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ABSTRACT

Speckle reduction is an inevitable pre-processing activity in some of the medical
and satellite imaging modalities. This work is dedicated to study the behaviour of
speckles and reduce them in medical ultrasound images and synthetic aperture radar
images. Three novel methods have been proposed in this thesis to despeckle and
deblur the input data. The first two models being proposed are variational frameworks,
where a constrained optimization problem is derived with an appropriate objective
functional and a set of constraints. The behaviour of the objective functional deeply
influences the restoration process. A non-local total bound variational prior is designed
in the first place to restore the images from their speckled observations. This objective
functional designed using this prior, duly respects the gradient oscillations due to
edges in the images while despeckling them. The theory behind the design of the
constrained optimization problem lies in the Bayesian maximum a posteriori estimation
process, which is re-designed to suit the optimization problem under consideration.
The noise distribution plays a vital role in the design of the functional, optimizing
which leads to the desired solution eventually. In the second model, the energy
(optimizing) functional is designed as mentioned earlier, however, the objective
functional is a modified version of the well known Mumford Shah model. Though,
Mumford Shah level-set model has been extensively used for image segmentation,
its capacity to restore the data is being duly analyzed in this thesis. A controlled
evolution of the level-sets under a well designed data-fidelity, duly despeckles and
deblurrs the data in the course of the evolution. These two variational regularization
models are theoretically analyzed to study the conditions for existence of unique
solution. The third model, is based on the Gradient fidelity of the image function
and it duly alleviates speckles and blur from images while checking the possibility
of a piecewise linear approximations which leads to visual discrepancies in the
restored data. All models described in the thesis are experimentally verified using
a large set of input data from ultrasound and synthetic radar imaging applications.
Furthermore, the performance of these models along with the ones in the literature
are statistically quantified. The required mathematical preliminaries, definitions and
derivations have been incorporated in the Appendix for a seamless reading of this thesis.

Keywords: Image restoration; Gamma noise; Split-Bregman; Total bounded variation,
Level-Set, Gradient fidelity.
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Chapter 1

INTRODUCTION

Recovering of an original image from its distorted observation is a demanding task
in various fields of imaging and image processing, such as Medical imaging, Satellite
imaging, etc. The common degradations occur due to random fluctuations in the data
(commonly termed as noise) and device related artefacts such as blur. Interference of
these distortions occur during the acquisition (e.g. environmental conditions and qual-
ity of sensors), transmission ( e.g. interference by lighting or other atmospheric distur-
bance) or processing (e.g. Image compression) of the data. Image restoration is literally
an approximation problem, wherein we try to achieve an estimate of the original data
from its distorted observation. Having said that, the proximity of the approximations
dependents on the accuracy of the model, thus simulated. Hence, a good approximation
demands a proper modeling of the problem. As noticeable from the literature, restora-
tion is an inverse problem which is generally ill-posed in the sense of Hadamard and
Morse (1953) 1. In other words, it is tedious to find the existence of a unique solu-
tion, even if one exists, it severely depends on the data or a small protuberance in the
data causes large deviations in the solution, which eventually leads to irregularity in
the solution. Therefore, prior information has to be pumped into the model to mollify
the irregularity in the solution and improve the approximation. However, incorporating
more assumptions regarding the a priori information weakens the model and results in
a deviation from the actual scenario. In a nutshell, the prime objective of a restoration
process is to retrieve images without losing meaningful features such as sharp edges,
textures or fine details etc. The extent of challenge involved in this activity has attracted

1(Hadamard and Morse, 1953) formulated the following conditions of well-posed problems. An
inverse problem is said to be well-posed if the following three conditions are satisfied:

1. A solution exists.

2. The solution is unique.

3. The solution’s behavior changes continuously with the initial conditions (stability),
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the research community at large. A typical degradation/restoration model is portrayed
in Figure 1.1.

u(x, y)
u0(x, y)

û(x, y)

Noise
n(x, y)

Degradation

function

Restoration

filter (s)

Degradation Restoration

K

Figure 1.1 A model of the image degradation/restoration process.

1.1 Image Degradations

Images are generally degraded due to noise and blur. Blur is a common artefact inte-
grated with the image formation. Blurring occurs due to various physical reasons, such
as optical aberrations (out-of-focus blur), atmospheric distortions (including turbulence
and aerosol scattering), movement of subject or object (motion blur), etc. (Gunturk and
Li, 2012; Lu, 2017). When a real scene is imaged by a camera, some of the points
are in focus while others not, this causes an out-of-focus blur. Out-of-focus blur is
space-invariant in cases where the surface of a flat object is parallel to the image plane
(Bertero and Boccacci, 1998). In addition to blur, image degradation is also caused by
noise interference during image recording/transmission process.

1.1.1 Blurring defects

A blurred image u0 is being modeled as a linear system as follows:

u0(i, j) = Ku(i, j), (1.1)

where (i, j) represents spatial coordinates, u0(i, j) is the observed image, which is noisy
and blurred. K is the blurring operator and u(i, j) is an original image. Equation (1.1)
is rewritten in terms of a Point Spread Function (PSF) under the assumption of linearity
and shift invariance as:

u0(i, j) = K(i, j)∗u(i, j), (1.2)

2



where K(i, j) is the PSF of the imaging system that causes blurring of image, and ∗ de-
notes two dimensional (2-D) linear convolution operation. PSF is the impulse response
of an optical system subjected to a point source input.

The PSF of the shift-invariant or space-invariant out-of-focus blur (Hansen et al.,
2006) is formulated as:

K(i, j) =

 1
πr2 if (i− k)2 +( j− l)2 ≤ r2,

0 elsewhere,
(1.3)

where r is the radius of the blur and (k, l) is the center of the PSF.

Atmospheric blur or Gaussian blur is the distortion of image due to long time expo-
sure, wind speed, fog and the random changes in the refractive index of the air through
which light travels, see Hansen et al. (2006) for the details. The PSF for blurring caused
by an atmospheric turbulence can be described as a two-dimensional Gaussian function,
given by

K(i, j) =
1

2πσ2 e−
i2+ j2

2σ2 , (1.4)

where i is the distance from the origin on the horizontal axis, j is the distance from the
origin on the vertical axis, and σ is the standard deviation of the Gaussian distribution.

Motion blur occurs when the image being recorded changes during the recording of
a single exposure, either due to rapid movement or long exposure. The PSF of motion
blur is defined as:

K(i, j) =

1 if vi j = v ji, and
√

i2 + j2 =
√

v2
i + v2

j ,

0 elsewhere,
(1.5)

where the vector V = (vi,v j) is the motion vector. The direction of V determines the ori-
entation of K(i, j), and the magnitude of V determines the length of K(i, j). Figure 1.2
demonstrates the effect of various blurs on the input image. The image “cameraman”
has been chosen for the representation purpose.

As seen in the previous works, the image formed under ultrasound (US) and Syn-
thetic Aperture Radar (SAR) system are usually degraded by a Gaussian blur (modeled
as linear and shift invariant).

3



(a)

(b) (c)

(d) (e)

( f ) (g)

Figure 1.2 (a) Original image “cameraman” (b) PSF of an atmospheric blur (c) blurred
due to the atmospheric interference (d) PSF of a motion blur (e) blurred due to the motion
artefact ( f ) PSF of an out-of-focus blur (g) blurred due to the out-of-focus scenario.

1.1.2 Noise Models

Additive noise model

As already mentioned, u0 and u are the observed and original images, respectively 2

and n is the zero mean additive noise which affects all pixels in the image, moreover,
noise is identically and independently distributed (IID). The additive noise (in presence

2For the sake of clarity in the expressions we drop the index (i, j) from subsequent equations.
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of a linear blur) is generally modeled as

u0 = Ku+n. (1.6)

Here Ku denotes convolution of the blurring kernel/PSF K with the original image u. A
zero mean Gaussian white noise is a good example of an additive noise model (Aubert
and Kornprobst, 2002).
Gaussian White Noise:
A Gaussian noise also known as electronic noise is caused by natural sources such as
sensor defects due to poor illumination or high temperature. The Probability Density
Function (PDF) of a Gaussian function is:

p(z|µ,σ2) =
1√

2πσ
e−

(z−µ)2

2σ2 , (1.7)

where z is the gray level, µ is mean of random variable z and σ2 is the variance of z.
The Gaussian PDF for various parameter values is plotted in Figure 1.3.

Figure 1.3 PDF of a Gaussian noise

Many efficient approaches have been proposed to reduce the additive Gaussian
white noise in images. Among them, the most prominent ones are: stochastic ap-
proaches (Geman and Geman, 1984) , wavelet approaches (Donoho and Johnstone,
1995a; Chan and Shen, 2005; Parrilli et al., 2012; Solbo and Eltoft, 2004), Partial Dif-
ferent Equation (PDE) based approaches (Perona and Malik, 1990) and variational ap-
proaches (Rudin et al., 1992; You and Kaveh, 2000). Refer Chan and Shen (2005) for
a detailed review of various restoration methods.

Restoration of images from additive Gaussian white noise is a well studied prob-
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lem in the image processing literature. However, as observed in many previous works,
the noise present in many medical and satellite imaging applications are found to be
data-correlated. For instance, US and SAR images are found to be corrupted by data-
correlated noise and more precisely it can be modeled as a multiplicative noise (Aubert
and Aujol, 2008). The details are shared subsequently.

Multiplicative noise model

Multiplicative noise refers to an unwanted random data that gets multiplied to the true
data during the capture or transmission of the image. A general multiplicative noise has
the following model:

u0 = Kun. (1.8)

Here n denotes a multiplicative noise. In the general Gamma noise and Rayleigh noise
are multiplicative in nature, see Aubert and Aujol (2008) for the details.
Rayleigh Noise:
The Rayleigh noise is generally seen in the range based images. Its PDF is given by:

p(z|θ) =

 z
θ 2 e−

z2

2θ2 if z≥ 0

0, if z < 0
(1.9)

where mean µ = θ

√
π

2 , variance σ2 = (4−π)
2 θ 2 and θ > 0 is the scale parameter of the

distribution. The PDF of Rayleigh distribution is shown in Figure 1.4.

Figure 1.4 PDF of a Rayleigh distributed noise
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Gamma Noise:
Gamma noise is generally seen in the laser based images. The PDF for Gamma distri-
bution with shape parameter k and scale parameter θ is given by:

p(z|k,θ) =


1

Γ(k)θ k zk−1e−
z
θ if z≥ 0

0, if z < 0
(1.10)

where k,θ > 0, mean µ = kθ and variance σ2 = kθ 2. Figure 1.5 shows the plot of
Gamma PDF at various parameter values.

Figure 1.5 PDF of a Gamma distributed noise

Speckle Noise:
Multiplicative noise is commonly found in images obtained from many real-world im-
age processing applications, such as laser imaging, microscopic imaging, SAR imaging,
positron emission tomography (PET) and medical ultrasound imaging. SAR and med-
ical ultrasound images are usually corrupted by a granular noise called speckle. The
noise interference caused during the data recording process is being highlighted here.
Figure 1.6 shows the histogram of a selected region extracted from a synthetic im-
age corrupted by various noise distributions. For the multiplicative noise distributions,
the dark regions in the image are contaminated more by the noise compared to the
bright regions. However, for the additive Gaussian, the regions are uniformly contam-
inated. Owing to the data-independent nature of the noise. This thesis mainly focuses
on restoration of the images corrupted by data-correlated speckle noise and linear blur-
ring artefacts. The case study is mainly performed on US and SAR images due to their
wide acceptability in medical and satellite imaging applications. A detailed description

7



of formation and representation of US and SAR images has been given in Appendix
A.1,A.2.

1.2 Analysis of a Speckle Noise Distribution

As a primary step, it is required to analyze the distribution of the input noise. To this end
a prior assumption is made regarding the distribution and a testing is performed to ana-
lyze the same. As observed in the literature, the speckles follow a Gamma law. If this
argument can be substantiated with the input test data, then the model can be designed
for the speckle distortion under the assumption that it follows a Gamma distribution. To
justify this argument, homogeneous intensity regions (as the variance in such regions
are mainly due to noise intervention) were extracted from the input noisy SAR and
US images which are shown in Figures 1.7 and 1.8. The method discussed in Gomez
et al. (2017) is adopted for finding the homogeneous regions. Next, the histogram of the
pixels in the extracted regions is evaluated and the PDF is analyzed. Further, the param-
eters (scale and shape) were estimated using maximum likelihood (ML) estimator (See
Appendix B.3 for the details of ML estimation of parameters of a Gamma distribution),
assuming a Gamma distribution for each of the regions of interest, Gamma PDF curves
were plotted with the estimated parameters. Finally, it is observed that the PDF (curves)
generated from the histograms of the input noisy regions (extracted from the noisy im-
age) closely resembles the PDF (curves) generated assuming the Gamma distribution
with the estimated parameters: scale and shape using (B.29) and (B.30), respectively.
This analysis is carried out using a large set of input US and SAR images collected from
various sources before making conclusions regarding the PDF of the noise.

1.3 Data Correlated Noise Distribution

Multiplicative noises are much more difficult to eliminate from the degraded images,
as the noise becomes correlated with the data. The noise variance changes with respect
to the underlying intensity characteristics. The noise variance is high at high intensity
regions whereas it is low at the other regions. The distribution of a multiplicative and
an additive noise are provided in Figure 1.9, which shows a one-dimensional signal (in
its original form) and the one corrupted by additive Gaussian noise and multiplicative
Gamma noise, respectively. From these demonstrations, one can observe that much
crucial information has been distorted in case of the Gamma noise corruption. Figure
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(a) (b)

(c) (d)

(e) ( f )

Figure 1.6 Histogram of a selected region plotted for images corrupted with (a) Gaussian
(c) Rayleigh and (e) Gamma distributed noise.
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(a) (b)

Figure 1.7 (a) Original San Francisco bay image (b) The PDF of the intensity distribution
of the red colored region fitted with Gamma using the estimated parameters (Shape 2.0845
and Scale 0.0924).

(a) (b)

Figure 1.8 (a) Original Liver image (b) The PDF of the intensity distribution of the red
colored region fitted with Gamma using the estimated parameters (Shape 1.9854 and Scale
0.0823).

1.9(a) shows original data which has a vertical axis (that represents the pixel intensity),
that varies from 60 to 225, whereas Figure 1.9(b) shows the signal corrupted by an ad-
ditive Gaussian noise of zero mean and standard deviation σ = 20, which has a vertical
axis that runs from 10 to 280. Similarly, Figure 1.9(c) shows a Gamma noise corrupted
signal with mean 1 and standard deviation 0.2 and the vertical axis runs from 40 to 320.
The data-dependent nature of the Gamma noise (multiplicative) is pretty evident from
the Figures 1.9 (b) and (c), as the noise variance is low at low intensity regions and high
at high intensity regions, whereas, in Figure 1.9 (b) (which corresponds to a Gaussian
distribution) the noise variation is almost the same in both low and high intensity re-
gions (this gives a notion of data independence). A 2D representation of the above fact
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has been demonstrated in Figure 1.10. The Figures 1.10 (b) and 1.10(c) show images
corrupted by additive Gaussian white noise and blur, and multiplicative gamma noise
and blur, respectively. From Figures 1.10(b) and (c) we can observe that noise variance
in dark areas (low intensity points) are low compared to the bright ones. This signifies
the fact that the noise depends largely on the underlying image features. However, in
Figure 1.10(b) noise variance in low and high intensity regions are of almost the same,
which in turn indicates that it is data independent. Removing the data-correlated mul-
tiplicative noise without distorting the significant image information is comparatively
harder, which makes this study more meaningful in the context of denoising. Speckle
(Gamma distributed) noise being common in many medical and satellite imaging appli-
cations the current study has a wider range of applications in the present context.

The focus of this thesis is oriented towards the restoration of images from data-
correlated multiplicative noise, as it can cater to a wide range of imaging applications
from the fields of medical and satellite imaging. In precise the field of US and SAR
imaging demands a special attention due to the poor quality of acquired data used for
analysis and diagnosis purpose.

1.4 Motivation

Image restoration under data-correlated noise has been a matter of interest for the last
couple of decades. In the course of expansion of restoration methods their efficiency
and accuracy also got improved. Speckles are the common kind of noise present in
many medical and satellite imaging applications. Being data dependent, speckle noise
forms a complex structure when gets intervened with the data. Speckle reduction has
been a matter of interest among scientists and medical practitioners for decades alto-
gether. As speckles form a skewed distribution, they are generally approximated using
a Gamma or Rayleigh distribution. Further, it has been studied thoroughly about the
formation of speckled and these studies have shown that the speckles are multiplicative
in nature making the process more tedious unlike the additive noise models. Various
ultrasound and synthetic aperture radar imaging systems are prone to these speckles
when they form images using active sensing model. The waves used to probe the data
get reflected and transmitted through the object on which they hit. The reflected waves
finally form images. As the wave interference and diffraction results in out-of-phase
waves when received at the sensor, the images are usually noisy or speckled. Speckles
form high amplitude intensity variations in the resultant image. Since the characteris-
tics of the noise varies with respect to the objects, the models devised for other noise
distributions cannot be directly adopted for speckles. Therefore, the speckle noise dis-
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tribution has to be thoroughly analyzed while designing the model. Though there are
some models proposed for speckles specifically in the literature, many times they fail to
restore the details when the speckle density is higher. Moreover, some of the models are
theoretically unstable and does not provide a unique solution always. Whereas, some
other models produce good results but converge slowly, yielding a lower convergence
rate and subsequently decreasing the computational efficiency. All these facts moti-
vate us to propose robust despeckling models which are computationally efficient and
theoretically stable.

(a) (b)

(c)

Figure 1.9 (a) Original 1-D Data (b) Degraded by additive Gaussian noise (c) Degraded by
multiplicative Gamma noise.

1.5 Research Objectives

Since image restoration is an ill-posed inverse problem, it is hard to restore the actual
data from a distorted observation. Though there has been a few approximations pro-
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(a) (b) (c)

Figure 1.10 (a) Original synthetic image (b) Image corrupted by Gaussian noise and blur
(c) Image corrupted by Gamma noise and blur.

posed over the last couple of decades, there is still scope for further improvements.
The restoration is done with prior assumptions of the distortion model, such as distri-
bution and nature of the noise and the behavior of the blurring artefacts. As the design
of the model gets closely aligned with the actual degradation scenario, the restoration
also consequently improves its performance. So the primary objective of the work is
to mathematically model the degradation scenario to properly reflect the real-life situa-
tion. Once the degradation model is properly designed, the next step is to analyze the
degradation scenario and comprehend the distortion aspects from a closer viewpoint.
Since this work focuses on the distortions in the data due to data-correlated noise and
linear blurring artefacts, the initial step is to analyze and study the nature of noise dis-
tributions and fine-tune the model to handle such distributions in an effective manner.
Since the study focuses on the variational framework, the important task is to design
an energy functional which properly captures the degradation scenario. The variational
energy formulation can be done with a priori knowledge of the noise distribution and
the blurring artefact. The functional should possess both regularization and data fidelity
aspects in order to restore the data efficiently. The regularization term present in the
model helps to regularize the fluctuations due to the noise distortions and ensures that
minor perturbations in the data does not lead to major ones in the solution. Further,
the data fidelity term ensures the minimal deviation from the actual solution as well as
compliance of the model with reference to the assumed noise distribution. The overall
objectives of the thesis work are summarized as follows:

1. Design of variational models to reflect the actual degradation scenario.

2. Devising the regularization and data-fidelity terms so as to restore the data effec-
tively with due care and attention to the inherent image features (like edges, fine
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details etc.) and reduce the damages to their natural appearance.

3. Analyze and study the model both theoretically and experimentally and compare
with the state of the art restoration models. The analysis includes studying the
condition for the existence of a unique solution.

4. The restoration model is to be designed to handle data-correlated speckles (which
essentially follows a Gamma law) and linear blurring artefacts which are com-
monly observed in many medical and satellite imaging applications, which uses
active sensing techniques.

5. To improvise the models in terms of convergence by employing faster numerical
approximations and ensuring the stability aspects of the model and making it less
sensitive to the tunable parameters.

6. The parameters are to be adaptively tuned to ensure optimal solutions under var-
ious degradation conditions.

1.6 Organization and Contribution of the Thesis

The remaining chapters of the thesis are organized as follows: In the second chapter,
the basic speckle suppression methods in the recent literature is reviewed. Speckle
reduction methods are being extensively analyzed in this chapter. Various PDE and
variational models are proposed in the literature to handle speckle noise distortions in
the input data. The pros and cons of various algorithms proposed in the literature for
speckle reduction are being analyzed and the research gaps are identified in this chapter.
A further introduction to the motivation behind the proposed strategy is also highlighted
therein.

Chapter 3: Despeckling of Ultrasound Images Using Non-Local To-
tal Bounded Variation Regularization

In this Chapter, a non-local total bounded variation (NLTBV) regularization model is
proposed for restoring the images corrupted with data-correlated speckles and linear
blurring artefacts. The energy functional of the model is derived using a maximum
a posteriori(MAP) estimate of the noise PDF. The non-local total bounded variation
prior regularizes the model while the data fidelity is derived using the MAP estimator
of the noise PDF. The computational efficiency of the model is improved using a fast
numerical scheme based on the Augmented Lagrange formulation. The proposed model
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is employed to restore US and SAR images, which are usually speckled and blurred.
The numerical results are presented and compared. The efficiency of a NLTBV over
the usual TV method is analyzed in this chapter. The condition for the existence of a
unique minimizer for this model has been analyzed. The details are provided in the
Appendix B.1. The additions of a parameter controlled L2 penalty term in the Total
bounded variation (TBV) model helps the model to denoise the data while preserving
the meaningful information.

Chapter 4: Speckle Reducing Level-Set Approach

In this Chapter, a modified Mumford-Shah (MS) level-set model tuned to handle speck-
les and blur in SAR imagery is presented. The proposed model is formulated using
a non-local regularization framework. Hence, the model duly cares about the local
gradient oscillations (corresponding to the fine-details/textures), during the evolution
process. It is assumed that the speckle intensity is Gamma distributed while designing
the MAP Estimator of the functional. The parameters of the Gamma distribution (i.e.,
scale and shape) are estimated using the Maximum Likelihood (ML) Estimator. The
regularization parameter of this model is evaluated adaptively using these (estimated)
parameters at each iteration. The Split-Bregman (SB) iterative scheme is employed to
improve the convergence rate of the model. The proposed and the state-of-the-art de-
speckling models are experimentally verified and compared using a large number of
speckled and blurred SAR images. The statistical quantifiers are used to numerically
evaluate the performance of various models under consideration. The model is further
analyzed theoretically and condition for the existence of a unique minimizer for this
model is analyzed in detail in Appendix C.1. The level-set formulation has been exten-
sively used for image segmentation however, there are limited initiatives in the direction
of its applicability in terms of denoising the data. This capability has been thoroughly
analyzed in this chapter.

Chapter 5: Non-Local Gradient Fidelity Model for Multiplicative
Gama Noise Removal

In this Chapter, a non-local gradient vector flow model is designed for restoring the
images corrupted with Gamma distributed speckle noise and linear blur. The filter is
found to preserve edges and finer details in the course of its evolution due to the pres-
ence of the non-local TV based diffusion term and the piecewise linear approximation
is reduced considerably by the gradient fidelity term present in the model. The model
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is found suitable for the restoration of various images from the field of satellite and
clinical imaging. The experimental results are shown and compared for different image
data sets both visually and qualitatively using various statistical measure.

Chapter 6: Conclusions and Future Research Directions

The last chapter concludes the entire research work presented and describes the avenues
of possible future research works in this area. Since image restoration is an unavoidable
pre-processing activity in most of the imaging applications, it finds a deserving place
in the image processing literature. Further, the restoration being an ill-posed inverse
problem, the restored data is always an approximation/estimation of the original one.
The proximity of the estimated solution to the original one depends on how close the
designed/simulated model is to the original one. Since all the models are designed
under certain assumptions and conditions, there is still scope for further improvement
in terms of the accuracy of the model and its computational efficiency. With the advent
of various computationally efficient numerical techniques, the solution to such inverse
problems has been improvised drastically.

Appendix

In this Appendix, theoretical results on the existence and uniqueness of the solutions and
properties of the proposed models discussed in Chapter 3 and Chapter 4 are presented.
Also, mathematical preliminaries are presented to improve readability of the thesis and
ensure completeness in explanations. The detailed derivation of Bayesian MAP and
ML estimators are also detailed in here. Sample codes used for implementing some of
the models discussed in this thesis are also provided as a part of the Appendix.
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Chapter 2

IMAGE DESPECKLING METHODS

The objective of this chapter is to provide an overview of the existing image restora-
tion techniques for a speckled data. Several categories of methods have been proposed
to remove speckle noise from images. Among them, the notable ones are statistical
methods, PDE models, wavelet approaches, and variational methods.

2.1 Statistical Despeckling Methods

The methods which use the statistical properties of data to restore them had attracted
the attention of the researchers. Though there were several modifications and updations
done on these models to improve their efficiency and cater to various other noise fea-
tures, the underlying principle remained more or less the same. Minimizing the error in
the data was, in fact, the ultimate purpose of these models. A brief discussion of these
models is provided in the next section and their role in motivating other restoration
models (such as PDE models) has been highlighted in subsequent sections.

2.1.1 Minimum Mean Square Error Based Non-iterative Adaptive
Filters

Adaptive filters are introduced in the literature for removing speckle noise and blur from
SAR and ultrasound images. These filters usually adapt to the properties of an image
locally and eliminate speckle noise from it. The local image statistics such as variance,
mean and spatial correlation are being used by these filters to remove noise, while si-
multaneously preserving edges and features. Some examples of adaptive mean filters
for speckle reductions include: Lee (Lee, 1980), Frost (Frost et al., 1982) and Kaun’s
filters (Kuan et al., 1985). By employing these filters, denoising shall be achieved up
to a considerable extent, however, they eventually result in blurring of edges and poor
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preservation of the details. A brief mathematical description of the standard spatial
filters (filters defined in the spatial domain of the image) are given below:

Lee Filter

Based on the assumption of a linear speckle noise model, minimum mean square error
(MMSE) approach was designed with a hope that it can reduce speckles while preserv-
ing the details in the image, which was later termed as the Lee filter. It removes speckle
noise from images while retaining edges and details to an extent. The formulation of
the Lee filter (Lee, 1980) is

û(i, j) = ū0(t)+W(i, j)(u0(t)− ū0(t)), (2.1)

where û(i, j) is the output image intensity data (or the estimated output intensity), ū0(t)

is the average value of the intensity of the observed image (u0) within a filter window
size n×n, W(i, j) is the weighted function (the return value of W(.) is 0 for flat regions
and 1 is for the other regions) calculated as follows,

W(i, j) = 1− C2
u

C2
u0
(t)

, (2.2)

where Cu0 denotes the coefficient of variation of the image u0 and it is defined as

Cu0 =
σu0

ū0
, (2.3)

where σu0 is the standard deviation of the image u0 within the filter window. Similarly,
Cu stands for the coefficient of variation of noisy image u and it is determined by the
expression:

Cu =
σu
ū
. (2.4)

Perhaps one can notice that the value of W(i, j) is zero in homogeneous areas, whereas
it is unity near the edges. The main setback of the Lee-filter is that it tends to ignore the
speckle noise near edges.

Frost Filter

Yet another improvement in this direction is, the introduction of Frost Filter, see Frost
et al. (1982) for the details. The Frost filter replaces the pixel of interest with a weighted
sum of the values within the n×n moving kernel. The weighing factors decrease with
distance from the pixel of interest and increase for the central pixels, as their variance
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within the kernel increases. This filter assumes a multiplicative noise and the noise
statistics are assumed as stationary. The model amounts to the definition:

û(i, j) = ∑
p

∑
q

m(i+ p, j+q)u0(i+ p, j+q), (2.5)

where p and q are the indices of the filter window and weighting function m is defined
as follows.

m(i+ p, j+q) = k0exp(−K1C2
u0
(t)
√

p2 +q2), (2.6)

where K1 is a damping factor and k0 is a normalizing constant and the other symbols
are already defined earlier. The factor K1 is chosen such that, in a homogeneous region
K1C2

u0
approaches 0 and the value of m = 1, giving the mean filter output. In other

regions (non-homogeneous ones) K1C2
u0

tends to become large and the value of m = 0
for the pixel surrounding (i, j), and remain as 1 for the pixel (i, j). Therefore, edges
are preserved better compared to the Lee-filter. However, the assumption regarding the
stationary properties of the noise statistics does not fit well in many practical scenarios.

Kuan Filter

Kuan Filter (Kuan et al., 1985) is derived from MMSE criteria under the assumption
of a non-stationary mean and non-stationary variance (NMNV), unlike the Lee filter.
Though, it is pretty similar to the Lee-filter in many aspects, it is regarded more effi-
cient and robust as it does not require any approximation in the total derivation. The
formulation of the filter follows:

û(i, j) = ū0(t)+W(i, j)(u0(t)− ū0(t)). (2.7)

The Kuan filter weighting function W(i, j) is defined as follows:

W(i, j) =
1−C2

u/C2
u0
(t)

1+C2
u

, (2.8)

where both Cu0 and Cu follow the definition similar to the ones in the Lee filter. The
difference between these two filters is, the term 1+C2

u. In the case of uniform regions
Cu =Cu0 which gives W(i, j) = 0, yielding the result similar to a mean filter. In the area
other than uniform regions like edges, details etc. Cu0 = ∞ and the value of W(i, j) = 1,
this tends to eventually modify pixels near edges.

Although these filters perform well in removing speckle noise, they have the major
limitations in preserving sharp features. This issue is duly addressed in non-linear PDE
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models detailed in the subsequent sections.

2.2 PDE approaches

PDEs were used extensively for image denoising for decades. All these flagged-off
their start, when the linear heat equation was adopted for image processing activities.
Since images are the discrete array of pixels, they tend to act as energy points or more
precisely as point sources of heat energy. A noisy image seems to have randomly dis-
tributed abrupt energy points which gives a noisy outlook to the corrupted image. Heat
diffusion theory was introduced to image processing in Iijima (1962). However, it did
not get much attention among the researchers due to the isotropic nature of the linear
heat PDE. The PDE based image processing models geared up ever since a non-linear
PDE was introduced for image restoration by Perona and Malik (1990). Thereafter,
there were quite a few models proposed in the literature for image restoration. Some of
the prominent proposals are highlighted in this section.

2.2.1 Anisotropic Diffusion Filter

Linear diffusion filters being isotropic, do not care much about the image details when
they evolve in time. As a result, the images get smoothened along the time-frame,
eventually resulting in blurred/coarse data. This causes difficulties in many computer
vision algorithms, especially when the data needs to be analyzed for structures and
objects present in it. The boundaries are smoothened along with the interior regions
resulting in poor edge resolution. This was a major concern among the researchers till
a non-linear PDE method was introduced by Perona and Malik (1990). This is a non-
linear smoothing filter that diffuses based on the underlying image characteristics. The
nonlinear PDE in Perona and Malik (1990) is defined as follows,

∂u(x,y,t)
∂ t = div(g(|∇u|)∇u(x,y, t)),

u(x,y,0) = u0(x,y),
(2.9)

where ∇ is the gradient operator, |.| denotes the magnitude, div is the divergence oper-
ator, g() is a non-increasing edge diffusivity function which allows isotropic diffusion
in uniform regions and low diffusion near edges, the other symbols are defined already.
Here the magnitude of diffusion is controlled by the function g(.), which is a function
of the gradient magnitude. Two different alternatives are proposed for the coefficient
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function g(.), by the authors:
g(y) = e−(y

2/k2
2), (2.10)

or
g(y) =

1
1+y2/k2

2
, (2.11)

where k2 is a contrast parameter. In this model, the gradient magnitude is used to
detect the edges and boundaries in the image, as sharp discontinuities. The advantage
of Perona-Malik’s anisotropic diffusion filter is that it has the ability to preserve edges
while smoothing the rest of the image, but it tends to generate multiple false edges
and the denoising does not happen along the edges. This method is more suitable for
removing additive Gaussian white noise but fails to restore effectively when the noise
is correlated with the data.

2.2.2 Speckle Reducing Anisotropic Diffusion Filter

Yu and Acton (2002) introduced a new filter based on the non-linear diffusion method
in Perona and Malik (1990), which was named Speckle Reducing Anisotropic Diffusion
(SRAD). This method uses both the Laplacian and gradient magnitudes for detecting
discontinuities, unlike just the gradient magnitudes in Perona and Malik (1990). SRAD
is a despeckling version of the non-linear PDE (Perona and Malik, 1990), whose coef-
ficient of variation controls the diffusion magnitude without much destructing the sig-
nificant details present in images. This filter performs better than the anisotropic model
(Perona and Malik, 1990) in case of speckled images, as the coefficient of variation is
designed to handle the speckles in images. Given an initial image u0(i, j) having finite
power and non-zero values over the image support Ω, the resulting image u(x,y; t) is
obtained as a solution of the following PDE:

∂u(i, j; t)/∂ t = div[c(g)∇u(i, j; t)],

u(i, j;0) = u0(i, j),

(∂u(i, j; t)/∂~n)|∂Ω = 0,

(2.12)

where ∂Ω denotes the borders of Ω,~n is the outer normal to the ∂Ω, t represents diffu-
sion time and

c(g) =
1

1+ [g2(i, j;t)−g2
0(t)]

[g2
0(t)(1+g2

0(t))]

, (2.13)

or
c(g) = exp−[g2(i, j; t)−g2

0(t)]/[g
2
0(t)(1+g2

0(t))], (2.14)
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where g(i, j, t) is the instantaneous coefficient of variation and is given by:

g(i, j; t) =

√
(1/2)(|∇u/u|)2− (1/4)2(∇2u/u)2

[1+(1/4)(∇2u/u)]2
. (2.15)

If the image is degraded by speckles, then the above mentioned function g(.) helps to
detect the edges of the image. At high contrast regions and edges, this function returns
high values. In uniform regions it gives low values, g0(t) here denotes the speckle scale
function and g(i, j, t) fluctuates around g0(t). The function g0(t) is used to effectively
control the smoothing of the image during the filtering process. The function g0(t) can
be approximated by (Yu and Acton, 2002).

g0(t)≈ g0exp(−ρt), (2.16)

therefore, it is expected that in homogeneous regions the diffusion should be isotropic.
Adopting a discrete isotropic diffusion gives:

ut+∆t
i, j = ut

i, j +
∆t
4
(ut

i+1, j +ut
i−1, j +ut

i, j+1 +ut
i, j−1−4ut

i, j), (2.17)

where ρ is a constant, which retards the decrease of g0(.) during the iteration and ∆t

denotes the time step.

The SRAD algorithm provides better performance compared to many despeckling
algorithms, in terms of smoothing flat regions and at the same time preserves edges
and features. However, in an anisotropic diffusion filter, the diffusion function depends
on the accuracy of recognizing the edges, which in turn depends on the threshold se-
lected for this purpose. So the performance of SRAD is sensitive to the selection of
the threshold value. Even though SRAD has a dynamic threshold value, its accuracy of
edge recognition is not that commendable, especially when the edges are weak. There-
fore, though SRAD is a well-known method for removing speckles from images, still it
seems to perform slightly on the lower side in preserving weak edges and the details.

2.2.3 Details Preserving Anisotropic Diffusion

To overcome the problems of SRAD method, Aja-Fernandez and Alberola-Lopez pro-
posed a new method by modifying the SRAD using the Kuan filter (Kuan et al., 1985).
They use a larger neighborhood to estimate the diffusion coefficients, it is named as
detail-preserving anisotropic diffusion (DPAD) (Aja-Fernández and Alberola-López,
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2006). DPAD computes the coefficient of variation as follows:

c(g) =
1+ 1

g(i, j;t)2

1+g2
0(t)

, (2.18)

and the DPAD diffusion coefficient function is given as:

g(i, j; t) =

√√√√ 1
|ηi, j|−1 ∑

p∈ηi, j

(up− ūi, j)2

(ūi, j)2 , (2.19)

where |ηi, j| is a square z× z neighborhood of the pixel at location (i, j), p is any pixel
in the window, up is the intensity of the pixel p, ūi, j is the mean intensity value of the
pixels in the window and the value of scaling factor g0(t) is:

g2
0(t) = Mediani, j(g2(i, j; t)). (2.20)

The median based estimation of the scaling factor helps to keep edge details better
compared to the mean based estimation techniques. Though it works well for speckles
in the homogeneous regions the performance of these non-linear diffusion models is not
that appreciable along the edge features. Moreover, like the Perona and Malik (1990)
model this model also fails to handle the noise features along the edges. This issue is
addressed considerably well by the Oriented Speckle Reducing Anisotropic Diffusion
filter whose details follow.

2.2.4 Oriented Speckle Reducing Anisotropic Diffusion (OSRAD)
Filter

Krissian et al. (2007) have added a non-scalar component to the SRAD filter which
performs directional filtering of images along the structures, which eventually filter-out
the noise components along the edges as well. The OSRAD is defined as:

∂u
∂ t

= div((1− k3)∇u),

= div


(1− k3) 0 0

0 (1− k3) 0
0 0 (1− k3)


∇u, (2.21)

where k3 is a function of the diffusion time t. The diffusion matrix D = (1− k3)I,
where I denotes the identity matrix. The direction of gradient and the principal cur-
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vatures of the image are used for guiding the diffusion process. Local orientation is
used for preserving the structures having minimum intensities. Enhanced images can
be obtained by combining enhancement in gradient direction and smoothing techniques
applied in the curvature direction. Therefore diffusion matrix can be redefined, in the
basis (v0,v1,v2), as

D =

(1− k3) 0 0
0 cmax 0
0 0 cmin

 , (2.22)

where cmax denotes the smoothing along the direction of maximal curvature and cmin

along the direction of minimal curvature. The results obtained after processing the
input image using various methods discussed above in this section are shown in Figure
2.1.

(a) (b) (c)

(d) (e) (f)

Figure 2.1 (a) Reference image (b) Noisy image with mean 1, noise variance 0.1 and Gaus-
sian blur with kernel spread 4 (c) Restored using Anisotropic Diffusion method (d) Restored
using SRAD method (e) Restored using DPAD method (f) Restored using OSRAD method

Many of these second order diffusion models tend to smooth-out the gradient oscil-
lations along with the speckles and results in homogeneous intensity images; causing
severe damages to the textures and details. As commonly observed, some of these
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second order non-linear diffusion models perform linear approximations for non-linear
functions; resulting in piecewise-linear stair formation, eventually making the output vi-
sually less appealing. Moreover, the noise distribution is not directly accounted for the
design of the model making it vulnerable to the noise variance. Though, these speckle
reducing filters (discussed above) are the improved versions of the Perona and Malik
(1990) model, still they carry some of the basic limitations of this model especially
when removing the noise along the edges. The convergence of these models depends
on the chosen time-step. For an appropriately chosen time step these models converge
under a gradient-descent scheme, however it takes a large number of iterations if the
chosen time step is too small and shoot-out from the optimal solution under a large
time-step. Therefore, selection of an appropriate time-step is crucial for their improved
performance. Restoration in scale-space domain has been activity analyzed in the lit-
erature. Wavelet based approaches are the ones which have attracted the attention of
the researches in the recent literature. A brief discussion about the wavelet despeckling
models are done in the next section.

2.3 Wavelet Transforms for Speckle Reduction

Another category of filters introduced during the recent past based on wavelet transfor-
mation are found in Ranjani and Thiruvengadam (2010); Amirmazlaghani and Amin-
davar (2012); Argenti et al. (2012), since wavelet-transforms are universally recognized
as powerful tools for analyzing non-stationary signals and images, as they capture the
attention of the researchers to a considerable extent. Although these methods per-
form better than the known classical filters (Lee, 1980; Frost et al., 1982; Kuan et al.,
1985; Yu and Acton, 2002), the noise distribution is least bothered while denoising
the data, moreover they eventually form ringlike artefacts similar to the ones formed
by classical low-pass/bandpass filters, leading to the so called Gibbs phenomena when
hard-thresholds are used. This undesired phenomenon can be reduced by using soft-
thresholding schemes instead of hard ones, but at the cost of high computational ex-
pense (Donoho, 1995; Donoho and Johnstone, 1995b; Chang et al., 2000). A major
issue in the wavelet despeckling methods is the computation of appropriate threshold.
There are several choices, which can be adopted for this purpose: Universal thresh-
old (Donoho, 1995), Stein’s unbiased risk estimate (SURE) threshold (Donoho and
Johnstone, 1995b), and Bayes shrink threshold (Chang et al., 2000) are some classi-
cal options available in the literature. Yet another recent development in thresholding
schemes is the analytical wavelet shrinkage model (proposed for SAR imagery) based
on maximum a posteriori criteria, introduced in Li et al. (2013). In this model the es-
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timates for noise-free wavelet coefficients are found by heterogeneity-adaptive thresh-
olding scheme. Another shrinkage operator is being dealt-with in (Gao et al., 2016),
where the authors use a S-Transform shrinkage in place of wavelet-shrinkage. It pro-
vides frequency-dependent resolution while maintaining a direct relationship with the
Fourier spectrum. It has been also pointed out that the S-Transform can be applied
to noisy signals or the ones with complicated time-frequency structure. Nevertheless,
these filters largely rely on the detection of an appropriate threshold to perform the
shrinkage operation. Detection of an appropriate threshold is challenging in cases where
the noise is correlated with the signal. Moreover, the noise distribution is neglected in
many of these models therefore, their performance is limited in case of data-correlated
noise observations, through they perform well for data-independent noise distributions
such as additive-Gaussian. The variational models are capable of handling various data-
correlated noise distortions in an effective way. They tend to optimize a given energy
functional to obtain the desired solution. The functional thus designed is capable of in-
corporating the noise related a priori information into the model, making it more robust
and stable in denoising various noise distributions. The details follow.

2.4 Variational Model for Image Restoration Under an Additive
Noise

In general, the image restoration using variational algorithms follow the minimization
problem (Rudin et al., 1992) given below.

min
u

{
E(u) =

∫
Ω

φ(|∇u|) dx dy+λ

∫
Ω

H(u) dx dy
}
. (2.23)

Here H(u) denotes data-fitting term which ensures a less deviation to the restored im-
age from the original image. The term ∇u denotes the gradient of the image u and λ

is a regularization parameter. Variational models have been extremely successful in a
wide variety of image restoration problems such as image denoising, deblurring and
inpainting. Variational model is one of the most active areas of research in image pro-
cessing and computer vision. Some of the well studied variational formulations for
image restoration are discussed in this section.

2.4.1 Total Variation Regularization

Several variational models have been proposed for Additive Gaussian White Noise
(AGWN) (Rudin et al., 1992; You and Kaveh, 2000; Lysaker et al., 2003). Among
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them, the Total Variation (TV) regularization or Rudin Osher Fatemi(ROF) model (Rudin
et al., 1992) is quite explored. The constrained minimization problem of TV regular-
ization is to minimize the objective function:

minimize
∫

Ω

|∇u| dx dy, (2.24)

subject to the constraint ∫
Ω

Ku dx dy =
∫

Ω

u0 dx dy. (2.25)

Assuming a zero mean Gaussian noise n with variance σ2, the above expression stands
modified as: ∫

Ω

1
2
(Ku−u0)

2 dxdy = σ
2. (2.26)

Here |∇u|=
√

(u2
x +u2

y), where ux and uy are the partial derivatives of u with respect to
x and y, respectively. The above constrained optimization problem can be transformed
to an unconstrained minimization problem using the Lagrange formulation as follows:

min
u

{
E(u,λ ) =

∫
Ω

|∇u| dx dy+
λ

2
‖Ku−u0‖2

L2 dx dy
}
, (2.27)

here K is a real blurring kernel given in equation(1.4) (Chan and Wong, 1998), Ω

denotes the image domain, which is usually a rectangle region and here ‖.‖L2 denotes
the usual L2 norm of the functional. In the above equation first term on the right hand
side denotes the TV regularization term, that is used to smooth the image u, the second
term denotes the data fidelity, which ensures a minimal deviation from the observed
data u0 and λ > 0 is the Lagrange multiplier. The above mentioned unconstrained
minimization problem can be solved as a convex optimization, as the objective function
is convex (not in the strict sense). To solve this problem the general approach is to
define a Euler-Lagrange derivative for the above functional E(x,y,u,u′,λ ), where x

and y are independent variables, u and u′ are the image function and its first derivative,
respectively. The solution is sought for a function u which minimizes this functional.
The Euler-Lagrange (E-L) derivative of a function F(x,u,u′) is dF

du −
d
dx

(
∂u
∂u′

)
= 0.

Applying E-L derivative on the above minimization problem and defining an iterative
gradient descent solution gives:

∂u
∂ t

= ∇.

(
∇u
|∇u|

)
−λ (K∗(Ku−u0)) in Ω. (2.28)
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where K∗ is the adjoint of the operator K. The initial and boundary conditions are as
follows:

initial condition : u(x,y,0) = u0 in Ω, (2.29)

boundary condition :
∂u
∂~n

= 0, on ∂Ω, (2.30)

where~n is normal to the boundary. Unless defined otherwise, all the partial differential
equations in this thesis consider the above mentioned initial and boundary conditions.
Note that when K = I in the equation (2.27), we obtain an image denoising problem.

As already pointed out, the method works well for a data-independent Gaussian
noise, however, it fails to restore data efficiently in case of data-correlated noise dis-
tributions. Moreover, like the second order PDE models this model also performs a
piecewise linear approximations to the input data, leading to the so called “staircase
effect”. Furthermore, the gradient descent approaches converge slowly and their con-
vergence rate depends on the regularization parameter and the time-step. For an appro-
priately chosen time-step, the gradient descend formulations yields a unique solution
for this convex optimization problem. There are many fast numerical solvers proposed
in the literature such as Chambolle projection method (Chambolle, 2004), SB iteration
method Goldstein and Osher (2009) and Augmented Lagrangian method Chan et al.
(2011) to overcome these problems.

2.4.2 Higher order PDEs for Image Restoration

Although the anisotropic diffusion model is an effective way for denoising images, it is
observed that it produces the staircase effect in the course of its evolution, as mentioned
earlier. In order to overcome the staircase effect and improve the restorability of second
order PDEs, fourth order PDE filtering techniques have been proposed, see (You and
Kaveh, 2000) for the details. The functional of this model is stated below.

E(u) =
∫

Ω

g(|∇2u|) dx dy, (2.31)

where ∇2 denotes Laplacian operator of the image u and the function g(.) ≥ 0 is an
increasing function. The corresponding Euler-Lagrange equation is

∇
2[g′(|∇2u|)sign(∇2u)] = 0, (2.32)
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which is also written in the following form,

∇
2
[

g′(|∇2u|) ∇2u
|∇2u|

]
= 0. (2.33)

The Euler equation stated above is solved following the gradient descent procedure as:

∂u
∂ t

=−∇
2
[

g′(|∇2u|) ∇2u
|∇2u|

]
=−∇

2 [c(|∇2u|)∇2u
]
. (2.34)

This fourth order PDE employs a piecewise planar approximation in place of piecewise
linear one, eventually leading to a natural outlook to the filtered data. On the other hand,
it reduces the staircase effect but tends to leaves isolated black and white speckles in
the resulting image.

The numerical instability which leads to the speckle-like formation in the above
model has been addressed in yet another fourth order PDE model introduced in (Lysaker
et al., 2003). In this model, the authors put forth an idea to minimize the total variation
norm of the functional ∇u. The corresponding energy minimization functional takes
the following form:

E(u) = argmin
u

{∫
Ω

|∇2u| dx dy+
λ

2

∫
Ω

‖u−u0‖2
L2 dx dy

}
. (2.35)

Here the regularization functional is the magnitude of the Laplacian, therefore the
model adopts a planar approximation as already pointed out in the aforementioned
fourth order PDE model. Moreover, the authors suggest two different definitions for
the magnitude of the Laplacian, which in turn measures the degree of oscillations in the
input data, they are

|∇2u|=

|Σu|=
∫

Ω
(|uxx|+ |uyy|) dx dy or

|θu|=
∫

Ω
(u2

xx +u2
xy +u2

yx +u2
yy)

1
2 dx dy.

(2.36)

Adopting the first definition for the magnitude Laplacian (i.e. |∇2u| = |Σu|), the E-L
formulation takes the form:(

uxx

|uxx|

)
xx
+

(
uyy

|uyy|

)
yy
+λ (u−u0) = 0, (2.37)
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the gradient descent approximation of the above model amounts to:

∂u
∂ t

=−
(

uxx

|uxx|

)
xx
−
(

uyy

|uyy|

)
yy
−λ (u−u0). (2.38)

The value of the regularization parameter λ can be determined from the steady-state
solution of the above PDE, i.e

λ =− 1
σ2

∫
Ω

(
uxx

|uxx|
(u−u0)xx +

uyy

|uyy|
(u−u0)yy

)
dx dy. (2.39)

Alternatively, if the second definition is adopted for the magnitude Laplacian (i.e. |∇2u|=
|θu|), the E-L derivation results in:(

uxx

|∆u|

)
xx
+

(
uxy

|∆u|

)
yx
+

(
uyx

|∆u|

)
xy
+

(
uyy

|∆u|

)
yy
+λ (u−u0) = 0. (2.40)

Further the gradient descent method is defined as:

∂u
∂ t

=−
(

uxx

|∆u|

)
xx
−
(

uxy

|∆u|

)
yx
−
(

uyx

|∆u|

)
xy
−
(

uyy

|∆u|

)
yy
−λ (u−u0). (2.41)

Here
|∆u|= (|uxx|2 + |uxy|2 + |uyx|2 + |uyy|2)

1
2 .

In order to avoid the singularities in the above mentioned solutions, |∆u| is generally
replaced with |∆u|ε =

√
|∆u|2 + ε, where ε is a small positive constant. This model

provides a better restoration compared to the previous fourth order PDE model. Nev-
ertheless, these higher order models are designed under the assumption of a data un-
correlated random noise. Moreover, unlike the second order models, the fourth order
models lead to the over-smoothing of the data due to the presence of a Laplacian in
place of the gradient operator for the detection of intensity variations. Furthermore, the
higher order filters converge to a solution at a lower rate even if the time-step is chosen
appropriately. Attempts have been made to fine-tune the Laplacian based fourth order
model to cater to data-correlated noise distributions such as speckles (Chen et al., 2012;
Liu et al., 2013; Bini and Bhat, 2013). However, they are not devoid of the setbacks of
the fourth order PDEs discussed so far. The results obtained after processing the input
image using various methods discussed in the section above are shown in Figure 2.2.
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(a) (b)

(c) (d)

Figure 2.2 (a) Original Lena image corrupted by Gaussian noise with mean 0 and variance
0.15 (b) Restored using ROF (TV) method (c) Restored using (You and Kaveh, 2000)
method (d) Restored using (Lysaker et al., 2003) method.

2.5 Variational Models for Image Restoration Under Multiplicative
Noise

Since speckle formation is not an independent random process, the speckles are gen-
erally regarded as data-correlated noise. Moreover, the speckles are multiplicative in
nature i.e., u0 = Kun, (where u ∈ RN and u0 ∈ RN (Note : N = m× n size of the
image) are the original and noisy images, respectively) in the sense it gets multiplied
with the intensity values making the data depend on it. This data-correlated nature of a
speckle makes its removal tedious. In this section, we discuss about some of the well-
known regularization frameworks proposed for image restoration beginning with the
Total Variation regularization proposed for a multiplicative Gaussian noise. This model
is motivated by the Total Variation model proposed by Rudin et al. (1992).
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2.5.1 Total Variation Model for Multiplicative Noise

Rudin et al. (2003) proposed a variational framework for multiplicative Gaussian noise.
This was the first of this kind, being proposed for a data-correlated noise environment.
The optimization functional takes the form:

minimize
∫

Ω

|∇u| dx dy, (2.42)

subject to the constraint ∫
Ω

u0

Ku
= 1, (2.43)

which yields ∫
Ω

1
2

( u0

Ku
−1
)2

=
σ2

2
=
∫

Ω

1
2

(( u0

Ku

)2
−1
)
. (2.44)

Note:
∫

Ω
n = 1 and

∫
Ω
(n−1)2 = σ2 are the mean and the variance of the noise distri-

bution, respectively. An unconstrained formulation of the above problem is:

min
u

{
E(u) =

∫
Ω

(
|∇u|+ λ

2

(
u2

0
(Ku)2 −1

)
+µ

u0

Ku

)
dx dy

}
. (2.45)

The gradient descent solution for equation(2.45) is as follows:

ut = div
(

∇u
|∇u|

)
−λK∗

(
u0

(Ku)2

)( u0

Ku
−1
)
−µK∗

(
u0

(Ku)2

)
. (2.46)

It may be noted that, if K is identity operator, then the gradient descent solution for
equation(2.45) is given by:

ut = div
(

∇u
|∇u|

)
−λ

u2
0

u3 −µ
u0

u2 , (2.47)

where div stands for divergence operator. In the above functional, the last two terms
are the data fidelity terms, λ and µ are the regularization parameters (Lagrange mul-
tipliers). Here these two Lagrange multipliers are dynamically updated to satisfy the
constraints as explained in Rudin et al. (2003). This method is designed for multiplica-
tive Gaussian noise and performs hardly well for the other data-correlated distribution
such as Gamma. Nevertheless, many medical and satellite imaging modalities are ob-
served to follow Gamma or Rayleigh distributions, therefore the practical applicability
of this models is limited.
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2.5.2 Image Restoration in Log Compressed Domain

Image restoration is well explored for data-independent noise distribution such as Gaus-
sian. This paved the way to re-formulate multiplicative models in log compressed do-
main. An ideal workaround to deal with multiplicative noise in general, is the transfor-
mation of the intensities to the log domain, where the noise appears close in similarity
to the data-uncorrelated Gaussian. Thereby making the process of despeckling literally
similar to Gaussian denoising (for an additive noise model), see Krissian et al. (2005);
Shi and Osher (2008); Yahya et al. (2014); Sumaiya and Kumari (2017) for the details.
After completing the restoration activity on the transformed data the data needs to be
transformed back to its original domain using an inverse logarithmic transform or an
exponential transform. Krissian et al. (2005), proposed a technique designed for log
compressed images. The noise model considered here is:

u0 = u+
√

un. (2.48)

The data fidelity term is derived as:
∫

Ω

(u0−u)2

u . The corresponding gradient descent
solution is given as:

ut = div
(

∇u
|∇u|

)
−λ

(
u2

0
u2 −1

)
. (2.49)

However, as known from the literature (Aubert and Aujol, 2008), even in log com-
pressed images the noise does not become totally independent of data. Hence this
model does not perform well for speckled images (especially at a higher noise density),
where the noise is data-correlated.

Scale-space Method for Convex Multiplicative Noise

Yet another model proposed for the multiplicative noise in Shi and Osher (2008) adopts
a strategy based on the log transform to derive a convex functional to yield a globally
converging solution. This proposed model is a non-linear scale-space method for con-
vex multiplicative noise, the details are stated below. Consider the multiplicative noise
model in (1.8), and perform a log (ln) transform on both sides of the expression to get

ln(u0) = ln(Ku)+ ln(n), (2.50)

which essentially converts the multiplicative model into an additive one. The additive
noise problem has already been successfully treated using the ROF method (Rudin et al.,
1992). Now consider z1 = ln(Ku) and p1 = ln(u0), this leads to the following convex
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optimization problem:

z1 = arg min
z1∈BV (Ω)

{
|∇z1|+

λ

2
‖z1−p1‖2

L2

}
. (2.51)

Though it provides a globally convex solution to a multiplicative noise model, the
restoration efficiency is severely challenged due to the assumption regarding the data-
independent nature of the noise. As already pointed out, the log transform cannot com-
pletely remove the correlation between the data and the noise.

2.5.3 A Variational Model for Gamma Distribution

Variational formulations started gearing up ever-since Rudin et al. (2003) framed their
model to handle multiplicative Gaussian noise. The first initiative in this direction for
Gamma noise can be found in Aubert and Aujol (2008) (AA model), where the authors
formulated the data fidelity based on the MAP (see Appendix B.2 for the derivation )
estimate of the noise distribution and the diffusion term is borrowed from TV regular-
ization. With the above assumptions the model is formulated as:

min
u

E(u) = min
u

{∫
Ω

|∇u| dx dy+λ

∫
Ω

(
ln(u)+

u0

u

)
dx dy

}
. (2.52)

Duly considering the devise related linear blurring artefacts in the above model, we get

min
u

E(u) = min
u

{∫
Ω

|∇u| dx dy+λ

∫
Ω

(
ln(Ku)+

u0

(Ku)

)
dx dy

}
, (2.53)

where Ω is the area of support and K is a linear blurring operator. The corresponding
Euler Lagrange equation is as follows:

−∇.

(
∇u
|∇u|

)
+λK∗

(
Ku−u0

(Ku)2

)
= 0. (2.54)

The gradient descent solution of for equation(2.53) is as follows:

ut = div

(
∇u√
|∇u|2 +β

)
+λK∗

(
u0−Ku
(Ku)2

)
, (2.55)

where λ > 0 is the Lagrange multiplier, K is linear blurring operator and for finding the
λ value one has to multiply the equation (2.55) with K∗(u0−Ku), and integrate it over
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the image domain i.e.:

λ =− 1
σ2

∫
Ω

(
∇u√
|∇u|2 +β

)
∇K∗(u0−Ku) dx dy, (2.56)

where new data fitting term H(u,u0) =
∫ (

ln(Ku)+ u0
Ku
)

is strictly convex for u ∈
(0,2u0). So the model is conditionally convex. Therefore, a unique solution cannot
always be guaranteed. Further, the choice of the parameter β affects the restoration
process. For a larger β value the scheme converges faster but the restoration seems to
be poor. There should be a trade-off between the accuracy and efficiency in choosing
β .

2.5.4 A Convex Regularization Model for Multiplicative Noise

The conditionally convex nature of the Aubert and Aujol (2008) model was concerning
the research community, as a unique solution could not be guaranteed for this model. In
Huang et al. (2009), the authors derive a convex functional (for removing multiplicative
noise), which is unconditionally convex. They consider an auxiliary variable z1 = ln(u)
and K = I substitute in the Aubert Aujol model. The unconstrained denoising problem
is given by

min
z1

{
E(z1) =

∫
Ω

|∇z1| dx dy+λ

∫
Ω

(z1 +u0e−z1) dx dy
}
. (2.57)

The corresponding gradient descent equation follows the definition

z1t = div

(
∇z1√
|∇z1|2 +β

)
−λ

(
1−u0e−z1

)
. (2.58)

The main advantage of using new fidelity term (z1+u0e−z1) is that its second derivative
with respect to z1 is u0e−z1 . Therefore new fidelity term is strictly convex for all values
of z1. The main advantage of this new model is that, it provides a theoretically stable
solution which converges globally to a unique solution. However, this method also
converges slowly similar to many other second order gradient descent methods.

2.5.5 Multiplicative Noise Removal via a Novel Variational Model

Huang et al. (2010) proposed a non-convex Bayesian type variational model for multi-
plicative noise removal, which includes the total variation (TV) and Weberized TV as
regularizes. This method is superior to the AA model in terms of the visual appearance
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of the filtered image. The energy minimization problem considered in this work is

min
u

{
E(u) = α1

∫
Ω

|∇u| dx dy+α2

∫
Ω

|∇u|
u

dx dy+
∫

Ω

(ln(u)+
u0

u
) dx dy

}
. (2.59)

Here α1 and α2 are the regularization parameters, taking φ(u) = α1 +
α2
u , the gradient

descent solution can be written as

ut = φ(u)div
(

∇u
|∇u|

)
+

(
u0−u

u2

)
. (2.60)

Though, the weberized TV model works better than normal TV model in terms of the
intensity enhancement, it carries all the drawbacks of a second order variational model
under a gradient descent scheme.

2.5.6 A Convex Regularization Model for Image Restoration

Jidesh (2014) introduced a new variational method that can handle blocky effect by
using a convex combination of TV and Tikhonov filter which are defined in the space of
bounded variation (BV(Ω))1 and an L2 (square integrable function) spaces, respectively
further, the author assumes that K= I. The corresponding energy minimization problem
is given as follows:

min
u

{
E(u) =

∫
Ω

|∇u| dx dy+λ1

∫
Ω

(ln(u)+
u0

u
) dx dy

}
, (2.61)

and
min

v

{
E(v) =

∫
Ω

|∇v|2dxdy+λ2

∫
Ω

(ln(v)+
v0

v
) dx dy

}
, (2.62)

The gradient descent solutions of equations (2.61) and (2.62) are as follows:

ut = div
(

∇u
|∇u|

)
+λ1

(
u0−u

u2

)
, (2.63)

vt = (∇2v)+λ2

(
v0−v

v2

)
. (2.64)

The proposed technique is given as:

u = φ(c)vt +(1−φ(c))ut , (2.65)

1BV (Ω) is the space where total variation:
∫

Ω
|∇u|dxdy < ∞ is bounded.
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where c denotes |∇u|, the function φ(c) = 1
1+c . However, as this is an extension of

Aubert and Aujol (2008) method, this method also possesses some of the drawbacks
such as slow convergence, non-unique nature of the functional (leading to sub-optimal
solutions) etc.

However, adopting a TV prior to the regularization term makes the results less ap-
pealing due to heavy penalization of gradient oscillations present in the textured data.
Preserving image features is an important activity as far as most of the imaging modal-
ities are concerned. As observed in many modalities, image features play a vital role
in characterizing the objects present in images. This comes handy when dealing with
medical and satellite image data. There are some models which are specially designed
to cater these image features. The details follow.

2.6 Non-local Total Variation (NLTV) Regularization

These non-local models are motivated by the Non-Local Means (NLM) filter proposed
by Buades et al. (2005) and its variational version proposed by Gilboa and Osher (2008).
The TV model under a non-local framework takes the following form:

min
u

JNLTV(u)+λ‖Ku−u0‖2
L2. (2.66)

Here ‖.‖L2 denotes the usual L2 norm of the functional and JNLTV(u) denotes the non-
local Total Variation defined as:

JNLTV(u) =
∫

Ω×Ω

φ(|∇NLu|2) dx dy,

=
∫

Ω

φ(
∫

Ω

(u(y)−u(x))2w(x,y) dy) dx. (2.67)

The non-local Gradient in the above expression ∇NLu(x) : Ω→Ω×Ω is defined as

(∇NLu)(x,y) = (u(y)−u(x))
√

w(x,y). (2.68)

The non-local divergence of the non-local vector divNL~v : Ω×Ω→ Ω is defined as
follows:

divNLd(x) =
∫

Ω

(d(x,y)−d(y,x))
√

w(x,y) dy : Ω→ R. (2.69)

(see Gilboa and Osher (2008)) and non-local Laplacian is

∆NL(u(k)) = ∑
l∈Nk

w(k, l)(u(l)−u(k)) (2.70)

37



where w(x,y) is the smoothing non-local window function given by

w(x,y) = dσ (x,y)−2 (2.71)

and the distance function is given by

dσ (u(x),u(y)) =
∫

Ω

Gσ (t)|u(x+ t)−u(y+ t)|2dt (2.72)

where Gσ (t) denotes the Gaussian convolved version of t with σ as the spread of the
Gaussian kernel.

The models discussed so far have their own pros and cons. As already examined in
the literature most second order nonlinear models converge to piece-wise linear func-
tions in the course of their evolution and results in staircase formation in the restored
data. They eventually fail to respect the local gradient oscillations causing severe dam-
ages to the detailed structures present in the data. These facts motivate us to propose
models which can handle the major setbacks of the second order diffusion models while
restoring the images. Yet another common requirement for any diffusion method is the
fast convergence rate which opens up the possibility of its real-time implementations.
Since we deal with data-correlated noise distribution (which are non-Gaussian models)
the noise statistics play a vital role in the design of a model. The rest of the thesis is
dedicated to analyze the aforementioned issues and provide favourable solutions.

In the next chapter, we try to explore the possibility of introducing a novel frame-
work, where the model restores images with due care to the edges and fine details.
Moreover, the devise artefacts resulting in linear blurring phenomena is also being han-
dled by the proposed framework. The convergence rate of the model is reasonably im-
proved by employing a faster technique like the Augmented Lagrangian method instead
of the commonly used explicit schemes.
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Chapter 3

DESPECKLING ULTRASOUND IMAGES
USING NON-LOCAL TOTAL BOUNDED
VARIATION REGULARIZATION

3.1 Introduction

Ultrasound is one of the widely used modalities in medical imaging due to its capabil-
ity to provide images of moderately good quality without using the ionizing radiations.
Moreover, the method is non-invasive in nature and causes relatively less harm to the
subject. There are different models of US imaging and most of the conventional sys-
tems employ amplitude based or intensity based techniques for acquiring images. In
amplitude based techniques, the amplitude of the sound signal is recorded as a function
of time and in intensity based techniques intensity is used in place of amplitude. There
are other US models as well and some of them use Doppler frequency information, see
Stergiopoulos (2000) for details. A detailed description of US image formation and
speckle generation was given in the subsection A.1.1. However, to ensure the conti-
nuity in the explanation and improve the readability of the thesis some of the concepts
relevant to the present chapter have been revisited here.

Ultrasound signals transmitted by the systems undergo three major types of scatter-
ing depending on the characteristic of the object on which it is falling. The major types
of scattering are specular, diffusive and diffractive. The specular scattering is due to the
large size of the object compared to the wavelength of the signal and causes speckles
in the captured data. Due to the presence of the speckles the signal intensity shoots
up at the concerned pixel value causing the signal to fluctuate its the intensity values
between a high range. It is shown in Huang et al. (2009) that when the scatter density
is more than 10 the speckle noise is found to follow Rayleigh distribution. However,
the images (both satellite and medical) are formed adding different image slices whose
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intensity values follows a negative exponential law and the summed data is found to
follow Gamma law. In US and SAR imaging the intensity of the resultant image is for-
mulated as a product of reflectance of the sound and speckle (i.e., u0 = u×n) therefore,
the speckles are also found to follow the Gamma law.

This Chapter is arranged as follows. In the Section 3.2 the novel contributions of
the proposed work is highlighted. Further, in the Section 3.3 the proposed framework
for restoration of the images corrupted with data-correlated speckle and linear blurring
artefacts is detailed. Section 3.4 covers the numerical implementation of the model
using the Augmented Lagrangian (AL) framework. And finally we give detailed exper-
imentation results in the Section 3.5.

3.2 Contributions of the Proposed Model

The variational methods discussed so far are either the variants of Aubert and Aujol
(2008) (AA) model, where the regularization term is a TV norm of the image functional
or log transformed versions of multiplicative noise modalities (Krissian et al., 2005; Shi
and Osher, 2008). In the first category of methods, (i.e., AA model and its variants) the
TV norm in the regularization term eventually leads to piecewise linear approximation
of the output; causing visual discrepancies. On the other hand, in the second category,
(log transformed techniques) the signal-noise correlation is completely neglected un-
der the assumption that the noise is independent of the data in the log domain. These
setbacks are effectively addressed in this research work by introducing a novel regular-
ization framework whose unique contributions are detailed below.

In this chapter, we design a model with a non-local total bounded variation prior in
place of the ordinary TV norm prior to preserve edges and local gradient oscillations
while reducing the devise dependent blurring artefacts. The reactive term of the model
is designed to handle the existing noise-signal correlation, duly caring the distribution
of noise in the data. Moreover, the fast computation of the model has been ensured
by employing AL method in place of the explicit methods, which categorically opens
up a possibility for its real-time implementation in real-world applications. The regu-
larization parameter is evaluated in each iteration (instead of hard-coding the same for
each input data) considering the noise variance evaluated using MLE of the input data.
Furthermore, a detailed theoretical study is employed to analyze the condition for exis-
tence of a unique solution of the model and its convergence characteristics. The detailed
design of the model is discussed in the next section.
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3.3 The Proposed Variational Speckle Reduction Model

As already introduced in the Chapter 1, speckles are data-dependent and modeled as

u0 = Kun, (3.1)

where n represents the multiplicative speckles following the Gamma law and K is the
linear blurring operator. Now borrowing the concepts from the non-local TV (NLTV)
in Gilboa and Osher (2008) and Aubert and Aujol (2008) (models discussed in the
previous chapter), we derive the following non-local framework for handling speckles:

min
u

∫
Ω

|∇NLu|dxdy+λ

∫
Ω

(
ln(Ku)+

u0

(Ku)

)
dx dy. (3.2)

The above model is derived based on the MAP method discussed in Aubert and Aujol
(2008), see Appendix B.2 for the details of the derivation. Now taking the non-local
total Bounded Variation (BV) norm in place of TV norm gives:

min
u

∫
Ω

(
|∇NLu|+ β

2
‖u‖2

L2

)
dx dy+λ

∫
Ω

(
ln(Ku)+

u0

(Ku)

)
dx dy. (3.3)

where β > 0, is a small positive scalar constant that controls the magnitude of NLTV
and L2 norms of the regularization term. Employing non-local total BV norm in place
of the NLTV norm provides better visual appeal to the restored output due to the pres-
ence of the extra penalty term and the details are discussed in Liu and Huang (2010).
The mathematical analysis of the proposed model is given in Appendix B.1, where the
existence and uniqueness of the solution of the model is discussed in detail.

3.4 Numerical Implementation using Augmented Lagrangian

To solve the (3.3), first we introduce an auxiliary variable d for ∇NLu and transform
problem (3.3) into an equivalent problem as follows:

min
u,d

∫
Ω

(
|d|+ β

2
‖u‖2

L2

)
dx dy+λ

∫
Ω

(
ln(Ku)+

u0

(Ku)

)
dx dy (3.4)

subject to d = ∇NLu.
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The augmented Lagrangian of the above equation is:

min
u,d

max
b

LNLTV (u,d,b) =
∫

Ω

(
|d|+ β

2
‖u‖2

L2

)
+λ

∫
Ω

(
ln(Ku)+

u0

(Ku)

)
+
∫

Ω

b.(d−∇NLu)+
g
2

∫
Ω

‖d−∇NLu‖2
L2, (3.5)

where g is a positive scalar constant and b∈RN×RN is yet another Lagrange multiplier
and “." denotes the standard inner product. The idea of the Augmented Lagrangian
method is to find a saddle point of LNLTV(u,d,b), which is also the solution of original
problem in (3.3).

The Augmented Lagrangian method uses an iterative procedure to solve (3.5), see
Algorithm 1. The iterative scheme runs until some stopping condition is satisfied. To
solve the problem (3.12) it is divided into the following two sub-problems (Wang et al.,
2008, 2007).

un+1 =argmin
u

∫
Ω

λ

(
ln(Ku)+

u0

(Ku)

)
+
∫

Ω

β

2
‖u‖2

L2

+
∫

Ω

bn.(d−∇NLu)+
g
2

∫
Ω

‖d−∇NLu‖2
L2 (3.6)

and

dn+1 = argmin
d

{∫
Ω

|d|+
∫

Ω

bn.(d−∇NLu)+
g
2

∫
Ω

‖d−∇NLu‖2
L2

}
, (3.7)

when solving the u sub-problem in (3.6), the optimality condition gives a linear equation
of the form

λ

(
K∗(Ku−u0)

(Ku)2

)
+βu+∇NLb−g∇NL · (d−∇NLu) = 0, (3.8)

where K∗ is the adjoint of the operator K. Hence, (3.8) has a solution:

un+1 = F−1
[

F [λK∗u0 +(Ku)2(g∇NLd−∇NLb)]
λ |F [K]2|+g|F [∆NL]|(Ku)2 +β (Ku)2

]
(3.9)

where F and F−1 denotes the Fourier transform and inverse Fourier transform, re-
spectively. To solve d sub-problem (3.7), the shrinkage formula is being used, as given
below:

dn+1 = shrink(∇NLu− b
g
,
1
g
), (3.10)
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where
shrink(x,y) =

x
|x|
∗max(|x|− y,0). (3.11)

The parameter λ (regularization parameter / Lagrangian multiplier) is evaluated and
updated as mentioned in Appendix B.4. As noticed in many previous works, the pa-
rameter λ is a function of the noise variance σ2, therefore the noise variance needs to
be estimated for an arbitrary noisy data. This is done using the MLE as detailed in
Appendix B.3.

Algorithm 1: Augmented Lagrangian method for the non local total bounded
variation model

Initilization: u0 = initial noisy image,d0 = 0,b0 = 0;ε = 10−4

while ‖un+1−un‖
‖un+1‖ > ε do

Compute (un+1,dn+1) as a minimizer of the Augmented Lagrangian
method for the Lagrange multiplier bn, i.e.,

(un+1,dn+1) = argmin
u,d

LNLTV(u,d,bn), (3.12)

where LNLTV(u,d,bn) is defined in equation(3.5) and update

bn+1 = bn +g(dn+1−∇NLun+1) (3.13)

and λ using (B.32).
Increment n.

3.5 Experimental Results and Discussion

In this section, experimental results are presented to demonstrate the performance of the
studied restoration method. The efficiency of the studied restoration method has been
tested using different category of test images such as Lena (a natural image), satellite
image, synthetic image and original US images of human liver, hepatic vein, kidney
and women breast. These images (except the real speckled images) are also tested un-
der various noise and blur degradations (synthetically generated using Matlab code).
The noise parameters (for the Gamma distributed noise) shape and scale are set man-
ually for synthetically generated noisy images and they are estimated based on MLE
for the original noisy data. The parameter estimation process is described in Appendix
B.3. All test images in its original form are shown in Figure 3.1. Various state-of-the-
art despeckling models available in the literature are being compared with the proposed
restoration method. The PDE based models such as DPAD and OSRAD along with
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the variational model proposed in Aubert and Aujol (2008) and its non-local version
(with explicit scheme and Augmented Lagrangian formulation) are considered here for
the comparative study. Furthermore, the state-of-the art non-local averaging model in
K. Dabov and Egiazarian (2007) is also being used for the comparative purpose. The
results obtained after processing these input images using various methods discussed
above are shown in this section. Figures 3.2, 3.3 and 3.4, show images (Lena, phan-
tom and satellite) restored using various methods (the input images are artificially cor-
rupted with synthetic noise). Figures 3.5, 3.6, 3.7 and 3.8, show results for real US
input speckled images (obtained from http://www.medison.ru/ultrasound/). The figure
captions highlight the corresponding method used for the restoration. The proposed
restoration model is shown in sub-figure (i) of each figure. The enlarged portion por-
tion of the phantom image is shown in Figure 3.10.

The performances of various comparative methods are demonstrated in the Figures
3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 as discussed above. From these results one can observe
that the PDE based models such as SRAD, DPAD and OSRAD performs a non-linear
and anisotropic diffusion to regularize the data. Nevertheless, they fail to preserve the
resolution leading to piecewise patch formation in the output. The textures and details
are severely penalized in the course of the evolution. Moreover, the PDE models do not
posses a functional which can be studied theoretically to substantiate various properties
of the model such as stability, uniqueness convergence etc. In the variational framework
the AA model and its non-local version are comparatively easy to analyse theoretically
as the functional is readily available in these models. These models are designed under
a Bayesian framework to duly care about the noise distribution while designing the
functional. Moreover, the non-local version of AA model preserves textures to a better
extent compared to the PDE counterparts. Nevertheless, the piecewise approximation of
the functional still prevails in these models. The proposed strategy uses a total-bounded
variation functional in place of ordinary TV functional, the functional thus designed can
reduce the piecewise functional approximation as it combines both L1 and L2 norms by
appropriately weighing them. Therefore, the results are found to be more impressive in
comparison to the other comparative models.

As one can observe, the restoration with the given model outperforms other models
(visually) in terms of despeckling and de-blurring of the images.

The results obtained for seven input images are shown in this experimental study.
The images belong to various categories such as: a partially textured natural image, a
non-textured synthetic image, a satellite image and four US images. As we can observe
from the Figure 3.2 (i), that the proposed strategy has retained finer details and edges
present in the data and moreover the homogeneous regions are despeckled considerably.
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The deblurring effect of the filter is obvious from the result. Similarly, in Figure 3.3 (i)
the despeckled results of a synthetic image (synthetically corrupted with speckles and
blur) is demonstrated, the constant intensity regions, corners and edges are preserved
well by the proposed strategy and the regions are despeckled well in comparison to the
other models. Figure 3.4(i) shows the restoration results of a satellite image (corrupted
with speckle and blur), the details are preserved by the proposed model in this case too.
Finally the restoration capability of the proposed model is well demonstrated in case
of US images in Figures 3.5 - 3.8. These figures contain numerous details which are
duly respected in the evolution of the proposed model. Moreover, the local gradient
oscillations are evidently recovered in the proposed restoration model.

The relative error is plotted against the number of iterations in Figure 3.9. As ob-
served from this figure the relative error of the proposed model becomes steady after a
finite number of iterations. This provides a notion of convergence. The details are given
in Appendix B.5.

The performance of various models considered for the comparative purpose is eval-
uated using the statistical quantifiers such as the peak signal to noise ratio(PSNR) and
the structural similarity index measure(SSIM) (Wang et al., 2004) . The PSNR is de-
fined using mean squares error (MSE) as follows. Given original image u and its noisy
approximation u0 , MSE is defined as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

(u(i, j)−u0(i, j))2. (3.14)

The PSNR (in dB) is defined as:

PSNR = 10log10
MAX2

u
MSE

, (3.15)

where MAXu is the maximum possible pixel value of the image. A higher PSNR value
indicates a better noise removal and in the sequel, a good restoration. The SSIM indi-
cates the structure and contrast preservation ability of the model under consideration.
The values obtained under this measure are in the range [0− 1], where 0 and 1 indi-
cates, poor and ideal preservation capabilities, respectively. It is evaluated on various
windows from an image. The measure between two windows x1 and x2 of size N×N

is
SSIM(u,u0) =

(2µuµu0 +C1)(2σuu0 +C2)

(µ2
u +µ2

u0
+C1)(σ2

u +σ2
u0
+C2)

, (3.16)

where µu and µu0 are averages of u and u0 respectively, σu and σu0 are the variances
of u and u0 respectively and σuu0 is the covariance of u and u0. C1 and C2 are two
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positive constants to stabilize the division with weak denominator.

The PSNR and SSIM values are tabulated in Tables 3.1 and 3.2, respectively ( note
that the PSNR and SSIM values are evaluated only for images whose ground-truth is
available). The statistical verifications are in line with the visual inferences. The PSNR
and SSIM denotes the denoising and structure preserving capabilities of the models un-
der consideration. The PDE based models such as SRAD, OSRAD and DPAD performs
at par with the other models as the diffusion results in denoising. The average PSNR
of the restored images for these models amount to 25 dB approximately. Whereas, the
PSNR values shows a considerable difference among the models for the PDE models
the average performance in terms of SSIM is close to 0.75, whereas the value is 0.8 and
0.83, respectively for variational models (AA and NLTV) and the proposed one. The
performance is well justified by the characteristics of the total bounded variation norm.

As one can observe, the values corresponding to the given restoration model is
higher in comparison to the other models. As mentioned earlier, PSNR denotes the
noise removing capacity of the method and SSIM indeed shows the extent of structure
and contrast preservation. These values in-turn indicate the denoising and deblurring
capability of the model in quantitative terms. The number of iterations required for each
method to converge is shown in Table 3.3. As evident from this table, the given restora-
tion method takes less number of iterations to converge to the desired solution. The fast
convergence of the proposed method is due to its implementation under AL scheme,
whereas the other iterative models use explicit time marching schemes. The faster con-
vergence is justified by the adoption of Augmented Lagrangian scheme instead of the
usual explicit schemes. The parameter sensitivity of each model is demonstrated in
Tables 3.4 and 3.5 for synthetically corrupted and real noisy images respectively. The
values chosen for each parameter in various methods are tabulated in Tables 3.4 and
3.5. The values are empirically set to obtain the optimal results in terms of visual and
quantitative representations. It is worth noting that the performance of all these iterative
schemes is considerably impacted by the choice of these parameter values.
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(a) (b) (c)

Figure 3.1 Images [(a) Lena (b) Synthetic (c) Satellite] in their original form.

Table 3.1 PSNR (Blurring kernel size and noise variance: 2, 0.1, respectively) evaluated
for different images using various restoration models.

Image
name

Noisy&
Blurred
image

SRAD DPAD OSRAD AA NLTV BM3D NLTVAL
Proposed
method

Lena 25.83 26.35 26.45 26.48 27.37 27.46 27.65 26.14 27.89
Satellite 25.26 25.53 25.71 25.80 26.70 26.28 25.68 25.56 26.97

Synthetic 19.42 21.12 21.42 21.65 22.55 22.46 22.68 22.65 22.96

Table 3.2 SSIM (Blurring kernel size and noise variance: 2, 0.1, respectively) evaluated for
different images using various restoration models.

Image
name

Noisy &
Blurred
image

SRAD DPAD OSRAD AA NLTV BM3D NLTVAL
Proposed
method

Lena 0.60 0.72 0.74 0.75 0.77 0.76 0.77 0.77 0.78
Satellite 0.85 0.87 0.89 0.89 0.90 0.91 0.91 0.90 0.91

Synthetic 0.49 0.75 0.80 0.80 0.82 0.85 0.82 0.82 0.83

In summary, the designed model is capable of restoring images from their speckled
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Table 3.3 Number of iterations taken by each method to converge to the desired solution
for various test images.

Image
name

Noisy &
Blurred
image

SRAD DPAD OSRAD AA NLTV NLTVAL
Proposed
method

Lenna 0.1,2 600 610 550 400 250 55 50
Satellite 0.1,2 500 710 500 500 250 50 50

Synthetic 0.1,2 450 420 400 350 250 60 52
Liver - 350 350 250 200 150 45 40

Hepatic vein - 500 450 450 350 200 50 45
Kidney - 360 355 240 190 130 35 30

Women breast - 450 420 410 250 150 40 35

Table 3.4 Different parameter values used for the test images: Lena, satellite and synthetic
images(corrupted by blur and noise variance {2, 0.1,2,0.2}, respectively) under various
restoration models.

Method Name λ δ β g
SRAD {0.01,0.03} - - -
DPAD {0.01,0.04} - - -

OSRAD {0.009,0.02} - - -
AA {0.01,0.02} {0.09,0.047} - -

NLTV {0.01,0.03} {0.002,0.002} - -
NLTVAL {9.5,5.1} - - {0.033,0.032}

Proposed method - {0.001,0.001} {0.05,0.55}

Table 3.5 Different parameter values used for the real US test images under various restora-
tion models.

Method Name λ δ β g
SRAD {0.03,0.04} - - -
DPAD {0.02,0.048} - - -

OSRAD {0.012,0.025} - - -
AA {0.018,0.029} {0.15,0.071} - -

NLTV {0.01,0.03} {0.0052,0.0042} - -
NLTVAL {11,7.4} - - {0.053,0.042}

Proposed method - {0.0021,0.0031} {0.05,0.65}

and blurred observation without significantly disturbing the inherent image features
present in them. This makes it ideal for US imaging applications where the images are
speckled and blurred and moreover, the image contains significant details in it. The
study has proved the efficiency of the model using a large set of test data from the
ultrasound imaging domain. In the next Chapter we design another despeckling cum
deblurring model designed specifically for SAR imagery.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.2 (a) Speckled and Blurred Lena image [Gamma noise variance: 0.1 and Blur
kernel size: 2] (b) The restored image by SRAD method (c) The restored image by DPAD
method (d) The restored image by OSRAD method (e) The restored image by AA method
( f ) The restored image by NLTV method (g) The restored image by BM3D method (h) The
restored image by NLTV using AL method (i) The restored image by proposed method

49



(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.3 (a) Speckled and blurred phantom image [Gamma noise variance: 0.1 and Blur
kernel size: 2] (b) The restored image by SRAD method (c) The restored image by DPAD
method (d) The restored image by OSRAD method (e) The restored image by AA method
( f ) The restored image by NLTV method (g) The restored image by BM3D method (h) The
restored image by NLTV using AL method (i) The restored image by proposed method
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.4 (a) Speckled and Blurred Satellite image [Gamma noise variance: 0.1 and Blur
kernel size: 2] (b) The restored image by SRAD method (c) The restored image by DPAD
method (d) The restored image by OSRAD method (e) The restored image by AA method
( f ) The restored image by NLTV method (g) The restored image by BM3D method (h) The
restored image by NLTV using AL method (i) The restored image by proposed method
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.5 (a) Original ultrasound image of human Liver (Speckled and Blurred image)
(b) Image restored by SRAD (c) The image restored by DPAD (d) The image restored by
OSRAD (e) The image restored by AA model ( f ) The image restored by NLTV method (g)
The restored image by BM3D method (h) The restored image by NLTV using AL method
(i) The restored image by proposed method.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.6 (a) Real and noisy hepatic vein image (b) Image restored by SRAD (c) The
image restored by DPAD (d) The image restored by OSRAD (e) The image restored by AA
model ( f ) The image restored by NLTV method (g) The restored image by BM3D method
(h) The restored image by NLTV using AL method (i) The restored image by proposed
method

53



(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.7 (a) Original Kidney image (b) The restored image by SRAD method (c) The re-
stored image by DPAD method (d) The restored image by OSRAD method (e) The restored
image by AA method ( f ) The restored image by NLTV method (g) The restored image by
BM3D method (h) The restored image by NLTV using AL method (i) The restored image
by proposed method
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.8 (a) Original noisy women breast image (b) The restored image by SRAD method
(c) The restored image by DPAD method (d) The restored image by OSRAD method (e)
The restored image by AA method ( f ) The restored image by NLTV method (g) The re-
stored image by BM3D method (h) The restored image by NLTV using AL method (i) The
restored image by proposed method
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(a)

(b)

Figure 3.9 Relative Error ‖un+1−un‖
‖un+1‖ plotted for the images: SAR and US liver image, re-

spectively (the relative error follows a similar pattern for other images as well).
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 3.10 (a) Speckled and blurred phantom enlarged portion of the image [Gamma noise
variance: 0.1 and Blur kernel size: 2] (b) The restored image by SRAD method (c) The re-
stored image by DPAD method (d) The restored image by OSRAD method (e) The restored
image by AA method ( f ) The restored image by NLTV method (g) The restored image by
BM3D method (h) The restored image by NLTV using AL method (i) The restored image
by proposed method.
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Chapter 4

SPECKLE REDUCING LEVEL-SET
APPROACH

4.1 Introduction

In much US, laser and sonar imagery the acquired data is found to be corrupted by gran-
ules commonly known as speckles. In active imaging modalities, images are formed
based on the characteristics of the surface on which the signal falls. Depending on
the scatter-density (number of scatters per cell) of the wave that hits on the object and
reflects, high amplitude signals called speckles are generated. As analyzed in many
previous works, the noise distribution of the speckle directly depends on the scatter
density of the wave (Goodman, 1976). So in many studies reported in the literature, the
speckle intensity is approximated to a Gamma distribution with shape (k) and scale (σ )
parameters (Aubert and Aujol, 2008). Here it may be noted that, the PDF for a Gamma
distribution is Γ(k,σ) = 1

Γ(k)σ k xk−1e−
x
σ , where the scalars k,σ > 0 and x ∈ (0,∞) . In

SAR imagery a pixel at a given location in the observation plane is formed from su-
perimposition of the magnitude of complex functions. These complex functions are
generated from different scattering points on the surface of the object. Subsequently,
the amplitude of these complex magnitude functions (depending on the roughness of
the surface) gets added with different phase characteristics results in interference of
complex patterns superimposed on the pixel of interest. Eventually resulting in high
amplitude data-granules called speckles. These speckles in SAR imagery hinder proper
interpretation of data and severely affect the analysis phase, readers are invited to re-
fer Goodman (1976) for further details of a speckle formation. Further, the presence
of speckles in the acquired signal drastically reduces the probability of target detection
in a radar system and also causes the system to lose track of the target. Thus speckle
suppression is a subject of major practical interest to scientists and engineers working
in the field of satellite and radar data analysis.
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A detailed discussion about various despeckling models was done in Chapter 2 of
this thesis. In addition to those methods there are some methods specifically designed
for SAR images. The state-of-the-art restoration filter is based on the non-local av-
eraging and block-matching 3D transform (BM3D) (K. Dabov and Egiazarian, 2007).
BM3D was also proposed for SAR images, which is introduced as a SAR despeckling-
version of the BM3D (SAR-BM3D) filter, see (Parrilli et al., 2012). The SAR-BM3D
demonstrates good performance in preserving structures but gives poor smoothing re-
sults for homogeneous regions. Moreover BM3D based models do not consider the
noise distribution as well as the data-correlated nature of the noise. The above discussed
methods are primarily based on an additive noise model, where the noise is assumed to
be data-independent. However, as observed in many recent works the speckles present
in SAR images are found to be data-dependent and they follow multiplicative noise
model. Therefore, recently some SAR despeckling methods have been proposed which
attempt to transform the multiplicative noise into additive noise based on homomorphic
filtering approach (input data is transformed to the log domain, where the multiplica-
tive noise becomes additive), see Amirmazlaghani and Amindavar (2012); Parrilli et al.
(2012); Li et al. (2011) for the details. As a relatively new approach, methods based
on sparse representation (SR) give good results when dealing with the processing of
various natural images (viz. denoising and classification) see Lu et al. (2016). Most of
the models described in previous sections do not consider the data-dependent nature of
speckle and moreover the distribution of the noise is being neglected while processing
the data. This puts a limitation to these models, as the noise distribution eventually
affects the restoration process. There are a few models proposed in the literature that
duly cares the noise distribution in speckles. For instance in Aubert and Aujol (2008),
the authors propose a variational model derived based on the MAP estimate of the noise
PDF. This model tunes its data-fidelity based on the MAP estimator. There were some
improvements proposed for this model as well, see Jin and Yang (2011) for details.

The remaining sections of this chapter are organized as follows. In the next section
a speckle reducing level-set approach is proposed along with its formulations. In the
Section 4.3, we highlight the SB formulation for the proposed model. The experimental
results and discussions are provided in the Section 4.4.

4.2 Speckle Reducing Level-Set Approach

The Mumford-Shah functional was introduced as a tool for image segmentation in
Mumford and Shah (1989). Let Ω be a bounded open subset of R2 (the screen) and
u0 be a bounded measurable function defined on the image (which represents the noisy
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image in a matrix format). The functional J(u,S) where S is a closed subset and u is
the function (which represent the original image matrix) belonging to the Sobolev space
(space of differentiable functions) defined by

J(u,S) = H d-1(S)+
∫

Ω\S

(
α|∇u|2 +λ‖u−u0‖2

L2

)
dx dy, (4.1)

where the first term H d-1(S) is the Hausdorff d− 1-dimensional measure of S in R2

(here d > 1 is a scalar integer), λ > 0 is a positive scalar regularization parameter,
α ∈ (0,∞) is a scalar positive constant, |.| denotes the absolute value of the function, L2

norms of the regularization term and Ω⊂R2 is an open and bounded set. Further, with-
out loss of generality let us define ∇u as the non-local gradient operator of the image
function u, u0 is the observed image, and ∆ as the non-local Laplacian operator, readers
are invited to refer Gilboa and Osher (2008) for the details of non-local variational for-
mulation. The third term of this functional reduces the deviation of u from u0 , whereas
the second term ensures the regularization of the function u making the variation slow
on Ω. Since no regularity is assumed for u across the singular set S (corresponding to
discontinuities/edges in u ), let us hope that for such a minimizer, S is the hyper-surface
across which u0 has great variations. The numerical evaluation of this functional is not
easy in its present form due to the presence of the term containing Hausdorff measure.
In Ambrosio and Tortorelli (1990) (AT) the authors proposed an approximation to this
functional by introducing an extra variable v which eventually approaches the solution
of u .

Aρ(u,v) = min
u,v

{∫
Ω

[
ρ|∇v|2 +α

(
v2|∇u|2 + (v−1)2

4αρ

)
+λ‖u−u0‖2

L2

]
dx dy

}
,

(4.2)
where ρ > 0 is a fixed scalar parameter and v is a smooth edge indicator (i.e. v→ 0
when |∇u| → ∞). The other symbols are as defined earlier. Further the authors have
proved that Aρ(u,v) admits a solution and Aρ(u,v) converges to Mumford-Shah func-
tional in (4.1) as ρ → 0. The Euler equation associated with the above expression isλ (u−u0)−α∇(v2∇u) = 0

−∆v+ 1+4αρ|∇u|2
4ρ2

(
v− 1

1+4αρ|∇u|2

)
= 0.

To reduce the complexity of the solution involving two parameters (u and v), a modi-
fied version of this model is proposed, which eliminates the parameter v and make the
functional depend only on u (the original image function). The modification amounts
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to

Gσ (u) = min
u

{∫
Ω

[
α

[
χ(u)2|∇u|2 + 1

4αρ
(χ(u)−1)2

]
+λ‖u−u0‖2

L2

]
dx dy

}
,

(4.3)
where

χ(u) =
1

1+4αρ|∇u|2
. (4.4)

This model assumes a data-independent additive noise as one can observe from the data
fidelity term. The constraint ‖u− u0‖2

L2 denotes the squared error in the approxima-
tion of u (‖u‖2

L2 ,
∫
Ω

u2 dx dy denotes the square of the L2 norm of the functional u).

This is derived based on the assumption that the noise is additive and the model ap-
pears u0 = u+n, where n is the data-independent additive noise. As evident from the
literature (from central limit theorem) when the sample size of the noise is sufficiently
large the noise follows a Gaussian distribution (under the assumption that the noise pix-
els are derived from independent sources). However, as already pointed out earlier in
this work, speckles are data-dependent noise which follows a Gamma law. Moreover,
speckle noise is generally observed to be multiplicative. Incorporating this assumption
as a constraint to the regularization functional and deriving the MAP for the Gamma
distribution yields (see Aubert and Aujol (2008) for the details) :

Gσ (u) = min
u

{∫
Ω

[
αφ(u)+λ

(
ln(u)+

u0

u

)]
dx dy

}
, (4.5)

where φ(u) is the regularization prior defined as φ(u) = χ(u)2|∇u|2+ 1
4αρ

(χ(u)−1)2.

Considering a linear blurring artefact in the acquired image, one can modify the above
expression as

Gσ (u) = min
u

{∫
Ω

[
αφ(u)+λ

(
ln(Ku)+

u0

Ku

)]
dx dy

}
, (4.6)

where K is a bounded linear operator corresponding to a linear blur. One usual way
to solve the above optimization problem is using the explicit scheme by converting the
unconstrained problem to a non-linear PDE with the help of the Euler-Lagrange (E-L)
formulation (E-L derivative for a functional F(x,u,u′) is ∂F

∂u −
d
dx

(
∂F
∂u′

)
= 0). The Euler

derivative of the above functional using artificial time marching scheme is written as

−α∇.

(
ξ ′(|∇u|)∇u
|∇u|

)
+λK∗

(
Ku−u0

(Ku)2

)
= 0, (4.7)
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where ξ (z) = zp

1+4αρzp , here z denotes |∇u| and K∗ is the adjoint of K. Now let us write
the above expression in an anisotropic manner using the explicit scheme as

−α

(
ξ ′(|∇u|)
|∇u|

UT +ξ
′′(|∇u|)UN

)
+λK∗

(
Ku−u0

(Ku)2

)
= 0, (4.8)

where the second-order derivatives: tangent (UT) and normal (UN) to the level-curve are
written respectively, as

UT =
1
|∇u|2

(u2
xuyy−2uxuyuxy +u2

yuxx) (4.9)

and
UN =

1
|∇u|2

(u2
xuxx +2uxuyuxy +u2

yuyy), (4.10)

where ux, uy and uxx are the first-order derivatives along x, y and second-order derivative
along x, respectively. The first and second derivatives of the function ξ (.) are

ξ
′(|∇u|) = 2|∇u|

(1+(4αρ|∇u|2))2 (4.11)

and

ξ
′′(|∇u|) = 2(1−12αρ|∇u|2)

(1+(4αρ|∇u|2))3 , (4.12)

respectively. One of the major drawbacks of the explicit time marching scheme is its
slow convergence rate. Moreover, the convergence heavily depends on the regulariza-
tion parameter and the time step. These setbacks due to slow convergence and parameter
dependency can be addressed to an extent using the fast numerical schemes such as SB
scheme (Goldstein et al., 2010). In the following section, we detail the fast numerical
scheme followed for solving the model.

4.3 Split-Bregman Iterative Scheme for the Model

We perform SB iteration scheme to solve the model proposed in the previous section.
The proposed model under the SB scheme converges faster and the convergence is
insensitive to the parameters of the functional, see Goldstein et al. (2010) for the details.
In this section, the SB formulation of the proposed model is highlighted. Now let us
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write the objective function for the proposed model:

min
u

∫
Ω

{
α

((
1

1+4αρ|∇u|2

)2

|∇u|2 + 1
4αρ

(
1

1+4αρ|∇u|2
−1
)2
)

+λ

(
ln(Ku)+

u0

Ku

)}
dx dy. (4.13)

In order to solve the above model a new auxiliary variable d is introduced as follows:
i.e. d = ∇u ( d is a vector), so the constraint ‖d−∇u‖2

2 = 0 (squared l2 norm) needs to
be added

min
u,d

∫
Ω

{
α

((
1

1+4αρ|d|2

)2

|d|2 + 1
4αρ

(
1

1+4αρ|d|2
−1
)2
)

+λ

(
ln(Ku)+

u0

Ku

)}
dx dy,

subject to ‖d−∇u‖= 0. (4.14)

For solving the above problem one has to convert it into an unconstrained optimization
problem (using Lagrange formulation) as follows:

min
u,d

∫
Ω

{
α

((
1

1+4αρ|d|2

)2

|d|2 + 1
4αρ

(
1

1+4αρ|d|2
−1
)2
)

+λ

(
ln(Ku)+

u0

Ku

)
+

β

2
‖d−∇u‖2

2

}
dx dy, (4.15)

where β is a positive constant. Using SB iterative algorithm for solving the above
problem gives two subproblems; u subproblem and d subproblem, i.e.,:

uk+1 = argmin
u

λ

(
ln(Ku)+

u0

Ku

)
+

β

2
‖∇u−dk +bk‖2

2 (4.16)

and

dk+1 = argmin
d

{
α

[(
1

1+4αρ|d|2

)2

|d|2 + 1
4αρ

(
1

1+4αρ|d|2
−1
)2
]

+
β

2
‖d−∇uk+1−bk‖2

2

}
, (4.17)
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with the update expression for b (b is a vector) as

bk+1 = bk +(∇uk+1−dk+1). (4.18)

Now let us derive an unconstrained SB iterative algorithm. Given u0 = 0, and d0 = b0 =

0
uk+1 = argmin

u
λ
(
ln(Ku)+ u0

Ku
)
+ β

2 ‖∇u−dk +bk‖2
2

dk+1 = argmin
d

α

[(
1

1+4αρ|d|2

)2
|d|2 + 1

4αρ

(
1

1+4αρ|d|2 −1
)2
]
+ β

2 ‖d−∇uk+1−bk‖2
2

bk+1 = bk +(∇uk+1−dk+1).

The u subproblem is solved as follows

uk+1 = F−1

[
F [λK*u0 +β (Ku)2div(b−d)+β (Ku)2

∑(w(x,y)u)]
λ |F [K]2|+(Ku)2β ∑w(x,y)

]
, (4.19)

where K∗ is the adjoint of the operator K, ∇* = −div represents the adjoint of ∇, ∆ =

−∇*∇ and ∆u = ∑(u(y)− u(x))w(x,y). Here w(x,y) is the weight function (matrix)
derived from Buades et al. (2005). Further, the d subproblem can be solved as follows

dk+1 = α

[(
1

1+4αρ|d|2

)2

|d|2 + 1
4αρ

(
1

1+4αρ|d|2
−1
)2
]

+
β

2
‖d−∇uk+1−bk‖2

2, (4.20)

or
dk+1 = α

(
ξ ′(|d|)
|d|

)
UT +αξ

′′(|d|)UN +β (d−∇u−b), (4.21)

where ξ ′ and ξ ′′ are already defined in (4.11) and (4.12), respectively. Further, the
definitions for UT and UN are found in (4.9) and (4.10), respectively. The parameter λ

is updated as described in Appendix B.4.

4.4 Experimental Results

In this research the intensity images are considered (images represented as intensity
values) throughout our discussion, however the method can be applied to amplitude im-
ages by appropriately scaling them. As a primary step, it is required to prove that the
speckle noise distribution in the input data follows a Gamma law. To testify this argu-
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ment, homogeneous intensity regions were extracted from the input noisy SAR image
shown in Figure 4.1. These homogeneous regions are selected such that the variance
within these regions are mainly due to the speckles. Next, we evaluate the histogram of
the pixels in the extracted regions and analyze the PDF. Further, the parameters (scale
and shape) were estimated assuming a Gamma distribution for each of the regions of in-
terest and Gamma PDF (curves) were plotted with these estimated parameters. Finally,
it is confirmed that the PDF (curves) generated from the histograms of the input noisy
regions (extracted from the noisy image) closely resembles with the PDF (curves) gen-
erated assuming the Gamma distribution with the estimated parameters. The unbiased
estimators for scale and shape are

σ =
n

n−1
1
n2

(
n∑xi ln(xi)−∑ ln(xi)∑xi

)
(4.22)

(where n is the size of the sample and xi are the random samples selected from the
population) and

k−1 =
n

n−1
n∑xi ln(xi)−∑ ln(xi)∑xi

n∑xi
, (4.23)

respectively . Figure 4.1 shows the result of the experiment. Thus it may be confirmed
that the noise distribution is more likely to follow a Gamma law. A further quanti-
tative analysis is performed based on Kullback Leibler (KL) divergence and Jensen
Shannon (JS) divergence. KL/JS divergence is an indicative measure of the divergence
of two distributions. The KL divergence for two distributions P and Q of a contin-
uous random variable is DKL(P,Q) =

∫
∞

−∞
p(x) ln

(
p(x)
q(x)

)
dx, here p and q are the den-

sities of P and Q respectively. Similarly the JS divergence is defined as DJS(P,Q) =
1
2DKL(P,M)+ 1

2DKL(Q,M), where M = 1
2(P+Q). Here the PDF of the noisy data is ex-

tracted from the homogeneous intensity regions (selected in the previous step) and then
find the KL and JS divergences of these distributions with the corresponding Gamma
distributions generated from the parameters estimated from the region of interest (ROI).
The KL and JS divergences for each of these regions are evaluated and tabulated in Ta-
ble 4.1. The values are in sync with our assumption that the noise distribution of the
speckles categorically follows the Gamma law. The KL/JS divergence values are close
to zero for various regions extracted out of the image, which means the PDF of the ex-
tracted ROIs are closely aligned with the corresponding Gamma PDFs generated from
the parameters. Therefore one can conclude that the noise PDF follow a Gamma law.

Now the input images are considered for testing under various state-of-the-art de-
speckling filters such as the ISRAD (Sun et al., 2004) (an improved speckle reducing
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Table 4.1 KL and JS divergence for different regions shown in Figure 4.1

Region KL divergence JS divergence
Red 0.0876 0.0479
Blue 0.0324 0.0161
Green 0.0680 0.0329
Yellow 0.2848 0.1767

anisotropic diffusion), Aubert Aujol Method (Aubert and Aujol, 2008), BM3D model
for SAR images (K. Dabov and Egiazarian, 2007), PPB method (Deledalle et al., 2009)
(The PPB filter uses 7× 7 patches and 21× 21 search windows, the other details are
found in Deledalle et al. (2009)) and FANS algorithm in Cozzolino et al. (2014) (The
FANS filter uses 8×8 blocks, and 39×39 pixels search area; the remaining parameters
are set as specified in Cozzolino et al. (2014)) along with the one proposed in this work.
For doing so, the original SAR images are obtained which are corrupted by speckles.

To quantify the despeckling process there are various models discussed in the liter-
ature, among them the one proposed in Gomez et al. (2017) is being adopted. Before
venturing into the quantitative assessments, some of the common estimators used to
quality the assessments of despeckling filters used in SAR imaging literature are dis-
cussed. The first one among them is the Equal Number of Looks (ENL), which reflects
the behavior of the well-known measure: Signal to Noise Ratio (SNR). So higher the
ENL value, better the filtering is. However, unlike SNR, ENL does not demand the
presence of an original image for its computation. The ENL is defined as µ2

s
σ2

s
, where µs

and σ2
s denote the sample mean and sample variance, respectively. In other words, the

ENL is the reciprocal of the squared coefficient of variation (CoV). ENL is evaluated
for homogeneous intensity regions in test images. However, detecting homogeneous
regions in speckled images is basically challenging. The method proposed in Gomez
et al. (2017) is adopted to find the homogeneous region in a speckled neighborhood.
The sliding window size (25×25) is used for this purpose and the threshold for detect-
ing the textured regions from the difference of |ENLratio−ENLnoisy| and 1− µ̂ is set
adaptively.

Yet another measure to qualify the despeckling process is the Ratio Images (RI).
This measure directly conveys the extent of information loss while despeckling the data.
The RI measure is defined as u0n

û , technically it is the ratio of the distorted image to the
restored one û. For a multiplicative speckle noise, this measure should ideally return
only the speckle information. The phantom image (in its original form), its single-look
SAR simulation (speckled form) and two multi-look original SAR images are shown
in Figure 4.2. The ratio images for various restoration methods applied to a synthetic
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phantom image (having four different squares with four different intensity values than
its background, it simulates a single-look speckled SAR image) are shown in Figure 4.3
abreast with the corresponding restored versions. An ideal restoration process should
retain only speckles in ratio images after the filter operation. As the ratio image corre-
sponding to the proposed strategy retains more speckles and less structures compared
to the other models, it literally outperforms its counterparts in terms of this measure.
The ratio images along with the restored and original versions of two SAR (multi-look)
images are shown in Figures 4.4 and 4.5. From these ratio images and the restored ver-
sions of the input images, one can easily conclude the proposed model performs a better
despeckling and deblurring compared to the other PDE/Variational models considered
in this work. However, it may be noted that FANS algorithm performs better in the
bright scatter regions, whereas the overall performance in other (dark and light shaded)
areas favours the proposed strategy as evident from the results shown in Figures 4.3, 4.4
and 4.5. The enlarged portion of the Flevoland SAR image is shown in Figure 4.6. A
portion of the image filtered using different restoration methods considered in this work
is shown here. Among the comparative models the ISRAD is a PDE based model and
as already detailed in the experimental section of the previous chapter, the PDE based
models eventually result in low resolution images due to piecewise approximation. The
next model discussed herein is the BM3D. This model is considered to be the state of
the art model for restoring images under data-independent noise. However, its perfor-
mance is limited in data-correlated noise intervention scenarios. PPB and FANS models
are the state of the art models for speckle reduction in SAR imagery. Nevertheless, their
performance is pretty similar to non-local variational models. All these issues are con-
siderably addressed in case the proposed model wherein a Bayesian approach based on
the noise distribution is devised to improve the quality of reconstruction. These facts
are quite evident from the test results shown in Figures 4.3, 4.4 and 4.5 discussed above.

Further quantitative measures based on the first and second order statistics men-
tioned in Gomez et al. (2017) are also used for comparative study. To this end, a mea-
sure denoted using M, which captures the characteristics of both first and second order
statistic measures is used. The first order statistic measure combines the ENL and mean
estimates to quantify the quality of the remaining speckles. It is defined as

rÊNL,µ̂ =
1
2

n

∑
i=1

(
rÊNL(i)+ rµ̂(i)

)
, (4.24)
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rÊNL(i) =
|ÊNLnoisy(i)− ÊNLratio(i)|

ÊNLnoisy(i)
(4.25)

rµ̂ = |1− µ̂ratio(i)|. (4.26)

For an ideal despeckling filter this measure should yield zero. The proximity to ide-
alness of a filter under consideration is its closeness to zero in terms of this measure.
The ENL, µ̂ and standard deviation evaluated for the synthetic image (for four different
regions and the background) are tabulated in Table 4.2. A higher ENL value indicates a
better restoration, as noticeable from the table the proposed model is evaluated to have
highest ENL for all different regions considered for comparative purpose. The optimal
(maximum) values for ENL are highlighted using bold cases in the tabulated format.
This in turn highlights the restoration capability of the proposed model in compari-
son to other models considered in this work. The estimated ENL (ÊNLratio) and mean
µ̂ratio for the ratio images are close to one for the proposed method as observed for the
other methods. The second-order filter is a measure of homogeneity evaluated from the
co-occurrence matrix (p(i, j)) and defined as

h = ∑
i

∑
j

1
1+(i− j)2 p(i, j). (4.27)

Further, the authors define
δh = 100|h0− h̄g|/h0, (4.28)

where h0 and hg are the means of all values of homogeneity obtained from the original
ratio image u0 and from the result of randomly permuting all its values ug, respectively.
There are enough reasons to believe that the probability distribution of the ratio image
u is invariant under random permutations. So h literally captures the geometric infor-
mation contained in the input image, in other words, if there are no structures in u, h

will not change even after shuffling, but if u contains structures, then shuffling will tend
to destroy them . The value of δh should be minimum for an ideal structure preserving
filter.

Finally, the first and second order measures are combined to define a new statistic
M = rÊNL,µ̂ +δh. For a perfect despeckling algorithm this value should ideally be zero
and the deviation from zero indicates its magnitude of weakness in despeckling data.
The measures: rÊNL,µ̂ , δh and M are evaluated for both synthetic and real SAR images
(of two different locations: Flevoland and San Francisco) and are tabulated in Tables
4.3, 4.4 and 4.5, respectively. The performance of the proposed model in terms of the
measure δh is reflected in the tables for two different images. The optimal values for
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δh are highlighted in these tables. In similar lines, the optimal value for the statistic
M is highlighted using bold cases. From the highlighted values it is inferred that the
proposed model gives optimal (minimum) values for the statistical measure M and δh

signifying a better detail preservation and speckle alleviation from the SAR data.

The parameter values chosen for the AA method and the proposed method are given
in Table 4.6. From the experimental study, it is observed that the proposed method takes
less number of iterations to converge to the solution compared to the iterative models:
AA model and ISRAD model. On an average, AA model has taken 450 iterations and
ISRAD 470 iterations to converge, whereas the proposed model is taking only 10 it-
erations. This scenario is well explained by the fast convergence of the split-Bregman
iteration scheme in comparison to the explicit schemes. Since the other methods com-
pared here are (viz: BM3D, PPB, FANS) non-iterative models, the results regarding the
number of iterations taken by the methods to converge are not provided explicitly.

Table 4.2 Quantitative evaluation of filters for the synthetic image (simulated as single look
SAR image)

Simulated SAR data True
Simulated

(Noisy) ISRAD BM3D AA PPB FANS
Proposed
method

Background µ 0.0074 0.0071 0.0076 0.0070 0.0071 0.0083 0.0082 0.0075
s 0.0074 0.0071 0.0013 0.0007 0.0008 0.0017 0.0022 0.0020

ENL 1 1.01 30.764 27.19 27.649 29.668 13.39 46.712

Top left
square

µ 0.0014 0.0013 0.0019 0.0012 0.0014 0.0018 0.0014 0.0014
s 0.0014 0.0013 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003

ENL 1 1.01 35.379 31.548 29.55 24.722 14.691 43.976

Top right
square

µ 0.029 0.0289 0.0284 0.0276 0.0286 0.0386 0.0332 0.0313
s 0.029 0.0289 0.0062 0.0052 0.0003 0.0077 0.0082 0.0050

ENL 1 0.9967 20.922 28.022 30.784 24.649 16.375 31.627

Bottom
left square

µ 0.043 0.0426 0.0413 0.0422 0.0425 0.0594 0.050 0.0495
s 0.043 0.0426 0.0103 0.0118 0.0051 0.0120 0.0115 0.0100

ENL 1 1.0017 16.046 12.807 29.666 24.539 18.822 31.70

Bottom
right square

µ 0.058 0.0578 0.0554 0.0571 0.0575 0.0761 0.0673 0.0605
s 0.058 0.0578 0.0141 0.0238 0.0095 0.0168 0.0162 0.0145

ENL 1 1.0156 15.355 15.747 26.329 20.457 17.227 27.636
Ratio
image

ÊNLratio 1 - 1.06544 1.0433 1.0736 1.0534 1.0254 1.0058
µ̂ratio 1 - 0.9916 0.9995 0.9998 0.9789 0.9892 1.0023

In this work a level-set driven anisotropic diffusion model has been studied to re-
store SAR images which are generally corrupted with data-correlated speckles follow-
ing a Gamma law. The experimental demonstrations both visual and numerical ones
substantiate the efficient restoration capability of the studied model in comparison to
the other state-of-the-art models considered in this work (for comparative study). Both
synthetic and real images are exposed to analyze and study the behavior of the model.
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Table 4.3 Quantitative evaluation of the second order statistics for the synthetic data, com-
puted on n = 134 automatically detected homogeneous areas.

Filter h0 hg δh rÊNL,µ̂ M
ISRAD 0.64 0.63 0.9576 30.6763 63.21
BM3D 0.4677 0.4685 0.1734 7.92 12.6327
AA 0.4084 0.4072 0.3091 5.11 18.20
PPB 0.2155 0.2150 0.2428 40.03 32.15
FANS 0.1892 0.1890 0.1532 25.32 20.32
Proposed method 0.7995 0.7995 0.0040 17.6993 9.0483

Table 4.4 Quantitative evaluation of the second order statistics for the real SAR (Flevoland
Ratio image) data, computed on n = 90 automatically detected homogeneous areas.

Filter h0 hg δh rÊNL,µ̂ M
ISRAD 0.4371 0.4404 0.7425 9.3483 41.8002
BM3D 0.6417 0.6436 0.3044 5.0397 17.7406
AA 0.9999 0.9999 0.0006157 22.1969 11.1292
PPB 0.2585 0.2580 0.2231 36.8764 29.5919
FANS 0.2170 0.2168 0.0879 21.66 15.22
Proposed method 0.7995 0.7995 0.0018 17.6993 8.9419

Table 4.5 Quantitative evaluation of the second order statistics for the real SAR (San Fran-
cisco bay) data, computed on n = 45 automatically detected homogeneous areas.

Filter h0 hg δh rÊNL,µ̂ M
ISRAD 0.5780 0.5637 2.5494 158.816 81.8002
BM3D 0.7405 0.7320 1.1594 138.576 77.2602
AA 0.9999 0.9999 0.6157 122.196 75 .1292
PPB 0.2613 0.2554 2.3154 171.567 69.5505
FANS 0.2170 0.2168 0.1879 121.656 65.22
Proposed method 0.1986 0.1982 0.1670 174.950 55.8230

Table 4.6 Different parameter values used for the real test images (Phantom image and
AIRSAR image) under various restoration models.

Method Name λ ρ α β No. of Iterations
AA {0.8,0.6} {0.0001,0.001} - {250,200}
Proposed Method {0.001,0.09} {0.5,0.5} {5.8,1.8} {0.0032,0.2} {10,10}

A theoretical analysis has been carried-out to prove the existence of a minimizer of the
studied model in this work. A thorough study reveals that the studied model is stable
and provides a better restoration in light of statistical study carried-out in this work.

71



Moreover, the experimental and the theoretical study duly endorses the efficiency of
this work.
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(a)

(b) (c)

(d) (e)

Figure 4.1 (a) . Original SAR image (showing homogeneous intensity regions in different
colours); (b) . The PDF of the intensity distribution of the red coloured region fitted with
Gamma using the estimated parameters (Shape 1.0812, Size: 0.0689); (c) . The PDF of
the intensity distribution of the blue coloured region fitted with Gamma using the estimated
parameters (Shape: 2.4455 Size: 0.0826); (d) . The PDF of the intensity distribution of the
green coloured region fitted with Gamma using the estimated parameters (Shape: 2.5470
Size: 0.1138); (e) . The PDF of the intensity distribution of the yellow coloured region
fitted with Gamma using the estimated parameters (Shape: 3.2929 Size: 0.1848).
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(a) (b)

(c) (d)

Figure 4.2 (a). Original Phantom image; (b). Single look, Intensity phantom image; (c).
Intensity AIRSAR image, HH polarization, three looks; (d). Intensity AIRSAR image, HH
polarization, three looks.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 4.3 Results for the simulated single-look intensity data. (a) . The restored image by
ISRAD method; (b) . The Ratio image; (c) . The restored image by BM3D; (d) . The Ratio
image; (e) . The restored image by AA method; ( f ) . The Ratio image; (g) . The restored
image by PPB method; (h) . The Ratio image; (i) . The restored image by FANS method;
( j) . The Ratio image (k) . The restored image by proposed method; (l) . The Ratio image.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 4.4 Results for the three-look SAR (intensity) image (Flevoland SAR image). (a) .
The restored image by ISRAD method; (b) . The Ratio image; (c) . The restored image by
BM3D; (d) . The Ratio image; (e) . The restored image by AA method; ( f ) . The Ratio
image; (g) . The restored image by PPB method; (h) . The Ratio image (i) . The restored
image by FANS method; ( j) . The Ratio image; (k) . The restored image by proposed
method; (l) . The Ratio image.
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

( j) (k) (l)

Figure 4.5 Results for the simulated San Francisco bay image. (a) . The restored image by
ISRAD method; (b) . The Ratio image; (c) . The restored image by BM3D; (d) . The Ratio
image; (e) . The restored image by AA method; ( f ) . The Ratio image; (g) . The restored
image by PPB method; (h) . The Ratio image; (i) . The restored image by FANS method;
( j) . The Ratio image (k) . The restored image by proposed method; (l) . The Ratio image.
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(a) (b) (c)

(d) (e) ( f )

(g)

Figure 4.6 Results for the three-look SAR (intensity) enlarged portion of the image
(Flevoland SAR image). (a) Original Flevoland zoomed SAR image; (b) . The restored
image by ISRAD method; (c) . The restored image by BM3D; (d) . The restored image by
AA method; (e) . The restored image by PPB method; ( f ) . The restored image by FANS
method; (g) . The restored image by proposed method.
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Chapter 5

NON-LOCAL GRADIENT FIDELITY
MODEL FOR MULTIPLICATIVE GAMMA
NOISE REMOVAL

5.1 Introduction

The fundamental PDE and Variational models of image restoration have advanced very
fast in the last few decades. Starting from the basic nonlinear diffusion model by Per-
ona and Malik (1990) (PM) and total variation (TV) model by Rudin et al. (1992),
quite a few variational and PDE models were introduced for image restoration and
enhancement as minor modifications of these methods (see Weickert (1997)). Never-
theless, if we analyze these models closely, they have their own merits and issues as
discussed in Chapter 1 of the thesis. In the first place, many of these methods assume
a data-independent Gaussian distributed noise model. The degradation model assumed
in some of these works follow:

u0 = u+n, (5.1)

where u stands for the original clean image and u0 is the noisy observed image and n
is Gaussian distributed. As detailed in the Chapter 1, it makes sense to note that the
Gaussian-distributed noise assumption in these models puts a limit to their applications
as most of the real-time imaging modalities yield non-Gaussian noise distributions.

The main focus of this Chapter is to provide an elegant solution to piecewise linear
approximation problem of the second order diffusion models proposed for despeckling
images. The piecewise linear approximation results in spurious edges during the diffu-
sion process, which hinders the further analysis of the data. Though, the fourth order
diffusion models can address this issue to a considerable extent, they tend to smoothen
the data causing severe damages to the sharp edges in images.
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There are some models proposed in the literature to deal with the piecewise linear
approximation (stair-case formation) of the second order anisotropic diffusion models,
see Jidesh and Bini (2013) and Yu et al. (2011), for the details. The staircase forma-
tion is addressed using a convex combination of TV and L2 norms in Jidesh (2014),
a complex diffusion driven despeckling in Jidesh and Bini (2013) and an adaptive
p− laplacian filter in Wei and Xu (2009). Gradient fidelity based restoration is yet
another relevant method for image restoration, which considerably alleviates the linear
approximation of the second order models. The energy formulation of gradient fidelity
model proposed in Lixin and Deshen (2008) is

E(u) =
∫

Ω

λ (u−u0)
2 +α(‖∇u−∇(Gσ ∗u0)‖)2 dx dy, (5.2)

where
Gσ (x,y) =

1
2πσ2 e−(x

2+y2)/2σ2
, (5.3)

λ and α are the parameters to control the fidelity terms, Ω is the region of image sup-
port and ∗ denotes the linear convolution. It is not difficult to notice that in the constant
intensity regions, when the piecewise constant patches are formed the gradient fidelity
term tries to reduce the intensity variations by minimizing the difference norm of gra-
dient and its smoothed value, subsequently reducing the staircase formation. In Xiao
et al. (2010) the authors have plugged in the Perona and Malik (1990) and Rudin et al.
(1992) the diffusion terms along with the gradient fidelity to perform a second order
nonlinear anisotropic diffusion along with the gradient fidelity. The diffusion equation
for TV based gradient fidelity is:

ut = ∇.

(
∇u
|∇u|

)
+α(∆u−Gσ ∗∆(pλ u0)+λ (u−u0), (5.4)

where ∆u−Gσ ∗∆(pλ u0) is called curvelet shrinkage-based gradient data-fidelity term
and is designed to force the gradient of u to be close to ∆(pλ u0) the gradient estimation
and to alleviate the staircase effect. Furthermore, authors incorporate a pixel-based
controlling parameter α(x,y) (unlike the scalar value) to preserve the textured regions
more effectively. The locally adaptive gradient fidelity term helps to retain finer details
and textures by locally controlling the magnitude of diffusion.

In Liu et al. (2014) the authors proposed a novel non-convex gradient fidelity func-
tional for restoring images from their blurred observations. The model takes the follow-
ing form

min
u

{
‖u−u0‖2

L2 +λ‖ |∇u−∇u0|α−1 ~ |∇u−∇u0| ‖2
L2

}
, (5.5)
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where ‖.‖2
L2 denotes the squared L2 norm, ~ is the point-wise multiplication operator

and α ∈ [0−1] is the power of the weighing term |∇u−∇u0|. When α = 1, the model
transforms to an ordinary gradient fidelity model.

Majority of the models discussed above were designed for additive data-independent
noise. However, there are some other models introduced for restoring images corrupted
by data-dependent Gamma and Poisson noise distributions as well, see Aubert and Au-
jol (2008) and Le et al. (2007), respectively for the details. In these models the TV
regularization term is fitted along with a noise adaptive fidelity term derived based on
the Bayesian MAP estimator. As known from the literature, these TV based models
eventually settle down to constant patch approximations resulting in block effect and
moreover the textured regions are not properly preserved in the course of their evolu-
tion. Gradient vector fields were introduced in the literature to address the issues related
to the piecewise linear approximation of second order nonlinear PDE models, see Dong
and Liu (2009) and Shi (2016) for the details of the subject matter.

In this chapter a gradient fidelity based image despeckling approach is proposed for
restoring images. This approach is slightly different from the previous two approaches
proposed in Chapters 3 and 4. This model does not posses a direct energy functional
(unlike the usual variational models), rather it is designed as a PDE approach for de-
speckling the data. This model is also solved using a fast numerical scheme based on
the SB iteration, yielding a faster convergence. The main focus of this model is to de-
speckle and deblur data without forming constant patches in the restored version unlike
the usual second order PDE models. This method is tested using various kinds of im-
ages from SAR and US applications along with natural and synthetic images. Since
the method does not posses a direct functional a deep theoretical study regarding the
existence and uniqueness of the model is not performed. However, a detailed empirical
study has been carried-out regarding the performance of the model.

The remaining sections of this chapter are organized as follows. In the Section 5.2,
we introduce a non-local total variational functional coupled with non-local gradient
fidelity and noise adaptive fidelity term to restore images from Gamma distributed data-
dependent noise and linear shift-invariant blur. The Section 5.3 is dedicated for the
explanations regarding the SB formulation for the proposed model. In Section 5.4, the
experimental results and discussions are provided.

5.2 The Proposed Non-Local Gradient Fidelity Model

The first task is to determine the MAP estimator for the original image u given the
observed one u0 (see Appendix B.2 for details of the derivation). We use non-local TV
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prior in place of the prior probability p(u).

Now we design the regularization prior using the non-local total variation formu-
lation given by Gilboa and Osher (2008). The proposed Non-Local Gradient Fidelity
(NLGF) model for data-dependent Gamma noise distribution (based on Liu et al. (2014))
whose minimization functional takes the form,

min
u

{
‖∇NLu‖+λ (ln(Ku)+u0/(Ku))

+β ‖ |∇NLu−∇NLu0|α−1 ~ |∇NLu−∇NLu0| ‖2
L2

}
, (5.6)

subject to the constraint d = ∇NLu, where ∇NL denotes the non-local gradient. Now
considering an unconstrained formulation of the above problem yields

min
d,u

{
‖d‖+λ (ln(Ku)+u0/(Ku))

+β ‖ |d−∇NLu0|α−1 ~ |d−∇NLu0| ‖2
L2

+ γ‖d−∇NLu−bk‖2
L2

}
(5.7)

where bn+1 = bn + γ(dn+1−∇NLun+1) and ‖∇NLu‖ denotes the non-local total Varia-
tion norm. (see Gilboa and Osher (2008)) for further details. The detailed definition of
non-local derivatives were given in Chapter 2 of this thesis, it is being revisited here to
ensure continuity in reading.

The non-local gradient in the above expression i.e., (∇NLu)(x,y) is defined as

(∇NLu)(x,y) = (u(y)−u(x))
√

w(x,y),

(see Buades et al. (2005)) and non-local Laplacian is

∆NL(u(k)) = ∑
l∈Nk

w(k, l)(u(l)−u(k)),

where the smoothing non-local window function

w(x,y) = d(x,y)−2,

and the distance function is given by

d(u(x),u(y)) =
∫

Ω

Gσ (t)|u(x+ t)−u(y+ t)|2 dt,
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where Gσ (t) denotes the Gaussian convolved version of t with σ as the spread of the
Gaussian kernel.

5.3 Numerical Implementation of the Model

There are many techniques proposed in the literature for solving the model numeri-
cally. Starting from the basic gradient descent methods to sophisticated augmented
Lagrangian scheme (Chan et al. (2011)), Chambolle projection scheme (Chambolle
(2004)) and split-Bregman iteration scheme (Goldstein and Osher, 2009). Here we use
Split-Bregman iteration method with alternating minimization procedure to solve the
above model, as this scheme is less complex, more powerful and has a good conver-
gence rate. Now the problem

min
d,u

{
‖d‖+λ (ln(Ku)+u0/(Ku))

+β ‖ |d−∇NLu0|α−1 ~ |d−∇NLu0| ‖2
L2

+ γ‖d−∇NLu−bk‖2
L2

}
(5.8)

can be split into two parts: u-subproblem and d-subproblem. The u-subproblem is

min
u

{
λ (ln(Ku)+u0/(Ku))+ γ‖d−∇NLu−bk‖2

L2

}
. (5.9)

Taking the variation of the above sub problem in the direction of u we get

λ (K∗(Ku−u0)/(Ku)2)+ γ(divNL(d−bk)−∆NLu) = 0. (5.10)

The above expression can be solved to get u. Similarly the d-subproblem is

min
d

{
‖d‖+β‖ |d−∇NLu0|α−1 ~ |d−∇NLu0| ‖2

L2

+ γ‖d−∇NLu−bk‖2
L2

}
. (5.11)

Now taking variation along d and equating to zero gives the solution to the variable
d. Solving these two sub problems yields the optimal solution for the problem under
consideration.
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5.4 Experimental Results and Discussions

In this research work, performance of the proposed algorithm is evaluated using differ-
ent test images. Though the algorithm is tested with a large class of images, the result
is shown only for four test images. Further it is confirmed that the model works in sim-
ilar lines for other images as well. Four different types of images are used to show the
test results. A synthetic/phantom image (with constant intensity regions), a natural im-
age (homogeneous intensity regions) and two real speckles images (from US and SAR
imaging applications) are selected for demonstrating the test results of various methods
considered in this chapter. The first two images (the phantom image and the natural
image) are synthetically corrupted with Gamma distributed speckle whereas the other
two images are speckled in its original form.

The test results are shown in Figures 5.1 and 5.2 for the natural image and phantom
image, respectively, which are synthetically corrupted by the Gamma noise. Similarly,
Figure 5.3 shows the test results of the US image of a woman breast and Figure 5.4
shows the results of the SAR image acquired from Sandia National Laboratory. The
results in favour of the proposed method are shown in the last sub-figures of each figure
(i.e. Figure 5.1(h), 5.2 (h), 5.3 (g) and 5.4 (g)). The restoration capability of vari-
ous models are demonstrated in these figures. The methods used for comparison are
Aubert and Aujol (2008) model, SRAD (Yu and Acton, 2002), OSRAD (Krissian et al.,
2007), gradient-fidelity model by Liu et al. (2014). As evident from these test results
the proposed method has restored the images duly preserving the image details and
piecewise linear approximation is not as evident as in other second order models such
as Aubert and Aujol (2008) model (shown in the respective sub-figures of each figure).
The natural image is shown to demonstrate the performance of the filters in homoge-
neous intensity regions and the synthetic/phantom image is shown for demonstration of
the performance of the filters in constant intensity regions, edges and corners and the
original speckled images are meant to show the performance in real-time applications.
From these test results it is pretty obvious that the proposed strategy has categorically
demonstrated its performance in despeckling an deblurring data under these different
image characteristics.

Further the statistical measures like Peak Signal to Noise Ratio (PSNR) and mean
Structural Similarity (SSIM) index (see Wang et al. (2004)) are used for quantitatively
analyzing the noise reduction, structure and contrast preservation capability of the mod-
els under consideration. The formulation of PSNR and SSIM were given in equation
(3.15) and (3.16), respectively. The results obtained for PSNR and SSIM after restoring
with different methods are shown in Tables 5.2 and 5.3, respectively. The higher PSNR
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value indicates a better signal preservation capability. Similarly the SSIM values in
the range [0− 1] indicate the structure preservation capability of the model (the value
of the measure is 1 for the ideal case). The detailed description and definition of these
measures are given in equations (3.15) and (3.16) respectively. From the tables showing
the statistical measures, one can conclude that the proposed model outperform others
in terms of signal, structure and contrast preservation. The values of PSNR and SSIM
are higher for the proposed model compared to the other ones. The number of itera-
tions taken to converge to the desired solution by various methods are given in Table
5.1. From this table it is evident that, the proposed model converges faster under the
split-Bregman formulation compared to the other methods (using the explicit schemes).

As evident from these results (both visual and numerical) we conclude that, the
proposed model (using the gradient fidelity) performs pretty well in terms of noise
reduction and structure preservation in comparison to the other models considered for
the comparison purpose.

Table 5.1 Number of iterations taken by each method to converge to the desired solution
for various test images.

Image
name

Noisy &
Blurred image AA SRAD OSRAD NLGF

Proposed
method

Peppers 0.1,2 500 5200 450 300 80
Phantom 0.1,2 450 530 400 300 70

Woman breast
(ultrasound) 300 320 250 260 50

SAR 450 420 400 350 60

In a nut shell, the gradient fidelity model is found to be efficient in removal of speckles
and blur from various input images falling under different categories and derived from
different application domains. The effect of the gradient fidelity along with the normal
data-fidelity is duly noticeable in the test results (both visual and statistical ones).
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Table 5.2 PSNR (in dB) evaluated for various restoration methods for different images.
(The Gamma noise variance of the input image is :0.2)

Image
name

Noisy &
Blurred
image

AA SRAD OSRAD BM3D NLGF
proposed
method

Phantom 27.67 29.17 28.41 28.89 28.94 29.26 29.53
Baboon 24.2 26.5 27.1 27.5 27.8 25.3 28.2

Boat 24.3 26.2 27.2 28.1 27.6 25.4 28.9
Woman 24.6 26.4 27.1 27.8 26.25 25.8 28.2

Table 5.3 SSIM evaluated for various restoration methods for different images. (The
Gamma noise variance of the input image is :0.2)

Image
name

Noisy &
Blurred
image

AA SRAD OSRAD BM3D NLGF
proposed
method

Phantom 0.81 0.90 0.91 0.92 0.92 0.91 0.93
Baboon 0.65 0.72 0.73 0.75 0.76 0.67 0.78

Boat 0.66 0.74 0.76 0.79 0.78 0.64 0.81
Woman 0.64 0.72 0.75 0.77 0.78 0.68 0.80
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 5.1 (a). Original Phantom image; (b). Noisy and Blur (0.1 and 2 respectively)
image; (c). Restored using AA method; (d). SRAD method; (e). OSRAD method; ( f ).
BM3D method; (g) NLGF method; (h). Restored using the proposed method.
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 5.2 (a). Original peppers image; (b). Noisy and Blur (0.1 and 2 respectively) image;
(c). Restored using AA method; (d). SRAD method; (e). OSRAD method; ( f ). BM3D
method; (g) NLGF method; (h). Restored using the proposed method.
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(a) (b) (c)

(d) (e) ( f )

(g)

Figure 5.3 Original noisy ultrasound image of a woman
breast: (a). Noisy images with unknown mean and noise
variance; (b). Restored using AA method; (c). Re-
stored using SRAD method; (d). Restored using OS-
RAD method; (e). BM3D method; ( f ). NLGF method;
(g). Restored using the proposed method.
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(a) (b)

(c) (d)

(e) ( f )

(g)

Figure 5.4 SAR image from
the Sandia National Labora-
tory, restored using various
methods: (a). Noisy images
with unknown mean and noise
variance; (b). Restored us-
ing AA method; (c). SRAD
method; (d). OSRAD method;
(e). BM3D method; ( f ).
NLGF method; (g). Restored
using the proposed method.

90



Chapter 6

CONCLUSION AND FUTURE SCOPE

6.1 Concluding Remarks

In this thesis three novel methods were proposed for despeckling and deblurring images
which are corrupted with Gamma distributed speckles and linear blurring artefacts. Two
non-local variational approaches and a non-local Gradient fidelity based PDE approach
was introduced as a part of this thesis. All methods are numerically implemented us-
ing fast solvers to improve the convergence rate and reduce the parameter sensitivity.
The implementation of these model are done using Matlab R2017b (some sample codes
used for implementation are given in Appendix D). All comparative analysis are per-
formed using an Intel Core i7-6700 processor with 16GB DDRAM with a graphic card
configuration: 4GB NVIDIA 940MX.

The first variational approach (discussed in Chapter 3) is based on the non-local
total bounded variation was designed to handle speckles in US images. Since US im-
ages contains numerous fine details, despeckling them usually results in smoothened
structures, which eventually results in improper diagnosis of the data. This has been ad-
dressed effectively by using non-local TBV regularization approach which eventually
preserve the details in the course of its evolution. The model is defined in the space of
bounded variation where the total variation is bounded, leading to a stable solution. The
condition for existence of a unique solution is analysed. The problem has a unique solu-
tion under the conditions mentioned in Appendix B.1 as the functional becomes convex
in the strict sense, under the conditions. The parameter sensitivity has been reduced and
the convergence rate has been improved in the model by employing the SB scheme. An
adaptive choice of the parameter makes the model more generic.

In the fourth chapter, another variational approach has been proposed for despeck-
ling SAR imagery. The SAR images contain various constant intensity regions sepa-
rated by well defined edges. Therefore, the usual despeckling models distorts the edge
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information during their evolution. Moreover, the constant patches formed by the piece-
wise linear approximation yields spurious regions severely hindering the analysis phase.
These issues were duly addressed in this Chapter, where a despeckling and deblurring
model has been designed to restore the SAR images from their speckled observations.
The level-set formulation using the modified Mumford-Shah and Ambrosio Torterelli
formulation evolves the level curves and stop their evolution at the edge points. The
functional of the level-set contains a smoothing term and an edge-detection term. The
smoothing term controls the magnitude of diffusion and the edge-detection term acts
as a stopping condition. The curves evolve within the image unlike the segmentation
algorithms (wherein the curves evolve in a separate image). The curve evolution even-
tually removes speckles in the data without affecting the edge features. Since the model
is anisotropic in nature it tends to smoothen the data along the edges but not across it
(as component normal to the level-curve in this model is negligible). Though, it can
preserve the edges pretty well compared to the other despeckling models including the
one presented in the first chapter, it performs slightly on the lower side in terms of the
preservation of image details. This is very well explained by the behavior of level-set
models which tends to smoothen the structures during the evolution of the level-curves.

Finally, a gradient fidelity model has been proposed in Chapter 5. This can work
with both SAR and US images however, since the model is non-convex, the solution
is not globally optimal. The model may converge to sub optimal solution (for an ap-
propriately chosen time-step) in the course of its evolution however, adopting the SB
scheme can reduce the effect of the time-step on the convergence rate of the model.
Nevertheless, the model has been observed to perform well for various input images
from different application domains. Though it removes speckles from various kinds
of images, it works slightly on the lower side compared to the two methods discussed
above in case of US and SAR imagery. As observed from the literature the level-set
methods identify and preserve the edges better compared to the anisotropic methods
and moreover, the smoothing happens along the level curve, which could reduce the
noise along the edges. Secondly, the first variational model has better noise adaptability
and detail preservation capability compared to the other models due to the presence of
non-local TBV as the regularization prior. Since each model is defined for a particular
task, the cross comparison of the proposed models is not done explicitly.

6.1.1 Comparative analysis of the proposed models

A cross comparison between the proposed models has been performed in this section.
Three models have been proposed as a part of this thesis work. The first two models
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are based on the variational framework and the last one is a gradient fidelity model.
The first two models are derived using the Bayesian framework considering the noise
distribution as Gamma. Here the models tune their data fidelity aspects based on the
assumption of the noise distribution. Therefore, they are more efficient in restoring
speckles with Gamma distribution. Among these variational models, one uses a total
bounded variation to regularize and it is more effective in restoring speckled images
compared to the rest of the models. This fact can be verified from the visual representa-
tions of various test results. The switching of norms in total bounded variation makes it
more robust. However, the model based on level-set formulation yields a stable solution
which converges at a higher rate under a split-Bregman iterative scheme. The gradient
fidelity model mainly addressed the issue due to piecewise linear approximation of non-
linear PDE and L1 regularization models. The results shown in Figure 6.1 demonstrates
the performance of various models proposed in this thesis. From visual analysis one
can observe the facts stated above.

The models are statistically verified using PSNR and SSIM in tables 6.1,6.2, respec-
tively. The variational model using total bounded variation is observed to outperform
the other models in terms of these measures. The level set model performs slightly in-
ferior to the earlier model. Finally, the gradient fidelity model performs slightly inferior
to the other two models due to the reasons stated in the experimental section of Chapter
5.

Table 6.1 PSNR (Blurring kernel size and noise variance: 2, 0.1, respectively) evaluated
for different images using proposed restoration models.

Image
name

Noisy&
Blurred
image

NLGF method Level-set method NLTBV method

Lena 25.83 26.65 27.14 27.89
Satellite 25.26 25.68 25.56 26.97

Synthetic 19.42 22.68 22.69 22.96

Table 6.2 SSIM (Blurring kernel size and noise variance: 2, 0.1, respectively) evaluated for
different images using proposed restoration models.

Image
name

Noisy&
Blurred
image

NLGF method Level-set method NLTBV method

Lena 0.60 0.76 0.77 0.78
Satellite 0.85 0.89 0.90 0.91

Synthetic 0.49 0.81 0.82 0.83
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(a) (b) (c)

(d) (e)

Figure 6.1 Images [(a) Lena (b) Noisy and blurred image (c) The restored image by NLGF
method (d) The restored image by speckle reducing Level-set method (e)The restored image
by NLTBV method

6.2 Future Research Directions

Even though, we had proposed three fast and efficient algorithms for despeckling and
deblurring the data, further improvisations are possible in terms of computational speed
or reducing the cost, using the other comparable schemes such as projections meth-
ods. Projection methods have taken a step forward in comparison to the existing fast
solvers. It is possible to reformulate the problems under a projection framework to im-
prove the computational speed. Moreover, as already pointed out earlier in this thesis,
restoration is an approximation problem which is inverse and ill-posed in nature, so it
is always possible to improve the approximation in terms of the regularization and the
data fidelity. Therefore, improvement in terms of accuracy is still open for exploration.
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Appendix A

A.1 Ultrasound Images

An US or ultrasonography is a medical imaging technique which uses high frequency
sound waves to capture live images of organs within the human body. Similar technol-
ogy is being used by radars and sonars, which are primarily used in the defense appli-
cations to detect ships and aeroplanes. An US imaging technique allows doctors to see
problems of internal organs of a human body, blood vessels, tissues, size, structure and
injuries without actually making an incision. The US imaging has been extensively used
for the last two decades in medical imaging applications and it has a remarkable safety
record (Chan and Perlas, 2011). The US imaging is based on non-ionizing radiation,
hence it is less hazardous to the humans compared to x-rays. Further, it is inexpensive
compared to the other imaging systems and can fetch real-time data (because of live
screening) from the subject.

A.1.1 Ultrasound Image Formation

Ultrasound imaging technique uses sound waves in the range of 1-20 MHz, however
lower frequency waves (2-5 MHz) are used for imaging deeper structures as they have
more penetration capacity (Chan and Perlas, 2011). A transducer (hand-held probe) is
used for transmitting sound waves into patient’s body, which gets in contact with the
body through a gel. While passing through the human tissue US waves gets partly trans-
mitted, reflected, scattered or transformed into heat based on the tissue property (Chan
and Perlas, 2011). The echos reflected back to the transducer gets recorded and further
processed by the scanner to form the final gray-scale image called ultrasonogram. If
US wave hits a surface smaller than its wavelength, or rough it gets scattered (Chan
and Perlas, 2011). The waves after scattering will be of random phase and their super-
position will lead to dark and bright spots in images called speckles, refer Forouzanfar
and Abrishami-Moghaddam (2010) for the details. Formation of this noise will be
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more in liver and kidney images due to the small underlying structures compared to the
wavelength. Presence of speckle noise degrades the image quality and as its result, the
disease diagnosis becomes practically tedious.

There are many situations where US is preferred over the other imaging modalities.
For instance, obstetric sonography used during pregnancy to check on the developing
baby or determining the due date etc. is an US technique. A pictorial representation of
this technique is shown in Figure A.1. In the US and SAR imaging, the intensity of the
resultant image is formulated as a product of reflectance of the sound and speckle i.e.,
(u0 = u×n) therefore, the speckles in US imagery are multiplicative in nature.

Figure A.1 Ultrasound image of a growing fetus inside a mother’s uterus.

A.1.2 The Parts of an Ultrasound Machine

A basic US machine has the following parts:
Transducer Probe:- The transducer probe is the main part of the US machine. The
transducer probe makes and sends the sound waves and receives the echoes. The trans-
ducer probe generates and receives sound waves using a principle called the piezoelec-
tric (pressure electricity) effect.
Central processing unit (CPU):- Computer that does all of the calculations and con-
tains the electrical power supplies for itself and transducer probe.
Transducer pulse control:-Changes the amplitude, frequency and duration of the pulses
emitted from the transducer probe.
Display:- Display the image from the US data processed by the CPU.
Keyboard/cursor:- Inputs data and takes measurements from the display.

96



Disk storage device:- Stores the acquires images.
Printer:-Prints the image from the displayed data.
The parts of US machine are shown in Figure A.2. The image formation in an US sys-
tem is demonstrated in this figure. As the sound signals transmitted by the transducer
undergoes partial scattering, the reflected waves captured through the echoes are gener-
ally out-of phase and suffer from scattering issues like speckles, as pointed out earlier.

Figure A.2 The parts of an ultrasound machine.

US imaging has become a popular medical imaging technique over the last few
years. US imaging can be employed in all medical imaging application. In particular,
since US imaging is a low-risk and a painless application, it can be used in sensitive
areas, such as in prenatal care or examination of the obstetrics, gynecology, urology
(urinary), nephrology (kidneys), cardiology (heart) etc.
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A.2 Synthetic Aperture Radar Images

Radio Detection and Ranging, popularly known as RADAR has been widely used in
various domains such as military, oceanography, meteorology etc. for monitoring,
imaging, detecting and positioning events, objects or scenes. A RADAR system has
mainly five components which include a transmitter, switch, antenna, receiver and
recorder (Chan and Koo, 2008). Figure A.3 shows the basic block diagram of a radar
system. The transmitter generates electromagnetic signals and switch controls the an-
tenna and switches it between transmitting and receiving signals. The antenna either
sends electromagnetic signals for imaging or receives the reflected signals. The receiver
processes echo signals and the recorder records or stores the data for later processing
(Kuttikkad and Chellappa, 2000). The amount of details a radar system can resolve
gets affected by its antenna size. In a real array imaging radar, antenna produces a fan
beam and here beam width and pulse length determines the resolution. SAR comes un-
der RADAR based systems but it gives finer resolution than the typical beam scanning
radars as it uses a moving radar antenna. SAR is mainly used for imaging objects or
landscapes and it generally gives the two dimensional(2D) or three-dimensional map-
ping of the scene. Figure A.4 shows a 2D-SAR image released by European Remote
Sensing (ERS) satellite. Compared to the optical sensors that work in the visible or
infrared band, SAR images provide different information about the imaging area which
includes surface roughness, geometric structure, orientation, moisture content etc. The
electro-optical cameras are only capable of day-light imaging whereas a SAR system
used in appropriate frequency with its own source of illumination can form the images
at any time and any weather conditions (Chan and Koo, 2008; Kuttikkad and Chellappa,
2000). The electromagnetic waves transmitted from the SAR system will be always in
phase and their interaction with the surroundings will be very less. However, after hit-
ting the target the waves reflected back will never be in phase due to several reasons,
like bounce scattering of some waves due to roughness, the difference in distance the
waves travel etc. According to Hervet et al. (1998), the movement of the synthesized
antenna can also cause the signal to go out of phase (Goodman, 1976). The construc-
tive and destructive interference of these out of phase waves produces the granular noise
called speckle and hence the SAR image fails to have a constant mean radiometric level
in homogeneous areas (Bruniquel and Lopes, 1997).

Speckle noise in Radar images has a standard deviation linearly related to the mean
and is often modeled as a multiplicative process. This means that, for a higher strength
of the signal the noise variance also will be higher. As a result, more speckle noise is
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Figure A.3 Basic Block Diagram of Radar System

Figure A.4 ERS Satellite SAR image

commonly present near brighter pixel areas (North and Yu, 2001). According to Hervet
et al. (1998), the statistics of the speckle noise are well known. The noise of single-
look SAR amplitude imagery often has a Rayleigh distribution, whereas a multi-look
SAR imagery usually follows a gamma distribution, assuming the looks are independent
(Lee, 1980).

A radar sends a coherent wave, which reflects on the ground and then gets regis-
tered by the radar sensor (Tuthill et al., 1988). When the coherent wave gets reflected

99



on a coarse surface (compared to the radar wavelength), then the image processed by
the system is degraded by a large amplitude noisy signal, this gives a speckled aspect
to the image and this is the reason such a noise is called speckle, refer (Jidesh, 2014)
for further details. Since speckle is a multiplicative data dependent noise, the noise dis-
tribution varies with reference to the intensity characteristics of the image. In (Tuthill
et al., 1988), the authors analyzed that, when the scatter density (the number of scatters
per resolution cell) is more than 10, this speckle noise follows a Rayleigh distribution.
However, in satellite images the final image is obtained by adding n images with in-
dependent intensity distributions and a common mean, hence the intensity follows a
Gamma law and therefore the speckle noise is also assumed to follow a Gamma law
with mean equals to one, refer (Aubert and Aujol, 2008) for further details. While
denoising, distribution of noise also needs to be considered to perform a meaningful
restoration and the distribution varies with the imaging techniques used.

The presence of speckle may decrease the utility of SAR imagery by reducing the
ability to detect ground targets and obscuring the recognition of spatial patterns (Sheng
and Xia, 1996). Consequently, it not only complicates the visual image interpretation
but also makes automated digital image classification a difficult problem. Therefore,
speckle noise in radar data must often be reduced before the data can be used for further
analysis or information extraction. Several despeckling filters have been proposed in
order to remove multiplicative speckle noise. In general, no filter consistently outper-
forms all the others. Each filter has its unique strengths and limitations.

A.2.1 Applications of the Synthetic Aperture Radar Imaging Sys-
tems

The applications of SAR imaging are increasing day by day due to the advent of new
technologies. The major areas, where this imaging technique used are highlighted be-
low:

• Moving target indication.

• Reconnaissance, Surveillance, and Targeting.

• Environmental monitoring.
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Appendix B

In this section the existence and uniqueness of the solution (of the functional given in
(3.3)), the derivation of its MAP estimator, MLE of the noise parameters, evaluation of
the regularization parameter and the convergence of the solution are being analyzed.

B.1 Theoretical Analysis of the Model

This section provides the required mathematical preliminaries to prove the existence
and uniqueness of the given restoration model. The following definition, propositions
and theorem are extracted (and modified to suit the proposed model) from Liu and
Huang (2010) and Liu and Huang (2012) and presented here for completeness of the
work. Consider the proposed total bounded variation model for image restoration

min
u∈S(Ω)

∫
Ω

|∇NLu|+ β

2
‖u‖2

L2 +λ

∫
Ω

(
ln(Ku)+

u0

Ku

)
dx (B.1)

where S(Ω) = {u ∈ BV(Ω), u > 0}, Ω ⊆ RN is a bounded open subset with Lips-
chitzian boundary, λ > 0, β ≥ 0 are the given parameters and K∈L (L2(Ω)∩BV(Ω)).
Note that L2(Ω) denotes the space of all square-integrable functions and L is an inter-
section of L2 and BV spaces. Assume that K is a bounded linear blur operator, subject
to K.1 6= 0, u0 > 0 and bounded. According to Giusti (1984) we have BV(Ω)⊂ L2(Ω).
Thus, the space: BV(Ω), equipped with the full norm |∇NLu|1 + β

2 ‖u‖
2
L2 is also a Ba-

nach space (a complete space with respect to the norm)..

Definition B.1.1. Let Ω ⊆ RN be a open bounded domain. Let u ∈ L1
loc(Ω). Then the

total variation of u follows the definition:

∫
Ω

|∇u|= sup
ξ∈C1

c (Ω,RN)

(∫
Ω

u(x)divξ (x)dx : |ξ (x)|L+∞ ≤ 1,∀x ∈Ω

)
, (B.2)
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where L∞ is the infinity/supremum norm and C1
c denotes smooth (continuous) functions

with compact support.

Proposition B.1.1. (Lower semicontinuity): Suppose that {un}∞
n=1 ⊂ BV(Ω) and u ∈

L1(Ω) (the space of absolute-integrable functions) is such that un→ u in L1(Ω), then∫
Ω

|∇u|dx≤ lim
n→∞

inf
∫

Ω

|∇un|dx,

Proposition B.1.2. If u ∈ BV(Ω) then there exists a minimizing sequence {un}∞
n=1 ⊂

BV(Ω) such that
lim
n→∞
|un−u|L1(Ω) = 0,

and
lim
n→∞

∫
Ω

|∇un|dx =
∫

Ω

|∇u|dx.

At this stage we can present the existence and uniqueness of the optimization prob-
lem in (B.1).

B.1.1 Existence and Uniqueness

In this section, it is shown that there exists a solution for the problem (B.1) and it is
unique.

Theorem B.1.1. Let u0 be in L∞(Ω) with infΩ u0 > 0; then problem (B.1) has at least

one solution u in BV(Ω). If K is injective, then the solution is unique such that 0 < u <

2u0, satisfying

0 < inf
Ω

u0 ≤ u≤ sup
Ω

u0 (B.3)

We note that sup and in f are the supremum and the infimum of the set.

Proof. Now let us denote infu0 by α and supu0 by β . Let us consider a minimizing
sequence (un) ∈ S(Ω) for problem (B.1). Let us consider that J(u) =

∫
Ω
|∇NLu|, thus

the proposed minimization problems takes the form

E(u) = J(u)+
β

2
‖u‖2

L2 +λ

∫
Ω

(
ln(Ku)+

u0

Ku

)
(B.4)

Now the proof is split into two parts to make it more clear.
Part 1. First show that we can assume without restriction that α ≤ un ≤ β . Then
remark that x 7→ ln(x)+ u0

x is decreasing if x ∈ (0,u0) and increasing if x ∈ (u0,+∞).
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Therefore, if M≥ u0, one always has(
ln(min(Kx,M))+

u0

min(Kx,M)

)
≤
(

ln(Kx)+
u0

Kx

)
(B.5)

let M = β = supu0, then find(
ln(inf(Ku,β ))+

u0

inf(Ku,β )

)
≤
(

ln(Ku)+
u0

Ku

)
(B.6)

Moreover, according to (see Lemma 1 in section 4.3 of Kornprobst et al. (1999), for
instance)

J(inf(u,β ))≤ J(u)

and
inf(u,β )≤ u

thus deduce that
E(inf(u,β ))≤ E(u)

similarly E(sup(u,α))≤ E(u) , where α = infu0.

Part 2: From the above proof, one can assume that α ≤ un ≤ β . This implies in
particular that un is bounded in L1(Ω).

By the definition of (un), the sequence E(un) is bounded, i.e., there exists a constant C

such that
J(un)+

β

2
‖un‖2

L2 +λ

∫
Ω

(
ln(Kun)+

u0

Kun

)
≤C.

Moreover
∫

Ω

(
ln(Kun)+

u0
Kun

)
dx reaches its minimum value

∫
Ω
(1+ ln(Ku0))dx when

Ku0 = Kun, so it can be concluded that un is bounded in BV(Ω). Considering that K ∈
L (BV(Ω)) and the boundedness of ‖∇u‖1, one can deduce that {un}∞

n=1 is a bounded
sequence in BVΩ). By the Rellich- Kondrachov compactness theorem, the sequence
{un}∞

n=1 is precompact in L1(Ω). Therefore, there exists a function u satisfying un→ u
a.e.. The function appears as convex and coercive in BV(Ω). Necessarily, we have
0≤ α ≤ u≤ β and following Fatous lemma and the lower semi-continuity of the total
variation, we obtain that u is a solution of the problem in (B.1).

Next let us prove the uniqueness of the solution. Let g(u) =
∫

Ω

(
ln(u)+ u0

u
)

dx with
u = Ku. For the given u0 > 0, we have g′(u) = 1

u−
u0
u2 =

u−u0
u2 and g′′(u) = −1

u2 + 2u0
u3 =

2u0−u
u3 . It can be deduced that if 0 < u < 2u0, then g(u) is a strictly convex functional,

implying the uniqueness of a minimizer.
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B.2 Derivation of the MAP Estimator

The speckle noise n follows a Gamma law and the PDF is

g(n) =
LL

Γ(L)
nL−1e−Ln1{n≥ 0}, (B.7)

where L stands for the number of images available for averaging purpose and Γ de-
notes the Gamma function in its usual sense. In satellite imaging sense, high resolution
images are formed by averaging many slices after proper registration. Nevertheless,
the value of L is 1 when dealing with a single image. To denoise Gamma noise cor-
rupted image, Aubert and Aujol (2008) proposed a modified Total variation model us-
ing Bayesian MAP estimator. The MAP estimator is extracted from Aubert and Aujol
(2008) and given here for completeness. Adopting Bayes rule: Assume U and N are
independent variables, with continuous density functions gU and gN , respectively. De-
note by U0 = UN (for a multiplicative noise set-up). Then for u > 0:

gN

(u0

u

) 1
u
= gU0|U(u0|u). (B.8)

Let us assume that n follows a gamma law with mean one, and with density function
gu(.), then

gN(n) =
LL

Γ(L)
nL−1e−Ln1{n≥ 0}, (B.9)

deriving the basic concepts from the Bayesian conditional probability we arrive at:

gU0|U(u0|u)) =
LL

uLΓ(L)
uL−1

0 e(−Lu0)/u. (B.10)

Also assume that u follows a Gibbs prior:

gU(u) =
1
Z

exp(−λφ(u)), (B.11)

where Z is a normalizing constant and φ a non negative function. From Bayes rule, we
have P(U|U0) =

P(U0|U)P(U)
P(U0)

. Further, maximizing P(U|U0) amounts to minimizing the
negative log-likelihood which implies:

min
U
{− ln(P(U|U0))}= min

U
{− ln(P(U0|U))− ln(P(U))+ ln(P(U0))} . (B.12)

Assume that the samples of the noise on each pixel x ∈ S (S is a discrete image domain)
are mutually independent and identically distributed with density gN. Therefore we

104



have:
P(U0|U) = ∏

s∈S
P(U0(s)|U(s)). (B.13)

Since ln(P(U0)) is a constant just need to minimize the rest of the terms in B.12. Us-
ing B.9 and since Z is a constant and eventually see that minimizing −log(P(U0|U))

amounts to minimizing:

min
U

{
−∑

s∈S

((
L(lnU(s)+

U0(s)
U(s)

)
+λφ(U(s))

)}
. (B.14)

The previous computation leads to propose the following functional (in the continuous
domain) for restoring images corrupted with gamma noise (here assume that the image
u0 to be a linear blurred and speckled version i.e u0 = Kun where K is a blurring
operator 1: ∫

Ω

(
ln(Ku)+

u0

Ku

)
dxdy+

λ

L

∫
Ω

φ(u)dxdy. (B.15)

Now replacing the Gibbs prior with NLTBV prior i.e.,φ(u) = (|∇NLu|+ β

2 ‖u‖
2
L2) the

above expression forms (assuming L = 1). So the corresponding energy minimization
problem is given as follows:

min
u

{
E(u) =

∫
Ω

λ

(
|∇NLu|+ β

2
‖u‖2

L2

)
dxdy+

∫
Ω

(
ln(Ku)+

u0

Ku

)
dxdy

}
. (B.16)

B.3 MLE of Noise Parameters

The PDF of a Gamma distribution of a random variable x ∈ (0,∞) with parameters
shape k > 0 and scale θ > 0 is given as (an additional parameter β is introduced for
making the derivations simple). By setting β = 1 one can get the PDF of the Gamma
distribution.

p(x|k,θ) = βxβk−1

Γ(k)θ βk
e−(

x
θ
)β

. (B.17)

The mean and variance of the distribution are evaluated as µ = kθ and σ2 = kθ 2, re-
spectively. The mean and variance of the distribution are set as 1 and 1/k respectively
for the synthetic noisy data and it is evaluated from a homogeneous intensity region
using MLE for original noisy data (where these parameters are not known a priori).
Now considering x to be x1,x2, ....xn, n independent identically distributed (i.i.d) data.

1Here we note that in U and U0 (the randorm variables) are substituted with the original u and ob-
served u0, images respectively and further the indices are dropped hereafter to avoid confusion in the
notation.
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Further, from the literature one can know that optimizing a function is equivalent to
optimizing its log likelihood. So let us rewrite the above problem in terms of its log
likelihood.

ln p(xi|k,θ) =−(lnΓ(k))−βk ln(θ)+ ln(β )+
1
n

n

∑
i=1

(
(βk−1) ln(xi)−

(xi

θ

)β
)
.

(B.18)
Now the parameters can be evaluated by optimizing the function with respect to these
parameters. Now maximizing the log likelihood (with reference to the parameters) gives
the MLE i.e.

max
k,θ

ln p(xi|k,θ) = max
k,θ ,β
{−(ln(Γ(k)))−βk ln(θ)+ ln(β )}

+max
k,θ ,β

{
1
n

n

∑
i=1

(
(βk−1) ln(xi)−

(xi

θ

)β
)}

, (B.19)

Since the function above is assumed as concave (with respect to the variables) it is
possible to take a derivative w.r.t θ , β and k to get two simultaneous equations solv-
ing which leads to the estimation of parameters under consideration. Now taking the
derivative w.r.t. θ gives

1
n

n

∑
i=1

xi

θ
= k, (B.20)

or
θ =

∑
n
i=1 xi

nk
. (B.21)

Now taking the derivative of the above expression w.r.t. β and k gives

0 =
1
β
+

k
n

n

∑
i=0

ln
(xi

α

)
− 1

n

n

∑
i=0

ln
(xi

α

)(xi

α

)β

(B.22)

and

0 =−β ln(α)− Γ
′
(k)

Γ(k)
+

β

n

n

∑
i=0

ln(xi), (B.23)

respectively. Now substituting the value of θ in equation(B.21), gives

k =
n∑xβ

i

nβ ∑xβ

i ln(xi)−β ∑ ln(xi)∑xβ

i

. (B.24)

106



Further setting β = 1 (as the distribution is Gamma) gives the estimate for k and then
denote it by k̂ i.e.

k̂ =
n∑xi

n∑xi ln(xi)−∑ ln(xi)∑xi
. (B.25)

Substituting the value of k in equation(B.21) yields the estimate for the parameter θ ,

θ̂ =
1
n2 (n∑xi ln(xi)−∑ ln(xi)∑xi). (B.26)

The unbiased estimators for θ and 1/k are defined as:

θ =
n

n−1
θ̂ , (B.27)

and
k−1 =

n
n−1

1
k̂
, (B.28)

therefore,
θ =

n
n−1

1
n2

(
n∑xi ln(xi)−∑ ln(xi)∑xi

)
, (B.29)

and
k−1 =

n
n−1

(n∑xi ln(xi)−∑ ln(xi)∑xi)

n∑xi
. (B.30)

B.4 Evaluation and Update of λ

The parameter λ is evaluated adaptively in each iteration. The noise model of our
assumption is

u0 = Kun (B.31)

=⇒ n =
u0

Ku
,

assuming a unit mean for the multiplicative Gamma noise we get,

(n−1)2 =
( u0

Ku
−1
)2

,

now integrating both sides yields:

1
|Ω|

∫
Ω

(n−1)2dxdy =
1
|Ω|

∫
Ω

( u0

Ku
−1
)2

dxdy,

1
|Ω|
∫

Ω
(n−1)2dxdy defines the noise variance σ2, i.e.

σ
2 = |Ω|

‖u0−Ku‖2
L2

‖Ku‖2
L2

,
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now the parameter λ can be defined in terms of σ2 (here |Ω| stands for total number of
pixels in the area of image support Ω) as,

λi+1 = λi
‖u0−Ku‖2

L2

σ2‖Ku‖2
L2

, (B.32)

where λ0 is initialized as 1
σ2 . The parameter λ is a function of noise variance and when

‖Ku‖2
L2

‖u0−Ku‖2
L2

approaches σ2 the parameter λ converges. The noise variance is evaluated

using the MLE as described in Section B.3 for real noisy data.

B.5 Convergence Analysis

Here a notion of converge is provided using the experimental results. Readers are in-
vited to refer Jia et al. (2009) for detailed analysis of the convergence of a similar
variational set-up. As already discussed earlier, the minimization problem

min
u

E(u) subject u0 = Kun, (B.33)

has a unique solution û. Then one can possibility conclude that, the sequence of iterates
(un) converges to the solution û (i.e. limn→∞ un = û) provided limn→∞(un−un−1) = 0,
as the sequence is proved to be bounded in the BV space. This can be easily verified
using the plot given in Figure 3.9, i.e. as n increases the relative absolute difference:
‖un+1−un‖
‖un+1‖ tends to zero. This gives a notion of convergence.
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Appendix C

In this Appendix the condition for the existence of a unique solution of the functional
in (4.6) is being analyzed.

C.1 Existence of a Unique Solution

Consider the MS functional below:

inf
u

F(u) = β

∫
Ω\Su

(
ln(Ku)+

u0

Ku

)
dx dy+

∫
Ω\Su

α|∇u|2dx dy+H d-1(Su)

 . (C.1)

In order to show that (C.1) has a solution, the notion of Special functions of Bounded
Variation (SBV) and the following important lemma due to Ambrosio Ambrosio (1988)
are necessary. These definitions and lemma are extracted from Ambrosio (1988); Bar
et al. (2011); Ambrosio et al. (2000) and provided here to ensure completeness of the
work and to improve the readability of the text.

Definition C.1.1. (SBV) A function u ∈ L1(Ω) is a special function of bounded varia-
tion on Ω if its distributional derivative can be written as

Du = ∇u dx+(u+−u−)~NuH
d-1|Su (C.2)

such that ∇u∈L1(Ω), Su is of finite Hausdorff measure, (u+−u−)~NuχSu ∈L1(Ω,H d−1|Su,Rd),
where u+ and u− are the traces of u on each side of the jump part Su, and ~Nu is the
unit normal to Su. The space of spacial functions of bounded variation is denoted by
SBV(Ω).

Lemma C.1.1. Let un ∈ SBV(Ω) be a sequence of functions such that there exists a

constant C > 0 with |un(x)| ≤C < ∞ a.e. x ∈Ω and
∫
Ω

|∇un|2dx+H d-1(Sun)≤C. Then

there exists a subsequence unk converging a.e to a function u ∈ SBV(Ω). Moreover,
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∇unk converges weakly in L2(Ω)d to ∇u, and

H d-1(Su)≤ lim
nk→∞

infH d-1(Sunk
) (C.3)

Theorem C.1.2. Let u0 ∈ L∞(Ω) with Ω⊂Rd be open, bounded and connected. There

is a minimizer u ∈ SBV(Ω)∩L∞(Ω) of

F(u) = β

∫
Ω\Su

(
ln(Ku)+

u0

Ku

)
dx dy+

∫
Ω\Su

α|∇u|2dx dy+H d-1(Su)

Proof:

We notice that 0≤ inf
SBV(Ω)∩L∞(Ω)

F < ∞ because we can take u0 = 0 ∈ SBV(Ω)∩L∞(Ω)

(initial image) and using the fact that u0 ∈ L∞(Ω)⊂ L2(Ω), F(u0)< ∞. Thus, there is
a minimizing sequence un ∈ SBV(Ω)∩L∞(Ω) (un denotes the image at nth iteration)
satisfying lim

n→∞
F(un) = infF . We also notice that, by the truncation argument from

before, we can assume that ‖un‖∞≤‖u0‖∞ < ∞. Since F(un)≤C < ∞ for all n≥ 0 and
using u0 ∈ L∞(Ω)⊂ L2(Ω), we deduce that ‖un‖2≤C and

∫
Ω\Sun

|∇un|2dx+H d-1|Sun
<

C for some positive real constant C. Using these and Ambrosio compactness result,
it can be deduced that there is a subsequence unk of un, and u ∈ SBV(Ω), such that
unk → u in L2(Ω), ∇unk → ∇u in L2(Ω)d. Therefore, F(u) ≤ liminf

nk→∞
F(unk) = infF ,

and it can be also deduced that ‖u‖∞ ≤ ‖u0‖∞.

C.1.1 Ambrosio Tortorelli Approximations

LetX = L2(Ω)2 then the AT proposed a sequence of elliptic functionals to approximate
the MS functional, the modified version of AT approximation for the proposed model
(speckled distribution) is:

Aσ (u,v) =


∫
Ω

{
λ
(
ln(Ku)+ u0

Ku
)
+σ |∇v|2 +α

(
v2|∇u|2 + (v−1)2

4ασ

)}
dx dy,

if (u,v) ∈W 1,2(Ω)2, 0≤ v≤ 1

+∞ otherwise

(C.4)

the limiting Mumford-Shah functional is,

F(u,v)=


∫

Ω

(
λ
(
ln(Ku)+ u0

Ku
)
+α|∇u|2

)
dx+H d−1(Su) if u ∈ SBV(Ω), v = 1,

+∞ otherwise.
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The following theorem is due to Ambrosio and Tortorelli (1990) and Ambrosio and
Tortorelli (1992) and is replicated here for continuity in reading.

Theorem C.1.3. Aσ Γ- convergence to F as σ → 0 in L2(Ω). Moreover, Aσ admits a

minimizer (uσ ,vσ ) such that up to subsequence, uσ converges to some u ∈ SBV(Ω) a

minimizer of F(u,1) and infAσ (uσ ,vσ )→ F(u,1).

Proof: See proof of Theorem 4 in (Bar et al., 2011) for the details.
From the above theorem we can conclude the existence of a minimizer for the proposed
functional in (4.5).

111





Appendix D

A sample matlab code for the implementation of NLTV regularization with Augmented
Lagrangian is shown in this section.

D.1 Sample code of Augmented Lagrangian for Non-local Total Vari-
ation

function split_breg_Nonlocal()

img=mat2gray(imread(’cameraman.tif’)); %input image

% img=mat2gray(imread(’/home/balaji/lena.png’));%input image

[n,m]=size(img);

N=n*m;

img=double(img);

figure(1), imshow(img,[]) %Dispaly original image

nv=0.1; %noise Variance

noise = (gamrnd(1/nv^2, nv^2,size(img)));

img=double(img).*noise; %noisy image

figure(2), imshow(img,[]); %display noisy image

img=log(img);

u=img(:); f=img(:);

ws=5;ps=3;ms=10;binary=false;h=15;sigma2=3.0;weight_thres=0;

W=weights_nonlocal(img,ws,ps,ms,binary,sigma2,h,weight_thres);

prev_u=zeros(n,m);

b=sparse(N,N);

v=sparse(N,N);

conv=1; lam=.5; beta=.09; tol=1e-4;

iter=0;

while iter<2

u1=(lam*f+beta*W*u-beta*nonlocal_divergence(W,v-b));
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u2=(lam + beta*sum(W,2));

u=u1./u2;

del_u=nonlocal_gradient(W,u);

v=shrink2(del_u+b , beta);

b=b+del_u-v;

x=reshape(u,n,m);

iter=iter+1;

end

x=reshape(u,n,m);

x=exp(x);

figure(3), imshow(x,[]);

end

%..............................................................

function x=shrink2(del_ub,beta)

st=sign(del_ub);

ft=abs(del_ub);

ft(ft>0)=ft(ft>0)-beta;

ft(ft<0)=0;

x=ft.*st;

end

%...................................................................

function W=weights_nonlocal(f,ws,ps,ms,binary,sigma,h,weight_thres)

%function to construct non-local weight matrix between image pixels

% as introduced by Buades, Coll and Morel.

%

% W(x,y) := exp(-d^2(patch(x),patch(y))/h^2),

% where

%d^2(pach(x),pach(y))=sum(intermsof t){G_sigma(t)*(f(x+t)-f(y+t))^2}

if (nargin==1)

binary = false;

sigma = 3.0;

ws = 10;

ps = 5;

ms = 8;

end

[m, n] = size(f);
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r = m*n;

G = fspecial(’gaussian’, [40, 40], sigma);

% Computing distance

dist = zeros((2*ws+1)*(2*ws+1), r);

padu = padarray(f,[ws ws],’symmetric’,’both’);

for i = -ws:ws

for j = -ws:ws

sp=padarray(f,[ws-i ws-j],’symmetric’,’pre’);

shiftpadu=padarray(sp,[ws+i ws+j],’symmetric’,’post’);

tempu = (padu-shiftpadu);

% tempu(r,c)=f(r,c)-f(r+i,c+j);

tempu = tempu(1+ws:m+ws,1+ws:n+ws);

padtempu = padarray(tempu,[ps,ps],’symmetric’,’both’);

uu = conv2(padtempu.^2, G, ’same’);

uu = uu(1+ps:m+ps, 1+ps:n+ps);

k=(j+ws)*(2*ws+1)+i+ws+1;

dist(k, :) = reshape(uu, 1, []);

end

end

% Computing the weight

W = sparse(r,r);

idx = (0:r-1)’;

idx = idx*(2*ws+1)^2;

%Assign a large value->don’t count that pixel itself

dist(dist==0) = 1e+5;

for i = 1 : ms

[y, minindex]= min(dist);% choose the ms smallest distance

% position in the vector image f

ind1 = [1:r]’;

minindex = minindex’;

y1=floor((minindex-1)/(2*ws+1));

ind2=y1*(m-2*ws-1)+minindex+ind1-ws-1-ws*m;

tmpindex = find(ind2>0 &ind2<=r);

if (binary)

W=W+sparse(ind1(tmpindex), ind2(tmpindex), 1,r,r);

else

values = max(exp(-y(tmpindex)/h^2),weight_thres);
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W=W+sparse(ind1(tmpindex),ind2(tmpindex),values,r,r);

end

idx2 = idx + minindex; % position in the matrix dist

%assign inf so that we can come to the next smallest distance

dist(idx2) = inf;

end

end

%.................................................................

function grad=nonlocal_gradient(W,I)

N = length(I(:));

[row,col,~] = find(W);

z = sparse(row,col, I(col)-I(row),N,N);

% fgrad = f(z,tau);

grad = z.*sqrt(W);

end

%...............................................................

function div = nonlocal_divergence( W, v )

% function that computes the non-local divergence of vector v

N = size( W, 1 );

in = sqrt(W).*v;

in = in - in’;

div = in*ones(N,1);

return

end
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