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ABSTRACT 

This dissertation deals with the investigation of coupled multiphysics response 

of stepped functionally graded magneto-electro-elastic (SFGMEE) and multiphase 

MEE beams and plates in the thermal and hygrothermal environment. The influence of 

pyroeffects on the direct and derived quantities of MEE beams and plates has been 

investigated. An attempt has been made to evaluate the effect of external moisture and 

temperature on the static parameters of hygrothermo-magneto-electro-elastic 

(HTMEE) beams and plates made of adaptive wood encapsulated with piezoelectric 

material (Barium Titanate-BaTiO3) and magnetostrictive material (Cobalt Ferrite-

CoFe2O4). To this end, three-dimensional finite element (FE) formulation has been 

derived with the aid of the total potential energy principle and constitutive equations of 

MEE material considering the temperature and moisture fields. The condensation 

technique is employed to obtain the nodal values of degrees of freedom such as 

displacement components, electric potential and magnetic potential. Further, the FE 

formulation is extended to study the individual and combined effects of thermal, 

magnetic and electric fields on the static behaviour of SFGMEE plates. The effect of 

volume fractions, boundary conditions, aspect ratio, stacking sequence and length-to-

width ratio on the static response of SFGMEE and multiphase beams and plates has 

been studied.  

 The numerical evaluation reveals that the different thermal loading profiles 

exhibit unique effect on the static behaviour of MEE beams and plates. In addition, the 

significant influence of pyroeffects is noticed for all the forms of thermal loads. The 

volume fractions of BaTiO3 and CoFe2O4 show a considerable influence on the 

variation of multiphase MEE beam. Furthermore, a novel FE approach presented to 

deal with the hygrothermal response of MEE beams and plates suggest that the 

moisture and temperature fields exhibit a predominant effect on the static parameters. 

The empirical constants associated with the temperature and moisture dependent 

elastic stiffness alter the hygrothermal response of MEE beams and plates.   
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 The comprehensive investigation on the effects of multi-field loads on the 

characteristic behaviour of SFGMEE plates is carried out using the first order shear 

deformation theory (FSDT). The results disclose that the predominant influence of the 

electric and magnetic loads along with the thermal load exhibit a predominant 

influence on the behaviour of the plates.   

Finally, the influence of BaTiO3 and CoFe2O4 particle arrangement on the 

static response of magneto-electro-thermo-elastic (METE) plates has been 

investigated. The significant forms of particles arrangement such as body-centered 

cubic, face-centered cubic and simple cube are considered for the analysis. The 

investigation reveals that the direct (displacements, electric potential and magnetic 

potential) and derived quantities (stresses, electric displacement, magnetic flux 

densities) of METE plate predominantly vary with respect to the particle arrangement.  

 

KEYWORDS: magneto-electro-elastic; pyroeffects; multiphase; hygrothermo-

magneto-electro-elastic; fully coupled analysis. 
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Chapter 1 

INTRODUCTION AND LITERATURE REVIEW 

This chapter encapsulates the basic information related to the smart composite 

materials like piezoelectric material, magnetostrictive material and magneto-electro-

elastic (MEE) material. The physics behind the unique property of coupling among 

electro-elastic, electro-magnetic and magneto-elastic fields are unveiled. The major 

contributions of the research community with respect to MEE material properties and 

their applications have been discussed. Further, a comprehensive literature review on 

the free vibration, static analysis, buckling analysis, thermal analysis of MEE 

structures is presented. The MEE structures with functionally graded material 

properties in the presence of hygrothermal environment have been discussed.  From 

the extensive literature survey, the prominent research gaps have been identified and 

incorporated as research objectives of this dissertation. In the end, organization of the 

thesis chapters has been delineated. 

1.1. SMART COMPOSITE MATERIALS 

The combination of two or more materials with a predominant property 

difference is termed as Composites. Few of the composite materials naturally exhibit 

the concept of multifunctionality. These multiple functions include load bearing 

(structural) along with one or more other forms such as vibration sensing, actuation, 

energy storage etc. The multifunctionality is achieved through the interaction of 

mechanical, electric, magnetic and thermal fields.  There exists a certain class of 

materials for which the mechanical properties can change drastically with the 

application of the external stimuli such as light, temperature, electric and magnetic 

fields. Further, they have the ability to quickly respond to the change produced. Such 

materials are often termed as Smart materials.  

Among the various smart materials, much of the interest of the researchers has 

been vested on the piezoelectric and magnetostrictive materials due to their unique 

interactive property. A brief description of these materials is illustrated in the 

following sections. 
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1.1.1. Piezoelectric materials 

 The piezoelectric effect was discovered by Curie brothers in 1880. The word 

„Piezein‟ in Greek means „squeeze‟ or „press‟. This effect is generally observed in the 

crystal structures such as Tourmaline, Quartz, Topaz and Rochelle salt. The 

piezoelectric effect is schematically represented in Fig. 1.1. It can be demonstrated 

from this figure that when an external load is applied to the piezo material, it deforms 

from initial length L1 to the final length L2, and produces strains. Due to the inherent 

property of these materials, the strains thus produced develop an electric potential. In 

1881, Gabriel Lippmann discovered the converse piezo effect where the application of 

the electric field deforms the crystal structure. Few of the commonly used piezo-

electric materials are Zinc Oxide (ZnO), Aluminium nitride (AlN), Polyvinylidene 

fluoride (PVDF) and Barium Titanate (BaTiO3).  

 

Figure 1.1: Piezoelectric effect 

The constitutive equations of piezoelectric materials are given as follows: 

                                                   { }+
T

C d E 
                                              (1.1) 

                                             
       D d E  +

                                                (1.2) 

where, {ε}and {D} are the strain and electric displacement vectors in (C/m2). [C] and 

[d] are the elastic stiffness matrix in (N/m2) and piezoelectric constant in (C/m2), 

respectively. [η] and {E} are the permittivity constant in (C2/Nm2) and electric field, 

respectively. The piezoelectric and converse piezoelectric effects can be effectively 

utilised in the applications of sensors and actuators. The actuating and sensing 

behaviour of piezoelectric materials can be described by Eqs. (1.1) and (1.2), 
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respectively. The effective sensing and actuating capabilities of piezoelectric material 

has made them a candidate material for vibration control of many structures 

(Kundalwal et al., 2013; Kumar and Ray, 2013; Ray and Pradhan, 2008). 

1.1.2. Magnetostrictive materials 

 The concept of magnetostriction was proposed by an English physicist, James 

Joule in 1842. The term ‘Magnetostriction’ refers to the change in the shape of the 

material under the influence of externally applied magnetic field. It was observed that 

a sample of magnetostrictive material consists of numerous tiny ferromagnets which 

possess small magnetic moments as a result of their “3d” shells that are not 

completely filled with electrons. While, in the presence of the magnetic field, these 

materials undergo deformation. This is due to the development of the internal strains 

as a result of rotation and re-orientation of the magnetic domains. Figure 1.2 depicts 

the schematic representation of the strains developed and magnetic domain re-

orientation with the applied magnetic field. Initially, the magnetic domains are 

randomly arranged with no external magnetic field applied. Once, the magnetic field 

is applied, the magnetic domains starts to orienting along the direction of the applied 

magnetic field and there by induces strains. Analogously, when the mechanical force 

is applied to these materials, it induces a magnetic field. This converse effect is 

known as Villari effect. This phenomenon is usually observed in Iron, Cobalt, and 

Nickel and also in few rare earth materials like Lanthanum and Terbium. The 

commercially available well known magnetostrictive material is Terfenol-D which is 

an alloy of Terbium (Tb), Iron (Fe) and Dysprosium (Dy).  

     

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Magnetostrictive effect 

ΔL3, H3 

ΔL2, H2 

ΔL1, H1 

ΔL=0, H=0 
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The linear coupling constitutive equations for the magnetostrictive materials are as 

follows: 

                                                             { }+
T

C q H                                     (1.3) 

                                                             B q H  +                                       (1.4) 

where, {ε}and {B} are the strain and magnetic flux density vectors in (N/Am). [C] 

and [q] are the elastic stiffness matrix in (N/m2) and piezomagnetic constant in 

(N/Am), respectively. [µ] and {H} are the permeability constant in (Ns2/C2) and 

magnetic field, respectively.  

1.2. MAGNETO-ELECTRO-ELASTIC (MEE) COMPOSITES 

The necessity of the man kind to accomplish the tasks with minimum efforts 

and time paved way for the emergence of the intelligent or smart structures. The 

advancement in the material science and development in the production technologies 

of advanced composites supported this vision of the entire research community. As a 

result, numerous materials with multiphysics characteristics evolved. The phenomenon 

of inducing magnetic (electric) polarization by applying an external electric (magnetic) 

field is termed as magneto-electric (ME) effect. In 1894, Curie predicted the existence 

of ME effect for the first time.  Further, ME coupling can be defined as, the ratio 

between the magnetic (electric) field output to the electric (magnetic) field input. The 

term ME coupling was first coined by Dubey. However, the first experimental 

observation was made in 1960 when Astrov found the electric field induced magneto-

electric effect in Chromia (Cr2O3) (Grossinger et al., 2008). Later, Rado noticed the 

reverse effect in the same system. The ME materials can be divided into two classes 

namely, single phase compounds and composites. The materials such as Chromia 

(Cr2O3), Bismuth Manganate (BiMnO3), Bismuth Ferrite (BiFeO3), Rare earth (Re) 

ferroborates ReFe3(BO3)4 etc. are the single phase materials which exhibits magneto-

electric behaviour, especially at the low temperatures and high external field.  

In the early stage of the research, consolidating the ferroelectricity and 

magnetism together in a single material was found to be a tedious task, as this 

phenomenon is mutually exclusive. Also, it was witnessed that the simultaneous 

presence of the electric and magnetic dipoles does not ensure strong coupling between 

ferroelectricity and magnetism because of the different microscopic mechanism. To 
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overcome this hurdle, a new class of advanced, high-performance composite material 

which displays multi-functionality among mechanical, electric and magnetic fields 

was developed. They are called as Magneto-electro-elastic (MEE) materials, which 

are developed by combining pure piezoelectric and pure piezomagnetic phases. In 

1972, Van Suchetelene introduced the concept of “product properties” and 

successfully developed the first MEE composite made of Barium Titanate (BaTiO3) 

and Cobalt Ferrite (CoFe2O4). Here, the product properties refer to the electro-elastic, 

magneto-elastic and electro-magnetic coupling displayed by the MEE materials. The 

MEE material is a prominent smart material with high self sensing and self adaptable 

capabilities. This unique material exhibits the coexistence of both ferroelectric and 

ferromagnetic properties. In addition, these materials also display the magneto-electric 

(ME) coupling such that they produce magnetic and electric field when they are 

deformed, and conversely they undergo deformation with the application of external 

electric and magnetic fields as depicted in Fig. 1.3. It is interesting to note that this 

phenomenon is not exhibited by the individual materials. An applied magnetic field 

induces polarization via the mechanical coupling between the constituents as follows:   

                                                        (Direct ME effect)                  (1.5)                      

                                                     (Converse ME effect)                              (1.6) 

where,       is the ME voltage coefficient, P is the electric polarization of a material 

with applied magnetic field (H). Further, M is the magnetization induced with an 

external electric field E.  

 

Figure 1.3: Magneto-electro-elastic coupling effect 

MEE materials has been considered as a potential candidate in the smart 

structures due to their efficient capacity to couple between many fields which includes 

magnetic, electric, elastic, thermal and hygroscopic fields. More importantly, this 
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feature of MEE materials facilitate energy conversion from one form to another (Nan 

et al., 1993; Harshe et al., 1993; Lopatin et al., 1994; Nan et al., 1994; Ryu et al., 

2002; Hu et al., 2016) which has led their extensive usage in various engineering 

applications including aerospace, automobiles, nano structures, sensors and actuators 

etc. Among the various materials exhibiting magneto-electric coupling, the 

combination of Barium Titanate (BaTiO3) and Cobalt Ferrite (CoFe2O4) has the 

highest coupling effect (Grossingera et al., 2008).  

The numerical results by Dunn (1993) showed that the effective thermal expansion 

coefficients of MEE composites could significantly exceed those of the constituents 

themselves. In the thermal environment, this unique class of composites display an 

additional thermo-electric and thermo-magnetic coupling and are generally termed as 

pyroelectric and pyromagnetic effects, respectively. These cross products are 

schematically represented in Fig. 1.4(a), while Fig. 1.4(b) depicts the coupling of 

hygroscopic field with the elastic, magnetic and electric fields. The application of heat 

to MEE composite results in thermal expansion of the pieozoelectric (piezomagnetic) 

layups. The mechanical strains developed are transferred to the corresponding layer 

which leads to the development of electric polarization (magnetization). Even if the 

individual constituents of the composite do exhibit intrinsic pyroelectricity, the 

secondary product effect produced due to the coupling of the different phases can 

make a significant contribution. Among the many MEE composites, Barium Titanate 

(BaTiO3) and Cobalt Ferrite (CoFe2O4) is most widely used due to its higher ME 

coupling. The linear constitutive equations for MEE materials are shown as follows: 

                                              { }= C e E q H  - -                                          (1.7) 

                                                 
T

D e E m H  + +                                       (1.8) 

                                               
T

B q m E H  + +                                       (1.9) 

Where, [C],  e and  q are the elastic co-efficient matrix in (N/m
2
), piezoelectric 

coefficient matrix in (C/m
2
) and magnetostrictive coefficient matrix in (N/Am), 

respectively;   , [m] and [µ] are the dielectric constant matrix in (C
2
/Nm

2
), 

electromagnetic coefficient matrix in (Ns/VC) and magnetic permeability constant 
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matrix in (Ns
2
/C

2
), respectively; {σ}, {D} and {B} represent the stress tensor in 

(N/m
2
), electric displacement vector (C/m

2
) and the magnetic flux vector in (N/Am), 

respectively; {Ɛ}, {E}, and {H} are the linear strain tensor, electric field vector in 

(V/m) and magnetic field vector in (A/m), respectively.  

 

(a) 

 

(b) 

Figure 1.4: Additional coupling effects of MEE materials in (a) thermal (b) 

hygroscopic environment 

 Recently, the multiphysics response of MEE materials in hygrothermal 

environment has been discovered and adopted in the design and analysis of smart 

structures. In addition to the material coupling effects, the moisture change Δm also 

exhibits a coupling between the elastic, electric and magnetic fields. Consequently, the 

coupled constitutive equations of MEE materials in hygrothermal environment i.e., 

hygrothermo-magneto-electro-elastic (HTMEE) materials can be written as follows:  

                                     { }= { } }{C e E q H T mC C   - - - -            (1.10) 

                                    { } { }
T

D e E m H p T m   + + +  +                      (1.11) 

                                   { } { }
T

B q m E H T m    + + +  +                       (1.12) 

where, {ξ}, {χ} and {ʋ} are the moisture expansion co-efficient in (m3/kg), 

hygroelectric constants in (Cm/kg) and hygromagnetic constants in (Nm2/A kg), 
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respectively. Further, Δm is the change in moisture concentration from stress free 

state.  

1.3. ANALYSIS OF MAGNETO-ELECTRO-ELASTIC (MEE) STRUCTURES 

1.3.1. Free Vibration study of MEE structures 

Many researchers have explored the influence of coupling effect on the free 

vibration, static and buckling characteristics of MEE structures using various 

computational techniques. Pan and Heyliger (2002) presented an analytical solution to 

evaluate the natural frequency and mode shapes of a simply supported MEE plate. 

They also emphasized that few modes are unaffected by the coupling of piezoelectric 

and piezomagnetic phases. Wang, Qu and Qian (2010) derived three-dimensional 

exact solutions to evaluate the natural frequencies of MEE cylindrical panels. Milazzo 

et al. (2009) solved the forced vibration problem of MEE bi-morph beam using 

analytical approach.  Davi and Milazzo (2011) carried out dynamic analysis of two-

dimensional MEE solids with the aid of regular variational boundary element 

formulation. The free vibration characteristics of MEE plates were studied using 

discrete layer approach by Ramirez et al. (2006a) and Chen et al. (2014). Meanwhile, 

Ramirez et al. (2006b) adopted the same technique and performed modal analysis of 

functionally graded magneto-electro-elastic plates (FGMEE) plates. Few researchers 

explored the free vibration behaviour of multilayered and FGMEE structures using 

state space approach along with discrete singular convolution (DSC) algorithm (Chen 

et al., 2005; Jiyangi et al., 2006; Huang et al., 2007; Chen et al., 2007; Wang et al., 

2010; Xin and Hu, 2015 ). Using Chebyshev-Ritz method, three-dimensional free 

vibrations of MEE circular plates was computed by Dong (2008). With the aid of 

multiple time scales, Tsai and Wu (2008) investigated the modal field variables of 

FGMEE shells under open circuit condition which was further extended for closed 

circuit conditions by Wu and Tsai (2010). Analogously, Wu and Lu (2009) carried out 

the same study for FGMEE plates. Further, considerable study has been reported on 

the analysis of MEE structures using finite element (FE) methods. Annigeri et al. 

(2006a, b) proposed a semi-analytical method to evaluate the multiphase coupling 

effect on the natural frequency of MEE cylindrical shells. Bhangale and Ganesan 

(2005) extended the similar investigation for non-homogeneous FGMEE cylinders. 

The effect of different coupling phases on the stiffness of the Euler-Bernoulli MEE 
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beams is investigated by Annigeri et al. (2007) and they observed that the 

piezoelectric phase increases the natural frequency while piezomagnetic phase has an 

adverse effect on the stiffness of the system. Milazzo et al. (2012, 2013); Milazzo and 

Orlando (2012) performed dynamic analysis of MEE beam by developing a new finite 

element based upon an elastic equivalent single-layer model. Razavi and Shooshtari 

(2014) evaluated the effect of elastic foundation on the free vibration behaviour of 

doubly curved MEE shell. The nonlinear free vibration analysis of MEE plates was 

carried out by Razavi and Shooshtari (2015) which was later extended for nonlinear 

forced vibration of MEE thin plates by Shooshtari and Razavi (2015). The active 

constrained layer damping (ACLD) of geometrically non-linear vibrations of 

homogenous, functionally graded and multiphase MEE structures were analysed using 

finite element methods by Kattimani and Ray (2014a, b, 2015, 2017a, b). They made 

use of Golla-Hughes-McTavish (GHM) method in time domain to model viscoelastic 

layer of ACLD patch. 

Meanwhile, in the application of sensors and actuators, an optimal design of 

MEE structures becomes prominent. Loja et al. (2014) performed the optimization 

studies to minimize the deformed profile shape of functionally graded MEE beam 

using differential evolution technique. In order to achieve maximum conversion 

efficiency from mechanical energy to electric and magnetic energy, Sun and Kim 

(2010) formulated a systematic design optimization method for the optimal layering 

of MEE composites. The optimization of the effective magnetoelectric voltage 

coefficient of fibrous composites made of piezoelectric and piezomagnetic phases was 

carried out by Kuo and Wang (2012). 

1.3.2. Static studies of MEE structures 

In many practical cases, the MEE structures may undergo deformation when 

subjected to various loading forms. Work concerning with the static response of MEE 

structures can be found in the open literature. Pan (2001) studied the effect of surface 

and internal loads on the static parameters of multilayered MEE plates by deriving 

exact solutions. Pan and Han (2005) extended the similar analysis for FGMEE plates. 

Pan and Heyliger (2003) found that the magnetic, electric and elastic fields exhibit 

indifferent responses for different stacking sequence of MEE plates. Lage et al. (2004) 
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adopted Reissner mixed variational principle and developed partial mixed layerwise 

FE model to investigate the coupled response of MEE plates. The static response of 

MEE plates under the influence of electric loading was investigated by Wang et al. 

(2003) using state space approach. Jian and Ding (2007) dealt with the MEE beams of 

density functionally gradient media. Heyliger and Pan (2004) developed discrete layer 

approximation technique and effectively compared the static behaviour of MEE plates 

with the exact solutions. Meanwhile, they also emphasized the influence of aspect 

ratio on the variation of plate fields. Moita et al. (2009) performed both static and 

dynamic analyses of MEE plates using higher order FE model. Li et al. (2008) solved 

the axisymmetric problem of FGMEE circular plate under uniform load by developing 

three-dimensional analytical solutions. Liu (2011) presented exact solutions and 

analysed the effect of different volume fraction and loads on the static response of 

MEE thin plates. Huang et al. (2010) presented analytical and semi-analytical solution 

and examined the static performance of arbitrary loaded FGMEE beam. Haitao et al. 

(2008) exploited the Hamilton‟s principle in order to evaluate the static and dynamic 

behaviour of MEE plates and pipes. Bhangale and Ganesan (2006) analysed the effect 

of material functional gradation on the primary and secondary variables of MEE 

plates. 

1.3.3. Transient response of MEE structures 

In addition, extensive research has been carried on the transient response of 

MEE structures. Hou et al. (2006) presented an analytical solution associated with the 

separation of variable technique to evaluate the transient behaviour of special non-

homogeneous MEE cylinder. For fully coupled MEE hollow sphere a similar analysis 

was performed by Wang and Ding (2006a, b). The same authors extended their study 

for FGMEE hollow sphere (Wang and Ding, 2006c). The transient behaviour of 

magneto-electro-thermo-elastic (METE) subjected to thermal shocks was studied in 

detail by Dai and Wang (2006). Using FE method, the transient response of three 

phase MEE cylinder (Daga et al., 2008), MEE sensor bonded to mild steel beam (Daga 

et al., 2009a), multiphase MEE beam (Daga et al., 2009b) and MEE sensor bonded to 

mild steel cylinder (Biju, Ganesan and Shankar, 2010; Biju, Ganesan et al., 2010) 

were also studied. More recently, numerous literatures have been reported on a 
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harmonic analysis of MEE structures (Biju et al., 2009; Biju et al., 2011; Biju et al., 

2012; Shooshtari and Razavi, 2017). 

1.3.4. Analysis of MEE nano structures 

More recently, a motivation occurred among the researchers to examine the 

characteristic behaviour of nano and micro sized MEE structures. The size effects play 

an important in accurate analysis of nano structures (Eringen, 1972a, b; 1983). The 

classical continuum mechanics yields erroneous results as it neglects the size effects. 

Therefore, the Eringen‟s non-local theory which considers the size effects is found to 

be advantageous in this regard. The coupled responses of MEE nano structures exhibit 

a noticeable difference analogous to macro MEE structures. Many investigators has 

examined the buckling response (Ansari and Gholami, 2016a, 2017; Ebrahimi and 

Barati, 2016a, b, c, d, 2017a; Li et al., 2014; Mohammadimehr et al., 2017) and 

bending response (Arefi and Zenkour, 2017a; Gholami et al., 2017) of MEE structures 

under various loading condition which includes mechanical loads, thermal loads, 

hygrothermal loads and electromagnetic loads. The prominent researches can also be 

seen with respect to free vibration (Ansari and Gholami, 2016b, c; Arefi and Zenkour, 

2017b; Ebrahimi and Barati, 2016e, f, g, h; 2017b, c; Jandaghian and Rahmani, 2016; 

Ke et al., 2014; Ke and Wang, 2014; Farajpour et al., 2016; Ebrahimi et al., 2016) and 

forced vibration (Ansari et al., 2015a, b) characteristics of MEE nano structures. In 

addition, Arefi and Zenkour (2016) analysed the transient response of sandwich plates 

embedded with piezo-magnetic face sheets. 

More recently, the effect of porosities on the performance of MEE 

nanostructures has grasped the attention of the researchers. By considering four 

variable shear deformation refined plate theory they extended the similar investigation 

for porous FGMEE nanoplates (Ebrahimi and Barati, 2017d). Later, Ebrahimi and 

Barati (2017e) evaluated the natural frequencies of porous dependent FGMEE 

nanobeams using Eringen‟s nonlocal theory. 

1.4. EFFECTIVE PROPERTIES OF MAGNETO-ELECTRO-ELASTIC (MEE) 

MATERIAL 

Apart from the structural analysis, a plenty of research has been devoted to 

evaluate the effective coupled properties and constitutive relations of MEE materials. 
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Considerable amount of work has been carried out to predict the effect of nonlinearity 

(Carman et al., 1995), volume fractions (Huang et al., 2000; Zhou et al. 2017), 

different reinforcement forms (Espinosa-Almeyda et al., 2017) and inhomogeneities 

(Hashemi, 2016) on the effective moduli of MEE materials. Among various 

techniques, asymptotic homogenization micromechanical method is found to be an 

effective tool in predicting the effective properties of METE composites (Aboudi, 

2001; Bravo-Castillero et al., 2009; Challagulla et al., 2011; Hadjiloiji et al., 2013a, b; 

Sixto-Camacho et al., 2013). Koutsawa (2015) examined the effect of topological 

texture on the different properties of METE materials. Recently, Sladek et al. (2017) 

used the meshless local Petrov-Galerkin method to compute the effective MEE 

material properties. Bakkali et al. (2016) numerically evaluated the effective material 

properties of visco magneto-electro-elastic composites in time and frequency domains. 

 

1.5. ANALYSIS OF STRUCTURES IN THERMAL ENVIRONMENT 

1.5.1. Piezo-thermo-elastic structures   

The controlled response to the external temperature field made piezoelectric 

material compatible with many engineering applications. However, analysing the 

influence of various coupled fields on the response of piezoelectric structures was 

cumbersome. Numerous computational approaches have been employed by many 

researchers to evaluate the coupled response of piezoelectric and functionally graded 

piezoelectric material (FGPM) structures in thermal environment. Among them 

analytical solution method (Babaei and Chen, 2008; Dai et al., 2010; Alibeigloo, 2011; 

Hashemi and Kargarnovin, 2016; Jabbari and Barati, 2015; Kulikov and Plotnikova, 

2017; Liu et al., 2012; She et al., 2017; Zenkour, 2012), exact method (Kapuria and 

Achary, 2008; Sharma et al., 2004; Wu et al., 2003; Ying and Zhifie, 2005; Zhong and 

Shang, 2005; Arani et al., 2010; Khoshgoftar et al., 2009) and finite element methods 

(Tian et al., 2007; Jiang and Li, 2007; Roy et al., 2010; Boonphennimit et al., 2013; 

Shegokar and Lal, 2014; Kumar et al., 2016) are prominent. Alashti and Khorsand 

(2011) carried out the thermo-elastic analysis of FGPM cylinder subjected to 

asymmetric thermo-electro-mechanical loads. The external thermal field results in the 

development of undesired vibrations within the piezoelectric structures. Hence, control 

of these hazardous vibrations is the true challenge for the design engineers (Liew et 
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al., 2001; 2003, Sunar et al., 2012; Zheng et al., 2009; Barati and Jabbari, 2015). The 

piezoelectric material properties and hence the corresponding multiscale fields are 

prone to significant variations with the change in temperature. In this regard, few 

works have been reported on the analysis of piezoelectric structures considering 

temperature dependent properties (Bacigalupo et al., 2016; Cook and Vel, 2013; Miara 

and Suarez, 2013; Lv et al., 2014; Barati et al., 2016). 

1.5.2. Magneto-Electro-Thermo-Elastic structures 

The predominant utilization of MEE structures is usually observed in the harsh 

environmental conditions like chemical environment, temperature fields, moisture 

concentration gradients etc. The MEE materials/structures coupled with thermal fields 

are commonly termed as magneto-electro-thermo-elastic (METE) materials/structures. 

In the presence of thermal environment, the characteristics behaviour of MEE 

materials, linear constitutive equations, and thus the equations of motion for METE 

material (Sunar et al., 2002) alter tremendously. Hence, the investigation of the 

material properties and the static response of METE structures in the presence of the 

thermal environment are the prime importance of research for many pioneers. 

Kumaravel et al. (2007) evaluated the steady state response of three layered MEE strip 

subjected to thermal loads under plane stress condition using FE methods. Neglecting 

the influence of pyroeffects, Ganesan et al. (2007) investigated the thermal coupled 

response of layered and multiphase MEE cylinder. Badri and Kayiem (2013) adopted 

the first order shear deformation theory to analyse the static and dynamic analysis of 

METE plates. Tauchert (1996) developed an exact solution for piezo thermoelastic 

problem subjected to steady state temperature distribution. Ootao and Tanigawa 

(2005) studied the effect of non-uniform unsteady heat supply on METE strip using 

exact solutions. 

In thermal environment, the METE materials exhibit an additional coupling 

through the interaction of thermo-electric and thermo-magnetic fields. These are 

commonly termed as pyroelectric and pyromagnetic effects, respectively. Kim et al. 

(2011) considered functionally graded METE composites as prime material for 

investigation and computed the various product properties coupled with pyroelectric 

and pyromagnetic effects. The analysis of METE structures by considering pyroeffects 

(pyroelectric and pyromagnetic) and neglecting pyroeffects results in higher 
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discrepancies of the accuracy (Kondaiah et al., 2013a). Hence, it is recommended to 

consider the effect of pyro coupling for optimum design of METE structures. 

Kondaiah et al. (2012) studied the static behaviour of MEE beams subjected to 

uniform temperature loads by considering pyroeffects. They extended their evaluation 

for MEE plates, cylindrical shells and sensor patch (Kondaiah et al., 2013b, 2014, 

2017).  

1.6. ANALYSIS OF STRUCTURES IN HYGROTHERMAL ENVIRONMENT 

1.6.1. Hygrothermo-piezoelectric structures  

The clear understanding of coupled and uncoupled effects of electric, 

magnetic, moisture and temperature fields on the coupled response of multifield 

materials is of great significance due to their increased potential applications in the 

various working environments. Brischetto (2013) adopted Carrera‟s unified 

formulation to study the static hygrothermoelastic analysis of multilayered composite 

and sandwich shells. Smittakorn and Heyliger (2001, 2003) demonstrated a theoretical 

model to investigate the transient and steady state behaviour of adaptive wood made 

of piezoelectric material and validated it experimentally. Smittakorn and Heyliger 

(2000) presented discrete layer model to compute the hygrothermal nature of 

piezoelectric composites. The bending response of heterogeneous exponentially 

graded piezoelectric hollow cylinders was investigated by Zenkour (2014a, b; 2016a, 

b), Allam et al. (2014, 2016) and Dini and Abolbashari (2016). Raja et al. (2004a, b) 

demonstrated the active control of bending of hygro thermo piezoelectric flat and 

curved plates. Altay and Dokmeci (2000, 2007 and 2008) deduced variation principles 

in hygrothermo piezoelectricity.  

1.6.2. Hygrothermo-magneto-electro-elastic (HTMEE) structures 

Recently, few pioneers have attempted to analyse the effect of the hygrothermal 

fields on the structural analysis of MEE structures. Akbarzadeh and Chen (2012) 

proposed an analytical technique to evaluate the influence of external hygrothermal 

load on the magnetized hollow and solid MEE cylinders resting on elastic foundation. 

Later, Akbarzadeh and Pasini (2014) studied the coupled response of multilayered 

FGMEE cylinders subjected to hygrothermal loading. Saadatfar and Khafri (2014) 

carried out a similar analysis for FGMEE sphere resting on elastic foundation. 



15 

 

Akbarzadeh and Chen (2013) evaluated the hygrothermal stress developed in 

functionally graded piezoelectric media placed in the constant magnetic field. 

1.7.  FULLY COUPLED ANALYSIS OF MAGNETO-ELECTRO-THERMO-

ELASTIC (METE) SOLIDS 

The majority of the analysis of MEE structures in thermal environment 

considered the partial coupling of thermal field and multiphysics fields. However, an 

additional constitutive equation related to the entropy of the MEE system exists when 

full coupling between thermal and other multiphysics fields are considered. This 

unique characteristic of METE composite has attracted the attention of many 

researchers to exploit its benefits in engineering applications. Oh and Cho (2004) 

developed a three noded triangular finite element based on cubic zigzag plate theory to 

predict fully coupled behaviour of thermo-electro-elastic fields. Ahmad et al. (2006) 

derived a coupled electro-thermo-elastic equations from the fundamental principles of 

mass, linear momentum, angular momentum, energy and charge conservation.  Perez-

Fernandez et al. (2009) presented different types of constitutive relations of thermo-

magneto-electro-elasticity using solid thermodynamics. Soh and Liu (2005) discussed 

the mathematical properties of the thermodynamic potentials and the relations between 

the material constants. Further, they also derived various forms of the constitutive 

equations of MEE solids with the thermodynamic potentials. More recently, Shi et al. 

(2017) exploited the principle of virtual work and Mindlin‟s plate theory to propose a 

fully coupled METE plate theory considering non-local and surface effects. 

1.8.  EFFECT OF ELECTRIC AND MAGNETIC LOADS ON MEE 

STRUCTURES 

The inherent ferroelectric and ferromagnetic property of MEE materials make 

the structural analysis under the multi-fields loads such as electric and magnetic loads. 

Many investigators have dealt with analysing the effect of electric and magnetic load 

on MEE structures. Among them, Wang, Xu et al. (2010) analysed a MEE circular 

plates and demonstrated that the electric and magnetic boundary conditions 

significantly alter the electric or magnetic field distributions. Wu and Tsai (2007) 

employed asymptotic approach and computed the influence of electric displacement 

and magnetic flux on the bending response of doubly curved FGMEE shells. Wang et 

al. (2003) proposed a theoretical model to predict the instability of ferromagnetic 
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plates subjected to external thermal and magnetic fields. Vaezi et al. (2016) presented 

a numerical solution to analyse the influence of external electric and magnetic 

potentials on MEE microbeams. Zhao et al. (2017) proposed a axisymmetric solutions 

to analyse multiferroic circular plates under the influence of electric displacement. 

Ebrahimi and Barati (2017f) used third order shear deformation theory and evaluated 

the dynamic behaviour of FGMEE nanobeam exposed to external electric and 

magnetic potential.  

 

1.9. SCOPE AND OBJECTIVE OF THE DISSERTATION 

The comprehensive literature review highlight the importance and increasing 

interest of researchers in the field of design and analysis of MEE structures. However, 

the studies pertaining to the analysis of MEE structures under the different loading 

conditions such as thermal, hygrothermal, electric field and magnetic field are limited, 

even though the prominent applications of MEE structures are found in these harsh 

environments. Further, due to the pyroelectric and pyromagnetic coupling effects 

exhibited by the MEE materials in the thermal and hygrothermal environment, the 

characteristic coupled behaviour display a deviation from that of the conventional 

approach (neglecting pyroeffects). Consequently, it is an important and challenging 

issue to consider the different coupling effects produced by various forms of 

temperature loads for the accurate design of MEE structures. The finite element 

method (FEM) has served as a major computational tool in estimating the multiphysics 

response of various smart structures including MEE structures. Moreover, it is 

believed that FE approach reduces the computational efforts and provides accurate 

results in the analysis of MEE structures. Hence, FE approach may be utilized to 

investigate the coupled static response of MEE structures in thermal and hygrothermal 

environments. 

It is evident from the literature survey on the MEE structures that the different 

volume fractions of Barium Titanate and Cobalt Ferrite yields a different degree of 

coupling among magnetic, electric and elastic fields. In the thermal environment, the 

coupling sensitivity still increases due to pyroeffects and the adverse effects of 

mechanical loads are compensated by thermal stresses developed inherently. 

Considerable research on the static analysis of MEE structures in a thermal 
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environment with pyroeffects and without considering pyroeffects has been reported in 

the literature. However, the research on MEE structures subjected to different thermal 

loadings has not yet been reported. The static characteristics of stepped functionally 

graded magneto-electro-elastic (SFGMEE) structures may not be similar to that of 

multiphase MEE structures because of the different volume fraction of Barium 

Titanate and Cobalt Ferrite across the thickness of MEE structures. This motivated the 

present research to explore more on the coupled response of SFGMEE structures 

(plates and beams).  The analytical evaluation of the influence of hygrothermo-

magneto-electro-elastic (HTMEE) coupling on the multiphysics response of MEE 

cylinders and spheres has been reported in the open literature (Akbarzadeh and Chen, 

2012, 2013; Akbarzadeh and Pasini, 2014; Saadatfar and Khafri, 2014). However, the 

quantum of research work related to HTMEE structures is available in scarce. In 

addition, HTMEE coupling effects for the MEE plates and beams and the FE analysis 

of the same has not yet been studied. This acts as a driving force to develop a FE 

formulation and evaluate the effect of hygrothermal loads on the variation of static 

parameters of MEE plates and beams.  

 Since, the MEE materials inherently possess the ferroelectric and 

ferromagnetic properties, it is very much important to evaluate the influence of 

external electric fields and magnetic fields on the direct (displacements, electric 

potential and magnetic potential) and derived (stresses, electric displacements and 

magnetic flux densities) quantities of MEE plate and beams. Also, the combined 

effects of various external field forces are not available in the literature and this 

provides further scope to fill the gap in the literature.  

The prominent aim of this dissertation is to develop a three-dimensional finite 

element formulation to investigate the static behaviour of functionally graded and 

multiphase MEE beams and plates under different thermal environment. Further, to 

extend the evaluation for hygrothermo-magneto-electro-elastic beams and plates. In 

addition, the effect of different external loads such as thermal, electric, magnetic fields 

and the significant combination of loadings on the behaviour of FGMEE beams and 

plates needs to be analysed. In this regard, the following analyses have been carried 

out: 
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1. Static response analysis of stepped functionally graded magneto-electro-

elastic beams subjected to various thermal environments. 

2. Static behaviour of multiphase MEE beams under the influence of different 

in-plane temperature loads. 

3. Static response analysis of stepped functionally graded magneto-electro-

elastic plates under different thermal loads. 

4. Hygrothermal analysis of MEE plates. 

5. Finite element analysis of HTMEE behaviour of MEE beams.  

6. Influence of external electric, magnetic and temperature loads on the 

multiphysics response of MEE plates.  

7. Influence of particle arrangements of MEE material on the static response 

of magneto-electro-thermo-elastic (METE) plates 

1.10. CONTRIBUTIONS FROM THE DISSERTATION 

The following contributions have been made in the area of MEE structures in thermal 

and hygrothermal environment towards the preparation of the dissertation: 

 Three-dimensional finite element formulation is derived to investigate the 

static parameters of stepped functionally graded, multiphase MEE beams and 

plates.  

 Detailed analysis of MEE beams and plates is presented by considering the 

different in-plane and through thickness temperature profiles representing the 

various practical heat sources. 

 A special emphasis has been placed on the investigation of the influence of 

pyroeffects and compare it with the conventional approach.  

 Effect of hygrothermal loads on the multiphase MEE beams and plates are 

investigated. 

 The influence of external field loads such as electric, magnetic and thermal 

loads are determined through the FE formulation derived. 

 The influence of particle arrangement on the behaviour of MEE plates has been 

presented. 
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1.11.  OVERVIEW OF THE DISSERTATION BY CHAPTER 

The present dissertation is devoted to investigate the coupled behaviour of the 

MEE beams and plates under the influence of external fields such as thermal and 

hygrothermal loads using a finite element formulation. In this regard, the total 

potential energy principle along with linear coupled constitutive equations of MEE 

material in thermal and hygrothermal environment have been used separately to derive 

the governing equations of motion. An emphasize has been placed on evaluating the 

effects of different thermal loads, pyroelectric and pyromagnetic coupling, 

hygrothermal loads, geometrical parameters (boundary conditions, aspect ratios, 

length-to-width ratio) etc.   

This thesis has been divided into nine chapters. In the first chapter, a brief 

introduction and a comprehensive literature review on the smart materials, MEE 

materials, MEE structures, MEE behaviour in thermal environment, HTMEE analysis 

of MEE structures have been presented. Subsequently, the scope of the present 

research is identified and the objectives of the present research have been defined. 

 In Chapter 2, a detailed derivation of FE formulation accounting for the static 

response of stepped functionally graded magneto-electro-elastic beams under various 

thermal load profiles has been presented. Each layer of the SFGMEE beam is made of 

different volume fraction of Barium Titanate and Cobalt Ferrite. The effect of 

pyroelectric and pyromagnetic coupling associated with different thermal load 

distribution has been analysed in detail. In addition, the predominant influences of 

stacking sequences, different beam regions on the static parameters are also evaluated. 

Chapter 3 is concerned with the evaluation of the static studies of multiphase 

MEE beam under the influence of different in-plane thermal loads. The influence of 

various boundary conditions, different volume fraction of Barium Titanate and Cobalt 

Ferrite on the displacement components, potentials, stresses, electric displacements 

and magnetic flux densities are investigated. In addition, the effect of product 

properties, aspect ratio on the behaviour of multiphase MEE beam has also been 

computed using FE formulation.  
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 Chapter 4 extends the FE formulation for SFGMEE plates analogous to 

SFGMEE beams discussed in Chapter 2. A comparative study is presented for SFG-

BFB and SFG-FBF stacking sequences with respect to the direct and derived 

quantities of the SFGMEE plate. Influence of pyroeffects, stacking sequence, 

geometrical parameters such as boundary conditions, aspect ratio, length-to-width ratio 

has been studied thoroughly.  

Chapter 5 addresses the hygrothermo-magneto-electro-elastic (HTMEE) 

analysis of MEE plates. The FE formulation derived in chapter 2 has been extended to 

consider the influence of moisture effect also. The temperature and moisture 

dependent elastic stiffness coefficients are considered for the analysis and the 

significant value of the empirical constants are computed.  

The effect of moisture and temperature loads on the multiphysics response of 

HTMEE beams has been studied in Chapter 6. The adaptive wood made of Barium 

Titanate and Cobalt Ferrite has been used as the material for the analysis. Independent 

effect of moisture and thermal loads has been studied. Also, the most significant 

combination of empirical constants is predicted with the aid of FE formulation. 

In Chapter 7, the predominant influence of external field forces such as 

thermal, magnetic, electric and their combined effects on SFGMEE plates have been 

evaluated. The kinematics of deformation of SFGMEE plate is described by the first 

order shear deformation theory (FSDT). The effect of geometrical parameters has also 

been studied in detail. 

Chapter 8 encapsulates the effect of different particle arrangement of BaTiO3 

and CoFe2O4 such as body centered cubic structure, face centered cubic structure and 

simple cubic structure on the static characteristics of magneto-electro-thermo-elastic 

plates. The influence of the pyroelectric and pyromagnetic coupling effects associated 

with each form of particle arrangement has been assessed in detail. 

At last, Chapter 9 encapsulates the major findings of the dissertation and the 

future possible work for the improvement in the possible application of MEE 

structures has been outlined. The list of references and appendices are shown at the 

end of dissertation.  
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Chapter 2 

STATIC RESPONSE OF STEPPED FUNCTIONALLY GRADED 

MAGNETO-ELECTRO-ELASTIC BEAM IN THERMAL 

ENVIRONMENT 

This chapter deals with analysing the variation of static parameters across the 

thickness of stepped functionally graded magneto-electro-elastic (SFGMEE) beams 

under different thermal environments. Each layer of the SFGMEE beam is constituted 

of the material properties corresponding to a different volume fraction of Barium 

Titanate and Cobalt Ferrite. Further, a special attention has been devoted to evaluate 

the effect of product properties (pyroelectric and pyromagnetic coupling), boundary 

conditions and aspect ratio on the direct (displacements, electric potential and 

magnetic potential) and derived quantities (stresses, electric displacements, and 

magnetic flux densities) of the SFGMEE beam. A parametric study is also carried out 

to evaluate the effect of stacking sequence, pyro coupling and the different SFGMEE 

beam regions.  

 Related article: Vinyas, M. and Kattimani, S. C. (2017), “Static studies of stepped 

functionally graded magneto-electro-elastic beam subjected to different thermal 

loads”, Composite Structures, 163, 216-237. 

2.1. INTRODUCTION  

The coupled response of stepped functionally graded magneto-electro-elastic 

(SFGMEE) structures (beams and plates) stacked with the different volume fraction of 

Barium Titanate (BaTiO3) and Cobalt Ferrite (CoFe2O4) exhibit a unique behaviour. 

Hence, it demands special attention while designing smart structures comprised of 

MEE materials. In the thermal environment, the MEE materials exhibit coupling 

between thermo-electric and thermo-magnetic fields and are termed as pyroelectric 

and pyromagnetic effects, respectively. These are commonly called as pyroeffects, 

whose influence on the MEE structures is observed through the pyroelectric load and 
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the pyromagnetic load. These product properties influence the potentials directly, and 

the displacements indirectly (Kondaiah et al. 2012).  

In this chapter, static analysis has been carried out using the three-dimensional 

finite element formulation derived with the aid of the total potential energy principle 

and constitutive equations of MEE material, considering the coupling effects. Further, 

a special attention has been placed to study the influence of pyroeffects on the 

behaviour of SFGMEE beams. The influence of stacking sequence and different 

SFGMEE beam regions has also been investigated. 

2.2. STEPPED FUNCTIONALLY GRADED MAGNETO-ELECTRO-ELASTIC 

STACKING ARRANGEMENT  

A schematic representation of the SFGMEE stacking arrangement of the 

beam/plate is shown in Fig. 2.1. Each layer of SFGMEE beam/plate is considered to 

be made of different volume fraction of BaTiO3 and CoFe2O4 materials. For the 

convenience, the volume fractions of the materials are varied in steps of 0.2 (20% 

BaTiO3). The most commonly used stacking sequences namely, SFG-BFB and SFG-

FBF are considered for the analysis. Here, „B‟ corresponds to pure piezoelectric phase 

while „F‟ represents pure piezomagnetic phase. In case of SFG-BFB stacking 

sequence, the top and bottom layers are made of pure piezoelectric (PE) phase with Vf 

= 1.0 and the volume fraction of the consecutive layers is varied in steps of Vf = 0.2 

from both the ends to attain pure piezomagnetic (PM) phase at the middle layer as 

shown in Fig. 2.1(a). On the other hand, by replacing the pure PE phase by the pure 

PM phase, SFG-FBF stacking sequence is obtained. In which, the top and bottom 

layers are pure PM phase and the volume fraction of the consecutive layers is 

increased by 0.2 to attain pure PE phase at the middle layer as depicted in Fig. 2.1(b).  
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(b) 

Figure 2.1: Stepped functionally graded (SFG) (a) BFB (b) FBF stacking sequence 

2.3. PROBLEM DESCRIPTION  

The geometrical description of SFGMEE beam with FBF stacking sequence is 

illustrated in Fig. 2.2. The beam length a is assumed along the x-axis of Cartesian 

coordinate system. The width w and the thickness h of the SFGMEE beam are 

considered along the y- and z-coordinates, respectively. The boundary conditions 

employed for the cantilever SFGMEE beam are given as follows: 

                                                      at                                 (2.1) 

                                          at                                 (2.2)                         

 

Figure 2.2: Schematic representation of SFGMEE beam 

2.4. CONSTITUTIVE EQUATIONS 

The linearly coupled constitutive relations for the SFGMEE solid considering 

thermal effects are given by 
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                    
f f f f

T
k k k k k k k k

V V V VD e E m H p T       + + + 
     

                 (2.4)                         

                      
f f f f

T
k k k k k k k k

V V V VB q m E H T        + + + 
     

                (2.5)                            

where, *   
 +, *   

 +, *   

 +, and ,   

 - are the elastic co-efficient matrix, the piezoelectric 

coefficient matrix, the magnetostrictive coefficient matrix and the thermal expansion 

co-efficient matrix, respectively; *   

 +, *   

 +, ,   

 -, ,   

 - and *   

 + are the dielectric 

constant, electromagnetic coefficient, pyroelectric constant, pyromagnetic constant 

and the magnetic permeability constant, respectively; {  }, {  } and {  }, represent 

the stress tensor, electric displacement and the magnetic flux, respectively; {  },  {  }, 

{  } and ΔT are the linear strain tensor, electric field, magnetic field and temperature 

rise from a stress free state, respectively. Meanwhile, the term k represents the layer 

number and the subscript Vf denotes the volume fraction of Barium Titanate (BaTiO3) 

and Cobalt Ferrite (CoFe2O4) corresponding to the k
th

 layer of SFGMEE beams 

/plates.  

2.5. FINITE ELEMENT FORMULATION 

The finite element model of the SFGMEE beam is generated using eight noded 

brick element. Each node is assumed to have five degrees of freedom corresponding to 

the displacement components, electric potential and magnetic potential. Through the 

shape functions [  ], [  ] and [  ], the generalized displacement vector  {  }, the 

electric potential vector { } and the magnetic potential vector { } are expressed in 

terms of the nodal generalized displacement vector  {  
 }, the nodal electric potential 

vector {  } and the nodal magnetic potential vector  {  }, respectively, as follows: 

                      e
t t td N d ,    eN  

 
,    eN                               (2.6)                           

in which, 
 

               1 2 8 1 2 8 1 2 8 ,     ,     ,  
T

TT T T

t t t

Te e e
td d d d          

 

     1 2 8 1 2 8  ,  ,     t t t t ti i tN N N N N n I N N n n n
        

                        (2.7)                          
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where, ni is the natural coordinate shape function associated with the i

th 
node of the 

element; It is the identity matrix; The size of the shape functions [  ], [  ] and [  ] 

are       ,       and       shape function matrices, respectively.
 
Making use 

of Maxwell‟s fundamental electrostatic equations, the linear relation between the 

electric field and the electric potential can be expressed as
 

                                        ,  ,  E
x y z

     
 - - - 

   
                                              (2.8) 

Similarly, the magnetic field and the magnetic potential is related as 

                                    
  ,  ,  H

x y z

     
 - - - 

   
                                       (2.9) 

Using the derivative of shape function matrices, the strain vector, electric field vector 

and the magnetic field vector of the system are expressed in terms of the nodal 

displacements, nodal electric potential and nodal magnetic potential, respectively, as 

follows: 

            e e

t t t t t ttL d L N d B d    ,        e eL NH BL            ,      

                                     e eE L L N B                                                (2.10)                                 

where, Lt, Lψ and Lϕ are the differential operators, and the sub matrices [Bt], [Bψ] and 

[Bϕ] can be expressed as follows:
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           where, i = 1, 2, 3,..., 8 represents the node number 
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2.6. EQUATIONS OF MOTION 

The principle of total potential energy is invoked to derive the governing 

equations of the SFGMEE beam in the thermal environment as follows: 

       
1 1 1

1 1 1

2 2 2k k k

N N NT T T
k k k k k k k k k

p

k k k

T d E D d H B d 
    

     -  -              

                
k

T T Tk

t surface t body t conc

A

d F dA d F d d F


- -  -         

       
A A

Q dA Q dA  - -                                                                                   (2.12) 

where, k = 1, 2, 3,…, N represents the number of layers and Ω
k
 denotes the volume of 

the k
th

  layer. {Fsurface} is the surface force acting over the area A of the layer, {Fbody} is 

the body force and {Fconc} is the point load acting at any particular point on the plate. 

Further, Q
ϕ
 and Q

ψ
 represent the surface electric charge density and magnetic charge 

density, respectively.  

The total potential energy is minimized by setting the first variation of Eq. (2.12) to 

zero 

       
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By substituting Eqs. (2.3), (2.4) and (2.5) into Eq.(2.13), we obtain 

       

       

1 1

1 1

1 1

2 2

1 1
     

2 2

f f
k k

f f f
k k

N NT T
e k k k k k k k k

p V V

k k

N NT T
k k k k k k k k

V V V

k k

T C d e E d

q H d C Td

    

    

  

  

     - 
   

   -  -  
   

  

  

    

            
1 1

1 1

2 2 ff
k k

N NTT T
k k k k k kk k

V

k

V

k

E e d E E d   
  

 -  


- 
         



27 

 

            
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      { } { }  
A A

Q dA Q dA    - -                                                                              (2.14)                                

 

substituting Eq. (2.10) into Eq. (2.14), we get 
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Further, bifurcating the terms based on the coefficients of {  
 } , {  }  and {  }  and 

globalizing, we obtain the equations of motion as follows: 
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in which, [   

 
], *   

 
+, [   

 
], [   

 
], *   

 
+, *   

 
+ are the global elastic stiffness 

matrix, the electro-elastic coupling stiffness matrix, magneto-elastic coupling stiffness 

matrix, electric stiffness matrix, magnetic stiffness, electro-magnetic stiffness matrix, 

respectively. The various global load vectors are the global mechanical load vector 

{  
 
}, the global thermal load vector {   

 
}, the global electric charge load vector {  

 
}, 

the global magnetic current load vector {  
 
}, the global pyroelectric load vector {    

 
} 

and the global pyromagnetic load vector {    
 

}.  

The explicit elemental forms of these matrices appearing in Eqs (2.16) – (2.18) are 

given as follows: 
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The different load vectors are given by 
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In the present chapter, the effect of {  
 
}, ,  

 
- and ,  

 
- are not considered for the 

analysis. Consequently, the Eqs. (2.16) – (2.18) can be written as 
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Using the standard condensation procedure, the nodal thermal displacements, the 

electric potentials, and the magnetic potentials are computed from Eqs. (2.21) – (2.23) 

as follows: 

Considering the Eq. (2.23) and solving for  , we obtain 
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Substituting Eq. (2.24) in Eq. (2.22) and solving for  , we get  
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Further, on substituting Eqs. (2.24) and (2.25) in Eq. (2.21), we obtain 
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The component matrices and the equivalent force vectors constituting the Eqs. (2.25) 

and (2.26) are as follows:
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2.7. TEMPERATURE PROFILES 

The nature of temperature distributions may affect significantly on the static 

performance of SFGMEE structures. The different forms of temperature distribution 
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can be treated as an outcome of the presence of heat source at various operating 

positions. The resulting temperature profiles can be approximated and represented in 

the form of mathematical expressions. The present analysis considers the different in-

plane and through thickness varying temperature profiles which can be encapsulated as 

follows: 

2.7.1. In-plane temperature profiles 

 The in-plane temperature profiles are assumed to vary along the beam length 

and can be treated as one dimensional temperature profiles. The general equations for 

each form of temperature distributions can be shown as follows: 

 Uniform temperature profile  

The temperature of the SFGMEE beam is uniformly raised from a stress free 

temperature T0 to the final temperature Tmax. For the ease of calculation, T0 is 

assumed to be 0 K. The general temperature variation relation can be written as  

                                                                                                                (2.28) 

 Half - Sine temperature profile  

In this case, the variation of the temperature distribution resembles the half sine 

wave and the general equation may be written in the form of Eq. (2.29). The 

maximum temperature Tmax appears at the midspan of the SFGMEE beam. 

                                            ,   (
  

 
)-                  0 ≤ x ≤ a               (2.29) 

in which, Tmax is the maximum temperature, a is the beam length, x is the point of 

interest from the left clamped end. 

 Linearly varying temperature profile  

This form of temperature variation corresponds to the case where the 

temperature is minimum, say initial temperature Ti at the left support and linearly 

attains the maximum temperature Tmax at the right end of the beam. The 

corresponding general equation may be expressed as   

                                                   {    }   {  }             0 ≤ x ≤ a                   (2.30) 
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2.7.2. Through-thickness temperature distribution  

The present analysis considers the different through thickness varying 

temperature profiles which can be encapsulated as follows: 

 Linear Temperature profile 

 In this case, the temperature is assumed to vary linearly from Ti to Tmax through 

the thickness of the beam. The relation for the linear variation of temperature is 

represented by 

                                                                                                 (2.31) 

in which, Ti is the temperature at the bottom layer of the beam, z is the distance of the 

point of interest from the bottom of the beam and h is the beam thickness. 

 Bi-triangular temperature profile 

The temperature distribution of this profile follows a general trend of variation 

given by the equation  

                                                                              

                                                                                          (2.32) 

 Parabolic temperature profile    

  Here, the temperature distribution is assumed to vary parabolically across the 

beam thickness. The distribution profile can be represented by the expression as 

follows:  

                                                    {  (
 

 
)
 

}                                      (2.33) 

2.8. RESULTS AND DISCUSSION 

In this section, the coupled thermal response of SFGMEE beam in the different 

thermal environments is investigated using a numerical method. The material 

properties of the different volume fraction of BaTiO3 and CoFe2O4 (Table 2.1) are 

used. The numerical calculations are carried out to evaluate the static parameters 

variation across the SFGMEE beam thickness. Furthermore, two different stacking 

arrangements namely, SFG - BFB and SFG - FBF are considered, and its influence on 

multiphysics response of SFGMEE beam is computed. The numerical investigation is 
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extended to compare the prominent influence of pyroeffects on the multilayered 

SFGMEE beam comprehensively. The variations of the direct quantities and derived 

quantities at different beam regions are also investigated. 

2.8.1. Validation of the FE model 

The present FE formulation of the multilayered SFGMEE beam is verified for 

its correctness considering the benchmark research results summarized by Kondaiah et 

al. (2012). To this end, the multilayered FE model is simplified to account for a single 

layer multiphase MEE beam. All the layers of the SFGMEE beam are assigned with 

the material properties corresponding to Vf = 0.5 BaTiO3 (Table 2.1). The beam 

geometry, thermal loading and the boundary conditions are considered identical to 

those considered by Kondaiah et al. (2012). In order to improve the accuracy of the 

obtained results, and to find out the optimum mesh size, the convergence study has 

been carried out. It may be observed from Fig. 2.3 that the mesh size of 12×10 in the 

thickness and length direction exhibits a very good convergence of transverse 

displacement Uw. Figures 2.4(a)-(d) illustrate the validation of the displacement 

component Ux, the electric potential , the magnetic potential , and the normal stress 

x, respectively. Hence, it is expected that the present FE formulation yields accurate 

results for the analysis of SFGMEE beam in the different thermal environment.  

 

Figure 2.3: Convergence of transverse displacement component Uw with mesh 

refinement 
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Table 2.1:  Material properties of BaTiO3-CoFe2O4 composite w.r.t different volume 

fraction Vf  of BaTiO3 – CoFe2O4 (Kondaiah et al. 2012) 

Material 

property 

Material 

constants 

0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf 

 

 

Elastic 

constants 

(GPa) 

 

C11=C22 286 250 225 220 200 175 166 

C12 173 146 125 120 110 100 77 

C13=C23 170 145 125 120 110 100 78 

C33 269.5 240 220 215 190 170 162 

C44=C55 45.3 45 45 45 45 50 43 

C66 56.5 52 50 50 45 37.5 44.5 

Piezoelectric 

constants 

(C/m
2
) 

e31 0 -2 -3 -3.5 -3.5 -4 -4.4 

e33 0 4 7 9.0 11 14 18.6 

e15 0 0 0 0 0 0 11.6 

Dielectric 

constant 

(10
-9 

C
2
/Nm

2
) 

η11=η22 0.08 0.33 0.8 0.85 0.9 1 11.2 

η33 0.093 2.5 5 6.3 7.5 10 12.6 

Magnetic 

permeability 

(10
-4 

Ns
2
/C

2
) 

 

μ11=μ22 -5.9 -3.9 -2.5 -2.0 -1.5 -0.8 0.05 

μ33 1.57 1.33 1 0.9 0.75 0.5 0.1 

Piezomagnetic 

constants 

(N/Am) 

q31 580 410 300 350 200 100 0 

q33 700 550 380 320 260 120 0 

q15 560 340 220 200 180 80 0 

Magneto-

electric 

constant 

(10
-12

Ns/VC) 

m11=m22 0 2.8 4.8 5.5 6 6.8 0 

m33 0 2000 2750 2600 2500 1500 0 

Pyroelectric-

constant 

(10
-7 

C/m
2
K) 

p2  0 -3.5 -6.5 -7.8 -9 -10.8 0 

Pyromagnetic 

constant 

(10
-5 

C/m
2
K) 

 

τ2 

 

0 

 

-36 

 

-28 

 

-23 

 

-18 

 

-8.5 

 

0 

Thermal 

expansion 

coefficient 

(10
-6

 K
-1

) 

α1= α2 10 10.8 11.8 12.3 12.9 14.1 15.7 

α3 10 9.3 8.6 8.2 7.8 7.2 6.4 

Density 

(kg/m
3
) 

ρ 5300 5400 5500 5550 5600 5700 5800 
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       (a)                                                                            (b) 

 
(c)                                                                           (d) 

Figure 2.4: Validation of (a) longitudinal x-direction Ux  (b) electric potential ϕ (c) magnetic 

potential ψ (d) normal stress - x        

2.8.2.  Influence of pyro-effects 

It is familiar that the MEE material displays an additional thermo-electric 

(pyroelectric effect) and thermo-magnetic (pyromagnetic) coupling in presence of the 

thermal environment (Kim et al. 2012). In this section, the influence of pyroeffects on 

the direct quantities of SFGMEE beam has been investigated and it is restricted to in-

plane temperature distributions (Eqs. (2.28) - (2.30)) only. The values are obtained 

across the beam thickness at x = a/2. Figures 2.5(a) - (e) demonstrate the variation of 

the direct quantities when the layerwise SFGMEE beam subjected to a uniform 

temperature rise of 100 K. It may be observed from these figures (Figs. 2.5(a) - (e)) 

that the pyroeffects show a significant influence only on the electric potential of the 

SFGMEE beam. In particular, the pyroeffects tend to improve the electric potential of 

the system, whereas a negligible effect is observed for the displacements and magnetic 

potential.  
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Figures 2.5(a) - (c) suggest that the displacements Ux, Uv and Uw are higher for 

the SFG-BFB MEE beam than SFG-FBF MEE beam. This may be attributed to the 

lower stiffness of the stacking sequence due to the presence of more pure piezoelectric 

phase. 

The numerical evaluation is also carried out for the linear and sinusoidal 

temperature profiles. The variations of the direct quantities of SFGMEE beam 

subjected to linear temperature profile are illustrated in Figs. 2.6(a) - (e). It is noticed 

from these figures that the effect of stacking sequence on the displacement component 

Uw and magnetic potential  is negligible.  

      
(a)                                                                           (b) 

       
(c)                                                                           (d) 
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(e) 

Figure 2.5: Variation of displacement components (a) Ux  (b) Uv  (c) Uw  (d) electric potential 

  (e) magnetic potential  for SFG-BFB and SFG-FBF subjected to uniform temperature load 

The variation of direct quantities for the SFGMEE beam subjected to 

sinusoidal temperature profile is shown in Fig. 2.7(a). It can be observed from this 

figure that the influence of the pyroeffects on the longitudinal x-direction displacement 

component Ux of the beam is minimal compared to displacement components Uv and 

Uw as shown in Figs. 2.7(b) and (c), respectively. Figures 2.7(d) and (e) depict the 

variations of    and , respectively. Further, it can also be seen that the pyroeffects 

have a noticeable influence on the electric potential as shown in Fig. 2.7(d), whereas 

the SFG-BFB MEE beam exhibits a higher electric potential. 

 

       
(a)                                                                  (b) 
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(c)                                                                   (d) 

 

(e) 

Figure 2.6: Variation of (a) Ux  (b) Uv   (c) Uw  (d) electric potential ϕ (e) magnetic potential ψ 

for SFG-BFB and SFG-FBF subjected to linear temperature load 

       

(a)                                                                  (b) 
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(c)                                                                   (d) 

 

(e) 

Figure 2.7: Variation of (a) Ux  (b) Uv  (c) Uw  (d) electric potential ϕ (e) magnetic potential ψ 

for SFG-BFB and SFG-FBF subjected to sinusoidal temperature load 

2.8.3.  Effect of cross-thickness temperature profiles 

The influence of temperature profiles (Eq. (2.28) and Eqs. (2.31) - (2.33)) on 

the displacement components Ux, Uv and Uw of the SFGMEE beam with SFG-BFB 

and FBF stacking sequence is illustrated in Figs. (2.8) – (2.10), respectively. It can be 

seen that the uniform temperature profile exhibit a predominant influence on the Ux 

and Uv, whereas the variations of these displacement components for the bi-triangular 

temperature profile is found insignificant. From Figs. 2.10(a) and (b), it can be 

observed that for both the stacking sequence, Uw is larger for linear temperature 

profile. Figures 2.11(a) and (b) demonstrate the variation of the electric potential for 

SFG-BFB and SFG-FBF MEE beam, respectively. It is seen that for all the 

temperature profiles, SFG-BFB MEE beam has a higher electric potential than the 
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SFG-FBF MEE beam. This may be attributed to the presence of two pure piezoelectric 

phase in the stacking sequence. In addition, a significant effect of uniform temperature 

distribution on the electric potential is observed for SFG-BFB MEE beam, whereas for 

the SFG-FBF MEE beam, the electric potential is higher for bi-triangular temperature 

distribution. 

     

(a)                                                             (b) 

Figure 2.8: Effect of through thickness temperature profiles on longitudinal x-direction 

displacement Ux (a) SFG-BFB (b) SFG-FBF 

    

(a)                                                                (b) 

Figure 2.9: Effect of through thickness temperature profiles on longitudinal y- direction 

displacement Uv (a) SFG-BFB (b) SFG-FBF 

Similarly, Figs. 2.12(a) and (b) illustrate the magnetic potential distribution 

across the thickness of the SFG-BFB and SFG-FBF MEE beam, respectively. Since, 

the SFG-FBF MEE beam has more pure piezomagnetic phase, it results in a higher 

magnetic potential than the SFG-BFB MEE beam. For both the stacking sequences, 

uniform temperature profile shows the maximum magnetic potential. In addition, 
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Tables 2.2 and 2.3 illustrate the comparison between a normal three-layered MEE and 

SFGMEE beam for the maximum electric and magnetic potential, respectively. It can 

be inferred from these tables that the SFGMEE beam has a convincing effect in 

contrast to the normal three-layered MEE beam. 

   

(a)                                                               (b) 

Figure 2.10: Effect of through thickness temperature profiles on transverse displacement Uw 

(a) SFG-BFB (b) SFG-FBF 

Table 2.2: Effect of different cross-thickness temperature loads on the maximum 

electric potential (ϕ) of MEE beams 

Through-thickness 

temperature profile 

Max. Electric potential ϕ (kV) 

BFB SFG-BFB FBF SFG-FBF 

     

Uniform 21.4 54.2 -7.7 4.22 

Linear -22.6 -44.1 -10.8 -4.16 

Parabolic -15.7 -27.4 -8.3 5.17 

Bi-triangular -16.4 42.2 5.6 8.53 

Table 2.3: Effect of different cross-thickness temperature loads on the maximum 

magnetic potential (ψ) of MEE beams 

Through-thickness 

temperature profile 

Max. Magnetic potential ψ (A) 

BFB SFG-BFB FBF SFG-FBF 

Uniform 656.2 1083.4 723.1 -2924.7 

Linear -498.6 -814.4 -582.3 -1991.3 

Parabolic -333.7 -446.3 -365.8 -1206.4 

Bi-triangular 409.7 -882.4 532.3 -1779.2 
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(a)                                                                 (b) 

Figure 2.11: Effect of through thickness temperature profiles on electric potential ϕ (a) 

SFG-BFB (b) SFG-FBF 

Furthermore, the numerical calculations are made to investigate the variation of 

derived quantities such as stresses, electric displacements and magnetic flux densities. 

It is found that the normal stresses σy and σz follow a similar variation trend as that of 

the σx. Hence, for the sake of brevity, only the normal stress σx distribution is shown in 

Figs. 2.13(a) and (b) for SFG-BFB and SFG-FBF MEE beam, respectively. For the 

uniform temperature profile, the variation in the magnitude of the normal stress σx is 

minimal for both the stacking sequence, whereas for the remaining temperature 

profiles, it is higher for SFG-FBF MEE beam compared to SFG-BFB MEE beam. The 

shear stress τxy varies symmetrically across the midplane of the SFG-BFB MEE beam 

as shown in Fig. 2.14(a), whereas for the SFG-FBF MEE beam, it varies anti-

symmetrically as illustrated in Fig. 2.14(b).  

It is also be observed that the middle piezomagnetic phase experiences 

maximum shear stress τxy in case of the SFG-BFB stacking sequence, whereas for the 

SFG-FBF sequence, the maximum τxy is observed at the top or bottom piezomagnetic 

layers. Further, except for the uniform temperature profile, τyz varies identically across 

the beam thickness for both the stacking sequences as shown in Figs. 2.15(a) and (b), 

respectively. Similarly, Figs. 2.16(a) and (b) illustrate the distribution of shear stress 

τxz for the SFG-BFB and SFG-FBF stacking sequence, respectively. The electric 

displacement component in x-direction Dx with respect to SFG-BFB and SFG-FBF 

MEE beam is plotted in Figs. 2.17(a) and (b), respectively. According to the 

constitutive equation (Eq. (2.4)), the magnitude of electric displacements mainly 
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depends on the piezoelectric co-efficient matrix [ ] and the dielectric coefficient 

matrix [ ]. A higher value of these coefficients can be observed for the pure 

piezoelectric (Vf =1.0) phase (Table 2.1). Hence, it is obvious that the SFG-BFB MEE 

beam results in higher electric displacement. This holds good for Dy and Dz also, as 

shown in Figs. 2.18(b) and 2.19(b), respectively. A significant effect of uniform 

temperature profile with respect to Dx and Dy of the SFG-FBF MEE beam is observed, 

whereas the bi-triangular temperature profile has a predominant effect on the Dz for 

both the stacking sequences.  

      

(a)                                                                  (b) 

Figure 2.12: Effect of through thickness temperature profiles on magnetic potential ψ (a) 

SFG-BFB (b) SFG-FBF MEE beam    

       

(a)                                                                  (b) 

Figure 2.13: Effect of through thickness temperature profiles on normal stress σx (a) SFG-

BFB (b) SFG-FBF MEE beam 
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(a)                                                                      (b) 

Figure 2.14: Effect of through thickness temperature profiles on the shear stress τxy (a) SFG-

BFB (b) SFG-FBF MEE beam 

Figures (2.20) - (2.22) illustrate the variation of magnetic flux densities Bx, By and Bz, 

respectively. The magnetic flux density is higher for SFG-FBF MEE beam because of 

the higher piezomagnetic constant matrix [q] and magnetic permeability constant 

matrix [µ] for the pure piezomagnetic phase. For both the stacking sequences, the 

magnetic flux densities Bx, By and Bz are significantly influenced by the uniform 

temperature profile as depicted in Figs. (2.20) - (2.22), respectively. However, the 

maximum value of By is observed at the midspan of the beam for all the temperature 

distributions.  

          
(a)                                                                     (b) 

Figure 2.15: Effect of through thickness temperature profiles on shear stress τyz (a) SFG-BFB 

(b) SFG-FBF MEE beam 
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(a)                                                                     (b) 

Figure 2.16: Effect of through thickness temperature profiles on shear stress τxz (a) SFG-BFB 

(b) SFG-FBF MEE beam 

    

(a)                                                                     (b) 

Figure 2.17: Effect of through thickness temperature profiles on electric displacement Dx (a) 

SFG-BFB (b) SFG-FBF MEE beam 

       
(a)                                                                   (b) 

Figure 2.18: Effect of through thickness temperature profiles on electric displacement Dy (a) 

SFG-BFB (b) SFG-FBF MEE beam 
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(a)                                                                   (b) 

Figure 2.19: Effect of through thickness temperature profiles on the variation of electric 

displacement Dz (a) SFG-BFB (b) SFG-FBF MEE beam 

    

(a)                                                                   (b) 

Figure 2.20: Effect of through thickness temperature profiles on magnetic flux density Bx (a) 

SFG-BFB (b) SFG-FBF MEE beam 

        

(a)                                                                    (b) 

Figure 2.21: Effect of through thickness temperature profiles on magnetic flux density By (a) 

SFG-BFB (b) SFG-FBF MEE beam 
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(a)                                                                     (b) 

Figure 2.22: Effect of through thickness temperature profiles on magnetic flux density Bz (a) 

SFG-BFB (b) SFG-FBF MEE beam 

2.8.4. Investigation at the different beam region 

In this section, the variations of the direct and derived quantities at different 

beam regions are investigated by considering the parabolically varying temperature 

distribution. The results are presented only for SFG-BFB MEE beam, for the sake of 

brevity. The investigation points on the beam are chosen near the clamped end, at the 

midspan and at the free end. It may be observed from Figs. 2.23(a)-(c) that the 

displacements Ux and Uw are maximum at the free end. However, negligible 

discrepancies with respect to Uv is observed in these regions. The electric potential 

variation is found to be maximum at the free end as depicted in Fig. 2.24(a). The 

variation in the magnetic potential is illustrated in Fig. 2.24(b). It can be seen from this 

figure that the variation of magnetic potential is minimal near the clamped end. The 

comparison plots of stresses at the different beam regions are illustrated in Figs. 

2.25(a) – (d). The normal stress σx shows an insignificant variation among the beam 

regions as depicted in Fig. 2.25(a).  From Figs. 2.25(b) and (c), a predominant effect of 

the free end and the clamped end is observed on the shear stresses τxz, and τxy , 

respectively. The free end of the SFG-BFB MEE beam displays a higher magnitude of 

electric displacements Dx and Dy as shown in Figs. 2.26(a) and (b), respectively. 

Further, it may be observed from Fig. 2.26(c) that the variation of Dz is almost 

identical variation over all the regions. 
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(a)                                                                           (b) 

 

(c) 

Figure 2.23: Variations of displacement components (a) Ux (b) Uv (c) Uw at different regions 

of SFG-BFB MEE beam. 

     
(a)                                                                 (b) 

Figure 2.24: Variations of (a) electric potential and (b) magnetic potential at different regions 

of SFG-BFB MEE beam. 

From Fig. 2.27(a), it can be seen that at the midspan of the beam, a slightly higher 

magnetic flux density Bx is witnessed, whereas the clamped end and the free end 

exhibit an equal flux distribution. Further, from Figs. 2.27(b) and (c), it can be 
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witnessed that the variation of By and Bz is greater at the free end of the SFG-BFB 

MEE beam.   

            
(a)                                                                      (b) 

      
(c)                                                                    (d) 

Figure 2.25: Variations of stress components (a) σx (b) τxz (c) τxy (d) τyz at different regions of 

SFG-BFB MEE beam  

     

(a)                                                                      (b) 
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(c) 

Figure 2.26: Variations of electric displacements (a) Dx (b) Dy (c) Dz at different regions of 

SFG-BFB MEE beam  

      

(a)                                                                           (b) 

 

(c) 

Figure 2.27: Variations of magnetic flux densities (a) Bx (b) By (c) Bz at different regions of 

SFG-BFB MEE beam  
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2.9.CONCLUSIONS 

In this chapter, a three-dimensional finite element analysis has been performed 

to evaluate the static behaviour of the SFGMEE beam in the different thermal 

environment by considering the in-plane and through thickness temperature 

distributions. The cross-thickness variations of the direct and derived quantities of 

SFGMEE beam are presented. The numerical study reveals that irrespective of the 

temperature profiles, only the electric potential is influenced by the pyroeffects. The 

displacement components are higher for SFG-BFB MEE beam, whereas SFG-FBF 

MEE beams exhibit predominant effect on the in-plane normal stresses. The SFG-BFB 

MEE beam possesses the maximum electric potential and hence exhibit the maximum 

electric displacements. Analogously, the maximum magnetic potential and magnetic 

flux density are noticed for SFG-FBF MEE beam. It is attributed to the fact that the 

increased number of pure piezoelectric and pure piezomagnetic layers in the 

corresponding stacking sequences. Among the different temperature profiles 

considered, the uniform temperature rise exhibit a significant influence on the 

behaviour of SFGMEE beam. The variation of direct quantities and derived quantities 

at different regions of the SFGMEE cantilever beam has also been studied.
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Chapter 3 

STATIC RESPONSE OF MULTIPHASE MAGNETO-ELECTRO-

ELASTIC BEAM IN THERMAL ENVIRONMENT 

In this chapter, the coupled response of multiphase magneto-electro-elastic beam 

under various forms of in-plane thermal loading has been discussed. The finite 

element formulation is derived by considering the influence of pyroeffects. The 

principle of total potential energy and coupled constitutive equations has been 

incorporated in modeling of the beam. The effect of volume fraction, forms of thermal 

loading, length-to-depth ratio and boundary conditions on the static parameters of the 

MEE beam is investigated.  

Related article: Vinyas, M and Kattimani, S.C. (2017). “A finite element based 

assessment of static behaviour of multiphase magneto-electro-elastic beams under 

different thermal loading”, Structural Engineering and Mechanics, 62(5), 519 – 535. 

3.1. INTRODUCTION 

In order to exploit the exceptional characteristics of multiphase magneto-electro-

elastic (MEE) structures in thermal environment, a critical evaluation and analysis are 

very much essential. The term multiphase refers to the homogeneous layers made of 

different percentage contribution of piezoelectric and piezomagnetic phases. More 

specifically, the degree of coupling varies with the different volume fraction of Barium 

Titanate and Cobalt Ferrite. Furthermore, these materials exhibit an additional 

coupling between the electric, magnetic and thermal fields, which makes them suitable 

for prominent engineering applications. The main objective of this chapter is to 

analyse the static behaviour of a multiphase MEE beam subjected to various thermal 

loading and boundary conditions. In addition, the influence of pyroeffects 

(pyroelectric and pyromagnetic), and volume fraction on the direct quantities 

(displacements and the potentials) of the MEE beam under different boundary 

conditions is studied. The FE formulation of MEE beam is developed by incorporating 

the total potential energy principle and the constitutive equations of MEE material 
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taking into account the coupling between elastic, electric, magnetic and thermal 

properties. Using Maxwell‟s electrostatic and electromagnetic relations, the variation 

of stresses, displacements, electric and magnetic potentials along the length of the 

beam are investigated.  

3.2. PROBLEM DESCRIPTION AND GOVERNING EQUATIONS 

The schematic diagram of the multiphase MEE beam with Cartesian co-

ordinate system is shown in Fig. 3.1. The beam length a is taken along the x-direction 

while the width w and the thickness h of the MEE beam are taken along the y- and z-

coordinate axes, respectively. The constraints enforced for the simply-supported, 

clamped-clamped and clamped-free MEE beams are as follows: 

Simply supported end:                                                            (3.1) 

Clamped end:                                                                           (3.2) 

Free end:                                                                                   (3.3) 

 

Figure 3.1: Multiphase magneto-electro-elastic beam 

3.3. CONSTITUTIVE EQUATIONS 

The constitutive equations for the three-dimensional MEE solid considering the 

linear coupling among electric, magnetic, mechanical and thermal properties in the 

Cartesian co-ordinates can be written as follows: 

                                              C e E q H T   - - -                                   (3.4) 

                                                 
T

D e E m H p T  + + +                          (3.5) 

                                                 
T

B q m E H T   + + +                       (3.6)  
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The material property matrices and vectors appearing in Eqs. (3.4) - (3.6) are explicitly 

described in Appendix A. 

3.4. FINITE ELEMENT FORMULATION 

The finite element model of a multiphase MEE beam is developed using an 

eight noded 3D brick element in a manner similar to that of the SFGMEE beam 

discussed in Chapter 2. The degrees of freedom associated with each node are three 

translational displacement components, one electric potential and one magnetic 

potential. The generalized translational displacement vector can be linked with the i
th

 

(i = 1, 2, 3,…, 8) node of the element as  follows: 

                                      ti x v w

T
d U U U                                                      (3.7) 

At any point within the element, the generalized degrees of freedom vectors can be 

represented in terms of the nodal vectors as outlined in Chapter 2 by Eq. (2.6) as 

follows: 

                     e
t t td N d ,    eN  

 
,    eN                                  

(3.8) 

The various shape function matrices and nodal vectors represented in Eq. (3.8) can be 

expressed similar to Eq. (2.7). In the absence of free charge density, the Gauss law can 

be written as     . Then the relation between the electric field E and the electric 

potential   can be expressed as      .  Similarly, in the absence of free current 

density, the magnetic field can be expressed as     , for which the relation between 

the magnetic field H and the magnetic potential   can be written as      .  

Further, the gradient linear relationship between the electric field and the electric 

potential as well as magnetic field and the magnetic potential can be explicitly 

represented as in Eqs. (2.8) and (2.9), respectively. By expressing the strain vector { }, 

magnetic field vector { } and electric field vector { } as outlined in the Chapter 2 

(Eq. (2.10)) the global equations of motion governing the static behaviour of 

multiphase MEE beam can be derived. 

3.5. EQUATIONS OF MOTION 

 The equilibrium equations of the multiphase MEE beam subjected to in-plane 

thermal loading can be obtained in a similar manner to that of the SFGMEE beam 
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(Chapter 2, section 2.5). In order to obtain multiphase MEE beam, the different layers 

of the SFGMEE beam is assigned with the material properties of required volume 

fraction as tabulated in Table 2.1. Subsequently, employing the minimization of total 

potential energy principle in association with the constitutive equations, the final 

equations of motion governing the static response of multiphase MEE beam under 

varying in-plane thermal loads are obtained and are given by Eqs. (2.16) – (2.18).                                                               

3.6. RESULTS AND DISCUSSION  

In this section, the numerical results are evaluated using the FE model derived 

in Chapter 2. The static behaviour of the multiphase MEE beam is analysed for 

different boundary conditions and temperature profiles. The multiphase MEE beam is 

assumed to be transversely isotropic in both the piezoelectric and piezomagnetic 

phases (symmetric about the z-axis). The one-dimensional temperature distribution 

profiles considered in Chapter 2 are considered here also for the analysis and are 

outlined in Table 3.1. In all cases, the maximum temperature (Tmax) is considered to be 

100 K. The material properties for the different volume fraction of the MEE material 

are tabulated in Table 2.1. The volume fraction (Vf ) of the MEE beam is taken as 0.5 

(50% BaTiO3 and 50% CoFe2O4) unless otherwise stated. The dimensions of the beam 

considered for the analysis are length a = 1 m, width w = 0.1 m and thickness h = 0.1 

m. The influences of volume fraction and pyroeffects on the direct quantities are 

studied for clamped-clamped (C-C) and clamped-simply supported (C-S) boundary 

conditions, and compared with the conventional approach (neglecting pyroeffects). 

Further, the effect of ratio of the span length to the thickness of the beam (a/h) on the 

potentials of the multiphase MEE beam has been investigated. 

3.6.1. Static analysis of multiphase MEE beam: Clamped-Free boundary 

condition. 

Influence of various temperature profiles on the structural behaviour of the 

clamped-free (C-F) multiphase MEE beam has been investigated. The geometrical 

parameters and the material properties of the multiphase MEE beam remain invariant. 

The different temperature profiles mentioned in Table 3.1 have been considered for the 

analysis. It has been observed from the results reported in the literature by Kondaiah et 
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al. (2012) that for the clamped free multiphase MEE beam subjected to a uniform 

temperature rise of 100 K, the pyroeffects are dominant only in the variation of the 

electric potential. The same is verified in the present analysis and extended the 

analysis for different temperature profiles. It is observed from the numerical 

simulations that irrespective of the temperature profile, the predominant influence of 

the pyroelectric and pyromagnetic coupling effects exist only for the electric potential 

of the beam. Hence, for the sake of brevity, the comparison between the pyroeffects 

and the conventional approach is presented only for the electric potential as elucidated 

in Figs. 3.2(a) - (d). It may be observed from these figures that for all the temperature 

profiles the pyroeffects tend to improve the electric potential of the beam.  

Table 3.1: In-plane temperature profiles varying alone the multiphase MEE beam 

length 

Notation used In-plane 

temperature 

profiles 

General representation  

Temperature 

profile-1 

Uniform                

Temperature 

profile-2 

Half-Sine          {     
  

 
 }                 0 ≤ x ≤ a          

Temperature 

profile-3 

Linear      {    }   {  }               0 ≤ x ≤ a                                         

Temperature 

profile-4 

Bi-Triangular     {    }                  

    {    }                                                 

        

              

 

Figures 3.3(a) – (c) illustrate the influence of the temperature profiles on the 

displacement components along x-, y- and z-directions, respectively. It may be noticed 

from these figures that the longitudinal x-direction displacement component Ux varies 

almost linearly for all the temperature profiles and it is maximum at the free end of the 

MEE beam. Among all the temperature profiles, the maximum displacements of Ux, 

Uv and Uw is observed for the uniform temperature profile (temperature profile-1). The 

displacement components Uv and Uw are maximum at the region near the clamped end 

for the uniform and bi-triangular temperature profiles (temperature profile-4) while for 
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the half-sine (temperature profile-2) and linear temperature profiles (temperature 

profile-3), the maximum values of these displacement components are witnessed at the 

midspan and free end of the MEE beam, respectively. This may be due to the 

maximum temperature value at the respective regions. Figure 3.3(d) depicts the 

magnetic potential variation along the beam length for different temperature profiles. 

It may also be observed that the magnetic potential is maximum for the temperature 

profile-1 and 4 while the temperature profiles 2 and 3 exhibit negligible influence on 

the variation of magnetic potential.  

      

(a)                                                                  (b) 

      

(c)                                                                   (d) 

Figure 3.2: Variation of electric potential ϕ (a) uniform temerature (b) half-sine temperature 

(c) linear temperature profile (d) bi-triangular temperature profile for C-F boundary condition 
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(a)                                                                    (b) 

   
(c)                                                                           (d) 

Figure 3.3: Effect of temperature profiles on displacement components (a) Ux  (b) Uv (c) Uw 

(d) magnetic potential ( ) for C-F boundary condition 

 

Figures 3.4(a) - (c) demonstrate the variation of normal stresses for clamped-

free multiphase MEE beam subjected to different temperature profiles. It may be 

observed from these figures that for the temperature profile-1 and 4, the maximum 

normal stresses are observed near the clamped end of the beam. This may be due to the 

presence of constraints and highest temperature in the corresponding profile. For the 

temperature profile-2, the normal stresses vary symmetrically along the beam length 

while a linear variation in the normal stresses is observed for temperature profile-3. At 

the midspan of the beam, the maximum and the minimum normal stresses are noticed 

for temperature profile-2 and 4, respectively. This may be due to the fact that the 

temperature at the midspan is maximum for the temperature profile-2 and minimum 

for the temperature profile-4. It may also be seen from these figures (Figs. 3.4(a) - (c)) 

that the temperature profile-1 has a predominant effect on the normal stresses. The 
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variations of the transverse shear stresses τxy and τxz are plotted in Figs. 3.4(d) and (e), 

respectively. It may be observed that for the temperature profile-2, the shear stresses 

τxy and τxz are zero at the midspan with a symmetrical variation along the beam length. 

However, for the temperature profile-3, the shear stresses along the beam length are 

constant. It may also be observed from these figures (Figs. 3.4(d) and (e)) that among 

all the temperature profiles considered the shear stresses are maximum near the 

clamped end for temperature profile-4.  

The effect of the temperature profiles on the variation of the electric 

displacements in x-, y- and z - direction are illustrated in Figs. 3.5(a) - (c), respectively.  

It may be observed from Fig. 3.5(a) that the similar trend of variation in electric 

displacement Dx is followed by the temperature profiles 1 and 4. Also, Dx for 

temperature profile-2 varies symmetrically along the beam length. The electric 

displacements Dy and Dz for the temperature profile-2 and 3 follows the corresponding 

temperature distribution as illustrated in Fig. 3.5(b) and (c), respectively. The magnetic 

flux density variation of the multiphase MEE beam with various temperature profile is 

shown in Figs. 3.6(a) – (c). It may be observed from these figures that the significant 

influence of the bi-triangular temperature profile on the magnetic flux densities Bx, By 

and Bz  is noticed. 

.    
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(c)                                                                          (d) 

 
(e) 

Figure 3.4: Effect of temperature profiles  stress component (a) σx  (b) σy  (c) σz  (d) τxy  (e) τxz 

along the length of the C-F multiphase MEE beam 
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      (c) 

Figure 3.5: Effect of temperature profiles on electric displacements (a) Dx (b) Dy (c)  Dz 

          

(a)                                                                             (b) 

 

(c) 

Figure 3.6: Effect of temperature profiles on magnetic flux densities (a) Bx (b) By  (c)  Bz 
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3.6.2.  Static analysis of multiphase MEE beam: Clamped-Clamped boundary 

condition. 

The clamped-clamped (C-C) multiphase MEE beam subjected to different 

temperature loading profiles is considered for the analysis. The effect of different 

temperature profiles on the direct quantities of the C-C multiphase MEE beam is 

presented in Figs. 3.7(a) - (e). It may be noticed from Fig. 3.7(a) that when the beam is 

subjected to temperature profile-1, the Ux displacement is minimum, and this varies 

accordingly with the temperature profile. At the midspan of the beam, Ux is the 

maximum for the temperature profile-3 while it is zero for the other temperature 

profiles.  Fig. 3.7(b) depicts the variation of the Uv displacement along the beam 

length. It may be observed from this figure that the Uv reaches a higher value for the 

uniform temperature profile. For the temperature profile-3, Uv varies linearly along the 

beam length exhibiting the maximum value near the right end of the beam. However, 

Uv is maximum at the midspan for temperature profile-2. It is evident from Fig. 3.7(c) 

that Uw follows the same characteristics of the Uv.   

Figure 3.7(d) depicts the electric potential under different loading conditions. It 

may be observed that for all the temperature profiles, the maximum value of electric 

potential is found at the region near the clamped end of the beam. It may also be 

noticed that at the midspan of the beam, temperature profile-2 exhibit minimum 

electric potential. Along the beam length, the electric potential varies linearly for 

temperature profile-3 while for the temperature profile-4 the electric potential follows 

the same trend as that of the temperature profile-1. Figure 3.7(e) demonstrates the 

effect of temperature loading on the magnetic potential. The maximum magnetic 

potential is observed when the multiphase MEE beam is subjected to a uniform 

temperature profile. For the half-sine temperature profile, the maximum magnetic 

potential may be observed at the midspan of the beam. It may also be noticed from this 

figure that among all the temperature loadings, the temperature profile-1 has a 

significant effect on direct quantities. This may be due to the constant pyro loads 

(pyroelectric and pyromagnetic) generated along the length of the multiphase MEE 

beam.    
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3.6.3.  Static analysis of multiphase MEE beam: Clamped-Simply supported 

boundary condition 

The variation of the direct quantities in a clamped-simply supported (C-S) 

multiphase MEE beam for different temperature profiles are depicted in Figs. 3.8(a)-

(e). It may be observed from Fig. 3.8(a) that the temperature profile-1 has more 

influence on the longitudinal x-direction displacement Ux while temperature profile-3 

has the least effect. Further, Ux varies linearly along the length of the beam from the 

clamped end to the free end. From Figs. 3.8(b) and (c), it is evident that the y-direction 

displacement Uv and the transverse z-direction displacement Uw follows the same trend 

as shown in Figs. 3.7(b) and (c), respectively. Figures 3.8(d) and (e) illustrate the 

effect of temperature loading on the electric potential and magnetic potential, 

respectively. It may be observed from Fig. 3.8(d) that the variation of the electric 

potential for the temperature profiles 1 and 4 are almost identical. The unconstrained 

axial movement at the left support results in significant change of the electric potential 

as compared to the clamped-clamped condition. However, for the temperature profile-

2, the variation of the electric potential in the clamped-simply supported beam is 

completely reversed to that of the clamped-clamped MEE beam (Fig. 3.7(d)).  
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(c)                                                                        (d) 

 
(e)                   

Figure 3.7: Variation of displacement components (a) Ux  (b) Uv (c) Uw (d) electric potential 

  (e) magnetic potential for various temperature profiles  for C-C boundary condition 

Further, it may be noticed from Fig. 3.8(e) that the variation of magnetic potentials 

for all the temperature profiles resembles the variation of the magnetic potential of 

the C-C MEE beam but, with a little higher magnitude. A smooth variation of 

magnetic potential is observed for temperature profile-2. 
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 (a)                                                                         (b) 

   

     (c)                                                                       (d)                                  

 

(e) 

Figure 3.8: Variation of displacement components (a) Ux  (b) Uv (c) Uw (d) electric potential 

  (e) magnetic potential  for various temperature profiles  for C-S boundary condition. 

3.7.1. Effect of product properties 

The clamped-clamped and clamped-simply supported multiphase MEE beams 

subjected to a uniform temperature rise of 100 K is considered for the analysis. The 
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(displacements and potentials) of the system is evaluated. Figures 3.9 - 3.13 illustrate 

the comparison of the displacement components and the potentials for the C-C and the 

C-S multiphase MEE beams with considering the pyro effects and conventional 

approach (without pyroeffects). It may be observed from these figures (Figs. 3.9 - 

3.11) that the pyroeffects are negligible on the displacement components (Ux ,Uv ,Uw) 

of the MEE beam. However, the pyroeffects exhibit a significant variation in the 

electric potential for both the C-C and C-S beam as depicted in Fig. 3.12. It may be 

due to the direct effect of the product properties on the electric potentials. For the C-S 

boundary condition, the pyroeffects tends to increase the electric potential of the beam 

whereas, for the C-C MEE beam, the pyroeffects reduces the electric potential. Figure 

3.13 depicts that the pyroeffects have a negligible influence on the magnetic 

potentials. 

                      

(a)                             (b) 

Figure 3.9: Effect of product property on Ux (a) C-C boundary condition (b) C-S boundary 

condition 

                  

(a)                                     (b) 

Figure 3.10: Effect of product property Uv (a) C-C boundary condition (b) C-S boundary 

condition 
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(a)                                     (b) 

Figure 3.11: Effect of product property on Uw (a) C-C boundary condition (b) C-S boundary 

condition 

       
(a)                                     (b) 

Figure 3.12: Effect of product property on electric potential   (a) C-C boundary condition (b) 

C-S boundary condition 

  
(a)                 (b) 

Figure 3.13: Effect of product property on magnetic potential   (a) C-C boundary condition 

(b) C-S boundary condition 
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3.7.2.  Effect of Volume fraction 

The effect of volume fraction of the BaTiO3 and CoFe2O4 on the primary 

variables (displacements and potentials) of the multiphase MEE beam has been 

investigated by considering the uniform temperature rise of 100 K. The comparison 

between the primary variables of C-C and C-S MEE beams are shown in Figs. 3.14 - 

3.18. It may be observed from Figs. 3.14(a) and (b) that the effect of volume fraction 

on the Ux is scanty for the C-C MEE beam while noticeable variations may be 

observed in case of C-S MEE beam. Also, it may be noticed from Figs. 3.14(a) and 

3.15(a) that the maximum Ux and Uv occurs for the volume fraction Vf = 0.0. 

However, for the C-S MEE beam, it is observed for the volume fraction Vf = 1.0 as 

shown in Figs. 3.14(b) and 3.15(b). The maximum displacement Uw for the C-C and 

C-S MEE beam is observed for Vf = 0.2 and Vf = 0.0, respectively. It may also be 

seen from Figs. 3.17(a) and (b) that for the volume fraction Vf = 0.2, the electric 

potential is maximum for both the C-C and C-S multiphase MEE beams. Figures 

3.18(a) and (b) illustrate that the pure piezomagnetic material (Vf =0.0) exhibit the 

maximum magnitude of the magnetic potential. As expected, for the volume fraction 

Vf = 1.0, the magnetic potential is the minimum for both the cases. 

3.7.3.  Effect of aspect ratio (a/h) on the electric and magnetic potentials 

The effect of span length to thickness ratio (a/h) on the electric and magnetic 

potentials has been investigated by considering the C-F and C-S MEE beam. Based on 

the a/h ratio, the multiphase MEE beams are classified as deep (0.5 < a/h <2), 

moderate (2 < a/h <6) and shallow beams (a/h > 6). In the present study, the uniform 

temperature rise ΔT =100 K is assumed and the numerical values of a/h considered for 

the analysis are 1.25, 3 and 10 for deep, moderate and shallow beams, respectively. 

Figures 3.19(a) and (b) depict the characteristic behaviour of the electric potential for 

the C-F and C-S beam, respectively. For both the boundary conditions, the deep MEE 

beam has a pronounced effect on the electric potential. Figures 3.20(a) and (b) 

demonstrate the magnetic potential variation for the C-F and C-S MEE beams, 

respectively. It can be observed from these figures that for the C-F condition, moderate 

beams (a/h =3) exhibit highest magnetic potential, whereas for the C-S condition, it is 

witnessed for the deep beam. 
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(a)                                                                      (b) 

Figure 3.14: Effect of volume fraction on Ux (a) C-C boundary condition (b) C-S boundary 

condition 

           

(a)                   (b) 

Figure 3.15: Effect of volume fraction on Uv (a) C-C boundary condition (b) C-S boundary 

condition 

           
(a)                    (b) 

Figure 3.16: Effect of volume fraction on Uw (a) C-C boundary condition (b) C-S boundary 

condition 
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(a)                     (b) 

Figure 3.17: Effect of volume fraction on electric potential   (a) C-C boundary condition 

(b) C-S boundary condition 

    
(a)                                                                    (b) 

Figure 3.18: Effect of volume fraction on magnetic potential  (a) C-C boundary condition  

(b) C-S boundary condition 

 

(a)                                                                   (b) 
Figure 3.19: Effect of aspect ratio on the electric potential (a) C-F (b) C-S boundary 

condition 
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(a)                                                                        (b) 

Figure 3.20: Effect of aspect ratio on the magnetic potential (a) C-F (b) C-S boundary 

condition       

        

3.8. CONCLUSIONS 

 

In this chapter, the static behaviour of the multiphase MEE beam subjected to 

the various form of thermal loading and boundary conditions is studied using the finite 

element method. Influence of the pyroelectric and pyromagnetic effects on the direct 

quantities of the multiphase MEE beam is analysed. Incorporating the Maxwell‟s 

electrostatic and electromagnetic equations, the variation of static parameters along the 

length of the MEE beam has been investigated. The results obtained in the present 

analysis revealed that irrespective of the boundary conditions and the temperature 

profiles, the pyroeffects exhibit negligible influence on the displacements and stresses 

of the MEE beam. It may due to the negligible indirect effects of the pyroeffects. 

Further, the pyroeffects show a dominant influence only on the electric potential 

developed in the system. The pyroeffects increase the electric potential for the C-F and 

C-S MEE beams while deteriorating effect is observed for the C-C condition. Among 

all the temperature profiles considered, the uniform temperature profile exhibit a 

significant effect on the direct quantities. The maximum electric potential is observed 
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MEE beam. In addition, for the volume fraction Vf  = 0.2, the maximum electric 

potential is noticed. The moderate multiphase MEE beam (aspect ratio a/h = 3) with 

clamped free boundary condition demonstrates the highest magnetic potential at the 

midspan of the beam, whereas for the clamped simply supported beam, it is observed 

for the aspect ratio a/h = 1.25. 
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Chapter 4 

MULTIPHYSICS RESPONSE OF STEPPED FUNCTIONALLY 

GRADED MAGNETO-ELECTRO-ELASTIC PLATES IN THERMAL 

ENVIRONMENT 

This chapter deals with evaluating the influence of temperature distributions on the 

coupled response of stepped functionally graded magneto-electro-elastic (SFGMEE) 

plates. In this regard, the coupled three-dimensional finite element formulation has 

been derived. A comparative study has been carried out to analyse the effect of 

stacking sequence, boundary conditions, length-to-width ratio, and the aspect ratio on 

the behaviour of the SFGMEE plate. A special attention has been devoted to analyse 

the pyroeffects (pyroelectric and pyromagnetic) corresponding to the different 

temperature profiles and aspect ratios. The external thermal field and geometric 

parameters exhibit significant influence on the static behaviour of SFGMEE plate. 

 Related article: Vinyas, M. and Kattimani, S.C. (2017), “Static analysis of stepped 

functionally graded magneto-electro-elastic plates in thermal environment: A finite 

element study”, Composite Structures, 178, 63-86. 

4.1. INTRODUCTION 

In Chapter 2, the influence of different thermal fields on the static parameters of 

the stepped functionally graded magneto-electro-elastic (SFGMEE) beams has been 

investigated. In this chapter, a similar investigation is extended for SFGMEE plates.  

The main objective of this chapter is to investigate the influence of different through 

thickness temperature distributions on the variation of static parameters of SFGMEE 

plates. Considering the minimization of total potential energy principle and Maxwell‟s 

equations, a three-dimensional finite element (FE) formulation has been proposed.  

The different coupling effects corresponding to various volume fractions of Barium 

Titanate and Cobalt Ferrite at each layer of SFGMEE plates are accounted. Further, a 

special attention has been placed to study the influence of pyroeffects on the behaviour 
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of SFGMEE plates. In addition, the effect of geometrical parameters such as boundary 

conditions, aspect ratio and length-to-width ratio on the direct and derived quantities 

has been thoroughly studied. The effect of volume fraction, different loads and 

geometrical parameters on the influence of pyroeffects has also been evaluated.  

4.2. PROBLEM DESCRIPTION 

A schematic representation of SFGMEE plate occupying the domain a × b × h 

with respect to a Cartesian coordinate system (x, y, z) is depicted in Fig. 4.1. The 

various boundary conditions considered for the analysis are illustrated in Figs. 4.2(a) – 

(e).  The constraints corresponding to the different boundary conditions are given as 

follows: 

Clamped edge (C):                                                                   (4.1)                                

Free edge (F):                                                                           (4.2) 

Simply supported edge (S):                            at x = 0, a 

                                                                      at y = 0, b         (4.3) 

           

Figure 4.1:  Schematic representation of SFGMEE plate 
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    (d)                                         (e) 

Figure 4.2: Boundary conditions (a) clamped on all edges (CCCC) (b) simply supported on all 

edges (SSSS) (c) adjacent edges clamped (CFFC) (d) opposite edge clamped (FCFC) (e) 

opposite edges simply supported (CSCS) 

 

4.3. FINITE ELEMENT FORMULATION AND GOVERNING 

EQUATIONS OF MOTION 

A three-dimensional finite element formulation (Eqs. (2.6) – (2.11)) and the 

governing equations of motion (Eqs. (2.12) – (2.23)) derived in the Chapter 2 are 

adopted for the analysis of SFGMEE plate also. The boundary conditions enforced on 

the plate are modified as per the required plate configuration. In addition, the 

temperature profiles (in-plane and through thickness) used in the analysis of beams are 

considered here for the plate also. 

4.4.TEMPERATURE DISTRIBUTION IN SFGMEE PLATE 

The temperature distributions considered in Chapter 2 (Eq. (2.28) and Eqs. (2.31)-
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4.5. RESULTS AND DISCUSSION 
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the results are verified with those established by Kondaiah et al. (2013). To this end, 
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the present analysis. It is evident from Figs. 4.3(a) – (d) that an excellent agreement is 

obtained using the present FE formulation.  
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(a)  CCCC                                                              (b) CCCC 

    

(c) CFFC                                                                  (d) CFFC 

Figure 4.3: Verification plots (a) displacement component in x-direction Ux (b) magnetic 

potential (c) normal stress σx (d) magnetic flux density Bz of MEE plate 
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with Sladek et al. (2013). Further, the static problem of FG-MEE plate subjected to a 

sinusoidal mechanical load (Wang and Pan (2011)) is also considered for the 

validation. For the purpose of comparison, the MEE plate made of exponentially 

functionally graded material (E-FGM) with exponential factor k = 0 is considered. The 

boundary conditions and material properties are chosen identical to Wang and Pan 

(2011). From Table 4.3, it can be observed that the present results agree very well with 

Wang and Pan (2011). Further, the convergence study of the present FE model is 

depicted in Fig. 4.5 considering the electric potential   of FCFC MEE plate. It can be 

observed from this figure that for the mesh size of 10×10×12 elements, a good 

convergence of the present FE formulation can be achieved. Moreover, numerical 

examples are presented to evaluate the effect of various temperature distributions, 

boundary conditions, pyroeffects and aspect ratio on the behaviour of MEE plate.  

    
(a)  CCCC                                                             (b) SSSS 

Figure 4.4: Validation of transverse displacement Uw of two layered plate (Sladek et 

al., 2013). 

 

Figure 4.5: Convergence of electric potential   
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4.5.1. Effect of thermal loading 

In this section, the influence of through thickness temperature distributions 

(Eq. (2.28) and Eqs. (2.31) – (2.33)) on the static parameters of SFG-BFB MEE plate 

is analysed. The MEE plate is considered to be clamped on all the edges. Figures 

4.6(a) – (c) represent the variation of displacement components Ux, Uv and Uw, 

respectively. It can be interpreted from these figures that the uniform temperature load 

has a significant influence on the variations of Ux, Uv and Uw across the plate thickness 

while the parabolic temperature distribution has a lesser contribution on the 

displacement components of the plate. The displacement components Ux, Uv and Uw 

varies symmetrically across the plate thickness for the uniform and bi-triangular 

temperature distributions. Meanwhile, Uw is zero at the middle layer of SFG-BFB 

MEE plate. For the linear and parabolic temperature profiles, Ux is maximum at the 

top layer while Uv and Uw are found to be higher in the bottom layer of the SFG-BFB 

MEE plate. This may be attributed to the corresponding temperature distribution 

applied over the plate. The uniform temperature rise results in a linear variation of the 

electric potential   (Fig. 4.6(d)) across the plate thickness, whereas the symmetric 

variation is observed for bi-triangular temperature distribution. Also, one can draw the 

same conclusion with respect to the distribution of magnetic potential ψ as shown in 

Fig. 4.6(e). It is worth noting that for the uniform and bi-triangular temperature 

profiles, the electric potential and magnetic potential are zero at the middle layer of the 

SFGMEE plate.  

Table 4.1: Material coefficients of #B and #T materials used in Sladek et al. (2013) 

Material 1: #B (× 10
10

 Nm
-2

) Material 2: #T 

   
    

 10.989  

 

   
    

=    
    

 ⁄   
   
    

 3.297 

   
    

 10.989 

   
    

 3.846 

   
    

=   
    

 3.846 
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Table 4.2: Properties of MEE material used in Sladek et al. (2013) 

Material 

constants 

Values Material 

constants 

Values 

        22.6 ×10
10

 Nm
-2

         290.2 NA
-1

m
-1

 

    12.4×10
10

 Nm
-2

     350 NA
-1

m
-1

 

    21.6×10
10

 Nm
-2

     275 NA
-1

m
-1

 

    5.1×10
10

 Nm
-2

     5.367 ×10
-12

 Ns (VC)
-1

 

        4.3×10
10

 Nm
-2

     2737.5×10
-12

 Ns (VC)
-1

 

        -2.2 Cm
-2

     297 Wb (Am)
-1

 

    5.8 Cm
-2

     83.5 Wb (Am)
-1

 

    6.35 ×10
-9

 C(Vm
-1

)   7500 kg m
-3

 

    5.64×10
-9

 C(Vm
-1

)   

Table 4.3:  Comparison study of the direct quantities of E-FGM MEE plate 

k = 0 

 Present FEM Wang and Pan (2012) % Error 

Ux (10
-14

 m) 26.26 27.13 3.24 

Uv (10
-14

 m) -26.25 -27.13 3.24 

Uw (10
-14

 m) 356.2 346.8 -2.71 

 (10
-3

 V) 1.69 1.65 -2.42 

ψ (10
-7

 A) -14.03 -13.66 -2.64 
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(c)                                                                           (d) 

 

(e) 

Figure 4.6: Effect of temperature distributions on displacement components (a) Ux (b) Uv (c) 

Uw (d) electric potential   (e) magnetic potential ψ 
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temperature distribution prevails on σx. This may be due to the development of 

constant pyroloads generated through the thickness of the SFG-BFB MEE plate. From 

Fig. 4.7(b), a significant effect of linear temperature distribution is noticed with 

respect to the variation of shear stress component τxz. Moreover, at the midplane of the 

SFGMEE plate, the maximum value of τxz is noticed for the linear temperature 

distribution and parabolic temperature distributions, whereas for the bi-triangular and 

uniform temperature distribution, it is found to be the minimum. The variation of 

stress component τxy across the plate thickness is depicted in Fig. 4.7(c) while Figs. 

4.8(a) and (b) display the variation of magnetic flux density components Bx and Bz, 

respectively. It is clearly seen from Figs. 4.8(c) and (d) that the linear temperature 

distribution has a significant influence on Dx which is followed by the parabolic, 

uniform, and bi-triangular temperature profiles. But, the uniform temperature 

distribution exhibits a predominant effect on Dz.  

         

(a)                                                                           (b) 

 

(c) 

Figure 4.7: Effect of temperature distributions on (a) normal stress σx (b) shear stress τxz (c) 

shear stress τxy 
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4.5.2. Effect of boundary conditions 

The effect of various boundary conditions (see Figs. 4.2(a) – (e)) on the direct 

and derived quantities of SFG-BFB MEE plate is investigated by considering the bi-

triangular temperature distribution. It can be observed from Fig. 4.9(a) that Ux is 

higher for SSSS MEE plate as compared to other boundary conditions. This may be 

attributed to the free movement of the plate in x-direction. Further, the displacement 

component Uv and Uw are higher for CFFC and CCCC MEE plates as shown in Figs. 

4.9(b) and 4.9(c), respectively. The distribution of electric potential for the various 

boundary conditions is represented in Fig. 4.9(d). It can be observed from this figure 

that CCCC boundary edge has a significant effect on the electric potential while SSSS 

boundary edge exhibits a minimal effect. In contrast to other boundary edges, a 

dominant effect of CFCF boundary edge on the magnetic potential is witnessed as 

indicated in Fig. 4.9(e). Further, a significant influence of CCCC boundary condition 

is noticed on the variation of normal stress component σx as shown in Fig. 4.10(a). For 

all the boundary conditions, the maximum value of σx is witnessed at the midplane of 

the SFGMEE plate. It may be due to the fact that the temperature is higher at the 

midspan. It may also be noticed from Fig. 4.10(b) that a substantial effect of SSSS 

boundary condition exists on the shear stress τxz while CFFC boundary condition has a 

significant effect on τxy as depicted in Fig. 4.10(c). Figures 4.11(a) – (c) illustrate the 

distribution of Bx, By, and Bz, respectively. From these figures (Figs. 4.11(a)-(c)), it 

may be observed that the SSSS boundary condition has a predominant influence on the 

variation of Bx and Bz. 
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(c)                                                                   (d) 

Figure 4.8: Effect of temperature distributions on (a) magnetic flux density Bx (b) magnetic 

flux density Bz  (c) electric displacement Dx (d) electric displacement Dz 

In addition, it is also noticed that the CFCF MEE plate results in a minimum 

By. Further, the numerical evaluation is extended to compute Dx, Dy, and Dz. From 

Figs. 4.12 (a) – (c), it is observed that in contrast to other boundary conditions, CCCC 

MEE plate results in a higher electric displacement. 
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(e) 

Figure 4.9: Effect of boundary condition on (a) Ux (b) Uv (c) Uw (d) electric potential   (e) 

magnetic potential ψ 

    

(a)                                                                           (b) 

 

(c) 

Figure 4.10: Effect of boundary condition on (a) normal stress σx (b) shear stress τxz (c) shear 

stress τxy 
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(a)                                                                           (b) 

 

(c) 

Figure 4.11: Effect of boundary conditions on magnetic flux densities (a) Bx (b) By  (c) Bz 
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(c) 

Figure 4.12: Effect of boundary conditions on electric displacements (a) Dx (b) Dy (c) Dz 

4.5.3. Effect of aspect ratio (a/h) 

The effect of aspect ratio (a/h) on SFG-BFB MEE plate subjected to uniform 

temperature load is evaluated. The clamped boundary condition is enforced on all the 

edges of the plate. Figures 4.13(a) – (e) illustrate the influence of aspect ratio on the 

displacement components (Ux, Uv and Uw), electric potential  , and magnetic potential 

ψ, respectively. It can be inferred from these figures that the SFG-BFB MEE plate 

with lower aspect ratio exhibit a greater value of Ux, Uv and Uw. However, in contrast 

to Ux and Uv, a marginal effect of aspect ratio is witnessed on Uw. A further numerical 

study reveals that the thick plate has a predominant effect on the potentials (  and ψ) 

of the system. In addition, it is also found that the stresses are greatly affected by the 

aspect ratios considered. As the aspect ratio (a/h) of SFG-BFB MEE plate increases, 

the normal stress σx drastically reduces across the plate thickness as illustrated in Fig. 

4.14(a). Analogously, the shear stress components τxz, τxy, and τyz follow the similar 

trend of variation as elucidated in Figs. 4.14(b) – (d), respectively. The numerical 

evaluation is further extended to interpret the influence of different temperature 

profiles on the SFG-BFB MEE plate for various aspect ratios. It can be noticed from 

Table 4.4 that irrespective of the temperature distribution considered, the effect of a/h 

ratios on the displacement Uw and all the stress components remain unchanged. In 

other words, thick plate (a/h = 3) has a significant effect on the direct quantities and 

stress components as well. Likewise, the results presented in Table 4.5 suggest that for 

all the forms of temperature loads, a thin plate (a/h = 100) yields the lower electric 
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displacement components (Dx, Dy and Dz) and magnetic flux density components (Bx, 

By and Bz) of the SFGMEE plate (Also shown in Figs. 4.15 and 4.16). 

 

4.5.4. Effect of Length-to-Width ratio (a/b) 

The numerical evaluation is carried out to explore the effect of the length-to-

width ratio (a/b) on the static parameters of the SFGMEE plate. The present analysis 

considers the plate is thick (a/h = 5) and it is clamped on all the edges (Fig. 4.2a). The 

variation of direct quantities such as Ux, Uv, Uw,   and ψ with respect to different a/b 

ratio is plotted in Figs. 4.17(a) – (e), respectively. As elucidated in these figures, the 

displacement components Ux, Uv and Uw exhibit decreasing trend as a/b ratio 

increases. However, the electric potential and magnetic potential increases with the 

increase in the a/b ratio. It is worth stating that for the higher values of a/b ratio, the 

discrepancy becomes negligible for Uw and  . The variation of normal stress σx and 

the shear stress τxz along the plate thickness is shown in Figs. 4.18(a) and (b), 

respectively. The observation from Figs. 4.19 and 4.20 reveal that for a/b = 2, a 

drastic increase in the electric displacement components (Dx, Dy and Dz) and magnetic 

flux density components (Bx, By and Bz) is witnessed. In other words, for the given 

aspect ratio (a/h), the plate with a higher length-to-width ratio (a/b) tends to increase 

the electric displacement and magnetic flux density components along the thickness. 

Further, Table 4.6 depicts the maximum values of direct quantities such as Uw,   and 

ψ for different combinations of aspect ratio (a/h), the length-to-width ratio (a/b) and 

the temperature profiles. The results from this table (Table 4.6) suggest that 

irrespective of the temperature profiles, lower a/h ratio and a/b ratio results in a 

higher value of Uw, whereas the combination of lower aspect ratio (a/h) and higher the 

length-to-width ratio (a/b) yields the maximum value of the direct quantities.  
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(a)                                                                           (b) 

        
(c)                                                                           (d) 

 

(e) 

 Figure 4.13: Effect of aspect ratio (a/h) on displacement components (a) Ux (b) Uv (c) Uw (d) 

electric potential   (e) magnetic potential ψ 
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(a)                                                                           (b) 

      

(c)                                                                           (d) 

Figure 4.14: Effect of aspect ratio (a/h) on (a) normal stress σx (b) shear stress τxz (c) shear 

stress τxy (d) shear stress τyz 
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  (c) 

Figure 4.15: Effect of aspect ratio (a/h)  on magnetic flux densities (a) Bx (b) By  (c) Bz 

   

(a)                                                                           (b) 

 

(c) 

Figure 4.16: Effect of aspect ratio (a/h) on electric displacements (a) Dx (b) Dy (c) Dz 

0.0

0.2

0.4

0.6

0.8

1.0

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

B
z
 (N/Am)

N
o

rm
al

is
ed

 T
h

ic
k
n

es
s,

 z
/h

 a/h=3  a/h=5

 a/h=10  a/h=25 

 a/h=50  a/h=100

0.0

0.2

0.4

0.6

0.8

1.0

-6 -4 -2 0 2 4 6

D
x
  10

-3
(C/m

2
)

N
o

rm
al

is
ed

 T
h

ic
k
n

es
s,

 z
/h

 a/h=3

 a/h=5

 a/h=10

 a/h=25

 a/h=50

 a/h=100

0.0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2

D
y
  10

-3
(C/m

2
)

N
o

rm
al

is
ed

 T
h

ic
k

n
es

s,
 z

/h

 a/h=3

 a/h=5

 a/h=10

 a/h=25

 a/h=50

 a/h=100

0.0

0.2

0.4

0.6

0.8

1.0

7.8 8.0 8.2 8.4 8.6

D
z
  10

-2
(C/m

2
)

N
o

rm
al

is
ed

 T
h

ic
k
n

es
s,

 z
/h

 a/h=3

 a/h=5

 a/h=10

 a/h=25

 a/h=50

 a/h=100



90 

 

Table 4.4: Effect of aspect ratio (a/h) on the maximum values of transverse deflection, 

normal stresses and shear stresses for different temperature profiles 

a/h Temperature 

profiles 

Uw 

 

x 

 

y 

 

z 

 

xz xy 

 

yz 

 

3 Uniform 8.16 1.81 1.68 2.74 6.60 3.92 7.06 

Parabolic 5.88 1.35 1.37 2.23 4.22 1.64 2.69 

Linear 8.34 1.84 1.81 2.96 6.62 2.71 4.71 

Bi-Triangular 6.45 1.70 1.64 2.69 4.73 3.03 5.16 

5 Uniform 8.09 1.70 1.64 2.71 6.20 3.22 4.90 

Parabolic 5.62 1.32 1.35 2.22 4.17 1.23 2.26 

Linear 8.12 1.79 1.78 2.94 6.37 2.18 3.49 

Bi-Triangular 6.32 1.66 1.61 2.67 4.42 2.37 3.67 

10 Uniform 7.95 1.60 1.53 2.64 4.89 3.06 4.10 

Parabolic 5.49 1.27 1.31 2.20 4.13 1.16 2.21 

Linear 8.01 1.69 1.71 2.89 5.73 1.97 2.93 

Bi-Triangular 6.19 1.56 1.54 2.62 3.70 2.30 3.07 

25 Uniform 7.78 1.41 1.37 2.58 1.20 2.96 0.72 

Parabolic 5.32 1.25 1.27 2.17 3.97 1.07 2.10 

Linear 7.94 1.61 1.62 2.84 4.93 1.95 2.76 

Bi-Triangular 6.03 1.44 1.42 2.57 1.24 2.29 0.51 

50 Uniform 7.64 1.35 1.36 2.56 0.42 2.17 0.62 

Parabolic 5.18 1.22 1.26 2.16 3.50 0.64 1.89 

Linear 7.85 1.59 1.61 2.83 4.20 1.47 2.66 

Bi-Triangular 5.95 1.41 1.41 2.56 0.41 1.69 0.43 

100 Uniform 7.46 1.34 1.34 2.55 0.33 1.77 0.37 

Parabolic 5.04 1.20 1.25 2.15 2.05 0.90 1.63 

Linear 7.65 1.57 1.59 2.82 2.48 1.23 1.95 

Bi-Triangular 5.86 1.40 1.39 2.56 0.21 1.33 0.26 

Uw in 10
-6 

m; x, y and z in 10
2 
MPa;    ,     and     in MPa 
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Table 4.5: Effect of aspect ratio (a/h) on the maximum values of electric 

displacements and magnetic flux densities for different temperature profiles 

a/h Temperature 

profiles 

Dx  

 

Dy 

 

Dz  

 

Bx  

 

By  

 

Bz  

 

3 Uniform 4.8 2.5 83.1 35.7 1.4 157.3 

Parabolic 1.4 1.4 63.7 15.6 0.59 89.3 

Linear 2.9 2.3 83.1 25.3 0.98 128.6 

Bi-Triangular 3.4 1.8 75.4 30.4 1.1 152.9 

5 Uniform 3.1 2.4 83.3 22.6 1.04 119.7 

Parabolic 1.0 1.38 64.2 7.1 0.45 58.2 

Linear 1.9 2.2 83.8 13.9 0.83 83.5 

Bi-Triangular 2.2 1.7 76.4 16.8 0.71 79.2 

10 Uniform 1.2 1.9 84.1 88.6 0.80 109.7 

Parabolic 0.9 1.3 64.5 29.2 0.28 49.8 

Linear 1.3 2.01 85.2 53.7 0.56 69.3 

Bi-Triangular 1.1 1.47 77.7 61.1 0.57 81.7 

25 Uniform 1.01 0.76 84.3 44.6 1.2 139.4 

Parabolic 0.91 1.27 64.9 13.7 0.45 49.2 

Linear 1.28 1.6 86.4 27.6 0.78 85.1 

Bi-Triangular 0.85 0.71 78.9 31.8 0.85 112.9 

50 Uniform 0.44 0.43 83.2 2.03 0.91 66.7 

Parabolic 0.71 0.66 63.9 0.86 0.37 58.1 

Linear 0.95 0.88 85.8 1.5 0.66 75.2 

Bi-Triangular 0.36 0.35 80.3 1.4 0.69 67.6 

100 Uniform 0.39 0.37 82.7 0.91 0.92 66.8 

Parabolic 0.65 0.61 63.1 0.39 0.38 58.3 

Linear 0.82 0.76 84.6 0.66 0.67 75.5 

Bi-Triangular 0.32 0.30 79.5 0.69 0.70 67.8 

Dx, Dy and Dz in 10
-3 

C/m
2
; Bx, By and Bz in 10

-3 
N/Am 
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(a)                                                                           (b) 

            

(c)                                                                           (d) 

 
(e) 

Figure 4.17: Effect of length-to-width ratio (a/b) on displacement components (a) Ux (b) Uv 

(c) Uw (d) electric potential   (e) magnetic potential ψ 

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.3 0.6 0.9 1.2 1.5

 a/b = 0.5

 a/b = 1.0

 a/b = 2.0 

N
o

rm
al

is
ed

 T
h

ic
k
n

es
s,

 z
/h

U
x
  10

-6
 (m)

0.0

0.2

0.4

0.6

0.8

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
v
  10

-6
 (m)

 a/b = 0.5 

 a/b = 1.0

 a/b = 2.0

N
o

rm
al

is
ed

 T
h

ic
k

n
es

s,
 z

/h

0.0

0.2

0.4

0.6

0.8

1.0

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

 a/b = 0.5 

 a/b = 1.0

 a/b = 2.0

U
w
  10

-5
 (m)

N
o

rm
al

is
ed

 T
h

ic
k
n

es
s,

 z
/h

0.0

0.2

0.4

0.6

0.8

1.0

-12 -9 -6 -3 0 3 6 9 12

N
o

rm
al

is
ed

 T
h

ic
k

n
es

s,
 z

/h

 a/b = 1

 a/b = 0.5

 a/b = 2

(kV)

0.0

0.2

0.4

0.6

0.8

1.0

-75 -50 -25 0 25 50 75

N
o
rm

al
is

ed
 T

h
ic

k
n
es

s,
 z

/h

 a/b = 1

 a/b = 0.5

 a/b = 2

(A)



93 

 

    

(a)                                                                           (b) 

Figure 4.18: Effect of length-to-width ratio (a/b) on (a) normal stress σx (b) shear stress τxz  

   

(a)                                                                           (b) 

 

(c) 

Figure 4.19: Effect of length-to-width ratio (a/b) on electric displacements (a) Dx (b) Dy (c) Dz 
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(a)                                                                           (b) 

 

(c) 

Figure 4.20: Effect of length-to-width ratio (a/b) on magnetic flux densities (a) Bx (b) By  (c) Bz 

4.5.5. Influence of pyroeffects 

In this section, considering the different thermal loading profiles, a 

comparative study is made to analyse the distribution of the electric potential with and 

without pyroeffects. It can be clearly observed from Figs. 4.21(a) – (d) that for all the 

temperature distributions, the pyroeffects tend to improve the electric potential across 

the thickness of the SFG-BFB MEE plate.
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Table 4.6: Effect of length-to-width (a/b) ratio on the maximum values of transverse displacement, electric potential and magnetic 

potential for different temperature profiles and aspect ratio (a/h) 

a/h Temperature 

Profiles 

Uw (×10
-6 

m)   (kV)  ψ (A) 

  a/b = 0.5 a/b = 1.0 a/b = 2.0  a/b = 0.5 a/b = 1.0 a/b = 2.0  a/b = 0.5 a/b = 1.0 a/b = 2.0 

 

 

5 

Uniform 7.84 7.76 7.69  16.14 16.28 16.35  24.04 27.48 52.03 

Parabolic 3.31 3.23 3.17  5.79 5.86 5.94  13.44 15.46 37.56 

Linear 5.54 5.46 5.42  9.21 9.28 9.32  19.30 23.67 40.56 

Bi-Triangular 6.83  6.68 6.52  9.56 9.65 9.77  22.52 24.18 43.53 

 

 

 

10 

Uniform 7.72 7.69 7.51  13.36 13.48 13.53  22.87 27.12 50.06 

Parabolic 3.17 3.14 2.97  5.37 5.41 5.56  11.56 13.73 33.36 

Linear 5.38 5.28 5.19  8.65 8.74 8.82  18.39 21.11 38.39 

Bi-Triangular 6.49 6.38 6.24  9.20 9.23 9.25  20.59 23.87 41.22 

 

 

50 

Uniform 7.67 7.64 7.49  11.21 11.26 11.28  21.15 26.85 49.71 

Parabolic 3.13 3.03 2.91  5.17 5.21 5.30  10.21 12.55 29.42 

Linear 5.21 5.13 5.04  8.59 8.64 8.67  17.35 20.73 35.72 

Bi-Triangular 6.01 5.95 5.83  8.75 8.82 8.93  17.42 20.67 38.13 

 

 

100 

Uniform 7.64 7.55 7.46  11.08 11.13 11.24  19.53 26.76 47.27 

Parabolic 3.07 2.98 2.88  5.10 5.12 5.16  9.87 12.14 28.98 

Linear 5.16 4.97 4.89  8.51 8.54 8.58  16.83 20.08 34.87 

Bi-Triangular 5.98 5.91 5.81  8.63 8.68 8.75  17.11 19.67 35.41 
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From Table 4.7, it can be deduced that irrespective of the temperature profiles and 

stacking sequences, the electric potential are maximum in presence of pyroeffects. In 

addition, it is also seen that bi-triangular temperature profile has a higher percentage of 

reduction in the maximum electric potential when the pyroeffects are neglected. 

Furthermore, the contribution of the pyroeffects towards the maximum electric 

potential of SFG-BFB MEE plate with different aspect ratios is evaluated. The results 

tabulated in Table 4.8 reveal that the pyroeffects have a predominant effect on the 

SFG-BFB MEE plate with higher aspect ratio, whereas it gradually becomes 

insignificant for thick MEE plates.  

  

(a)                                                                           (b) 

  

(c)                                                                           (d) 

Figure 4.21: Pyroeffects on electric potential for (a) uniform (b) parabolic (c) linear (d) bi-

triangular temperature distributions 
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Table 4.7: Influence of pyroeffects on the maximum electric potential      for different stacking sequences 

 

Temperature 

Profile 

 Max. electric potential      (kV)  

SFG-BFB  SFG-FBF 

 With 

Pyroeffects 

Without 

Pyroeffects 

% Reduction  With 

Pyroeffects 

Without 

Pyroeffects 

% Reduction 

Uniform 11.26 9.93 11.82  10.69 9.48 12.62 

Parabolic 5.21 4.42 15.16  4.28 3.71 13.3 

Linear 8.64 7.65 11.45  7.36 6.48 11.9 

Bi-Triangular 8.82 7.24 17.91  7.88 6.74 14.38 

Table 4.8: Effect of aspect ratio (a/h) on the maximum electric potential      for different temperature profiles 

Temperature  

profiles 

a/h= 100 a/h= 50 a/h= 5 a/h= 3  

W.P Wo. P 

 

% 

Reduction 

W.P Wo. P 

 

% 

Reduction 

W.P Wo. P 

 

% 

Reduction 

W.P Wo. P 

 

% 

Reduction 
 

             

Uniform 9.42 7.06 25.05 11.26 9.93 11.82 12.2 11.9 2.46 13.1 12.88 1.68 

Parabolic 4.86 3.64 25.10 5.21 4.42 15.16 6.43 6.18 3.93 7.45 7.26 2.48 

Linear 7.23 5.42 25.03 8.64 7.65 11.45 9.61 9.40 2.18 10.18 10.05 1.27 

Bi-Triangular 7.38 5.47 25.88 8.82 7.24 17.91 10.06 9.63 4.21 10.87 10.51 3.31 

where, W.P – with pyroeffects; Wo. P – without pyroeffect 
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4.6. CONCLUSIONS 

In this chapter, the coupled static response of stepped functionally graded 

magneto-electro-elastic (SFGMEE) plate under different thermal environment is 

investigated using a FE method. A FE formulation is derived with the aid of the 

principle of total potential energy and coupled constitutive equations accounting the 

thermal fields. The variations of direct and derived quantities are evaluated by 

considering the different temperature distributions. Among the various temperature 

profiles considered in the present analysis, a significant effect of the uniform 

temperature distribution is noticed on the static behaviour of SFGMEE plate. Further, 

a significant effect of SFG-BFB stacking sequence is also observed on the electric 

potential and electric displacement components while SFG-FBF stacking sequence 

shows a predominant influence on the magnetic potential and magnetic flux density 

components. The numerical investigation reveals that the lower aspect ratio (a/h) 

dominates the variation of static parameters across the thickness of the SFGMEE plate. 

In addition, for the given aspect ratio, decrease in the length-to-width (a/b) ratio results 

in a higher value of displacement components. However, the electric potential, 

magnetic potential and the stress components increase for the higher length-to-width 

(a/b) ratio. The study on the effect of boundary conditions suggest that the CCCC 

boundary edge exhibits a significant effect on transverse displacement, electric 

potential, normal stress and the electric displacement components. A prominent 

evaluation is carried out to investigate the influence of pyroeffects. It is observed that 

irrespective of the temperature profiles, the pyroeffects tend to improve the electric 

potential of the system. In contrast to the other temperature profiles, the bi-triangular 

temperature profile exhibits a significant reduction in the electric potential of the 

system when the pyroeffects are neglected. Moreover, the predominant influence of 

pyro coupling diminishes as the aspect ratio of SFGMEE plate decreases.
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Chapter 5 

HYGROTHERMAL ANALYSIS OF MAGNETO ELECTRO-ELASTIC 

PLATES USING FINITE ELEMENT METHODS 

This chapter mainly focuses on evaluating the combined effect of moisture and 

temperature fields on the coupled response of magneto-electro-elastic or 

hygrothermo-magneto-electro-elastic (HTMEE) plates. The HTMEE plate is 

considered to be made of adaptive wood with properties of Barium Titanate and 

Cobalt Ferrite. A three-dimensional finite element (FE) formulation for the HTMEE 

structures (plates and beams) accounting the moisture and thermal coupling effects 

has been derived. The influences of temperature and moisture dependent stiffness 

coefficients on the static parameters have been studied through empirical constants. In 

addition, the effect of boundary conditions and aspect ratio on the behaviour of 

HTMEE plates is also studied. 

 Related article: Vinyas, M. and Kattimani, S. C. (2017), “Hygrothermal analysis of 

magneto-electro-elastic plate using 3D finite element analysis”, Composite Structures, 

180, 617-637. 

5.1 INTRODUCTION 

  The major application of MEE structures can be found in sensors and actuators 

which are usually prone to fluctuating environmental conditions. Among them, the 

moisture concentration gradient and temperature gradient are prominent. The external 

influence of hygrothermal fields (moisture and temperature) propagates the peculiar 

response of the MEE structures. In this chapter, the static behaviour of MEE plate 

made of adaptive wood with Barium Titanate and Cobalt Ferrite material is studied in 

hygrothermal environment. In this regard, finite element formulation derived in 

Chapter 2 is extended for the hygrothermo-magneto-electro-elastic (HTMEE) plates 

by considering the influence of moisture gradient. The governing equations of motion 



100 

 

 

 

are derived through the minimization of total potential energy of the HTMEE plate. 

The constitutive equations of HTMEE solid exhibiting coupling between elastic, 

electric, magnetic, moisture and thermal fields are considered in the present analysis. 

The nodal displacements are obtained due to the external hygrothermal loads using 

condensation technique. The effects of different boundary conditions and aspect ratios 

are thoroughly evaluated in order to understand the behaviour of HTMEE plates.  

5.2.   BASIC FORMULATION OF THE PROBLEM 

5.2.1.  Problem description 

A schematic representation of an adaptive wood made of BaTiO3 and CoFe2O4 

MEE plate spanning its length a, width b and thickness h along the x, y and z 

coordinates, respectively, is as shown in Fig.5.1. The HTMEE plate is loaded 

hygrothermally with the uniform temperature rise of ΔT and a moisture concentration 

change of Δm. The commonly used plate configurations considered for the analysis are 

illustrated in Fig. 5.2(a) – (d). 

 
Figure 5.1: HTMEE plate geometry 
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(c)  CFFC                                                                             (d) FCFC 

Figure 5.2: Schematic of MEE plate with different boundary conditions 

 

5.2.2.   Constitutive equations  

The linear coupled constitutive equations of a hygrothermo-magneto-electro-

elastic (HTMEE) material can be expressed as follows: 

                             k k k k k k k k k= C e E q H        - - - -
     

                           (5.1)
                                                    

                       
T

k k k k k k k k kD e E m H p T m          + + + +
     

                (5.2)
                 

                       
T

k k k k k k k k kB q m E H T m           + + + +
     

                 (5.3)
                             

                                             k k k TC   
 

                                                        (5.4) 

                                            k k k mC   
 

                                                        (5.5)
 

where, {  } corresponds to the hygroscopic stresses developed due to change in 

moisture concentration; {  } is the moisture expansion coefficient vector. Meanwhile, 

{  }  and  {  }  are the hygroelectric coefficient vector and hygromagnetic coefficient 

vector, respectively; ΔC is the moisture concentration rise from stress free reference 

concentration. 

5.2.3. Finite element formulation 

The finite element quantities related to the HTMEE plate such as generalized 

displacement vector  {  }, the electric potential vector { }, the magnetic potential 

vector { }, the strain vector { }, electric field vector { }  and the magnetic field 

vector { } are similar to that mentioned in Chapter 2 (section 2.4).                                            



102 

 

 

 

5.2.4.   Governing equations of motion 

The governing equations of MEE plate in the hygrothermal environment is 

derived by employing the principle of total potential energy as follows:  

                
1

2

T T T T

p t

A

T d E D d H B d d f dA     
  

 
  - -  - 

 
                   

                
A A

Q dA Q dA    - -                                                                       (5.6) 

where, { } is the traction force vector acting over an area A. The entire volume of the 

domain is represented by Ω. The surface electric charge density and surface magnetic 

charge density are represented by Q and Q
, respectively. The total potential energy 

is minimized by setting the first variation of Eq. (5.6) to zero.  

               
1

2

T T T T

p t

A

T d E D d H B d d f dA     
  

 
  - -  - 

 
     

              = 0
A A

Q dA Q dA    - -                                                                   (5.7) 

Substituting Eqs. (5.1) – (5.5) into Eq. (5.7), we get,  

              
1 1 1

2 2 2

T T T

pT C d e E d q H d      
  

 - -                                 

               
1 1 1

     
2 2 2

T T TT
C Td C md E e d       

  

-  -  -      

                    
1 1 1

2 2 2

T TT T T
E E d E m H d E p Td   

  

- - -        

                   
1 1 1

2 2 2

TT T T
E md H q d H m E d    

  

-  - -     

                 
1 1 1

2 2 2

T T T
H H d H Td H md     

  

- -  -      

     

    { } { }    = 0
T

A A A

td f dA Q dA Q dA     - - -  
                                          (5.8)
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Now, substituting Eq. (2.9) in Eq. (5.8), and assigning the coupled stiffness matrices 

for the various terms, we obtain Eq. (5.9) as follows: 

           
1

2

T T T
e e e e e e e

p t t t t

e e
tt t

e
t

T d d d d d d dK K K    
  

 
      - -      

 
  

                  
1

2

TTT T
e e e e e e

t th t hy t

e
t

d F d d F d d dK    
  

 
 -  - -   

 
        

                 .
1

2

TT T
e e e e e e

p e
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Separating the terms corresponding to the coefficients of {  
 } , {  }  , {  }  and 

Eq. (5.9) can be written as follows: 

           e e e e e
m th hy

e e e
tt t t
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K d K K F F F       +    
+ +  +  

           . .

T
e e e e e e e e
t p e h e

e
t

K d K K F F F         -
     

- -  -  

                       . .
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e e e e e e
t

e e e
t p m h m

K d K K F F F         -    - -  -   (5.10) 

The explicit forms of the matrices and load vectors are given as follows: 
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         
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    
                                 (5.11)  

In the absence of {  
 
}, {  

 } and {  
 }, the elemental equations of motion are 

globalized in a straightforward manner to obtain the global equations of motion as 

follows: 

                                   g g

th hy

gg g
tt t ttK d K K F F       +    + +                     (5.12) 

                                   . .
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g
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tK d K K F F
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      +       
- -                (5.13) 

                                  . .

TT
g gg g g

t p m h mtK d K K F F        +    - -            (5.14) 

where, different global stiffness matrices and load vectors in the governing equations 

of HTMEE plates (Eqs. (5.12) - (5.14)) are the global elastic stiffness matrix [   
 
], the 

global electro-elastic coupling stiffness matrix [   
 
], the global magneto-elastic 

coupling stiffness matrix [   
 
], the global electric stiffness matrix [   

 
], the global 

magnetic stiffness matrix [   
 
], the global electro-magnetic stiffness matrix [   

 
]. 

The various global load vectors are the global mechanical load vector {  
 
}, the global 

thermal load vector {   
 
}, the global hygroscopic load vector {   

 
}, the global hygro-

electric load vector {    
 
}, the global hygro-magnetic load vector {    

 
}, the global 

electric charge load vector {  
 

}, the global magnetic current load vector {  
 
}, the 

global pyroelectric load vector {    
 
}, the global pyromagnetic load vector {    

 
}. 

Using the condensation approach, Eqs. (5.12) - (5.14) is solved to obtain the nodal 

displacements generated due to the hygrothermal loading, nodal electric and magnetic 

potentials. From Eq. (5.14), solving for  {ψ}, we get, 

                    
1

. .

T T
g g g g

t p m h m

g
tK K d K F F  

-

 - -      +                        (5.15) 
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Solving Eq. (5.15) in Eq. (5.13) and solving for { }, we obtain 

                                  
          

1 1

2 1 2 _ soltK K K Fd 
- -

 -
                                 (5.16) 

Consequently, on substituting Eq. (5.15) and Eq. (5.16), into Eq. (5.12), we obtain the 

final global equation as follows: 

                                           
   eq eqtK d F                                                           (5.17) 

The explicit form of the global stiffness matrices [Keq] and force vectors appearing in 

Eqs. (5.16) and (5.17) are given as follows: 
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1

_ . . . .

T
g g g g g

sol p e h e p m h m

gF F F K K F F
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-
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5.3. RESULTS AND DISCUSSIONS 

 The finite element formulation derived in the preceding section is used to 

demonstrate the static behaviour of MEE plates under hygrothermal loading. The 

material properties of the adaptive wood made of BaTiO3 and CoFe2O4 (Akbarzadeh 

and Chen, 2012) tabulated in Table 5.1 are used for the analysis. The geometrical 

dimensions of the MEE plate considered for the analysis are the length of the plate a = 

0.3 m, width b = 0.3 m and the thickness h = 0.006 m. The variation of the direct 

quantities and derived quantities are evaluated along the plate length. The influence of 
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temperature and moisture dependent elastic stiffness coefficients, different boundary 

conditions and aspect ratios, on the static parameters of the multiphase MEE plate is 

also analysed through the numerical illustrations. The assumed temperature (T) and 

moisture (m) constraints can be written as follows: 

( ) ( ) ( ) ( ) ( ),0 0 ; , 0 ; 0, 0 ; , 0 ; , , uniT x  T x b  T b  T L y  T x y z T      

          ( ) ( ) ( ) ( ) ( ),0 0 ; , 0 ; 0, 0 ; , 0 ; , , unim x  m x b  m b  m L y  m x y z m          (5.19) 

in which,      and      are the uniform temperature and uniform moisture 

concentrations, respectively. 

5.3.1. Validation of the FE formulation 

 It is noteworthy to mention that no work has been reported on the static 

behaviour of MEE plates under hygrothermal environment. Hence, the validation of 

the present FE formulation is made by neglecting the hygroscopic effect. In this 

regard, the numerical example considered by Kondaiah et al. (2013) is solved by 

considering the identical plate dimensions and material properties. Figures 5.3(a) – (f) 

indicate that for the various boundary conditions, the results obtained from the present 

FE formulation compare very well with Kondaiah et al. (2013). Further, Fig. 5.4 

depicts the convergence study of the electric potential of FCFC MEE plate. It can be 

observed from this figure that with the mesh size of 10×10×12 elements, a good 

convergence is achieved. 
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(c) CFFC                                                         (d) CFFC 

        

(e) FCFC                                                    (f) FCFC 

Figure 5.3: Validation plots (a) Ux (b) magnetic potential  (c) normal stress σx (d) magnetic 

flux density Bz (e) Ux (f) electric potential  of MEE plate with different boundary conditions 

 

Figure 5.4: Convergence of electric potential   for FCFC MEE plate 
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Table 5.1: Material properties of BaTiO3 and CoFe2O4 and adaptive wood made of BaTiO3 

and CoFe2O4. 

 

Material property 
Material 

constants 

0.6 Vf 

(Kondaiah et al., 

2013) 

Adaptive wood 

(Akbarzadeh et 

al., 2012) 

 

 

Elastic constants 

(GPa) 

 

 

C11=C22 200 286 

C12 110 173 

C13=C23 110 170.5 

C33 190 269.5 

C44=C55 45 45.3 

C66 45 56.5 

Piezoelectric constants 

(C/m
2
) 

e31 -3.5 -4.4 

e33 11 18.6 

e15 0 11.6 

Dielectric constant 

(10
-9 

C
2
/Nm

2
) 

ε11=ε22 0.9 0.08 

ε33 7.5 0.093 

Magnetic permeability 

(10
-4 

Ns
2
/C

2
) 

μ11=μ22 -1.5 -5.9 

μ33 0.75 1.57 

Piezomagnetic constants 

(N/Am) 

q31 200 580 

q33 260 700 

q15 180 560 

Magneto-electric constant 

(10
-12

Ns/VC) 

m11=m22 6 0 

m33 2500 3 

Pyroelectric constant 

(10
-5

C/m
2
K) 

 

p2 

 

-12.4 

 

-13 

Pyromagnetic constant 

(10
-3 

C/m
2
K) 

 

τ2 

 

5.92 

 

6 

Thermal expansion 

coefficient 

(10
-6

 K
-1

) 

α1= α2 12.9 14.1 

α3 7.8 7.2 

 

Moisture expansion coefficient 

(m
3
 kg

-1
) 

1 - 0 

2=3 - 1.1×10
-4

 

    Density (kg/m
3
) ρ 5600 5300 
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5.3.2. Effect of hygrothermal load 

 

 The effect of hygrothermal load on the static behaviour of MEE plate with 

simply supported boundary conditions (SSSS) is analysed. The temperature rise is kept 

uniform (100 K) unless otherwise mentioned, whereas the percentage of moisture 

concentration change Δm is varied. The effect of hygrothermal load on the variations 

of the transverse displacement Uw, electric potential  , magnetic potential ψ, normal 

stress σx, electric displacement Dx and the magnetic flux density Bx of the SSSS MEE 

plate is plotted in Figs. 5.5(a) – (f), respectively. It is evident from these figures that 

with the increase in moisture concentration, the transverse displacement Uw, electric 

potential  , magnetic potential ψ and normal stress σx increases while a negligible 

influence of hygrothermal load is observed on the electric displacement component Dx 

and the magnetic flux density component Bx. The MEE plate with CCCC, CFFC and 

FCFC boundary conditions also exhibit the same variation trend as the SSSS boundary 

condition. Hence, they are not presented here for the sake of brevity. 

 

5.3.3. Effect of temperature and moisture dependent elastic stiffness coefficients 

 The effect of temperature and moisture dependent elastic stiffness coefficients 

on the direct and derived quantities of the MEE plate is evaluated. The temperature 

and moisture dependent elastic stiffness coefficient C is given by (Akbarzadeh and 

Chen, 2012) 

                                               ( )0 1C C T m   * * + +                                         (5.20) 

where, α
*
 and * are empirical constants,    corresponds to the temperature and 

moisture independent elastic coefficient. Further analysis assumes a uniform 

temperature rise ΔT = 100 K and moisture concentration rise Δm = 1%. In addition, 

emphasis has been placed to investigate the influence of different boundary conditions 

(SSSS, CCCC, CFFC and FCFC) on static behaviour of the MEE plate under 

hygrothermal loading 
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(a)                                                                     (b) 

       

(c)                                                                  (d) 

   

(e)                                                                    (f) 

Figure 5.5: Effect of hygrothermal load on (a) Uw (b)   (c) ψ (d) σx  (e) Dx (f) Bx     
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5.3.4. Simply supported MEE plate (SSSS) 

 

 Figures 5.6(a) – (c) illustrate the variation of displacement components along 

the length of the SSSS MEE plate for various temperature and moisture dependent 

empirical constants (α
*
, *). It may be noticed from Figs. 5.6(a) – (c) that the MEE 

plate with empirical constants  *  *       has a substantial influence on the 

displacement components Ux, Uv and Uw. It may be due to the fact that the elastic 

stiffness coefficient matrix [C] directly affects the elastic stiffness matrix [Ktt], 

hygroscopic load {Fhy} and thermal load {Fth}, which in turn influences the {   } 

and [   ]. It may also be observed that when the empirical constants ranging from -0.5 

≤ α
*
, * ≤ 0, the influence of temperature and moisture dependent elastic coefficients is 

more on the load vectors ({Fhy} and {Fth} ) as compared to the elastic stiffness matrix 

[   ]. In addition, with the increase in negative empirical constants (α
*
, * ≥ -0.5), the 

elastic stiffness matrix [Ktt] improves in such a way that the value [   ]
  
{   }  

decreases. From Fig. 5.6(a), it may be noticed that for a simply supported MEE plate, 

the maximum Ux is witnessed at the edges of the plate. A symmetric variation of the 

longitudinal displacement component Uv is noticed along the plate length. In 

comparison with the MEE plate with negative empirical constants, the hygrothermal 

loads have a minimal effect on Uv for the different positive empirical constants. 

Further, at the center of the plate, Ux and Uv are found to be zero. The transverse 

displacement component Uw remains almost constant along the plate length as 

illustrated in Fig. 5.6(c). Figures 5.7(a) and (b) demonstrate that α
*
= * 

= -0.5 has a 

predominant effect on the electric and magnetic potential, respectively, as expected in 

accordance with Eqs. (5.15) and (5.16). Also, it can be observed that the positive 

empirical constants increase the coupling effect which in turn increases the electric 

and magnetic potentials of the MEE plate. Conversely, a reduction in the coupled 

behaviour of MEE plate with respect to these potentials is observed for the higher 

negative empirical constants say,          *  *       ).   



112 

 

 

 

     

(a)                                                                          (b) 

 

(c) 

Figure 5.6: Effect of empirical constants on displacement components (a) Ux (b) Uv (c) Uw of 

SSSS MEE plate 

      

(a)                                                                            (b) 

Figure 5.7: Effect of empirical constants on (a) electric potential   (b) magnetic potential ψ of 

SSSS MEE plate 
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 Figure 5.8(a) demonstrates the distribution of the normal stress σx along the 

length of the MEE plate. It can be seen from this figure that the effect of hygrothermal 

loads on the normal stress σx is minimum when the MEE plate is considered 

independent of temperature and moisture independent stiffness coefficients ( *   

 *      ). Since, the normal stresses σy and σz follow the similar trend of variation as 

that of the σx, for the sake of brevity, the variation of σx alone is represented here. 

Considering Fig. 5.8(b), at the midlength of the MEE plate the shear stress τxy is zero 

regardless of the empirical constants used. However, the negative empirical constants 

and positive empirical constants of the MEE plate results in the positive and negative 

value of τxy, respectively, from one end to the midpoint, while from the midpoint to the 

other end, the behaviour of shear stress τxy is reversed. Furthermore, the shear stresses 

τxz and τyz display a negligible variation with respect to empirical constants, whereas 

significant discrepancies are witnessed at the plate edges as illustrated in Figs. 5.8(c) 

and (d), respectively.  

 Figure 5.9(a) depicts that the empirical constants have a negligible effect on the 

variation of electric displacement component Dx. However, for all the empirical 

constants, by imposing hygrothermal load, the MEE plate experiences the maximum 

value of Dx at the plate edges. From Fig. 5.9(b), it can be noticed that Dz varies almost 

constant along the plate length and reaches the minimum value at the edges. In 

addition, it is deduced that the coupling effect on Dz is higher when the stiffness 

coefficients of the MEE plate corresponds to  *    *      , whereas the MEE 

plate with  *    *       yields a minimal value of Dx and Dz when exposed to 

hygrothermal loads. 
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    (a)                                                                        (b) 

 

          
    (c)                                                                        (d) 

Figure 5.8: Effect of empirical constants on (a) σx (b) τxy (c) τxz  (d) τyz  of SSSS MEE plate 

       

(a)                                                                   (b) 

Figure 5.9: Effect of empirical constants on electric displacements (a) Dx (b) Dz of SSSS MEE 

plate 
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 Figures 5.10(a) and (b) display the variation of magnetic flux density 

components Bx and Bz, respectively. It can be pointed out from these figures that for 

the MEE plate with different empirical constants, the influence of hygrothermal loads 

on the magnetic flux density component Bz is significantly larger than Bx. This may be 

attributed to the higher value of piezomagnetic constants along z-direction. Moreover, 

the results suggest that the negative empirical constants have a predominant effect than 

the positive empirical constants.  

     

    (a)                                                                             (b) 

Figure 5.10: Effect of empirical constants on magnetic flux densities (a) Bx (b) Bz of SSSS 

MEE plate 

The dependency of the elastic stiffness coefficients on the temperature rise ΔT 

and moisture concentration rise Δm is studied by varying the empirical constants α
*
 

and *
 individually. The value of * 

is nullified while evaluating the individual effect 

of α
*
 and vice versa. Figures 5.11(a) – (f) and Figs. 5.12(a) - (f) illustrate the influence 

of α
*
 and * 

on the displacement component Uw, electric potential  , magnetic 

potential ψ, normal stress σx, magnetic flux density Bz and the electric displacement 

Dz, respectively. It may be noticed from these figures that the influence of α
*
 on the 

displacement Uw is very small as compared to that of the *
. The electric potential 

variation is indistinguishable for both the α
*
 and *

. Also, it is observed that the 

increase in the empirical constants α
*
 and *

 lead to negligible variation in the 

magnetic potential (ψ) and hence to the magnetic flux density Bz, along the plate 
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length. Nevertheless, a substantial effect of both the empirical constants α
*
 and *

 on 

the variation of normal stress σx is observed from Figs. 5.11(d) and 5.12(d), 

respectively. In contrast to α
*
, the predominant effect of *

 is witnessed on the electric 

displacement Dz. 

5.3.5. Clamped MEE plate (CCCC) 

The hygrothermo-magneto-electro-elastic response of MEE plate with all sides 

clamped (CCCC) as depicted in Fig. 5.2(b) is analysed. Figures 5.13(a) – (c) 

demonstrate the plots of the displacements Ux, Uv and Uw, respectively. It is noticed 

that the displacements are symmetric along the plate length. Figures 5.14(a) and (b) 

illustrate the effect of empirical constants on the variation of the electric and the 

magnetic potential of the CCCC MEE plate. A higher value of HTMEE coupling (with 

respect to  *    *      ) leads to an increased value of the potentials. Further, the 

empirical constants  *    *       exhibit a significant influence on the direct 

quantities of the system. When the constants  *    *     , the MEE plate 

experiences the minimum stress, whereas the normal stress σx is maximum near the 

clamped edges, and remains almost constant over the plate length as shown in Fig. 

5.15(a). Because of multiphysics interaction, the electric displacement and magnetic 

flux densities are significantly affected by hygrothermal loading. As seen from Figs. 

5.15(b) – (e), the influence of temperature and moisture dependence is pronounced on 

the z-direction electric displacement (Dz) and the magnetic flux density components 

(Bz) than the x-direction components (Dx and Bx). 
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(c)                                                                 (d) 

        

(e)                                                                   (f) 

Figure 5.11: Influence of α
*
 on (a) Uw (b)   (c)  ψ (d) σx (e) Bz (f) Dz          

    
(a)                                                                   (b) 
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(c)                                                                         (d) 

     

(e)                                                                         (f) 

Figure 5.12: Influence of *
 on (a) Uw (b)   (c)  ψ (d) σx (e) Bz (f) Dz          

   

   (a)                                                                            (b) 
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(c) 

Figure 5.13: Effect of empirical constants on displacements (a) Ux (b) Uv (c) Uw of CCCC 

MEE plate 

      

(a)                                                                   (b) 

Figure 5.14: Effect of empirical constants on (a) electric potential   (b) magnetic potential ψ 

of CCCC MEE plate 
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 (c)                                                                  (d) 

             

     (e)                                                                                     

Figure 5.15: Effect of empirical constants on (a) normal stress σx (b) electric displacement Dx 

(c) magnetic flux density Bx of CCCC MEE plate 

5.3.6. MEE plate with adjacent side clamped (CFFC) 

 In this case, a MEE plate with adjacent clamped edges (CFFC) as shown in 

Fig. 5.2(c) is considered for the analysis. Figure 5.16(a) illustrates the variation of 

transverse displacement Uw. It may be observed from this figure that the Uw is 

maximum at the free edge of the plate. This may be attributed to the predominant 

effect of hygrothermal loads caused due to asymetric boundary conditions. Figures 

5.16(b) and (c) depict the electric potential and magnetic potential distribution, 

respectively. It may be noticed from these figures that higher positive empirical 

constants lead to increased electric potential while the electric potential decreases as 

the negative empirical constants of temperature and moisture increases. Figure 5.16(c) 
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shows that with the increase in negative empirical constants, the absolute values of the 

magnetic potential decreases. In addition, as a result of higher HTMEE coupling at the 

free edge of the MEE plate, the electric potential and magnetic potential display the 

higher value. The magnitude of normal stress σx along the length of the CFFC MEE 

plate increases in response to the increasing empirical constants as displayed in Fig. 

5.17(a). Further investigation reveals that the maximum normal stress σx is noticed at 

the clamped end, whereas the maximum shear stress τxz is observed at the free edge of 

the MEE plate as shown in Fig. 5.17(b).  

   

(a)                                                                             (b) 

     

          (c)           

Figure 5.16: Effect of empirical constants on (a) transverse displacement Uw (b) electric 

potential   (c) magnetic potential ψ of CFFC MEE plate                                                                              
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(a)                                                                          (b) 

Figure 5.17: Effect of empirical constants on (a) normal stress- σx (b) shear stress τxz of CFFC 

MEE plate 

 Figures 5.18(a) – (c) show the effect of empirical constants on the electric 

displacements Dx, Dy and Dz, respectively. Unlike, the symmetric boundary conditions 

(SSSS and CCCC) of the MEE plate, a significant influence of empirical constants on 

the Dx and Dy are observed. This may be attributed to the fact that in comparison with 

the symmetric boundary condition, the asymmetrical boundary condition magnifies the 

effect of hygrothermal loads on the coupled responses. Also, it is evident from these 

figures that a significant influence of empirical constants α
*
 = * = -0.5 prevails. A 

linear variation of Dx and Dz along the plate length is witnessed with the maximum 

values at the clamped end, whereas Dy varies parabolically and reaches the maximum 

value at the free end. The distribution of magnetic flux densities Bx, By and Bz is 

illustrated in Figs. 5.19(a) – (c), respectively. It can be summarized from Fig. 5.19(a) 

that in contrast to the MEE plate with positive empirical constants, the negative 

empirical constants results in an increasing trend of Bx along the plate length. 

Likewise, for all the empirical constants, the minimal value of Bx is found at the free 

end, whereas for By it is witnessed at the clamped edge.  
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noticed from Fig. 5.20(a) that a meager influence of empirical constants of    

         prevails on Ux. The variation of the electric potential and magnetic 

potential due to multiphysics interaction of hygrothermal loading is illustrated in Figs. 

5.21(a) and (b), respectively. The positive empirical constants are directly 

proportional to both the potentials (  and ψ), whereas the negative empirical 

constants have an adverse effect. Further investigation reveals that at the midspan of 

the MEE plate, the hygrothermal loads generate the maximum and minimum values 

of the electric potential and magnetic potential, respectively.  

     

(a)                                                                             (b) 

 

(c) 

Figure 5.18: Effect of empirical constants on electric displacements (a) Dx (b) Dy (c) Dz of 

CFFC MEE plate 
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(a)                                                                                      (b) 

 

(c)                                                                                              

Figure 5.19: Effect of empirical constants on magnetic flux densities (a) Bx (b) By (c) Bz of 

CFFC MEE plate 
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(c) 

Figure 5.20: Effect of empirical constants on displacements (a) Ux (b) Uv (c) Uw of FCFC 

MEE plate 

    
(a)                                                                           (b) 

Figure 5.21: Effect of empirical constants on (a) electric potential   (b) magnetic potential ψ 

of FCFC MEE plate 

The results depicted in Fig. 5.22(a) indicate that the absolute value of the 

normal stress σx along the plate length increases with the increase in both positive and 
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τxy vary symmetrically along the plate length as illustrated in Figs. 5.22(b) and (c), 

respectively. The shear stress component τyz varies linearly along the plate length (Fig. 

5.22(d)).  Figures 5.23(a) – (c) demonstrate the effect of empirical constants on the 

electric displacements Dx, Dy and Dz, respectively. An insignificant effect of the 

empirical constants may be noticed on the variations of Dx and Dy along the plate 

length, while a significant effect is witnessed for Dz. Contrary to the CFFC MEE 

0.0 0.2 0.4 0.6 0.8 1.0
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Normalised Plate Length, x/a

 
*
=

*
= -2.5  

*
=

*
= -1.5  

*
=

*
= -0.5   

 
*
=

*
= 0.5   

*
=

*
= 1.5  

*
=

*
= 2.5

U
w

  
(


-

m

)

0.0 0.2 0.4 0.6 0.8 1.0

3

6

9

12

15

Normalised Plate Length, x/a

 
*
=

*
= -2.5   

*
=

*
= -1.5   

*
=

*
= -0.5   

 
*
=

*
= 0.5   

*
=

*
= 1.5    

*
=

*
= 2.5


(




 V

)

0.0 0.2 0.4 0.6 0.8 1.0

35.0

37.5

40.0

42.5

45.0
 

*
=

*
= -2.5  

*
=

*
= -1.5  

*
=

*
= -0.5  

 
*
=

*
= 0.5   

*
=

*
= 1.5  

*
=

*
= 2.5


(

)

Normalised Plate Length, x/a



126 

 

 

 

plate, it is noticed from Fig. 5.24(a) that             has a least influence on the 

magnetic flux density component Bx. However, for all the empirical constants, the Bx 

varies linearly along the plate length and reaches the maximum values at the free 

edges of the FCFC MEE plate. Figure 5.24(b) shows the variation of By along the 

plate length of the FCFC MEE plate. The distribution of the magnetic flux density 

component Bz is dominated by the empirical constants             as illustrated 

in Fig. 5.24(c).  

      

 (a)                                                                         (b) 

    

(c)                                                                           (d) 

Figure 5.22: Effect of empirical constants on (a) normal stress σx (b) shear stress τxz (c) shear 

stress τxy (d) shear stress τyz of FCFC MEE plate 
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(a)                                                                           (b) 

 

        (c) 

Figure 5.23: Effect of empirical constants on electric displacements (a) Dx (b) Dy (c) Dz of 

FCFC MEE plate 
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(c) 

Figure 5.24: Effect of empirical constants on magnetic flux densities (a) Bx (b) By (c) Bz of 

FCFC MEE plate 

A comparative study of the effect of boundary conditions on the maximum 

values of the direct quantities is encapsulated in Table 5.2. It can be inferred that the 

CFFC boundary condition of the HTMEE plate results in a higher magnitude of 

displacements and potentials.  

Table 5.2: Effect of boundary conditions on the direct quantities of MEE plate 

Parameter CCCC SSSS CFFC FCFC 

Ux (m)
 

0.013792×10
-3

 -0.15973 ×10
-3

 0.2855 ×10
-3

 0.245204 ×10
-3

 

Uv (m) 0.117415 ×10
-8

 -0.10567×10
-9

 0.1927 ×10
-3

 0.271777 ×10
-8

 

Uw (m) -0.88173×10
-5

 -0.53245×10
-5

 6.9 ×10
-5

 -0.5271 ×10
-5

 

 (V) 1.723439 ×10
6
 6.607276 ×10

5
 5.0142 ×10

8
 8.87785 ×10

5
 

ψ (A) 43.13319 50.77091 781.2889 38.94086 
                                  

 

5.3.8. Effect of a/h ratio 

In this section, the effect of aspect ratio (a/h) on some of the parameters of a 

FCFC MEE plate is evaluated. A uniform hygrothermal load of ΔT = 100 K, Δm = 1% 

moisture concentration change and            is assumed for the analysis. 

Figures 5.25(a) – (e) demonstrate the variations of transverse displacement Uw, electric 

potential , electric displacement Dx, magnetic flux density Bx, normal stress σx and 

shear stress τxz, respectively. It may be noticed from these figures that the predominant 
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effect of the lower aspect ratio (a/h = 10) prevails on the HTMEE response of the 

MEE plates. 

   

(a)                                                                           (b) 

     

(c)                                                                           (d) 

 

(e)                                                                     (f) 

Figure 5.25: Effect of aspect ratio a/h on (a) Uw (b)    (c)  Dx (d)  Bz (e)  σx (f)  τxz 
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5.4. CONCLUSIONS 

In this chapter, the effect of hygrothermal loading on the multiphysics 

response of magneto-electro-elastic (MEE) plate using finite element (FE) method is 

studied.  A FE element formulation is derived using the principle of total potential 

energy and linear coupled constitutive equations of MEE material. The numerical 

results suggest that the direct quantities and stresses vary proportionally to the applied 

hygrothermal loads. However, a negligible influence of hygrothermal loads is 

observed on the electric displacement components (Dx and Dy) and magnetic flux 

density components (Bx and By).  The empirical constants              has a 

significant influence on the displacement components and potentials of the MEE 

plate. The normal stress components vary accordingly with the empirical constants, 

while the empirical constants have a negligible effect on the shear stresses (τxz and 

τyz), electric displacement (Dx and Dy) and magnetic flux density (Bx and By).  Among 

all the boundary conditions considered, a distinguishable effect of empirical constants 

on the Dx, Dy, Bx and By is observed only for CFFC MEE plate. In addition, CFFC 

boundary condition has a predominant effect on the direct quantities. The 

investigation of the effect of aspect ratio reveals that the lower aspect ratio (thick 

plates) has a significant effect on the static parameters of MEE plate. It is believed 

that the current results reveal the possible interactions of different physical fields on 

the structural behaviour of smart systems.
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Chapter 6 

HYGROTHERMAL ANALYSIS OF MAGNETO-ELECTRO-ELASTIC 

BEAMS 

This chapter presents the analysis of magneto-electro-elastic (MEE) beam subjected to 

hygrothermal loading. The influence of combined hygrothermal loads and distinct 

effect of moisture concentration has been investigated. The hygrothermo-magneto-

electro-elastic (HTMEE) beam is considered to be made of adaptive wood with 

properties of piezoelectric and magnetostrictive materials. The influence of 

temperature and moisture dependent material stiffness coefficients on the static 

parameters of the MEE beam is also evaluated. The independent effect of temperature 

and moisture on the coupled responses of the beam is investigated. Significant 

combination of the empirical constants corresponding to the temperature dependency 

and moisture dependency is explored, and its effect on the static parameters of 

HTMEE beam has been studied.  

 Related article: Vinyas, M., Kattimani, S. C. and Sharnappa, J. (2018), 

“Hygrothermal coupling analysis of magneto-electroelastic beams using finite element 

methods”, Journal of Thermal Stresses, 41(8), 1063-1079. 

6.1 INTRODUCTION 

In Chapter 5, the finite element (FE) formulation of hygrothermo-magneto-

electro-elastic (HTMEE) plates has been derived and the effect of hygrothermal fields 

has been studied in detail.  Analogously, in this chapter, the study has been extended 

for HTMEE beams. For such investigations, an adaptive wood having the properties of 

piezoelectric (Barium Titanate) and magnetostrictive (Cobalt Ferrite) has been 

considered. Numerical examples have been solved to investigate the effects of 

boundary conditions and empirical constants on the static behaviour of HTMEE beam. 

Further, the most significant value of moisture dependent empirical constant and the 
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corresponding temperature dependent empirical constant has been determined. In 

addition, the variations of the primary and secondary quantities are investigated for 

different hygrothermal loads and boundary conditions. A comparative study on the 

effect of hygrothermal and temperature loads has also been presented. 

6.2 BASIC FORMULATION OF THE PROBLEM 

6.2.1. Problem description 

Figure 6.1 depicts the schematic representation of hygrothermo-magneto-

electro-elastic (HTMEE) beam made up of an adaptive wood possessing the properties 

of piezoelectric and magnetostrictive (CoFe2O4). The co-ordinate system of the 

HTMEE beam is shown in Fig. 6.1. The length a, width w and the thickness h, runs 

along the x-, y- and z- coordinates, respectively. It is assumed that the HTMEE beam is 

exposed to a hygrothermal environment which corresponds to the temperature rise of 

ΔT and humidity concentration variation of Δm.  

 

Figure 6.1: Schematic representation of HTMEE beam  

6.2.2. Finite element formulation and governing equations 

In Chapter 5, a 3D FE formulation and the corresponding governing equations 

of HTMEE structures has been derived. The same FE formulation has been used for 

the analysis of HTMEE beam also. Consequently, the final global equilibrium 

equations can be recalled as follows: 

                              g g

th hy

gg g
tt t ttK d K K F F       +    + +                           (6.1) 
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                            . .

g g

p e h e

gT
g
t

g

tK d K K F F
 

      +       
- -                        (6.2) 

                          . .

TT
g gg g g

t p m h mtK d K K F F        +    - -                     (6.3) 

 

6.3 RESULTS AND DISCUSSIONS 

This section addresses the credibility of the proposed FE formulation in 

predicting the static behaviour of HTMEE beam subjected to moisture and temperature 

loads. Numerical calculations are performed using the FE formulation derived in the 

previous chapters. However, to the best of authors‟ knowledge, no work has been 

reported on static studies of MEE beams in hygrothermal environment. Therefore, the 

FE formulation derived here is validated with the results obtained by Kondaiah et al. 

(2012) by neglecting the hygroscopic effect. The results depicted in Figs. 6.2(a) – (d) 

reveal that the present FE formulation closely agrees with Kondaiah et al. (2012). 

Consequently, in the present study, the independent effect of moisture concentration 

gradient, different hygrothermal load profiles, temperature and moisture dependent 

material properties, empirical constants and boundary conditions on the static 

behaviour of HTMEE beam is demonstrated. The geometrical parameters of the 

HTMEE beam are: length (a) = 1 m, width (w) = 0.1 m and thickness (h) = 0.1 m. The 

material properties of adaptive wood made of BaTiO3 and Cobalt Ferrite CoFe2O4 are 

tabulated in Table 5.1. 
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(c)                                                                            (d) 

Figure 6.2: Validation plots (a) Ux (b) σx (c) Bz (d) Dy of MEE beam 

 

Figure 6.3: Convergence of transverse displacement component Uw 

6.3.1. Effect of hygrothermal loads 

The influence of uniform hygrothermal loads on the primary (displacements, 

electric potential and magnetic potential) and secondary quantities (stresses, electric 

displacements and magnetic flux densities) of clamped-clamped (C-C) HTMEE beam 

is evaluated. Figures 6.4 and 6.5 illustrate the effect of hygrothermal loads on the 

primary quantities of C-C HTMEE beam. The primary quantities increase with the 

increase in hygrothermal loads in accordance with Eq. (5.17). Moreover, at the 

midspan of the beam, Ux is found to be maximum, while Uv is maximum near the 

clamped end of the HTMEE beam. It may be witnessed from Fig. 6.4(c) that Uw tends 
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to vary symmetrically along the beam length while it is zero at the midspan. Due to the 

predominant influence of pyroeffects, the electric potential and magnetic potential are 

maximum at the clamped end as plotted in Figs. 6.5(a) and (b), respectively. Figure 

6.6(a) illustrates the variation of normal stress σx in the HTMEE beam caused due to 

different hygrothermal loads. The shear stresses τxz, τxy and τyz vary symmetrically 

along the beam length with maximum value appearing at the clamped end as 

elucidated in Figs. 6.6(b) – (d), respectively. The electric displacement component Dx 

is observed to be zero at the midspan of the HTMEE beam as depicted in Fig. 6.7(a). 

While, Figs. 6.7(b) and (c) display the electric displacements Dy and Dz, respectively. 

Further, for each case of the hygrothermal loads, the magnetic flux densities Bx, By and 

Bz are depicted in Figs. 6.8(a) – (c), respectively. 

     
      (a)                                                                                 (b)     

 
(c) 

Figure 6.4: Effect of hygrothermal loads on displacement components (a) Ux (b) Uv (c) Uw for  

C-C HTMEE beam 
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(a)                                                                              (b)          

Figure 6.5: Effect of hygrothermal loads on (a) electric potential ϕ (b) magnetic potential ψ 

for C-C HTMEE beam 
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(c)                                                                              (d)          

Figure 6.6: Effect of hygrothermal loads on (a) normal stress σx (b) shear stress τxz (c) shear 

stress τxy for C-C HTMEE beam 

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5


  

(1
0

7
 V

)

0.0 0.2 0.4 0.6 0.8 1.0
-15

-12

-9

-6

-3

0



(k

A
)

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5


x 




 (

P
a)

0.0 0.2 0.4 0.6 0.8 1.0

4

6

8

10

12

14

16

18

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5

 x
z 

1

0
9
 (

P
a)

0.0 0.2 0.4 0.6 0.8 1.0
-15

-10

-5

0

5

10

15

 x
y 

 1

0
7
 (

P
a)

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5

0.0 0.2 0.4 0.6 0.8 1.0

-3.0

-1.5

0.0

1.5

3.0

4.5

 y
z 

 1

0
9
 (

P
a)

Normalised Beam Length, x/a

 T= 100; m= 0  T= 150; m= 1

 T= 200; m= 3  T= 300; m= 5



137 

 

 

 

  

(a)                                                                              (b)          

 

(c) 

Figure 6.7: Effect of hygrothermal loads on electric displacements (a) Dx (b) Dy (c) Dz for C-C 

HTMEE beam 
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(c) 

Figure 6.8: Effect of hygrothermal loads on magnetic flux densities (a) Bx (b) By (c) Bz for C-C 

HTMEE beam 

Making use of numerical examples, the independent effect of moisture 

concentration gradient m on the static characteristics of HTMEE beam is investigated 

keeping temperature rise T constant (100 K). The higher the moisture concentration 

change (m) results in greater values of the x-direction displacement Ux and y-

direction displacement Uv, whereas a marginal effect prevails on the transverse 

displacement Uw, as shown in Figs 6.9(a) – (c), respectively. This may be the result of 

negligible amount of hygroscopic load {   } developed in the z-direction in 

comparison with the thermal loads {   } for the considered m and T. Investigation 

on the potentials reveal that meagre influence of m exists on the electric potential  

(Fig. 6.10(a)), whereas a significant effect on the magnetic potential is seen as shown 

in Fig. 6.10(b).  The normal and shear stresses variations are plotted in Figs. 6.11(a) – 

(f). It may be observed from these figures that the considerable influence of m 

prevails on all the normal stresses while the effect on the shear stresses is insignificant. 

Further, the magnified plots of Figs. 6.11(d) – (f) reveal that considerable values of τxz 

and τyz are attained with the increase in hygrothermal load, whereas τxy reduces with the 

increase in the m. A minimal influence of the m on the electric displacements Dx, 

Dy and Dz is recorded as shown in Figs. 6.12(a) – (c), respectively. It may be due to the 
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fact that either the electric displacements are affected directly by the electric potential 

or the hygroscopic effects are very less in comparison with the thermal load. 

Furthermore, it can be deduced from the further examination that the Dx reduces as the 

m increases. Figures 6.12(a) - (c) display the effect of m on Dx, Dy and Dz, 

respectively. It can be observed from these figures that Dx is zero at the midspan of the 

HTMEE beam, while Dy is maximum near the clamped end. On the other hand, Figs. 

6.13(a) – (c) depict the magnetic flux density distributions Bx, By and Bz, respectively, 

along the beam length. Unlike the electric displacements, a noticeable effect of 

moisture concentration rise exists on Bx and Bz, while an insignificant influence is 

observed on By. It may also be noticed that the variation profile of the electric 

displacement and magnetic flux density closely follows the electric potential and 

magnetic potential, respectively, due to the direct effect. 

  
(a)                                                                              (b)  

 
   (c) 

Figure 6.9: Individual effect of moisture concentration gradient Δm on displacement 

components (a) Ux (b) Uv (c) Uw for C-C HTMEE beam 
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(a)                                                                           (b) 

Figure 6.10: Individual effect of moisture concentration gradient Δm on (a) electric potential ϕ 

(b) magnetic potential ψ for C-C HTMEE beam 
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(e)                                                                           (f) 

Figure 6.11: Individual effect of moisture concentration gradient Δm on stress components (a) 

σx (b) σy  (c) σz  (d) τxz (e) τxy (f) τyz for C-C HTMEE beam 

   

(a)                                                                           (b) 

 

(c) 

Figure 6.12: Individual effect of moisture concentration gradient Δm on electric displacements 

(a) Dx (b) Dy (c) Dz for C-C HTMEE beam 
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(a)                                                                           (b) 

 

(c) 

Figure 6.13: Individual effect of moisture concentration gradient Δm on magnetic flux 

densities (a) Bx (b) By (c) Bz for C-C HTMEE beam 

6.3.2. Effect of Empirical constants on HTMEE beam 

Clamped-Clamped (C-C) HTMEE beam 

The effect of temperature and moisture dependent elastic stiffness coefficient 

(Eq. 5.20) on the static parameters of C-C HTMEE beam is investigated through 

empirical constants. The thermal load and hygroscopic load considered for the analysis 

corresponds to a uniform temperature rise of 100 K and 2% moisture rise, respectively. 

The investigation concerning with the effect of empirical constants α
* 

and *on the 

primary quantities of HTMEE beam is presented in Figs. 6.14 and 6.15. It can be 

witnessed from these figures that the empirical constants             exhibit 
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substantial effect on the primary quantities. This may be due to drastic change of the 

elastic stiffness coefficients for the empirical constants              , which 

leads to the reduction in the stiffness [   ] making the HTMEE beam more flexible. 

As a result, the overall ([   ]
  
{   }) ratio considerably increases. Further increase in 

absolute value of negative empirical constants ( * *      ), the elastic stiffness 

matrix [Keq] improves in such a way that the value ([   ]
  
{   }) gradually reduces. 

Also, the predominant effect of negative empirical constants over positive empirical 

constants is noticed on the electric potential ϕ and magnetic potential ψ. However, 

from Figs. 6.16(a) - (c), it may be witnessed that with the increase in empirical 

constants, the normal stresses show an increasing trend, whereas shear stress variation 

is significantly affected by            . In addition, the negative empirical 

constants display a substantial effect of the electric displacement and magnetic flux 

density components as plotted in Figs. 6.17 and 6.18, respectively. The reason may be 

due to direct effects of the electric potential and magnetic potential on the electric 

displacements and magnetic flux densities, respectively. It can be further stated that 

unlike cantilever HTMEE beam, a significant effect of empirical constants on τxy, τyz, 

Dx and Bx is noticed along the length of HTMEE beam. 
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(c) 

Figure 6.14: Effect of empirical constants on displacements (a) Ux (b) Uv (c) Uw for C-C 

HTMEE beam 

     
(a)                                                                           (b) 

Figure 6.15: Effect of empirical constants on (a) electric potential ϕ (b) magnetic potential ψ 

for C-C HTMEE beam 
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(c)                                                                           (d) 

 

(e)                                                                           (f) 

Figure 6.16: Effect of empirical constants on stress components (a) σx (b) σy (c) σz (d) τxz (e) τxy 

(f) τyz for C-C HTMEE beam 
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(c) 

Figure 6.17: Effect of empirical constants on electric displacements (a) Dx (b) Dy (c) Dz for C-

C HTMEE beam 

       
(a)                                                                           (b) 

 
(c) 

Figure 6.18: Effect of empirical constants on magnetic flux densities (a) Bx (b) By (c) Bz for C-

C HTMEE beam 
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 Cantilever HTMEE beam 

 Figures 6.19 and 6.20 illustrate the effect of empirical constants on the 

displacements and potentials on the cantilever HTMEE beam for the thermal load 

(uniform rise of 100 K) and hygroscopic load (2% moisture rise), respectively. It can 

be noticed from these figures (Figs. 6.19 and 6.20) that the displacement components 

and potentials drastically increases with the decrease in α
*
and *. This may be 

attributed to the reduced stiffness coefficients as mentioned for the C-C HTMEE 

beam. Unlike the primary quantities, the normal stresses increases with the increase in 

α
*
 and *. It is evident from Figs. 6.21 (a) – (c) that            has a predominant 

effect in comparison with the remaining empirical constants. However, the shear 

stresses are predominantly affected by  *   *        as depicted in Figs. 6.21(d) - 

(f). Figures 6.22 and 6.23 depict the distribution of the electric displacement 

components and magnetic flux density components, respectively. As seen from these 

figures, that a pronounced effect of             is witnessed. It may also be 

noticed from these figures that the higher discrepancies are observed near at the 

clamped end of the beam for Dx and Bx. 
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(c) 

Figure 6.19: Effect of empirical constants on displacements (a) Ux (b) Uv   (c) Uw for 

cantilever HTMEE beam 

    

(a)                                                                           (b) 

         Figure 6.20: Effect of empirical constants on (a) electric potential ϕ (b) magnetic 

potential ψ for cantilever HTMEE beam 
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(c)                                                                           (d) 

 

(e)                                                                           (f) 

    Figure 6.21: Effect of empirical constants on stress components (a) σx (b) σy  (c) σz  (d) τxz (e) 

τxy (f) τyz for cantilever HTMEE beam 
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(c) 

Figure 6.22: Effect of empirical constants on electric displacements (a) Dx (b) Dy (c) Dz for 

cantilever HTMEE beam 

   

(a)                                                                           (b) 

 

(c) 

Figure 6.23: Effect of empirical constants on magnetic flux densities (a) Bx (b) By (c) Bz for 

cantilever HTMEE beam 
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6.3.3. Significant combination of empirical constant  

In this section, an attempt has been made to evaluate the effect of different 

combination of moisture dependency (* 
) and temperature dependency (α

* 
) on the 

behaviour of cantilever HTMEE beam. In this regard, the most significant value of  * 

in combination with α
*
 is evaluated through numerical analysis by keeping         

constant. Analogously, to predict the effect of α
*
 and to determine the predominant 

value of α
*
, the analysis has been carried out for different value of α

*
, while * = -0.5 

constant. From Figs. 6.24 – 6.26, it can be noticed that for the constant value of 

temperature dependency empirical constant           , a substantial effect of 

moisture dependency empirical constant         is witnessed on the primary 

quantities viz. transverse displacement component Uw, the electric potential  and the 

magnetic potential . Moreover, when the moisture dependency empirical constant * 

is set to -0.5, it is deduced that among the different values of α
*
considered for the 

study, α
*
= -0.5 has a significant influence on the Uw,  and . For both the cases 

(          and         ), the normal stress x displays a maximum value for 

         and           as depicted in Fig. 6.27. It is worthy to mention that with 

respect to both the cases of empirical constants, the shear stress xz, electric 

displacement Dx and magnetic flux density Bx follow the similar trend as that of the 

primary quantities as elucidated in Figs. 6.28 – 6.30, respectively. 

      
(a)                                                                           (b) 

Figure 6.24: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on transverse displacement Uw for cantilever HTMEE beam  

0.0 0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.0


*
= -0.5 Constant

U
w

 (
m

)

Normalised Beam Length, x/a

 
*


 
*


 
*


 
*


 
*
-

 
*
-

0.0 0.2 0.4 0.6 0.8 1.0
-12

-9

-6

-3

0

3

6


*
=-0.5 Constant

U
w

 (


 1
0

-2
 m

)

Normalised Beam Length, x/a

 
*


 
*


 
*


 
*


 
*
-

 
*
-



152 

 

 

 

    
(a)                                                                           (b) 

Figure 6.25: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on electric potential ϕ for cantilever HTMEE beam 

               
(a)                                                                           (b) 

Figure 6.26: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on magnetic potential ψ for cantilever HTMEE beam 

       
(a)                                                                           (b) 

Figure 6.27: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on normal stress σx for cantilever HTMEE beam 
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(a)                                                                           (b) 

Figure 6.28: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on shear stress τxz for cantilever HTMEE beam 

   
(a)                                                                           (b) 

Figure 6.29: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on electric displacement Dx for cantilever HTMEE beam 

  
(a)                                                                           (b) 

Figure 6.30: Effect of (a) moisture dependency coefficient *
 (b) temperature dependency 

coefficient α
*
 on magnetic flux density Bx for cantilever HTMEE beam 
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6.4. CONCLUSIONS 

 In this chapter, numerical evaluations are carried out to explore the static 

behaviour of hygrothermo-magneto-electro-elastic beams using finite element 

approach. The governing equations of motion accounting for the hygrothermal 

response of MEE beams are derived using the total potential energy principle and the 

coupled constitutive equations of HTMEE material. Several numerical examples are 

considered to evaluate the effect of hygrothermal loads, moisture concentration 

gradient and boundary conditions on the primary quantities and secondary quantities 

of HTMEE beams. The results reveal that increase in hygrothermal loads increases the 

value of static parameters. Making use of empirical constants, the effects of 

temperature and moisture dependent elastic stiffness coefficients are also examined. It 

is noticed that the empirical constants              exhibit a significant influence 

on all the static parameters except normal stresses. However, for           , the 

normal stresses have a pronounced effect. In addition, it is also noticed that among 

different hygrothermal load profiles considered, the uniform hygrothermal load has a 

predominant effect. Consequently, the present analysis reveals a remarkable impact of 

hygrothermal loads, empirical constants and boundary conditions on the static 

performance of HTMEE beams. 
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Chapter 7 

INFLUENCE OF COUPLED FIELDS ON STATIC AND FREE 

VIBRATION BEHAVIOUR OF STEPPED FUNCTIONALLY 

GRADED MAGNETO-ELECTRO-THERMO-ELASTIC PLATE 

The influence of coupled thermal, elastic, electric and magnetic fields on the free 

vibrations and static characteristics of stepped functionally graded magneto-electro-

thermo-elastic (SFG METE) plate has been investigated. The natural frequencies 

corresponding to different coupled stiffness matrices are evaluated to analyse the 

contribution of each phase of SFG METE plate. Particular emphasis has been placed 

to investigate the effect of different loading forms such as uniform temperature, 

sinusoidal temperature, magnetic charge and electric charge densities on the static 

parameters of SFG METE plates.  

Related article: Vinyas, M and Kattimani, S.C. (2017). “Influence of coupled fields 

on free vibration and static behaviour of functionally graded magneto-electro-thermo-

elastic plate”, Journal of Intelligent Material Systems and Structures.  

DOI: 10.1177/1045389X17740739 

7.1. INTRODUCTION 

The influence of full coupling between the elastic, electric, magnetic and 

thermal fields on the natural frequency of stepped functionally graded magneto-

electro-thermo-elastic (SFG METE) plates has been investigated using the finite 

element (FE) method. The contribution of overall coupling effect as well as individual 

elastic, piezoelectric, piezomagnetic and thermal phases towards the stiffness of SFG 

METE plates is evaluated. A FE formulation is derived using the Hamilton‟s principle 

and coupled constitutive equations of METE material. Based on the first order shear 

deformation theory (FSDT), kinematics relations are established and the 

corresponding FE model is developed. Further, the static studies of SFG METE plate 
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have been carried out by reducing the fully coupled FE formulation to partially 

coupled state. Particular attention has been paid to investigate the influence of the 

electric fields, magnetic fields and thermal fields on the behaviour of SFG METE 

plate. In addition, the effect of pyro coupling on the SFG METE plate has also been 

studied. Further, the effect of geometrical parameters such as aspect ratio, length-to-

thickness ratio, stacking sequence and boundary conditions is also studied in detail.  

7.2. PLATE GEOMETRY AND DISPLACEMENT RELATION 

 The schematic diagram of METE plate comprising of N layers is depicted in 

Fig 7.1. The METE plate is assumed to have a constant thickness of H. The x, y, and z- 

axes of Cartesian co-ordinates run along the length a, breadth b and the thickness H of 

the plate. The first order shear deformation theory (FSDT) is used to model the 

kinematics of the coupled problem of METE plates. The variation of the in-plane 

displacements Ux, Uv and Uw are assumed accordingly, as follows: 

                                                                                                                  (7.1)   

                                                                                                                   (7.2) 

                                                                                                                        (7.3) 

in which,    ,     and     are the midplane displacements along the x, y and z axes, 

respectively.    and    are the rotations of the portions of the normal lying in the xz 

plane and yz plane, respectively. The reference plane (z = 0) is chosen at the midplane 

of the laminate.  

 

Figure 7.1:  Schematic diagram of METE plate  
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Figures 7.2(a) and (b) depict the stacking arrangement of SFG BFB METE plate and 

SFG FBF METE plate, respectively. Here, the pure piezoelectric phase is denoted by 

„B‟, whereas pure piezomagnetic phase is represented by „F‟. 

  

(a)                                                                         (b) 

Figure 7.2:  Schematic diagram of functionally graded plate showing (a) SFG-BFB and (b) 

SFG-FBF stacking sequences 

7.3. CONSTITUTIVE EQUATIONS 

Considering full coupling between elastic, electric, magnetic and thermal 

fields, the constitutive equations of an anisotropic METE solid can be written as 

follows: 

                                       = { }C e E q H   - - -                                   (7.4)                                 

                                         = { }
T

eD e d E m H p + + +                             (7.5) 

                                       = { }
T T

mB q m E H p  + + +                           (7.6)
   

                                     = { }
T TT

e m hp E p H C   + + +                         (7.7)
                         

 

where { } { } { } and { } represent the stress vector, electric displacement vector, 

magnetic flux density vector and entropy, respectively. { } { } { }  and { } are strain 

vector, electric field vector, magnetic field vector and temperature rise, respectively. 

[ ] [ ] and [ ] are the elastic, piezoelectric and magnetostrictive coefficient matrices, 

respectively. Further,    is the heat capacity per unit volume given by           , 

where CE is the specific heat of the material. [ ]  [ ], [ ], [ ], [  ] and [  ] are 

piezoelectric, piezomagnetic, thermal stress moduli, electromagnetic, pyroelectric, 
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pyromagnetic material coefficient, respectively. The constitutive equations (Eqs. (7.4) 

- (7.7)) can be described in more generalized global matrix form as follows: 
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       (7.8) 

7.4. FINITE ELEMENT FORMULATION  

The FE model of the METE plate is generated using eight noded quadrilateral 

element with each node having eight degrees of freedom viz. three translational 

(      and   ), two rotational (   and    ) and one for each electric potential ( ), 

magnetic potential ( ) and temperature rise ( ). The generalized translational 

displacement vector and rotational vector associated with the i
th

 (i =1, 2, 3…8) node of 

the element can be represented as 

                          ,   
TT

ti xi vi wi ri x yd U U U d      
                                      (7.9) 

The generalized translational vectors {  }, rotational vectors {  }, electric potential 

vectors { }, magnetic potential vector { } and temperature { } at any point within the 

element can be represented in terms of the nodal displacement vector, nodal electric 

potential, nodal magnetic potential vector and nodal temperature rise, respectively, as 

follows: 

    e
t t td N d ;     e

r r rd N d ;    eN    
;  
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                                            eN    
; { } [ ] { }eN                                      (7.10) 

in which, 
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                                                                              (7.11)                                                      

where,    is the natural coordinate shape function associated with the i
th 

node of the 

quadrilateral element. It and Ir are (3 x 3) and (2 x 2) identity matrices, respectively. 

By using the FSDT for plates, strains can be related to the nodal degree of freedom as 

follows: 

       e e
b tb t rb rB d z B d  +

 

                                                    e e
s ts t rs rB d B d  +                                     (7.12)

 

where the derivative of shape function matrices [   ] [   ] [   ] and [   ] can be 

expressed as,  
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(7.13)                        
 

The electric field and the magnetic field vectors are a negative gradient of electric and 

magnetic potentials, respectively. Using derivative of shape function matrices, the 

electric field and the magnetic field can be related to the nodal electric potential and 

nodal magnetic potential, respectively, as follows: 

              
     , , , , e

x y zE E E E B
x y z



  


   
   - - -  -                           

(7.14) 
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                (7.15) 

in which, the derivative of shape function matrices [  ]and [  ] can be expressed as 
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                               (7.16) 

7.5. EQUATIONS OF MOTION 

The Hamilton‟s principle in association with the first variations of total 

potential energy    and kinetic energy     is invoked to derive the governing equations 

of motion corresponding to SFG METE plate 

           
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    
k

k t t

k

d dT d  



                                                                                      (7.18)                                                                                             

Since, the METE plate thickness considered for the analysis is very thin, the rotary 

inertia may be neglected (Panda and Ray 2008, 2009; Ray and Shivakumar 2009). 

Substituting the constitutive equations (Eqs. (7.4) – (7.7)) into Eqs. (7.17) and (7.18), 

the equilibrium equations of motion can be obtained as follows:  

           
1

1
 

2

N T T Tk k k k k k
b b b b s s s
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

  


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     


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           
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Substituting Eqs. (7.9) – (7.16) in Eq. (7.19), we obtain 
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Upon simplification and rearranging of Eq. (7.20), the governing equations for the 

fully coupled SFG METE plate in the global form can be written as follows: 

             _
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The various global stiffness matrices and force vectors appearing in Eq. (7.21) are 

described in Appendix A. The mathematical expressions for the force vectors, global 

stiffness matrices and the corresponding rigidity matrices are explicitly given in 

Appendix B. The global equations of motion can be condensed (Appendix C) to 

represent in a simple form as follows:  

                                    t eq t

g
eqtt

M d K d F+      
                                            (7.22) 

In case of free vibration analysis, Eq. (7.22) can be expressed as follows:  

                                   0t eq t

g

tt
M d K d+      

                                                      (7.23) 

Eq. (7.23) can be represented in the matrix form as follows: 
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             (7.24) 

Further, following assumptions have been made to reduce the fully coupled 

equilibrium equations for SFG METE plate to account for the static analysis,  

1. Thermal fields are partially coupled with magneto-electro-elastic fields. 

Hence, the thermal effects can be treated as external loads. 

2. The effect of externally applied electric charge and magnetic current is not 

zero. 

Considering the above assumptions, the equations of motion for METE plates 

accounting the different loading conditions can be rewritten as follows: 

           _
g gg g g g

tt t tr r t t mt tK d K d K K F F  + + +        +      
 

           _
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tr t rr r r r mr rK d K d K K F F  + + +        +      
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           
TT T

gg gg g g
t t r rK d K d K K F F    + - -        -      

           (7.25) 

7.6. RESULTS AND DISCUSSION 

 This section addresses the static and free vibration behaviour of SFG METE 

plates in the thermal environment. The effect of different forms of external field loads 

such as uniform temperature rise, non-uniform temperature rise, electric field force 

and magnetic field force is analysed. To this end, the partially coupled governing 

equations derived in the previous section are used. Numerical examples are solved 

and analysed in order to evaluate the variation of static parameters of METE plates 

with respect to different boundary conditions, aspect ratio and length-to-thickness 

ratio. A comparative study of the conventional three layered METE (BFB and FBF) 
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and SFG METE (BFB and FBF) plates is presented. Also, a special attention has been 

given for evaluating the effect of pyroelectric and pyromagnetic coupling.  

 In case of free vibration study, fully coupled FE formulation derived in the 

previous section is used to investigate the influence of various coupled stiffness 

matrices on the natural frequency of SFG METE plate. Further, the effect of boundary 

conditions and stacking sequences on the natural frequency of SFG METE plate is 

thoroughly evaluated. 

7.6.1. Validation of the FE formulation 

The correctness of the proposed FE formulation to evaluate the static response 

of SFG METE plate is justified by comparing the results obtained with that of the 

results reported by Moita et al. (2009) for the case of mechanical loading. It can be 

noticed from Figs. 7.4(a)-(c) that the results from the present numerical formulation 

closely agree with that of Moita et al. (2009). Thus, the present FE formulation can be 

extended to other forms of loading which are discussed in the subsequent sections. 

The material properties corresponding to various volume fractions of BaTiO3 and 

CoFe2O4 are tabulated in Table 2.1. In order to validate the present FE model for 

natural frequencies, a simply supported BFFB METE square plate (a = 1 m, H = 0.04 

m) studied by Moita et al.(2009) and Lage et al. (2005) is considered for the 

comparison. The results obtained from the present FE formulation are analogous to 

the results reported by Moita et al.(2009) and Lage et al. (2005) as tabulated in Table 

7.1. In addition, the normalized frequencies of a simply supported BFB MEE plate (a 

= 1 m and H = 0.3 m) is also validated. Table 7.2 compares the result (ωn = ω 

(a
2
/H√      , ρ = 1600 kg/m

3
) obtained using the present numerical code and the 

results reported by Moita et al. (2009). It can be observed from this table (Table 7.2)  

that the results are in very good agreement with Moita et al. (2009). Further, the 

convergence of the natural frequency results with mesh refinement has been explicitly 

depicted in Table 7.3. Hence, it is expected that the present FE formulation can 

dependably produce results for various conditions of METE plate. 
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7.6.2. Effect of uniform temperature rise 

The static analysis of SSSS METE plate subjected to uniform temperature rise 

(    ) is carried out. From Fig. 7.4(a), it can be observed that SFG METE plate 

results in a lesser stress than the conventional three layered METE plate. The through 

thickness variation of magnetic flux density and electric displacement are plotted in 

Figs. 7.4(b) and (c), respectively. From these figures, it can be noticed that magnetic 

flux density (Bz) and electric displacement (Dz) are zero at the pure piezomagnetic and 

pure piezoelectric phases of the corresponding stacking sequence, respectively.  

           
(a)                                                                         (b) 

             
  (c)  

Figure 7.3: Validation plots of (a) shear stress     (b) normal stress   (c) magnetic flux 

density, Bz 
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Table 7.1:  Natural frequency for BFFB stacked MEE plate 

Mode Lage et al. (2005)  Moita et al.(2009) Present 

1 2542.9 2449.7 2432.2 

2 6391 6280.6 6268.4 

3 6391 6280.6 6268.4 

4 10192 10461.5 10316.1 

 

Table 7.2: Normalized Frequencies (ωn = ω (a
2
/H√     ),) for simply supported three 

layered BFB plate; a = 1 m; H = 0.3 m 

Mode Moita et al. (2009) Present 

1 4.262 4.342 

2 8.312 8.211 

3 8.592 8.689 

4 11.521 11.463 

5 11.521 11.463 

6 12.655 12.726 

Table 7.3: Convergence of the natural frequency of MEE plate with mesh size 

Mode 

No. 

Mesh size Moita et al. 

(2009) 4×4 6×6 8×8 10×10 

1 2422.14 2428.60 2432.14 2432.21 2449.7 

2 6255.74 6264.67 6268.31 6268.40 6280.6 

3 6255.74 6264.67 6268.31 6268.40 6280.6 

4 10306.52 10313.28 10316.01 10316.1 10461.5 

In addition, the variation of longitudinal displacement component Ux, 

transverse displacement component Uw, electric potential ϕ and magnetic potential ψ 

along the plate length (y = 0.5 a and x = 0 to a) are shown in Figs. 7.5(a) – (d), 

respectively. A negligible variation in the distribution of Ux is noticed for all the 

stacking sequences. It may be observed from this figure (Fig. 7.5(a)) that Ux is zero at 

the midspan, whereas the transverse deflection Uw is maximum at the midspan as 

illustrated in Fig. 7.5(b). In comparison with conventional three layered METE plate, 

SFG METE plate exhibit a higher central deflection. Figure 7.5(c) illustrates that SFG-

FBF METE plate results in a higher magnetic potential while the SFG-FBF METE 

plate exhibits a higher electric potential (Fig. 7.5(d)). Also, the magnetic potential and 



167 

 

 

 

the electric potential are zero at both the edges and become constant along the length 

of the plate. 

      
(a)                                                                                     (b)          

 

(c) 

Figure 7.4: Variation of the (a) normal stress σx (b) magnetic flux density Bz and (c) electric 

displacement Dz, across the plate thickness of METE plate subject to uniform temperature rise 

   
(a) (b)      
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(c)                                                                              (d)          

Figure 7.5: Variation of (a) displacement Ux (b) centre deflection Uw (c) magnetic potential, ѱ 

(d) electric potential, ϕ along plate length of the simply supported METE plate subject to 

uniform temperature rise    

7.6.3. Effect of non-uniform temperature rise 

The static response of METE plate exposed to the sinusoidal temperature 

field is evaluated. The expressions for the temperature distribution can be 

represented as follows: 

                                                           ̅                                                (7.26) 

where,                                   

                               and  ̅         
  

 
   

  

 
                               (7.27) 

It may be observed from Fig. 7.6(a) that the stress developed is lesser 

compared to the uniform temperature loading for the same magnitude of T0 (Fig. 

7.4(a)). The variation of Bz and Dz across the thickness of the plate is depicted in 

Figs. 7.6(b) and (c), respectively.  It may be noticed from Fig. 7.7(a) that the 

displacement component Ux is marginally higher for BFB METE plate than the 

other stacking sequence. As illustrated in Fig. 7.7(b), the central deflection Uw of 

METE plate subjected to sinusoidal temperature loading follows the similar 

variation trend as that of the uniform temperature rise (Fig.7.5(a)). The magnetic 

and electric potential is observed to be maximum at the midlength of the plate 

while it is zero at the edges, as shown in Figs. 7.7(c) and (d), respectively. It may 

be attributed to the temperature distribution considered for the analysis. From Figs. 
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7.7(a) and (b), it can also be noticed that the magnitude of the displacement (Ux) 

and centre deflection (Uw) are lower than the uniform temperature profile. In 

addition, SFG-FBF METE plate has a predominant effect on both the magnetic and 

electric potential as depicted in Figs. 7.7(c) and (d), respectively. 

        
(a)                                                                              (b)          

        
(c) 

Figure 7.6: Variation of the (a) σx (b) Bz and (c) Dz, across the plate thickness for METE plate 

subject to non-uniform temperature rise 

   
(a)                                                                              (b)          

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

1.5 1.8 2.1 2.4 2.7 3.0

 SFG-BFB  BFB  SFG-FBF  FBF

x  ( 10
2
 MPa)

N
o
rm

al
is

ed
 T

h
ic

k
n
es

s,
 z

/h

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8

 SFG-BFB  BFB  SFG-FBF  FBF

B
z
 (N/Am)

N
o

rm
al

is
ed

 T
h

ic
k

n
es

s,
 z

/h

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-6 -5 -4 -3 -2 -1 0

 SFG-BFB  BFB  SFG-FBF  FBF

Dz ( 10
-3
 C/m

2
)

N
o

rm
al

is
ed

 t
h

ic
k

n
es

s,
 z

/h

0.0 0.2 0.4 0.6 0.8 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3 0
.2

7
0

.2
1

0.80.7

 SFG-BFB 

 BFB 

 SFG-FBF

  FBF

Plate Length (m)

U
x 

(


-

m

)

0.0 0.2 0.4 0.6 0.8 1.0
-0.6

-0.3

0.0

0.3

0.6

0.9

 SFG-BFB  BFB  SFG-FBF  FBF

Plate Length (m)

U
w

 
 1

0
-1

8
 (

m
)



170 

 

 

 

          
(c)                                                                              (d)          

Figure 7.7: Variations of (a) displacement Ux (b) centre deflection Uw (c) magnetic potential, 

ѱ and (d) electric potential, ϕ, along plate length of METE plate subject to non-uniform 

temperature rise 

7.6.4. Effect of electric field force 

The variation of the static parameters of SFG METE plate and conventional 

three layered METE plate under the influence of electric field force    is studied in 

this section. It may be noted that the electric field force is applied along the thickness 

direction alone. Figures 7.8(a) and (b) illustrate the distribution of normal stress and 

magnetic flux density across the plate thickness. The negative in-plane stress (σx) in 

Fig. 7.8(a) indicates that the plate is under compression at a particular location of 

interest.  From Fig. 7.8(b), it is observed that the magnitude of magnetic flux density 

Bz is insignificant in the top and the bottom layer of the SFG-BFB METE plate. It may 

be accounted to the presence of pure piezoelectric phase at the top and the bottom 

layers. Further, Bz rises to the maximum at the middle layer composed of pure 

piezomagnetic phase. This explanation holds good for conventional METE plate also. 

It may be noticed from Fig. 7.8(c) that the Dz varies linearly in each pure piezoelectric 

phase. In addition, the electric displacement Dz has a negligible value at the top and 

the bottom layers and then gradually increases till the middle layer where it drastically 

falls to zero due to the presence piezomagnetic phase. The maximum Dz is noticed for 

SFG-FBF stacking sequence at the middle layer composed of pure piezoelectric phase. 

Unlike the temperature loading, a noticeable discrepancy exists with respect to 
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displacement Ux along the plate length as shown in Fig. 7.9(a). It can also be observed 

that the displacement Ux is the maximum at the clamped end and varies almost linearly 

along the plate length. The central deflection Uw is the minimum for FBF METE plate, 

while it is the maximum for SFG-FBF METE plate as shown in Fig. 7.9(b). The 

magnetic potential ( ) and electric potential ( ) are the maximum near clamped end 

and attain constant values over the plate length as depicted in Figs. 7.9(c) and (d), 

respectively.  

         

(a)                                                                              (b)          

 

(c) 

Figure 7.8: Variation of the (a) normal stress σx (b) magnetic flux density Bz and (c) electric 

displacement Dz, across the plate thickness for METE plate subject to electric field force 
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(a)                                                                              (b)          

      
(c)                                                                              (d)          

Figure 7.9:  Variations of (a) displacement Ux  (b) centre deflection Uw (c) magnetic potential, 

ѱ and (d) electric potential, ϕ along plate length of the METE plate subject to electric field 

force 

7.6.5.  Effect of magnetic field force 

In this study, analogous to the electric field, the magnetic field force has been 

considered for the analysis. From Fig. 7.10(a), it may be observed that the stress 

variation follows a similar trend as that of the electric loading (Fig. 7.8(a)). The 

magnetic flux density Bz varies almost linearly across the thickness of each layer 

except at the pure piezoelectric phase as illustrated in Fig. 7.10(b). The SFG-BFB 

plate shows an increasing trend with the maximum values appearing at the midplane 

while SFG-FBF plate exhibits a decreasing trend. Further, the maximum Bz is attained 

by three-layered BFB METE plate. Figure 7.10(c) depicts the variation of electric 

displacement component Dz across the thickness of the plates. A negligible variation 
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with respect to Ux along the plate length is noticed for all the stacking sequences as 

shown in Fig. 7.11(a). Similarly, from Fig. 7.11(b), it is observed that SFG-FBF plate 

experiences more central deflection Uw while it is the minimum in three-layered FBF 

METE plate. The variation of electric potential is depicted in Fig. 7.11(c). It can be 

noticed from this figure that the maximum value is obtained at the edges and it 

remains almost constant along the plate length. In addition, from Fig. 7.11(d), it can be 

seen that BFB stacking sequence has a prominent effect on the magnetic potential 

while FBF METE plate results in a comparatively lesser magnetic potential. 

      
(a)                                                                              (b)          

 
     (c) 

Figure 7.10: Variation of the (a) normal stress σx (b) magnetic flux density Bz (c) electric 

displacement Dz across the plate thickness for METE plate subject to magnetic field force 

7.6.6.  Effect of combined loading 
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electric force of 10 C/m
2
 and the magnetic force of 10 T (Tesla) are considered for the 

analysis. Figures 7.12(a)-(c) illustrate the distribution of normal stress σx, magnetic 

flux density Bz and electric displacement component Dz, respectively. It may be 

witnessed from these figures that the thermo-magnetic load exhibit a substantial effect 

followed by electro-magnetic loading. Further, a marginal discrepancy exists between 

thermo-electric and thermo-electro-magnetic loads. The variation of displacements Ux, 

Uw, electric potential and magnetic potential along the plate length is depicted in Figs. 

7.13(a)-(d), respectively. It can be observed that the thermo-magnetic load has a 

predominant influence on the displacement components. Further, a significant effect of 

the thermo-electric and electro-magnetic loads are seen on the electric potential and 

magnetic potential, respectively.  

    
(a)                                                                              (b)          

          
(c)                                                                              (d)          

Figure 7.11:  Variation of (a) displacement Ux (b) centre deflection Uw (c) electric potential, ϕ 

and (d) magnetic potential, ѱ, along plate length of the METE plate subject to magnetic field 

force 
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(a)                                                                              (b)          

 

     (c) 

Figure 7.12: Influence of combined loads on (a) normal stress σx (b) magnetic flux density Bz 

(c) electric displacement Dz 
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(c)                                                                              (d)          

Figure 7.13: Influence of combined loads on (a) displacement component Ux (b) centre 

deflection Uw (c) electric potential  (c) magnetic potential  

 

7.6.7. Influence of pyroeffects 

 The numerical investigation is carried out to evaluate the influence of 

pyroeffects on METE plates subjected to uniform and sinusoidal temperature loads. It 

is noticed that only the electric potential of the METE plate experiences a direct pyro 

coupling effect. For both the stacking sequences, Figs. 7.14(a) and (b) show the 

influence of pyroeffects on the electric potential of SFG-METE plate under uniform 

and sinusoidal temperature loads, respectively. It can be deduced from these figures 

that the pyroeffects tends to improve the electric potential of the METE plate for both 

forms of temperature loads. 

      
(a)                                                                              (b)          

Figure 7.14: Influence of pyroeffects (a) uniform temperature loads (b) sinusoidal temperature 

loads 
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7.6.8.  Effect of boundary conditions 

 The distribution of direct and derived quantities for the various boundary 

conditions of the plate is investigated. The boundary conditions employed in the 

present analysis are given as follows: 

Clamped edge (C):                                            

 Free edge (F):                                                                                              

Simply supported edge (S):               =    =   =   = 0 at x= 0, a 

                                                                  =    =   =   = 0 at y = 0, b              (7.28) 

Figures 7.15(a)-(c) illustrate the comparison of the variation of magnetic flux density, 

normal stress (σx), and electric displacement, respectively, for different boundary 

conditions. It can be seen from these figures that the CFFF boundary condition has a 

predominant effect due to more number of free edges while the CCCC boundary 

condition has a negligible effect. In addition, for the CCFF and CFFF boundary 

conditions, the maximum value of direct quantities is noticed at the free end as shown 

in Figs. 7.16(a)-(d). This may be due to asymmetric boundary conditions. For the 

symmetric boundary conditions (viz. CCCC, SSSS, and CSCS), the maximum central 

deflection    is noticed at the midspan of the plate. The longitudinal displacement 

component    varies symmetrically along the plate length for the CSCS and CFCF 

METE plates. The electric potential and the magnetic potential are plotted in Figs. 

7.16(c) and (d), respectively. It may be observed from these figures that for the SSSS 

METE plate, the electric potential   and magnetic potential   remain constant along 

the plate length with the maximum values appearing at the edges. Further, for the 

CFCF and CSCS METE plate, the maximum   and   are observed at the mid length 

of the plate. However, for the CCSS METE plate ϕ and ψ gradually increases from the 

clamped end to simply supported end.  
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(a)                                                                              (b)          

 

(c) 

Figure 7.15: Effect of boundary condition on (a) magnetic field density (b) normal stress - σx 

(c) electric displacement 
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(c)                                                                              (d)          

Figure 7.16: Effect of boundary condition on (a) centre deflection Uw (b) longitudinal 

displacement component Ux (c) electric potential (d) magnetic potential 

7.6.9.  Effect of aspect ratio (a/b) and length-to-thickness ratio (a/H) 

The effect of aspect ratio (a/b) and the length-to-thickness ratio (a/H) on the 

displacement components of SSSS METE plate is investigated by considering uniform 

temperature load. The displacement components directly affect all the static 

parameters. Hence, in the present study the effect of a/H and a/b ratio is limited to 

displacement components only. From Figs. 7.17(a) and (b), it can be noticed that with 

the increase in aspect ratio, the displacement components increases. Similarly, the 

variation in the displacement components is proportional to the length-to-thickness 

ratio (a/H) as illustrated in Figs. 7.18(a) and (b). 

     
(a)                                                                                   (b) 

Figure 7.17: Effect of a/b ratio on (a) Ux (b) Uw of METE plate subjected to uniform 

temperature load 
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(a)                                                                                   (b) 

Figure 7.18: Effect of a/Hratio on (a) Ux (b) Uw of METE plate subjected to uniform 

temperature load 

7.6.10.  Free vibration analysis of SFG METE plate: Evaluation of effect of 

coupling factors 

Free vibration analysis of SFG METE plate is carried out by considering full 

coupling of the thermal field with magnetic, electric and elastic fields. The effect of 

METE coupling, the electric effect of piezoelectric (PE) phase, magnetic effect of 

piezo magnetic (PM) phase and effect of thermal constants on the natural frequencies 

is investigated. In this regard, the equivalent stiffness matrices [   ], [           ], 

[      ], [      ] and [      ] for each case is derived as illustrated in Appendix D. 

Table 7.4 encapsulates the description and significance of the different frequencies 

computed along with the corresponding stiffness matrices. Further, the effect of 

stacking sequence and boundary conditions on the natural frequency is also studied. 

The following cases of boundary conditions have been considered for the free 

vibration analysis of SFG METE plate. 

Case 1: Simply supported on all edges (SSSS) 

       Ux (x, y, 0) and θx = 0 at y = 0 and y = a; 

       Uv (x, y, 0) = 0  and θy=0 at x = 0 and x = a; 

 Uw (x, y, 0) = 0 at x = 0, x = a, y = 0 and y = a;                                      

         ϕ (x, y, 0) = ψ (x, y, 0)   = T (x, y, 0) = 0 at x = 0, x = a, y = 0 and y = a;     (7.29) 
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The effect of coupled fields on the natural frequency is presented in Table 7.5. It is 

evident from Table 7.5 that the effect of coupling parameters on the natural frequency 

is significant for higher modes for both the SFG-BFB and SFG-FBF stacking 

sequences. In comparison with           the fully coupled effects (   ) tend to increase 

the frequency of the system. Also, it can be noticed from Table 7.5 that     and     

are less than     while     is higher than    . This suggests that a marginal dominance 

of     prevails for both the stacking sequences. The electric effect of PE phase 

increases the frequency of the system. But, the magnetic effect of PM phase along 

with thermal properties tends to deteriorate the system frequency. The same is 

graphically illustrated in Figs. 7.19(a) and (b) for SFG-BFB and SFG-FBF stacking 

sequences, respectively.  

Table 7.4: Different stiffness matrices 

Stiffness 

matrix 

symbol 

Related 

Frequency 

Description Significance 

[   ]      Stiffness matrix for fully coupled 

magneto-thermo-electro-elastic 

material 

Effect of coupled fields 

[        ]           Stiffness matrix neglecting coupling 

effects 

Effect of elastic constants 

only 

[      ]     Stiffness matrix considering 

piezoelectric effect 

Effect of piezoelectric 

phase 

[      ]     Stiffness matrix considering 

piezomagnetic effect 

Effect of piezomagnetic 

phase 

[      ]     Stiffness matrix considering thermal 

effect 

Effect of thermal 

constants 
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(a)                                                                                          

   
 (b) 

Figure 7.19: Comparison of natural frequency (a) SFG-BFB (b) SFG-FBF SSSS METE plate 

Case 2: Clamped on all edges (CCCC) 

In this case, all the degrees of freedom of the nodes lying at the edges are fully-

constrained. As illustrated in Table 7.6, for the higher modes (mode no 6 and above), 

    is almost equal to    . This is accounted to the predominant influence of thermal 

properties over the PE and PM effect in clamped boundary condition. Hence, for both 
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the stacking sequences (BFB and FBF), the inclusion of thermal properties increases 

the frequency of the plate at the higher modes as shown in Fig. 7.20(a) and (b), 

respectively. 

 

(a)                                                                                    

       
 (b) 

Figure 7.20: Comparison of natural frequency (a) SFG-BFB (b) SFG-FBF CCCC METE 

plate 
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The effect of different boundary conditions on the natural frequency of METE 

plates is tabulated in Table 7.7. It can be noticed from this table that for both the 

stacking sequences, the CCCC boundary condition results in a higher natural 

frequency. Further, the SFG-FBF METE plate has a predominant effect on the natural 

frequency than the SFG-BFB METE plate. This may be attributed to the higher values 

of elastic constants of the magnetostrictive layer. 

7.7. CONCLUSIONS 

This chapter makes an attempt to evaluate the effect of fully coupled fields 

on the static and free vibration behaviour of magneto-electro-thermo-elastic plates. 

A finite element formulation is derived using the Hamilton‟s principle and 

constitutive equations of METE solids taking into account the full coupling 

between elastic, electric, magnetic and thermal fields. The numerical results 

suggest that the pyroeffects tend to improve the electric potential of the system. 

The uniform temperature loads exhibit a predominant influence on the direct and 

derived quantities. This is attributed to the constant pyroloads generated due to 

pyroelectric and pyromagnetic coupling effects. A comparative study of the 

influence of different boundary conditions reveals that asymmetric boundary 

condition (CFFF) has a prominent influence on the direct quantities. Further, 

increase in the aspect ratio (a/b) and length-thickness (a/H) ratio increases the 

displacement components. It is believed that the present study can be helpful for 

understanding the structural response of SFG METE plate subjected to various 

loading condition. 

Further examination revealed that the pure piezoelectric phase has a 

predominant effect on the natural frequency of METE plate. In addition, for the 

SSSS boundary condition, the magnetostrictive phase and the thermal properties 

inclusion has a negligible effect on the frequency of SFG METE plates whereas, 

for the CCCC boundary condition, a significant effect of thermal properties on the 

natural frequency is noticed.  
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Table 7.5: Natural frequencies (rad/s) for SSSS SFG METE plate; a =1 m; H = 0.04 m 

Mode 

number 

Simply supported condition 

SFG-BFB SFG-FBF 

 feq felastic fυυ fψψ fθθ feq felastic fυυ fψψ fθθ 

1 1303.87 1303.72 1303.91 1303.72 1303.64 1550.22 1550.20 1550.25 1550.21 1550.16 

2 5546.78 5544.76 5547.07 5544.48 5544.74 6428.41 6427.36 6428.89 6426.81 6427.37 

3 7204.42 7202.89 7204.59 7202.81 7202.91 8350.74 8349.98 8351.09 8349.81 8350.01 

4 10059.04 10052.52 10059.76 10051.67 10052.51 11309.98 11307.04 11311.35 11305.5 11307.03 

5 10059.04 10052.52 10059.76 10051.67 10052.51 11309.98 11307.04 11311.35 11305.5 11307.03 

6 11598.45 11595.51 11599.01 11595.14 11595.51 13479.73 13478.41 13480.39 13477.71 13478.39 

7 15846.27 15821.91 15848.99 15818.79 15821.89 17617.66 17608.23 17622.09 17603.31 17608.23 

8 16606.86 16585.27 16609.09 16582.49 16585.26 17919.05 17910.18 17923.07 17905.64 17910.17 
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Table 7.6: Natural frequencies for CCCC SFG METE plate; a =1 m; H = 0.04 m 

Mode 

number 

Clamped condition 

SFG-BFB SFG-FBF 

 feq felastic fυυ fψψ fθθ feq felastic fυυ fψψ fθθ 

1 2572.91 2571.88 2572.94 2571.76 2571.88 2975.81 2975.35 2976.01 2975.11 2975.74 

2 8989.57 8974.86 8991.17 8973.01 8974.84 9795.74 9790.44 9798.26 9787.71 9795.43 

3 12651.33 12648.94 12651.56 12648.63 12648.96 13451.57 13450.46 13452.07 13449.91 13451.4 

4 18040.12 18035.24 18040.69 18034.62 18035.23 19359.84 19357.83 19360.78 19356.82 19359.83 

5 18040.12 18035.24 18040.69 18034.62 18035.23 19359.84 19357.83 19360.78 19356.82 19359.83 

6 21065.42 20361.18 21058.74 20361.05 21063.87 21312.58 20790.54 21302.81 20790.4 21312.41 

7 22898.11 21000.39 22890.38 21000.39 22897.38 24098.89 21262.26 24084.48 21258.95 24098.71 

8 28079.23 22861.37 28067.19 22856.73 28078.78 28419.88 24086.48 28411.94 24080.15 28419.72 
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Table 7.7: Effect of boundary conditions on natural frequencies for SFG METE plate (a = 1 m; H = 0.04 m) 

 

 

 

 

Mode  

number  

Simply supported Clamped-Clamped Clamped-Free 

SFG-BFB SFG-FBF SFG-BFB SFG-FBF SFG-BFB SFG-FBF 

1 1303.87 1550.22 2572.91 2975.81 1541.32 1786.85 

2 5546.78 6428.41 8989.57 9795.74 4712.77 5337.23 

3 7204.42 8350.74 12651.33 13451.57 5524.01 6355.67 

4 10059.04 11309.98 18040.12 19359.84 9178.37 10147.13 

5 10059.04 11309.98 18040.12 19359.84 10869.01 12338.07 

6 11598.45 13479.73 21065.42 21312.58 12124.55 12776.81 

7 15846.27 17617.66 22898.11 24098.89 14383.36 15819.56 

8 16606.86 17919.05 28079.23 28419.88 15642.39 17142.28 
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Chapter 8 

EFFECT OF PARTICLE ARRANGEMENT ON COUPLED 

RESPONSE OF MAGNETO-ELECTRO-THERMO-ELASTIC 

PLATES 

In this chapter, the influence of Barium Titanate (BaTiO3) and Cobalt Ferrite 

(CoFe2O4) particle arrangement on the static response of magneto-electro-thermo-

elastic (METE) plate is studied. The three prominent particle arrangements such as 

body centered cubic (BCC), face centered cubic (FCC) and simple cubic (SC) 

structures are considered. The investigation on the influence of pyroeffects associated 

with the different forms of particle arrangements is given special consideration. In 

addition, the influence of geometrical parameters which includes boundary conditions 

and aspect ratios are also studied.  

 Related article: Vinyas, M. and Kattimani, S.C. (2018). “Investigation of the 

effect of BaTiO3/CoFe2O4 particle arrangement on the static response of magneto-

electro-thermo-elastic plates”, Composite Structures, 185(1), 51-64. 

8.1. INTRODUCTION 

 The material composition plays an important role in deciding the overall 

behaviour of structures. In case of magneto-electro-thermo-elastic (METE) materials, 

the multiple coupled fields distributes differently based upon the heterogeneous 

composition (Koutsawa 2015). The fluctuations in the effective constituent properties 

of the METE materials and hence the fields associated with it directly influences the 

static parameters. Therefore, in this chapter, the METE plates consisting the most 

prominent microstructure arrangements of the BaTiO3/CoFe2O4 particulate composite 

such as body centered cube (BCC), face centered cube (FCC) and simple cubic (SC) 

are considered. The variations in the effective properties with respect to different 

spatial distribution or particle arrangement of BaTiO3/CoFe2O4 are extracted from 

Koutsawa (2015). Using the finite element (FE) formulation derived in Chapter 2, the 

static coupled response of METE plates with different particle arrangement is 
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analysed. Furthermore, the analysis is extended to evaluate the effect of boundary 

conditions and aspect ratio.  

8.2. PROBLEM DESCRIPTION AND FINITE ELEMENT GOVERNING 

EQUATIONS 

The schematic representation of magneto-electro-thermo-elastic (METE) plates 

is shown in Fig. 8.1. The length, breadth and thickness of METE plate are denoted by 

a, b and h, respectively. The various spatial distribution forms of particulate 

BaTiO3/CoFe2O4 composites are illustrated in Fig. 8.2. The material properties of the 

volume fraction (0.45 Vf) of two phase particle reinforced BaTiO3/CoFe2O4 METE 

material are tabulated in Table 8.1.  

The FE governing equations of METE plates considering the effect of various particle 

arrangements can be expressed analogous to Eqs. (2.21) – (2.23).  

 
 

Figure 8.1: Multiphase METE plate geometry 

 

 

 

                (a)                                             (b)     (c) 

Figure 8.2: Packing arrangement of particulate BaTiO3/CoFe2O4 composites (a) simple cubic 

(SC) (b) body centered cube (BCC) (c) face centered cube (FCC) 
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Table 8.1: Material properties of BaTiO3/CoFe2O4 particles with different spatial distribution 

(BCC, FCC & SC) (Aboudi 2001; Koutsawa 2015). 

 

Material Property 

 

Notation 

0.45 Vf  of BaTiO3/CoFe2O4 

BCC FCC SC 

Co-efficient of thermal expansion,  

(×10
-6

, 1/K) 

    

        

8.361 

12.31 

8.309 

12.33 

8.28 

12.36 

 

Dielectric constants (×    C/Vm) 

   =    

    

31.31 

33.48 

30.94 

34.09 

30.56  

34.88 

 

Piezoelectric constants (C/m
2
) 

        

        

    

0.199 

-0.0615 

0.307 

0.192 

-0.061 

0.317 

0.187 

-0.063 

0.332 

 

Piezomagnetic constants (N/Am) 

        

        

    

80.52 

277.93 

373.63 

225.917 

235.29 

310.90 

252.77 

215.44 

280.91 

Magnetic permeability constants (×   ) 
        

    

-71.00 

86.81 

-184.78 

70.58 

-203.62 

63.77 

Pyroelectric constants (× 10
-7

 C/m
2
K) 

    8.264 7.056 5.49 

Pyromagnetic constants  

(× 10
-3

 N/AmK) 

    -2.48 -1.64 -1.22 

                    ⁄ . 

                         ⁄ . 

8.3. RESULTS AND DISCUSSIONS 

Numerical examination of the multiphysics coupled response of METE plates 

with arbitrary arranged BaTiO3/CoFe2O4 particulate composite is studied. The FE 

formulation proposed in Chapter 2 is utilized in this regard. Further, a various 

illustrations are examined to assess the importance of pyro coupling, boundary 

conditions and aspect ratio on the static response of METE plates.  

8.3.1. Effect of particle arrangement 

 The influence of various arbitrary positioned BaTiO3/CoFe2O4 particulate 

composite on the direct and derived quantities of METE plate has been investigated. 
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To this end, METE plate clamped on all edges (CCCC) and subjected to uniform 

temperature gradient of 100 K is considered for the analysis. The numerical evaluation 

demonstrates that only the direct quantities Uv,   and  are sensitive to particle 

arrangement (Figs. 8.3(a) – (e)). It is worthy to note that the influence of SC 

particulate arrangement is significant on the Uv and , whereas a marginally higher 

value of   is observed for BCC particle arrangement. This can be attributed to the 

higher magnitude of piezoelectric and piezomagnetic constants for SC and BCC 

particle structures, respectively. Figures 8.4(a) and (b) display the variation of normal 

stress σx and shear stress τxz along the length of METE plate. It is also observed that 

the particle arrangement has a negligible influence on the stress distribution along the 

METE plate length. Figures 8.5 and 8.6 depict the electric displacements and magnetic 

flux densities, respectively. It may be observed from these figures that due to 

significant difference in the piezoelectric and piezomagnetic constants along the z-

direction of various forms of particulate composites, a predominant discrepancy can be 

observed with respect to Dz and Bz. It may be noted that the METE plates with other 

boundary conditions (SSSS, CFFC and FCFC) also follow the same trend of the static 

quantity variation with respect to particle arrangement. Hence, for the sake of brevity, 

they are discussed in the subsequent section along with the influence of pyroeffects. 
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      (c)                                                                                (d) 

 

(e) 

Figure 8.3: Effect of particle arrangement on (a) Ux (b) Uv (c) Uw (d) electric potential 

ϕ (e) magnetic potential ψ of CCCC METE plate 

    
          (a)                                                                           (b) 

Figure 8.4: Effect of particle arrangement on (a) normal stress σx (b) shear stress τxz of 

CCCC METE plate 
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(a)                                                                         (b) 

 

(c) 

Figure 8.5: Effect of particle arrangement on electric displacements (a) Dx (b) Dy (c) 

Dz of CCCC METE plate 
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(c) 

Figure 8.6: Effect of particle arrangement on magnetic flux densities (a) Bx (b) By (c) 

Bz of CCCC METE plate 

8.3.2. Influence of pyroeffects and particle arrangement 

In this section, the pyroelectric and pyromagnetic effects are considered in the 

analysis through the pyroloads.  A uniform temperature gradient of 100 K is applied 

on the METE plate with different boundary conditions. However, it is learnt from the 

analysis that the static components such as longitudinal x-direction displacement 

components Ux, transverse z-direction displacement component Uw, electric 

displacement components Dx and Dy, magnetic flux density components Bx and By 

experience a meagre influence of pyroelectric and pyromagnetic couplings. Therefore, 

a comparative study is presented for the variation of the other static parameters with 

and without pyroeffects. The influence of pyroeffects on the static parameters of 

METE plates with different particle arrangement and boundary conditions (CCCC, 

SSSS, CFFC and FCFC) is studied. From Figs. 8.7(a) – (c), it can be noticed that a 

minute influence of pyroeffects prevails on Uv. Unlike other boundary conditions, 

CFFC METE plates display a negligible pyroeffect on Uv. In addition, it is found that 

the SC particle arrangement displays a higher influence. It can also be noted that the 

Uv has the maximum magnitude near the constrained edge and free edge for the 

CCCC, SSSS METE plate and CFFC, FCFC METE plates, respectively. Figures 8.8 

and 8.9 illustrate the influence of pyroeffects on the electric potential and the magnetic 

potential, respectively. It is observed from these figures that irrespective of boundary 

conditions, the pyroeffects tends to increase the electric potential and magnetic 

potential of the plate due to the direct effect. The values of electric potential and 
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magnetic potential considering the pyroeffects are compared with the conventional 

approach (neglecting pyroeffects). Further, it is observed that a higher discrepancy is 

witnessed for BCC particle arrangement. The reason may be due to the higher 

magnitude of pyroelectric and pyromagnetic coefficients for the BCC in contrast to the 

FCC and SC particle arrangement. 

It can be noticed from Figs. 8.8(a) and (b) that for the CCCC and SSSS METE 

plate, the electric potential is maximum near the constrained edge and remains almost 

constant along the plate length, while   drastically reduces at the free end of the 

CFFC METE plate. A symmetric distribution of electric potential is observed for the 

FCFC plate with maximum electric potential appearing at the midspan as shown in 

Fig. 8.8(d). A similar variation trend is noticed for the CCCC and SSSS METE plates 

for the magnetic potential. Analogous to the electric potential, the minimum value of 

magnetic potential is observed at the midspan of FCFC plate. Furthermore, Figs. 8.10 

and 8.11 depict the influence of pyro coupling on the variation of Dz and Bz, 

respectively. These parameters experience the direct effect of electric and magnetic 

potential, respectively. Therefore, the variation trend remains almost same as that of 

the electric and magnetic potential. According to Figs. 8.12(a) - (d), it is seen that 

irrespective of the boundary conditions, the pyroeffects has a negligible impact on the 

normal stress. It may be due to the fact that the pyroeffects have a negligible indirect 

effect on the stress components. Table 8.2 elucidates the influence of pyroeffects, 

boundary conditions and particle arrangement in terms of the maximum values of 

electric potential, magnetic potential, electric displacement and magnetic flux density. 

It can be deduced from this table that the pyroeffects are prominent on the BCC 

particle arrangement followed by FCC and SC arrangement. This may be attributed to 

the fact that the pyroelectric and pyromagnetic coefficients considered in the present 

analysis are higher for BCC BaTiO3/CoFe2O4 particulate composite. It can also be 

noticed that SSSS plates display a higher percentage change     of  and Dz when the 

pyrocoupling are neglected, whereas for  and Bz, CCCC METE plates show a 

predominant influence. 



196 

 

   

(a) CCCC                                                              (b) SSSS 

  

(c) CFFC                                                              (d) FCFC 

Fig. 8.7: Influence of pyroeffects on displacement component Uv of METE plates 
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(c) CFFC                                                              (d) FCFC 

Figure 8.8: Influence of pyroeffects on electric potential of METE plates 

    

(a) CCCC                                                              (b) SSSS 

   

(c) CFFC                                                              (d) FCFC 

Figure 8.9: Influence of pyroeffects on magnetic potential of METE plates 
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(a) CCCC                                                              (b) SSSS 

   

(c) CFFC                                                              (d) FCFC 

Figure 8.10: Influence of pyroeffects on electric displacement Dz of METE plates 
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(c) CFFC                                                              (d) FCFC 

Figure 8.11: Influence of pyroeffects on magnetic flux density Bz of METE plates 

   

(a) CCCC                                                              (b) SSSS  

   

(c) CFFC                                                              (d) FCFC 

Figure 8.12: Influence of pyroeffects on normal stress σx of METE plates 
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Table 8.2:  Effect of pyro coupling on electric potential, magnetic potential, electric displacement and magnetic flux density for different 

boundary conditions and spatial particle arrangement (a/h = 50; a/b = 1). 

Boundary 

Condition 

Particle 

Arrangement 

     (kV)      (A)    (10
-3

 C/m
2
)    (N/Am) 

W.P WoP  W.P WoP  W.P WoP  W.P WoP  

 

CCCC 

BCC 7.90 6.75 14.5 37.7 28.98 23.12 1.6 1.5 6.25 2.29 2.0 12.66 

FCC 8.02 7.06 11.9 37.3 30.06 19.36 1.7 1.6 5.88 1.87 1.67 10.69 

SC 8.20 7.47 8.90 36.1 30.18 16.49 1.8 1.7 5.55 1.66 1.51 9.06 

 

SSSS 

BCC 2.91 1.87 35.6 41.90 33.185 20.8 0.68 0.57 15.28 2.49 2.2 11.5 

FCC 3.00 2.08 30.5 41.96 34.75 17.18 0.71 0.62 12.4 2.05 1.86 9.46 

SC 3.10 2.37 23.5 41.10 35.14 14.51 0.74 0.68 9.3 1.84 1.7 7.9 

 

CFFC 

BCC 3.56 2.41 32.1 41.29 32.58 21.1 0.67 0.57 14.7 2.48 2.18 11.76 

FCC 3.65 2.70 26.1 41.25 34.05 17.44 0.70 0.61 8.4 2.04 1.84 9.6 

SC 3.76 3.03 19.4 40.35 34.4 14.72 0.74 0.67 8.8 1.82 1.68 8.01 

 

FCFC 

BCC 3.76 2.85 24.1 33.09 26.26 20.65 0.8 0.71 10.51 2.15 1.91 11.37 

FCC 3.83 3.08 19.5 32.71 27.14 17.04 0.83 0.76 7.12 1.75 1.59 9.19 

SC 3.94 3.36 14.6 31.9 27.33 14.36 0.87 0.81 6.38 1.57 1.45 7.63 

W.P= with pyroeffects; WoP= without pyroeffects; = % change = (W.P-Wo.P)/W.P 
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8.3.3. Effect of aspect ratio (a/h) 

The influence of aspect ratio on the electric and magnetic potential of METE 

plate under thermal gradient is evaluated for different boundary conditions. The results 

tabulated in Tables 8.3 and 8.4 represent the maximum electric and the magnetic 

potential, respectively. These tables reveal that thick METE plates exhibit a 

predominant influence on the maximum electric potential and magnetic potential. The 

discrepancies of these parameters reduce as the aspect ratio increases (thin plates). 

Table 8.3: Variation of maximum electric potential for different a/h ratio, particle 

arrangement and boundary conditions 

Particle 

Arrangement 

SSSS  CCCC 

 a/h=5 a/h=25 a/h=50 a/h=100  a/h=5 a/h=25 a/h=50 a/h=100 

BCC 22.01 3.77 2.91 0.94  65.1 13.2 7.91 3.4 

FCC 25.52 4.23 3.00 1.04  69.3 13.8 8.01 3.55 

SC 51.18  4.77 3.01 1.19  90.7 14.5 8.20 3.76 

 CFFC  FCFC 

BCC 21.4 4.70 3.55 1.22  26.7 5.71 3.76 1.43 

FCC 23.1 5.21 3.64 1.36  36.4 6.16 3.83 1.54 

SC 41.0  5.79 3.75 1.53  54.5 6.67 3.94 1.68 

 CSCS  CCSS 

BCC 36.01 8.26 4.24 2.46  37.5 7.95 4.08 2.05 

FCC 42.06  8.78 4.52 2.28  43.3 8.47 4.36 2.20 

SC 62.3 9.46 4.89 2.46  61.5  9.15 4.73 2.38 
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Table 8.4: Variation of maximum magnetic potential for different a/h ratio, particle 

arrangement and boundary conditions 

Particle 

arrangement 

SSSS  CCCC 

 a/h=5 a/h=25 a/h=50 a/h=100  a/h=5 a/h=25 a/h=50 a/h=100 

BCC 3962 95.78 42.05 20.85  3408.5 84.22 37.71 18.77 

FCC 3567 91.86 41.96 20.62  3034.2 81.60 37.28 18.34 

SC 2960 85.49 41.9 20.14  2505.4 76.84 36.15 17.71 

 CFFC  FCFC 

BCC 5341.2 110.30 41.29 20.55  1071.9 70.50 33.09 16.54 

FCC 1182.3 89.34 41.25 20.31  413.30 66.33 32.71 16.33 

SC 1180.8 84.129 40.34 19.78  777.80 66.07 31.92 15.96 

 CSCS  CCSS 

BCC 3812.2 90.11 39.82 19.50  3809.2 95.09 41.72 20.74 

FCC 3417.6 86.75 39.63 18.93  3427.1 91.33 41.46 20.52 

SC 2842.7 81.18 38.64 18.43  2824.3 85.04 40.85 20.01 

 

8.4. CONCLUSIONS 

In this chapter, the influence of spatial arrangement of BaTiO3/CoFe2O4 

particulate composite on static behaviour of METE plates is evaluated. It is evident 

from the results that the spatial arrangement has a significant effect on the static 

parameters of METE plates. The electric potential and magnetic potential are 

predominantly affected by SC and BCC particle arrangement due to higher 

piezoelectric and piezomagnetic constants, respectively. Also, it is revealed from the 

study that the pyro coupling tends to improve the electric potential  , magnetic 

potential  , electric displacement    and magnetic flux density   . Moreover, it is 

found that among the various particle arrangement considered, BCC displays a higher 

magnitude of pyroelectric and pyromagnetic coefficients. The influence of pyroeffect 

on electric potential and electric displacement Dz is found to be greatest for SSSS 

boundary condition, whereas for magnetic potential and magnetic flux density Bz, it is 

noticed for CCCC METE plate. Further, it is deduced that the lower aspect ratio shows 

a predominant effect on the METE plate. 
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Chapter 9 

CONCLUSIONS AND FUTURE SCOPE 

This chapter encapsulates the major outcomes of the present research work and the 

future possible improvements on the analysis of magneto-electro-elastic (MEE) 

structures in thermal and hygrothermal environment.   

9.1. MAJOR FINDINGS 

This dissertation imparts the investigation on the effect of external thermal and 

hygrothermal fields on the coupled response of MEE beams and plates composed of 

stepped functionally graded stacking sequence and multiphase layers. A three-

dimensional finite element formulation has been derived with the aid of total potential 

energy principle and constitutive equations of MEE solid accounting the coupling 

between elastic, electric, magnetic, thermal and moisture fields. The in-plane and 

through thickness temperature distributions are considered. The numerical evaluation 

suggests that the thermal and hygrothermal fields have a significant influence on the 

multiphysics response of MEE plates and beams. A special attention has been devoted 

to evaluate the influence of pyroeffects on the static behaviour of MEE structures.  

The numerical investigation on the coupled response of the SFGMEE plates 

and beams has been carried out. It is observed that the static behaviour of the 

SFGMEE beams and plates are significantly influenced by the variations of thermal 

loads across the thickness, and along the length of the beams/plates. The stacking 

arrangements play the prominent role in deciding the variations of direct and derived 

quantities. Further, the pyroeffects associated with various load profiles and stacking 

sequences exhibit considerable influence on the behaviour of the SFGMEE plates and 

beams. The pronounced effect of aspect ratio, length-to-width ratio and boundary 

conditions on the displacements, potentials, stresses, electric displacements and 

magnetic flux density components of the SFGMEE plates has been noticed. It is also 

observed that the different regions of the SFGMEE beam exhibit different magnitude 

of static parameters. 
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The research has also been devoted to evaluate the static response of 

homogeneous multiphase magneto-electro-elastic beam under various in-plane 

temperature loading. The MEE beam with the different volume fraction of Barium 

Titanate and Cobalt Ferrite is taken into consideration. It is found from the parametric 

study that the remarkable influence of boundary conditions, beam depth ratio, 

pyroeffects on the direct and derived quantities of the MEE beam. 

Further, the multiphysics response of hygrothermo-magneto-electro-elastic 

(HTMEE) beams and plates are evaluated. The finite element formulation of the 

HTMEE beams/plates is derived by considering the effect of moisture field in the 

coupled constitutive equations. The comprehensive analysis reveals that the moisture 

and temperature dependent elastic stiffness coefficients exhibit a predominant effect 

on the direct and derived quantities of HTMEE beams and plates. In addition, the 

HTMEE plates with lower aspect ratio exhibit a higher magnitude of static parameters.  

The contribution of various constitutive coupled phases of magneto-electro-

thermo-elastic (METE) material towards the stiffness of the METE plates has been 

investigated. In order to accomplish this, the Hamilton‟s principle is used by 

incorporating the first order shear deformation theory. The numerical evaluation 

revealed that the stiffness of the METE plate for different coupled fields display a 

considerable discrepancies, and the discrepancies increases for the higher modes. 

Further investigation reveals that in addition to thermal loads, the other forms of loads 

such as magnetic and electric loads exhibit a significant effect on the static 

performance of METE plates. The investigation on the effect of particle arrangement 

of two phase BaTiO3/CoFe2O4 composites is also carried out. The variation of direct 

and derived quantities along the METE length has been assessed by considering the 

prominent forms of particle arrangements like body centered cubic (BCC), face 

centered cubic (FCC) and simple cubic (SC). It is evident from the results that a 

predominant influence of BaTiO3/CoFe2O4 particle arrangement exists on the static 

behaviour of METE plates. 
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The major outcomes drawn from the present research work are outlined as 

follows: 

1. Among the various temperature distribution profiles, the uniform temperature 

distribution exhibits a prominent influence on the SFGMEE beams/plates.  

2. The MEE beams/plates with SFG-BFB stacking sequence has a predominant 

influence on the electric potential and electric displacement, whereas SFG-

FBF stacking sequence exhibit a pronounced effect on magnetic potential and 

magnetic flux densities. 

3. The SFGMEE plates with a lower aspect ratio (a/h) results in a higher value of 

static parameters across the plate thickness.  

4. Irrespective of the temperature profiles, the pyroeffects tends to improve the 

electric potential of the system. 

5. In the absence of pyroeffects, bi-triangular temperature profile has a 

significant reduction in the electric potential of the SFGMEE plates.  

6. The influence of pyroeffects decreases with the decrease in aspect ratio of the 

SFGMEE plate. 

7. The displacement components of MEE beam are higher for SFG-BFB stacking 

sequence than SFG-FBF sequence.  

8. The pyroeffects increases the electric potential for Clamped-free and 

Clamped-simply supported multiphase MEE beam while decreases for 

Clamped-clamped (C-C) MEE beam.  

9. The maximum electric potential exists for the volume fraction of 0.2.  

10. The moisture and temperature dependent material stiffness coefficients have a 

significant influence on the direct and derived quantities of HTMEE 

beams/plates. Most of the static parameters of HTMEE beams/plates are 

highest for           , while for           the normal stresses 

shows a pronounced effect. 

11. Asymmetric boundary condition (CFFC) of HTMEE plate results in the 

maximum value of the direct quantities. 

12. The stiffness matrix corresponding to the thermal phase has a noticeable 

influence on the natural frequencies of METE plates. 
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13. Piezoelectric phase tends to improve the stiffness of the METE plate while 

piezomagnetic phase deteriorates the natural frequency. Further, the coupling 

coefficients exhibit a predominant effect on the natural frequencies at the 

higher modes. 

14. The electric potential and magnetic potential are predominantly affected by SC 

and BCC particle arrangement, respectively. Among the various particle 

arrangement considered, BCC displays a higher magnitude of pyroelectric and 

pyromagnetic effects. 

9.2. SCOPE FOR FUTURE RESEARCH 

The basic purpose of this Thesis has been fulfilled by the contributions 

presented in the preceding chapters of this dissertation. However, there is still scope 

for further research which facilitates the enhancement of the performance of MEE 

structures. Among them, few possible future research topics have been outlined as 

follows: 

1. An experimental verification of the proposed coupled finite element model 

will be handy for future applications of MEE structures in hygrothermal 

environment. 

2. Analysis of magneto-electro-elastic nano structures in thermal environment 

using Eringen‟s non-local theory is still an overlooked area. 
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APPENDIX- A: LIST OF NOTATIONS 

 

Bx, By, Bz Electric displacement components along x,y and z directions 

Dx, Dy, Dz Magnetic flux density components along x,y and z directions 

K Kelvin 

     ,    Differential operators 

N Total number of layers 

k Layer number under consideration 

   Electric charge density 

   Magnetic charge density 

   Total potential energy of the overall SFGMEE plate 

         Displacement components along x, y and z directions 

Vf Volume fraction of Barium Titanate (BaTiO3) and Cobalt 

Ferrite (CoFe2O4) 

z Position of the point of interest from the bottom layer 

Matrices and Vectors 

{  } Magnetic flux density vector  

[  ] [  ] [  ] Derivative of shape function matrices 

[  ] Elastic stiffness matrix  

 {  
 } The nodal displacement vector 

{  } Electric displacement vector  

[  ] Piezoelectric coefficient matrix  

{  } Electric field vector  

{     } Body force  

{     } Point force 

{   } Equivalent force vector 

{   
 
} Global hygrothermal load vector 

{    
 
} Global hygroelectric load vector 

{    
 

} Global hygromagnetic load vector 
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{  
 },{    

 
} {    

 } Elemental mechanical load vector 

{    
 
} Global pyroelectric load vector 

{    
 

} Global pyromagnetic load vector 

{        } Surface force 

{   
 
} Global thermal load vector 

,  
 
- Global heat flux load vector 

,  
 
- Elemental electric load vector 

,  
 
- Elemental magnetic load vector 

{  } Magnetic field vector  

[   ] Equivalent stiffness matrix 

[   
 
], [   

 
] Global elastic stiffness matrix 

[   
 
], *   

 
+ Global electro-elastic coupling stiffness matrix 

[   
 
], *   

 
+ Global magneto-elastic coupling stiffness matrix 

[   
 
] Global electric stiffness matrix 

[   
 
] Global magnetic stiffness matrix 

[   
 
] Global electro-magnetic stiffness matrix 

[  ] Electromagnetic coefficient matrix  

[   
 
] Global mass matrix 

[   
 
], [   

 
] Global thermo-elastic stiffness matrix 

[   
 
] Global thermal stiffness matrix 

[  ] [  ] [  ] Nodal shape function matrices 

{  } Pyroelectric coefficient vector  

[  ] Magnetostrictive coefficient matrix  

Greek Symbols  

  Electric potential 

  Magnetic potential 
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Temperature rise 

Moisture concentration rise 

      The maximum temperature 

   Stress free temperature 

   Initial temperature at the bottom layer of SFGMEE 

plate/beam 

{  } Stress tensor  

{  } Thermal stress tensor  

{  } 

{  } 

Thermal expansion coefficient vector  

Moisture expansion coefficient vector 

{  } Hygroscopic stress tensor  

{  } Hygroelectric coefficient vector 

{  } Hygromagnetic coefficient vector 

{  } Strain tensor of the k
th

 layer  

[  ] Dielectric constant matrix  

{  } Pyromagnetic coefficient vector  

[  ] Magnetic permeability constant matrix  

{  } The nodal electric potential vector 

{  } The nodal magnetic potential vector   
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APPENDIX-B 

The various elemental stiffness matrices associated in attaining the global FE 

governing equations of fully coupled SFG METE plate (Eq. 7.21) are explicitly 

presented as follows: 

    
0 0

,

a be e
Te

tb tb tb tbK B D B dxdy  
        

0 0

,

a be e
Te

trb tb trb rbK B D B dxdy  
   

    
0 0

,

a be e
Te

rrb rb rrb rbK B D B dxdy  
    ,  

0 0

a be e
Te

t t tK B D B dxdy  
            

 
0 0

a be e
Te

t t tK B D B dxdy  
              ,     

0 0

,

a be e
Te

t t tK B D N dxdy  
  
   

 
0 0

,

a be e
Te

r r rK B D B dxdy  
               

0 0

,

a be e
Te

r r rK B D B dxdy  
            

    
0 0

,

a be e
Te

r r rK B D N dxdy 
  
    , 

0 0

a be e
TeK B D B dxdy   

                

0 0

a be e
TeK B D B dxdy   

                 ,  
0 0

,

a be e
TeK B D N dxdy  

            
 

0 0

,

a be e
TeK B D B dxdy   

                 ,  
0 0

,

a be e
TeK B D N dxdy  

            
 

e e e
tt tb tsK K K      +

     
, e e e

trb trs trK K K      +
     

, 
e e e
rrb rrs rrK K K      +

     

    
0 0

,

a be e
TeK N D N dxdy  

  
    ,      _

0 0

0 0

a be e
T

t m t zF N P dx dy    

     _

0 0

0 0

a be e
T

r m r zF N M dx dy       
0 0

a be e
T

eF N F dx dy       

   
0 0

a be e
T

mF N F dx dy      ,   
0 0

a be e
T

qF N q dx dy                             

(B-1)

 

where, the rigidity matrices and vectors are given as follow, 
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 
1

1

,

hkN
k

tb b

k hk

D C dz
+



 
    ,   

1

1

,

hkN
k

trb b

k hk

D z C dz
+



 
  

 , 
1

1

,

hkN
k

t

k hk

D e dz

+



       

   
1

1

,

hkN
k k

t b

k hk

D C dz 
+



 
      

1

1

,

hkN
k k

r b

k hk

D z C dz 
+



 
    

 
1

1

,

hkN
k

trs s

k hk

D C dz
+



 
  

1

1

,

hkN
k

t

k hk

D q dz

+



          

 
1

2

1

,

hkN
k

rrb b

k hk

D z C dz
+



 
  

1

1

,

hkN
k

r

k hk

D z e dz

+



       

1

1

,

hkN
k

r

k hk

D z q dz

+



          

1

1

,

hkN
k

k hk

D d dz

+



         

1

1

,

hkN
k

k hk

D m dz

+



        ,  

1

1

,

hkN
k
e

k hk

D p dz

+



         

1

1

,

hkN
k

k hk

D dz 
+



         , 

1

1

,

hkN
k
m

k hk

D p dz

+



         , 

  
1

1

 ,

hkN

h

k hk

D C dz

+



 
                                                                                          (B-2)                       

APPENDIX - C 

The condensation technique used for solving Eq. (7.21) is as follow, 

 
1

1 ,
T T

g g g g

t t
K K K K K

   

-
        -
          

 
1

2 ,
T T

g g g g

r r
K K K K K  

-
       -

       
 

 
1

3 ,
T T

g g ggK K K K K  

-
      -

        

 
1

4 ,
T T

gg g gK K K K K   

-
       -

      
 

     
1

5 4 1 ,K K K
-

      
1

6 4 2 ,K K K
-

      
1

7 4 3 ,K K K
-

  

   
1

0 4 ,g gK K K K
 

-    
    

 
1

8 ,
T T

g g g g

t t
K K K K K  

-
       -

         
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 
1

9 ,
TT

g g g g
r r

K K K K K  

-
       -

       

 
1

10 ,
T T

g g g g
K K K K K  

-
       -

           
 

 
1

11 ,
T T

g g g gK K K K K  

-
       -

      
      12 8 11 5 ,K K K K -  

      13 9 11 6 ,K K K K -       14 10 11 7 ,K K K K +

     
1

15 14 12 ,K K K
-

  

     
1

16 14 13 ,K K K
-

       
1 1

17 14 11 4 ,K K K K
- -

  

        
11 1

18 14 14 11 0 ,
g gK K K K K K K

-- -    -
   

                                                                                    

 
1

19 ,
T T

g g g g

tr r t
K K K K K

  

-
        +
                                                

 
1

20 ,
TT

g g g g

rr r r
K K K K K

  

-
       +

       

 
1

21 ,r

T T
g g gg

r
K K K K K  

-
       -

       
 

 
1

22 ,r

T T
g gg g

r
K K K K K 

-
       -

      
      23 19 22 5 ,K K K K +  

      24 20 22 6 ,K K K K +       25 21 22 7 ,K K K K +  

    
1

26 22 4 ,K K K
-

        
1

27 22 0 ,rK K K K K 

-
 -  

      28 23 25 15 ,K K K K +       29 24 25 16 ,K K K K +

     
1

30 29 28 ,K K K
-

 -  

        ( )
1

31 29 26 25 17 ,K K K K K
-

 -       
1 1

32 29 25 14 ,K K K K
- -



        ( )
1

33 29 27 25 18 ,K K K K K
-

 -  

 
1

34 ,t

T T
g gg g

ttt
K K K K K 

-
       +

     
 

 
1

35 ,
T T

g g g g
rttr

K K K K K  

-
        +

     

 
1

36 ,
T T

g g g g

t t
K K K K K   

-
        -

       
 

 
1

37 ,
T T

g g g g

t t
K K K K K

   

-
       -
         

      38 34 37 5 ,K K K K +

      39 35 37 6 ,K K K K +  



213 

 

      40 36 37 7 ,K K K K +     
1

41 37 0 ,
g g

t
K K K K K

 

-
    -
     

    
1

42 37 4K K K
-

  

      43 38 40 15 ,K K K K +       44 39 40 16 ,K K K K +

      45 42 40 17 ,K K K K -  

      46 41 40 18 ,K K K K -     
1

47 40 14 ,K K K
-



      48 43 44 30 ,K K K K +  

      49 45 44 31 ,K K K K -       50 46 44 33 ,K K K K -  

      51 47 44 32 ,K K K K -     
1

52 44 29 ,K K K
-

 -  

 48 ,eqK K   

         49 50 51 52 _ _
{ } { } { } { } { }

g g g g g
eq r m t m

F K F K F K F K F F
  

 + + - +   

         (C-1) 

APPENDIX - D 

The effect of ϕ can be deduced as follows: 

      0e e e e e e
t rtt tr tK d K d K  + +           

       0
T

e e e e e e
t rtr rr rK d K d K  + +           

       0
T T

e e e e e e
tt r rK d K d K   + -             

     
1 1e e e e e

tt r rK d K dK K  
- -
       +      

 

     
 

1

1

e e e e e e e
t r ttr rr r t

e e e
r r r

K d K d K K d

K K d

K

K

 

 





-

-

        + + +        

    
    

          

   

 

1

1

e e e e e e
t tr r t rr

e e e
r r

r

r

d K K K d K

d K K

K

K

 

 





-

-

         + + +          

    
    

   _1 _ 2 0e e
t rd dK K    +      

   
1

_ 2 _1
e e

trd dK K 

-
    -     
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     
 

1

1
0

e e e e e e e
t r ttt tr t t

e e e
t r r

K d K d K K d

K K d

K

K

 

 





-

-

        + + +        

         

   

 

1

1
0

e e e e e e
t tt t t tr

e e e
t r

r

r

d K K K d K

d K K

K

K

 

 





-

-

         + +          

    +     

   _ 3 _ 4 0e e
t rd dK K    +      

   
1

_ 3 _ 4 _ 2 _1 0e e
t td dK K K K   

-
       -          

1

_ _ 3 _ 4 _ 2 _1eqK K K K K    

-
          -           

1

_1
e e e

tr r tK K KK K  

-
         +           

1

_ 2
e e e

rr r rK K KK K  

-
         +           

1

_ 3
e e e

tt t tK K KK K  

-
         +           

1

_ 4
e e e

tr t rK K KK K  

-
         +                                                            

(D-1) 

The effect of ψ can be deduced as follows: 

      0e e e e e e
t rtt tr tK d K d K + +           

 

      0
T

e e e e e e
t rtr rr rK d K d K  + +           
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The effect of θ can be deduced as follows: 
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