 52 66 

W-ANN5 Db3 L2 9-13-1 1.09 1.09 0.59 27 47 63 

Use of wavelet decomposed inputs has helped in improving the efficiency of the 

intrinsic data based W-ANN2 and W-ANN3 models. The result reveals that W-ANN3 

model (testing RMSE of 0.48 mm/day) is the best W-ANN model for estimating ETo 

at Hyderabad weather station. The W-ANN3 model has also performed well in terms 

of NSE and threshold statistics. This model used thirteen inputs, sixteen nodes in 

hidden layer and FAO-56PM ETo as the output.  For most of the models tested, the 

Db3 mother wavelet at second level of decomposition has performed well.  Similar to 

the observations for ANN models, results for W-ANN models also point out the 

inability of extrinsic input based models for estimating ETo in semi-arid regions. 

The scatter plot and box plot for the W-ANN models are presented in Figure 4.29. 

The result reveals poor performance by the models in estimating the higher ETo 

values. All the data points are sparsely located around the 45° line. The W-ANN2 and 

W-ANN3 models performed well overall, but were not good at estimating the higher 

ETo values. The box plot suggests overestimation of ETo values by all the models. It 

is observed that the performance of extrinsic data based models is similar to the 

temperature based W-ANN1 model.  
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Figure 4.29 Scatter plots and box plot of W-ANN models for Hyderabad weather 

station. 
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4.3.3 ANFIS results for Hyderabad station 

 The results for ANFIS models are presented in table 4.17. The results suggest similar 

performance by ANN and ANFIS models. 

Table 4.17 Results of ANFIS models at Hyderabad weather station. 

Model 
Membership 

function 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

ANFIS1 Gbell 1.03 0.93 0.70 31 51 68 

ANFIS2 Gbell 0.97 0.87 0.74 29 51 72 

ANFIS3 Gbell 1.10 0.93 0.70 28 51 71 

ANFIS4 Gbell 1.24 1.01 0.65 30 50 65 

ANFIS5 Gbell 1.28 1.17 0.52 27 50 70 

The temperature based ANN1 model performed slightly better than the ANFIS1 

model. ANFIS2 is the best ANFIS model for estimating ETo at Hyderabad station. It 

is observed that use of extrinsic data deteriorated the performance of AI model.  The 

performance of ANN4 and ANN5 models is found to be inferior than the temperature 

based ANN1 model. It is also observed that the Gbell membership function has 

performed well in all the ANFIS models. Further, it is observed that increasing the 

number of inputs (in case of ANFIS3 and ANFIS5 models) has deteriorated the 

performance of ANFIS models. 

 The scatter plots and box plots for the ANFIS models are presented in figure 4.30. 

It is observed that the models did not perform well in estimating ETo of Hyderabad 

station. The ANN1 model overestimated as well as underestimated the ETo values. 

The ANN2 and ANN3 models performed well at estimating smaller ETo values, but 

the larger values were overestimated as well as underestimated. The extrinsic data 

based ANN4 and ANN5 model overestimated the ETo values. The box plots show 

overestimation of smaller values by all the models. The ANFIS4 and ANFIS5 model 

shows data points above the seventy five percentile line which are not observed in the 

box plot for ETo values estimated by FAO-56PM method. The box plot for ANFIS5 

model shows presence of outliers in the estimated values.  
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Figure 4.30 Scatter plots and box plot of ANFIS models for Hyderabad weather 

station. 
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4.3.4 W-ANFIS results for Hyderabad station 

The results for hybrid W-ANFIS models are discussed in this section. The results for 

these models are presented in table 4.18. An enhancement in the performance of W-

ANFIS2 and W-ANFIS3 models is observed over the ANFIS2 and ANFIS3 models. 

For all the other models tested, use of wavelet inputs did not contribute towards the 

performance of the models.  

Table 4.18 Results of W-ANFIS models at Hyderabad weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANFIS1 Db5 L1 1.16 0.92 0.70 27 53 68 

W-ANFIS2 Db3 L3 0.73 0.66 0.85 41 71 84 

W-ANFIS3 Db3 L3 0.58 0.46 0.93 59 80 93 

W-ANFIS4 Db3 L1 1.05 1.03 0.63 28 46 60 

W-ANFIS5 Db5 L1 1.23 1.06 0.61 27 46 59 

The W-ANFIS1 model performed better than the ANFIS1 model in terms of 

RMSE statistics, but when compared in terms of threshold statistics the ANFIS1 has 

model performed better. It is seen that, Db3 and Db5 mother wavelets worked better 

for all the W-ANFIS models tested. The W-ANFIS3 model has performed better than 

all the other W-ANFIS models tested. Extrinsic data based W-ANFIS4 delivered 

testing RMSE of 0.46 mm/day and TS15 value of ninety three.  

Scatter plots and box plots for the W-ANFIS models are presented in figure 4.31. 

The scatter plot reveals good performance by W-ANFIS2 and W-ANFIS3 models. 

These models performed better at estimating smaller ETo values. The other models 

overestimated the smaller ETo values and overestimated as well as underestimated 

larger ETo values. The larger values of W-ANFIS1, W-ANFIS4 and W-ANFIS5 

models are sparsely located around the 45° line. The box plot also reveals 

overestimation of ETo values by the extrinsic data models. It is clear from the scatter 

plots and box plots that the W-ANFIS3 is the best hybrid W-ANFIS model for 

estimating ETo at Hyderabad station. 
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Figure 4.31 Scatter plots and box plot of W-ANFIS models for Hyderabad 

weather station. 
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4.3.5 LS-SVM results for Hyderabad station 

The results for models tested in arid region reveal that LS-SVM are the best AI 

models for estimating ETo. The results for LS-SVM models at Hyderabad station are 

discussed in this section. The result reveals that the LS-SVM is best AI models for 

estimating ETo at Hyderabad station. The results for the models tested are presented 

in table 4.19. 

Table 4.19 Results of LS-SVM models at Hyderabad weather station. 

Model 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

LS-SVM1 1.03 0.93 0.70 28 51 69 

LS-SVM2 0.96 0.86 0.74 30 52 73 

LS-SVM3 0.96 0.87 0.74 30 51 73 

LS-SVM4 1.06 0.99 0.66 27 53 67 

LS-SVM5 1.12 1.04 0.62 29 49 66 

At Hyderabad station, it is observed that the performance of ANN, ANFIS and 

LS-SVM models are identical. LS-SVM6 is the best LS-SVM model for estimating 

ETo at Hyderabad weather station. In addition, this model performed better than all 

the other ANN, ANFIS and LS-SVM models. Further, it is seen that the temperature 

based LS-SVM1 model performed better than the extrinsic data based LS-SVM4 and 

LS-SVM5 model. This result highlights the inability of extrinsic inputs in modeling 

the ETo process.  

The Scatter plots and box plots for the LS-SVM models are presented in Figure 

4.32. The LS-SVM1 model did not perform well and the data points are sparsely 

located around the 45° line. The LS-SVM2 and LS-SVM3 models were good at 

estimating the smaller ETo values, but did not perform well at estimating the larger 

ETo values. The extrinsic data based LS-SVM4 and LS-SVM5 model overestimated 

the ETo values at Hyderabad station. The box plot indicated overestimation of  

smaller ETo values by all the LS-SVM models. The box plot reveals overestimation 

of ETo values by the LS-SVM4 and LS-SVM5 models. 
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Figure 4.32 Scatter plots and box plot of LS-SVM models for Hyderabad weather 

station. 
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4.3.6 W-LSSVM results for Hyderabad station 

W-LSSVM is found to be the best hybrid model for the estimating ETo at Jodhpur 

and Pali weather station. The results for W-LSSVM models for Hyderabad weather 

station are presented in table 4.20. The table suggests that there the is no enhancement 

in the performance of some models on using wavelet decomposed data as inputs. 

Table 4.20 Results of W-LSSVM models at Hyderabad weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-LSSVM1 Db3 L3 0.98 0.92 0.71 25 52 70 

W-LSSVM2 Db3 L2 0.74 0.65 0.85 41 69 85 

W-LSSVM3 Db3 L2 0.56 0.43 0.93 60 84 93 

W-LSSVM4 Db5 L3 1.12 1.03 0.63 28 50 65 

W-LSSVM5 Db3 L2 1.13 1.04 0.62 27 48 65 

It is clear from the table that W-LSSVM3 model with RMSE of 0.43 mm/day is 

the best hybrid model for estimating ETo at Hyderabad weather station. This model 

delivered an NSE of 0.93 and TS15 value of ninety-three. It is observed that except 

for the W-LSSVM4 model, Db3 at second level of decomposition has performed well 

for all the other models. It is observed that the performance of W-LSSVM1 model is 

better than the extrinsic data based W-LSSVM4 and W-LSSVM5 model.  

Scatter plot and box plot for the W-LSSVM models for Hyderabad weather station 

are presented in figure 4.33. The scatter plot presents a good performance by the W-

LSSVM2 and W-LSSVM3 model. The box plot makes it clear that the temperature 

and extrinsic data based models overestimated the ETo values. The performance of 

W-LSSVM3 is best amongst all the models tested at Hyderabad station. The results 

make it clear that W-LSSVM is the best model for estimating ETo at the Hyderabad 

weather station. Additionally, it is observed that the intrinsic data based AI models 

have performed well. Unlike the results obtained for arid region, the models using 

extrinsic data have failed to deliver good performance at Hyderabad weather station. 
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Figure 4.33 Scatter plots and box plot of W-LSSVM models for Hyderabad 

weather station. 
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4.3.7 Temperature based models for Hyderabad station 

The performance of different temperature based equations for estimating daily ETo at 

Hyderabad station is compared in this section. The Hargreaves equation yielded an 

RMSE of 1.08 mm/day for the Hyderabad weather station. It is clear that all the AI 

models performed better than the Hargreaves equation. Scatter plots of all the 

temperature based models are presented in figure 4.34. It is clear from the figure that 

the Hargreaves equation underestimated the ETo values at the Hyderabad station. The 

AI models performed better at estimating the smaller ETo. However, the larger ETo 

values are sparsely located around the 45° line suggesting a poor performance by all 

the temperature based models. 

Figure 4.34 Scatter plot for temperature based models at Hyderabad station 
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4.4 RESULTS FOR KURNOOL STATION (SEMI-ARID REGION) 

Kurnool weather station situated in the semi-arid region of India is the fourth case 

study used to access the applicability of the proposed models. The performance of 

proposed models are presented in this section and the results are discussed. 

4.4.1 ANN results for Kurnool station 

Results for ANN models tested at Kurnool station are discussed in this section. The 

results reveal that the models tested at Kurnool station displayed poor performance 

when compared to the performance of models in arid region. The results of various 

ANN models are presented in table 4.21. 

Table 4.21 Results of ANN models at Kurnool weather station. 

Model 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

ANN1 3-6-1 1.16 1.04 0.58 17 33 51 

ANN2 4-9-1 0.89 0.71 0.80 25 51 74 

ANN3 5-5-1 0.83 0.79 0.76 26 49 71 

ANN4 4-8-1 1.15 1.00 0.61 17 35 54 

ANN5 5-7-1 1.18 1.11 0.52 18 34 49 

It is clear from the table that ANN1 model displayed poor performance at Kurnool 

station than the Hyderabad station. This model delivered testing RMSE of 1.04 

mm/day and NSE of 0.58. It is observed that ANN2 (with nine nodes in hidden layer) 

is the best ANN model to estimate ETo at Kurnool station. This model used 

temperature data along with the antecedent ETo values from the same weather station. 

The extrinsic data based models (ANN4 and ANN5) performed similar to the 

temperature based models. This highlights the inability of using extrinsic data for 

modeling ETo in semi-arid region. 

The scatter plot for the ANN models are presented in figure 4.35. The scatter plot 

suggests underestimation of ETo values by all the models. The performance of ANN2 

model is better than all the other models tested. This model performed well at 

estimating the smaller ETo values. 
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Figure 4.35 Scatter plots and box plot of ANN models for Kurnool weather 

station. 
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4.4.2 W-ANN results for Kurnool station 

The results for W-ANN models tested for Kurnool weather station are discussed in 

this section. The results for the W-ANN models are presented in table 4.22. Similar to 

the results for Hyderabad station, it is observed that the use of wavelet transformed 

has not led to any significant enhancement in the performance of temperature based 

and extrinsic data based models. 

Table 4.22 Results of W-ANN models at Kurnool weather station. 

Model 
Mother 

wavelet 

Optimum 

ANN 

structure 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANN1 Db5 L3 9-12-1 1.03 1.08 0.55 15 28 48 

W-ANN2 Db3 L3 13-15-1 0.49 0.43 0.93 52 83 94 

W-ANN3 Db5 L2 13-13-1 0.41 0.33 0.96 62 90 98 

W-ANN4 Db5 L1 7-10-1 1.03 0.96 0.64 21 37 59 

W-ANN5 Db3 L2 13-18-1 1.05 0.98 0.63 21 39 58 

 The W-ANN2 and W-ANN3 models have performed better than the ANN2 and 

ANN3 models. The table reveals that, only the W-ANN2 and W-ANN3 models have 

shown improvement in performance. The W-ANN3 model with 13 nodes in hidden 

layer is the best W-ANN model to estimate ETo at Kurnool weather station. It is 

observed that, out of all the mother wavelets tested, the Db3 and Db5 mother wavelets 

have performed better. The W-ANN3 model delivered an RMSE of 0.33 mm/day and 

NSE of 0.96. 

 Scatter plot and box plot for the W-ANN models are presented in figure 4.36. 

The scatter plot suggests that the temperature based W-ANN1 and extrinsic data 

based W-ANN4 and W-ANN5 models have underestimated the ETo values. It is 

further observed that these models are comparatively good at estimating smaller ETo 

values. The W-ANN2 and W-ANN3 models have performed better than all the other 

models tested. Out of all the models tested, W-ANN3 is found to be the best model 

for estimating ETo at Kurnool weather station. It is observed that this model 

underestimate as well as overestimate the ETo values, but the data points are well 

scattered around the 45° line. 
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Figure 4.36 Scatter plots and box plot of W-ANN models for Kurnool weather 

station. 
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4.4.3 ANFIS results for Kurnool station 

Results for ANFIS models tested at Kurnool station are discussed in this section. The 

result of the ANFIS models are presented in table 4.23. 

Table 4.23 Results of ANFIS models at Kurnool weather station. 

Model 
Membership 

function 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

ANFIS1 Gbell 1.14 1.00 0.61 19 35 53 

ANFIS2 Gbell 0.74 0.68 0.82 26 54 74 

ANFIS3 Gbell 0.86 0.78 0.76 25 54 73 

ANFIS4 Gbell 1.13 0.97 0.63 20 39 55 

ANFIS5 Gbell 0.98 0.99 0.62 21 38 54 

It is clear from the table that ANFIS models have performed better than the ANN 

models. The ANFIS2 model (testing RMSE of 0.68 mm/day) is the best ANFIS 

model to estimate ETo at the Kurnool weather station. The ANFIS4 model performed 

slightly better than the temperature based ANFIS1 model. Unlike the results in arid 

regions, the models using extrinsic ETo data inputs have not performed well in semi-

arid regions. Gbell membership function has performed better for all the ANFIS 

models tested at Kurnool station. 

 The scatter plots and box plots for ANFIS models are presented in figure 4.37. All 

the models underestimate the ETo values. High amount of underestimation is 

observed in the larger ETo values. ANFIS1 model has underestimated the higher ETo 

values. The ANFIS2 model is comparatively better than all the other models tested. 

This model is good at estimating the smaller ETo values compared to the other 

models. The box plots for the models shows good performance by the ANN2 model. 

The box plot for ANFIS3 model shows presence of outliers in the estimated values.  
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Figure 4.37 Scatter plots and box plot of ANFIS models for Kurnool weather 

station. 
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4.4.4 W-ANFIS results for Kurnool station 

The results for W-ANFIS models at Kurnool weather station are discussed in this 

chapter. Table 4.24 presents the results for various W-ANFIS models tested at 

Kurnool weather station. Similar to the results obtained from W-ANN models it is 

observed that only intrinsic data based W-ANFIS models have shown enhancement in 

performance. 

Table 4.24 Results of W-ANFIS models at Kurnool weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-ANFIS1 Db5 L1 1.06 0.98 0.62 16 31 53 

W-ANFIS2 Db5 L3 0.51 0.46 0.92 49 78 91 

W-ANFIS3 Db3 L3 0.44 0.36 0.95 58 87 96 

W-ANFIS4 Db3 L2 1.08 1.00 0.61 20 39 56 

W-ANFIS5 Db5 L1 1.15 0.98 0.63 23 40 57 

 

 From the table it is observed that there is no significant enhancement in the 

performance of temperature based W-ANFIS model. Similar to the temperature based 

models the extrinsic ETo data based W-ANFIS4 and W-ANFIS5 also did not show 

any enhancement in the performance. The W-ANFIS3 model with training RMSE of 

0.36 mm/day is found to be the best W-ANFIS model for estimating ETo at Kurnool 

station. This model delivered NSE of 0.92 and TS15 value of ninety-six. It can also be 

observed that the W-ANN3 model has performed slightly better than this model.   

Scatter plot and box plot for W-ANFIS models are presented in figure 4.38. 

Similar to the results obtained from W-ANN models, the A-ANFIS1, W-ANFIS4 and 

W-ANFIS5 models did not perform well in estimating ETo values of Kurnool weather 

station. However, the W-ANFIS2 and W-ANFIS3 models displayed a good 

performance. The W-ANFIS2 model slightly underestimated the larger ETo values. 

The scatter plot shows that W-ANFIS3 is the best W-ANFIS model to estimate ETo at 

Kurnool weather station. Box plot for W-ANFIS3 models shows presence of some 

outliers, as some larger values are overestimated by the model.  
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Figure 4.38 Scatter plots and box plot of W-ANFIS models for Kurnool weather 

station. 
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4.4.5 LS-SVM results for Kurnool station 

The results for LS-SVM models tested for Kurnool weather station are discussed in 

this section. Table 4.25 presents the results for various LS-SVM models tested for 

Kurnool weather station. 

Table 4.25 Results of LS-SVM models at Kurnool weather station. 

Model 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

LS-SVM1 1.12 1.08 0.55 15 28 48 

LS-SVM2 0.98 0.78 0.76 26 49 69 

LS-SVM3 0.86 0.72 0.80 29 54 76 

LS-SVM4 1.12 1.07 0.55 17 34 52 

LS-SVM5 1.20 1.05 0.57 18 35 54 

 The results reveal that the LS-SVM3 is the best LS-SVM models for estimating 

ETo at Kurnool weather station. The LS-SVM3 model delivered an RMSE of 0.72 

mm/day and NSE of 0.80. At the Hyderabad station, the LS-SVM model has 

performed well amongst all the AI models tested. Whereas, for the Kurnool weather 

station the ANFIS3 model has performed better than all the other AI models tested. 

Similar to the ANN and ANFIS models the LS-SVM1, LS-SVM4 and LS-SVM5 

models have not performed well. It is observed that the performance of extrinsic data 

based models is similar to the temperature based LS-SVM1 model.  

 The Scatter plot and box plot for the LS-SVM models are presented in figure 

4.39. It is clear from the figure that all the LS-SVM models have underestimated the 

larger values of ETo. Compared to other models the LS-SVM2 and LS-SVM3 models 

have performed well at estimating the smaller ETo values. The box also suggests 

underestimation of larger ETo by the LS-SVM models. 
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Figure 4.39 Scatter plots and box plot of LS-SVM models for Kurnool weather 

station. 
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4.4.6 W-LSSVM results for Kurnool station 

W-LSSVM is found to be the best model for estimating ETo at all the stations 

considered in this study. The results for W-LSSVM models tested for Kurnool 

weather station are discussed in this section. The results for various W-LSSVM 

models are presented in table 4.26. 

Table 4.26 Results of W-LSSVM models at Kurnool weather station. 

Model 
Mother 

wavelet 

Training 

RMSE 

(mm/d) 

Testing 

RMSE 

(mm/d) 
NSE TS5 TS10 TS15 

W-LSSVM1 Db3 L3 1.01 0.98 0.63 20 39 55 

W-LSSVM2 Db5 L2 0.44 0.37 0.95 58 84 92 

W-LSSVM3 Db3 L2 0.38 0.31 0.97 71 92 97 

W-LSSVM4 Db5 L2 1.02 0.95 0.93 23 42 62 

W-LSSVM5 Db5 L2 0.98 0.94 0.64 21 38 57 

The table makes it clear that for Kurnool station also, W-LSSVM is the best model for 

estimating daily ETo. The results reveal that the W-LSSVM3 with an RMSE of 0.31 

mm/day and NSE of 0.97 is the best model for estimating ETo at Kurnool station. 

This model has also performed well in terms of threshold statistics with TS15 value of 

ninety-seven. Further, it is observed that the  extrinsic data based W-LSSVM4 and W-

LSSVM5 models have not performed well. However, when compared to the LS-SVM 

models, a slight enhancement in the performance of these models is observed.  

 The scatter plot and box plot for the W-LSSVM models tested at Kurnool 

weather station are presented in figure 4.40. The scatter plot and box plot revel a 

performance similar to the earlier tested W-ANN and W-ANFIS models. The W-

LSSVM1 model underestimated the larger ETo values. Also the extrinsic data based 

W-LSSVM4 and W-LSSVM5 models display a similar performance. The W-

LSSVM2 model slightly underestimated the smaller ETo values. The W-LSSVM3 

model is found to be the best model for estimating ETo at Kurnool weather station. 

The box plot for W-LSSVM3 model is similar to the box plot for FAO-56PM ETo 

values. From the results it is concluded that the W-LSSVM3 is the best model for 

estimating daily ETo at Kurnool weather station. 



119 

 

Figure 4.40 Scatter plots and box plot of W-LSSVM models for Kurnool weather 

station. 
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4.4.7 Temperature based models for Kurnool station 

The performance of different temperature based equations for estimating daily ETo at 

Kurnool station is compared in this section. The Hargreaves equation yielded an 

RMSE of 1.37 mm/day for the Kurnool weather station. It is clear that all the AI 

models performed better than the Hargreaves equation. Scatter plots of all the models 

are presented in figure 4.41. It is clear from the figure that the Hargreaves equation 

underestimated the ETo values at the Kurnool station. The AI models performed 

better at estimating the smaller ETo. However, the larger ETo values are sparsely 

located around the 45° line suggesting a poor performance by all the temperature 

based models. 

Figure 4.41 Scatter plot for temperature based models at Kurnool station  
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CHAPTER 5 

CONCLUSIONS 

5.1 SUMMARY 

This study attempts to develop various hybrid models such as Wavelet-ANN, Wavelet-

ANFIS and Wavelet-LSSVM models for estimating ETo in arid (Jodhpur and Pali 

weather station) and semi-arid (Hyderabad and Kurnool) regions of India. Hybrid 

models were developed by pre-processing the raw datasets of input variables with 

discrete wavelet transform and presenting the decomposed subseries to ANN, ANFIS 

and LS-SVM models where FAO-56PM ETo is the output. The proposed models can 

be used for real field application in data scarce/ limited data scenario for managing 

irrigation systems. The performance of the proposed models was evaluated using 

RMSE, NSE and TS statistics. Scatter plots were used to evaluate the accuracies of the 

models and box plots were used to analyze the spread of the data points estimated by 

the models. 

5.2 CONCLUSIONS 

1. Factor analysis can be successfully used for selecting the most influencing input 

parameters in the process of evapotranspiration. It was found that temperature plays 

the most important role in the process of evapotranspiration process at arid and 

semi-arid region and can be used as the sole input under limited data availability 

scenario. 

2. Overall performance of LS-SVM model was better than ANN and ANFIS models 

in both arid and semi-arid region. 

a. LS-SVM5 model using extrinsic data inputs was found to be the best model for 

estimating ETo at Jodhpur and Pali weather station. 

b. In semi-arid region (Hyderabad and Kurnool weather station) performance of 

all the models using intrinsic antecedent ETo values was similar. 

3. Use of wavelet decomposed datasets has significantly influenced the performance 

of AI models.  

a. Compared to classical AI models, an enhancement in the performance of hybrid 

AI models was observed in the arid region. The W-LSSVM2 model performed 
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well in Jodhpur station, while the W-LSSVM4 performed better at the Pali 

weather station. 

b. For semi-arid region, use of wavelet decomposed inputs did not show an 

appreciable enhancement in the performance of hybrid AI models. The W-

LSSVM3 model using intrinsic antecedent ETo values as inputs was found to 

be the best model for estimating ETo at Hyderabad and Kurnool weather station. 

4. Selection of proper mother wavelet plays a significant role in performance of hybrid 

wavelet-AI models. Out of all the Daubechies mother wavelets tested, the 

performance of Db3 and Db5 mother wavelet was found better.  

5. The temperature based AI and hybrid AI models have performed better than the 

conventional Hargreaves equation. ANN1 and W-ANN1 models have performed 

better than all the other temperature based models tested in arid and semi-arid 

regions. 

6. Use of extrinsic inputs proved to be useful only in the arid regions. In semi-arid 

region, the models using intrinsic antecedent ETo values have performed well. In 

semi-arid regions, use of wavelet decomposed extrinsic data has deteriorate the 

performance of some hybrid models. 

5.3 CONTRIBUTION FROM THE THESIS 

1  In this study, an attempt is made to study the performance of hybrid wavelet-AI 

models for estimating reference evapotranspiration. It is observed that use of 

wavelet decomposed inputs significantly influenced the performance of classical AI 

models. 

2 On comparing the performance of AI and hybrid AI models in arid and semi-arid 

regions it is observed that, the performance of models is better at modeling weekly 

ETo in arid region.  

3  Use of extrinsic inputs has proved to be helpful in enhancing the performance of 

proposed models in certain circumstances (nearby places) only.  

5.4 LIMITATION OF THE STUDY 

1. This study is confined to two stations in arid region and two stations in semi-arid 

region which partially represents the generalized ETo characteristics of the region.  



 

123 

 

2. Performance of only ANN, ANFIS and LS-SVM method with wavelet transform is 

evaluated in this study. 

5.5 FUTURE SCOPE OF THE STUDY 

1. Use of datasets from more stations can be further used to confirm the results in more 

conclusive way. 

2. Performance of other AI methods hybridized with wavelet transform can be 

evaluated in future studies. 
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