
NEURAL NETWORK BASED NON-LINEAR CONTROL
METHODS WITH OBSERVER DESIGN FOR ROBOTIC

MANIPULATORS

Thesis

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

M VIJAY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575025

OCTOBER, 2018





TO MY FAMILY





DECLARATION

By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled “NEURAL NETWORK BASED

NON-LINEAR CONTROL METHODS WITH OBSERVER DESIGN FOR ROB-

OTIC MANIPULATORS” which is being submitted to the National Institute of

Technology Karnataka, Surathkal in partial fulfillment of the requirements for the

award of the Degree of Doctor of Philosophy in Department of Electrical and Elec-

tronics Engineering is a bonafide report of the research work carried out by me. The

material contained in this Research Thesis has not been submitted to any University or

Institution for the award of any degree.

M VIJAY

Reg. No: 121177EE12F02

Department of Electrical and Electronics Engineering

Place: NITK, Surathkal.

Date:





CERTIFICATE

This is to certify that the Research Thesis entitled NEURAL NETWORK BASED

NON-LINEAR CONTROL METHODS WITH OBSERVER DESIGN FOR ROB-

OTIC MANIPULATORS submitted by M VIJAY, (Reg. No.: 121177 EE12F02) as

the record of the research work carried out by him, is accepted as the Research Thesis

submission in partial fulfillment of the requirements for the award of degree of Doctor

of Philosophy.

Dr. DEBASHISHA JENA

(Research Guide)

(Name and Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)





ACKNOWLEDGMENT

I wholeheartedly thank my dearest Grand Parents for enriching me with knowl-

edge, strength, and confidence to complete this research work. I owe a broad sense of

gratitude to my master Dr. Debashisha Jena, Department of Electrical and Electronics

Engineering, National Institute of Technology Karnataka, Surathkal for consenting to

be my guide, providing valuable suggestions, tirelessly going through my work, sug-

gesting improvement at every step and offering rare insights and scholarly counseling.

It is indeed a pleasant experience and bliss to work with him.

I would like to extend my sincere gratitude to Dr. Ajay Kumar Yadav, Department of

Mechanical Engineering and Dr. A. Karthikeyan, Department of Electrical and Elec-

tronics Engineering, National Institute of Technology Karnataka, for their scholarly

advice, continuous support and consistent encouragement as my RPAC members.

I wish to thank the National Institute of Technology Karnataka profusely, for giving

me the opportunity and all the needed facilities to carry out my research work. In par-

ticular, I express my warm and sincere thanks to Dr. B Venkatesa Perumal, Head of

the department. Also, express my heartfelt thanks to all the faculty members, research

scholars of Department of Electrical and Electronics Engineering, National Institute of

Technology Karnataka, for their kind co-operation, continuous support, and constant

encouragement.

Place: NITK, Surathkal M VIJAY

Date:



ABSTRACT

Robotic manipulators are often used in applications requiring high precision. It is in-

evitable to use a controller for the satisfactory operation of such manipulators. In gen-

eral, an open-loop system subjected to torque disturbances and parameter uncertainties

causes instability. Therefore, to ensure the global asymptotic stability, gravity com-

pensation derived from either conventional or non-linear control methodologies with

independent joint control is essential, resulting in a closed loop. As a result, several

controllers have emerged during the last decades for improving the system stability

with better disturbance rejection and small tracking error.

Since then, many derivatives and refinements to the classical controllers have been

proposed. However, a fusion/hybridization of hard control (proportional integral deriva-

tive controller) and soft control (computational intelligence technique based) is an alter-

native choice for better performance. Therefore, an effort towards the designing of such

fusion-based controllers is worth investigating. With this motivation, several hybrid

controllers as applied to robotic manipulators are proposed.

First, the control strategy for robotic manipulator based on the coupling of artificial

neuro-fuzzy inference system (ANFIS) with sliding mode control (SMC) is proposed.

As a part, boundary sliding mode control (SMCB), boundary sliding mode control with

PID sliding surface (PIDSMCB) and backstepping sliding mode control (BSMC) are

developed for the best optimal criterion by using the genetic algorithm (GA) and particle

swarm optimization (PSO). Further, they are applied for the control of 2-Degree of

freedom (DOF) robot manipulator. The proposed neuro-fuzzy-based adaptive controller

offers several advantages such as the consistent estimation and considerable robustness

to parameter variation and external disturbance.

Second, control strategies for 3-DOF rigid robot manipulator based on the coupling

of neural network (NN)-based adaptive observer with SMC are proposed. A radial

basis function neural network (RBFNN)-based observer is used to estimate the tracking



position and velocity vectors of overhead transmission line de-icing robot manipulator

(OTDIRM). To overcome local minima problem, the weights of both NN observer and

NN approximator are adjusted off-line using PSO.

All the developed controllers are simulated extensively in MATLAB/SIMULINK.

Numerical simulations using the dynamic model of a single-link rigid robot manipulator

with two and three DOF in the presence of input torque disturbances are performed.

Finally, the obtained simulation results considering various torque disturbances and

uncertainties in terms of path tracking and disturbance rejection are validated through a

set of experiments for a 2-DOF manipulator.

Keywords : Adaptive control, Disturbance rejection, Non-linear controllers, Optimal

control, Robot manipulator, Sliding mode control.
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Chapter 1

INTRODUCTION

This chapter deals with the introduction to the thesis topic, which broadly refers to the

control of robot manipulators. It also includes the related literature survey and the

objectives so framed in addition to the organization of the thesis at the end.

1.1 INTRODUCTION

In the recent past, the development of robust control strategies for robotic manipulators

has received considerable interest. By robust control strategies, we mean the approaches

that are designed to allow dynamic behavior when confronted with modeling errors and

unmodelled dynamics. Indeed, model uncertainties are frequently encountered in the

robotics due to the unknown or changing payload, friction, backlash, flexible joints or

robot components for which only simplified dynamical models are available. These

model uncertainties may cause notable deviations between simulated and experimental

results.

The mechanical structure of a robot manipulator consists of a series of rigid bodies

(links) interconnected using articulations (joints). A robot manipulator is defined by

an arm that guarantees the mobility, a wrist that confers dexterity, and an end-effector

that accomplishes the task required for the robot as exhibited in Figure. 1.1. A robot

manipulator is a type of robot which works similarly to a human arm. It is composed

of set of joints separated in space by the arm links, and it looks like human wrist and

elbow. As robots often do a better job than humans,they are used in replacing workers

in dangerous, high precision, routine or repeated works.
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Figure 1.1 : The mechanical structure of robot manipulator (Mittal and Nagrath, 2003).

The dynamic equation of the robot manipulator with n-degrees of freedom (DOF)

is characterized as:

D(q)q̈+C(q, q̇)q̇+G(q)+F(q, q̇)+ τd = τ (1.1)

where q, q̇, and q̈ ∈ Rn are the joint/link position, velocity, and acceleration vectors,

respectively, D(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈

Rn×n is a matrix of Coriolis and centrifugal forces, G(q) ∈ Rn×1 consolidates the gravi-

tational force, F(q, q̇) ∈ Rn×1 incorporates the friction terms and τd represents external

disturbances (Spong and Vidyasagar, 2008).

The dynamic equation (1.1) can be composed as:

q̈ = D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (1.2)

The exact dynamics of the industrial robot manipulator are not available to design a per-

fect controller. This includes the non-linearities, model uncertainties, elasticity, cross

coupling and frictional effects that increases the system complexity. The primary ob-

jective of the generated control signal is to track the reference trajectory of the robot

manipulator (Pradhan and Subudhi, 2012; Gracia et al., 2012; Piltan and Sulaiman,

2012). The modified linear or non-linear control techniques helps in enhancing the

performance of the conventional control and to handle new control problems.
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1.2 LITERATURE REVIEW

An overview of the robust control schemes for robot manipulators has been discussed in

(Sage et al., 1999). In this paper, authors have explained the control strategies explicitly

taking into account of robustness against modeling uncertainties and making the robot

to track a time-varying reference trajectory. Most of the robust controllers are non-

adaptive, i.e., they possess a time-invariant control law. Industrial robot manipulators

are playing an essential role in growing industry (Caldwell, 2012). The lightweight

and high-load to weight ratio constructions are required in present robots to fit the fast

motion and high frequency operations (Spong and Vidyasagar, 2008).

The functioning of the robot manipulator depends on two types of approaches, i.e.,

contact type and non-contact type. In contact type approach, while functioning, the

manipulator involves an environment, and in non-contact type approach it doesn’t. De-

pending on the work, the robot manipulator can be classified into contact type manip-

ulator and non-contact type manipulator. In general, the perfect robot is one which not

only controls its movements but also controls the force that it applied to the environment

(Mittal and Nagrath, 2003).

In general, actuators of the robot manipulator provide torque to drive the joints in

maintaining required motion of links/arm to meet desired path or specified trajectory.

In this process, the controller has to provide commands which can control the actuator

to achieve specified trajectory of manipulator end-effector (Chaoui et al., 2009; Dong

et al., 2013). In (Ang et al., 2005), authors have discussed the optimal controller which

offers excellent stability, small tracking error, and better disturbance rejection. For im-

proved performance, the controller has to be adaptive in nature, concerning linear/non-

linear payload variations and uncertainties (De Filippis, 2012). An optimal adaptive-

based controller has to be implemented to take responsibility for payload variations

(Tan et al., 2012).

The conventional controllers with local optimization techniques for robot manipula-

tors may not give the desirable results (Lewis et al., 1993). Traditional controllers with

optimization techniques such as genetic algorithm (GA), neural and fuzzy based con-

3



trollers are used in the industry because of their reliability and ease of implementation

(Naidu, 2002; Thomas et al., 2016). A robot problem solved by many algorithms pro-

vided better solutions to overcome the difficulties. The controllers with soft computing

techniques (i.e., GA, neural and fuzzy) can provide an adaptive controller for variation

in payloads and uncertainties (Craig, 1989; Chaudhary et al., 2014). Adaptive control

schemes for robotics are playing a crucial role in recent research works. A GA based

adaptive mode control schemes have been studied for many decades.

Design of a conventional controller is suitable only for the control of the system

with complete knowledge of its dynamics. However, the precise dynamics of an indus-

trial robot manipulator are not available, to design the perfect controller, due to non-

linearities, uncertainties, elasticity, cross coupling and frictional effects, which make

the system highly complex. The primary objective of robot manipulator is to generate

control signal that helps to track the reference trajectory (Santhakumar and Asokan,

2010; Pereira et al., 2014).

Non-linear control methods such as sliding mode control (SMC), artificial intelli-

gence based adaptive control techniques helps in enhancing the performance of tradi-

tional control strategies. Many researchers have analyzed the SMC which is one of

the best non-linear controllers that provide a fast response regarding trajectory tracking

performance and disturbance rejection in the presence of uncertainties and external dis-

turbances (Piltan and Sulaiman, 2012; Kohrt et al., 2013; Vijay and Jena, 2016; Amer

et al., 2011; Song and Sun, 2014).

The terminal sliding mode control (TSMC) includes non-linear functions into the

outline of the sliding hyperplane. In this work, a terminal sliding surface has designed

where the trajectory tracking errors on the sliding surface approaches to zero in the

constricted time. TSMC can provide robust tracking performance of the robot manipu-

lator under uncertainties and different disturbance conditions. The essential prerequisite

during the process of designing the SMC requires correct information of the system dy-

namics, i.e., non-linear frictions, the flexibility of links, backlash, etc (Chang, 2016).

The backstepping sliding mode control (BSMC) is developed to track the desired

trajectory of the robot manipulator under various working conditions (Liu and Li, 2014).
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The decoupled terminal sliding mode control (DSMC) has employed for a class of un-

deractuated mechanical systems (Zhao et al., 2014). Authors in (Zheng et al., 2015),

have discussed an integral sliding mode control (ISMC) and a non-linear ISMC (NISMC)

for a second-order non-linear system. The combination of artificial intelligence with

SMC techniques to control the non-linear systems are addressed in (Rossomando et al.,

2014; Sun et al., 2011; Sharma et al., 2011). A new adaptive backstepping SMC (AB-

SMC) law with fuzzy monitoring technique is discussed for the desired trajectory track-

ing control of the non-linear system (Huang and Lewis, 2003).

A wavelet neural network is used (WNN) to approximate or estimate uncertainties

and disturbances of the unknown model in (Wei et al., 2012). In (Tran et al., 2015), the

authors discussed the conventional SMC based on the chemical reaction optimization

and radial basis functional link net (CRLSMC) for the de-icing robot manipulator to

achieve the desired trajectory tracking performance under various operating conditions.

Authors in (Yang et al., 2013; Ginoya et al., 2014; Sun and Guo, 2017; Zhang et al.,

2017; Noshadi et al., 2017), have developed control strategy based on output feedback

to maintain the predefined control performance for a class of uncertain multi-input and

multi-output (MIMO) non-linear systems.

In (Jafarnejadsani et al., 2013), an adaptive control based radial basis function neural

network (RBFNN) is proposed for a variable-pitch and variable-speed wind turbine. In

(Wen et al., 2017), a fuzzy dynamic SMC (FDSMC) technique is introduced to manage

with uncertain active suspension system control, in which, the sliding surface func-

tion is concerted linearly with states and inputs. The propulsive positioning and online

levitated balancing of a hybrid magnetic levitation are achieved by fuzzy neural based

backstepping SMC scheme in (Wai et al., 2015).

1.3 DYNAMIC MODELING OF ROBOT MANIPULA-
TORS

Robot manipulators can be described mathematically in different ways. The problem

of kinematics is to describe the motion of the manipulator without consideration of
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forces and torque which causes the movement. These equations determine the position

and orientation of the end effector given the values for the joint variables (forward

kinematics), and different values of the joint variables given the position and orientation

of the end effector (inverse kinematics).

Dynamic modeling involves deriving the equations that explicitly describes the rela-

tionship between the forces and motion. These comparisons are necessary for the simu-

lation of robot motion, and in the design of control algorithms. Computing the dynam-

ics of the robot manipulators can be challenging. Researchers have discovered different

approaches, where in general, there are two methods available; the Euler-Lagrange for-

mulation, and the Newton-Euler formulation. In the standard Euler-Lagrange formula-

tion the manipulator as a whole and the system is analyzed based on its kinematic and

potential energy. The Newton-Euler formulation is quite distinctive because each link

of the manipulator is treated in turn. The material in the section is partly collected from

(Spong and Vidyasagar, 2008).

1.3.1 Derivation of the Euler-Lagrange Formulation

The motion of the robotic arm depends on the torque produced by the actuator. The

arm and gearbox are stiff (i.e., no flexibilities). The movement of the end-effector is

perpendicular to the generation, and therefore the potential is always zero. The two-

mass rigid model of a single-link robot is given in Figure 1.2

For the considered model, the Lagrangian equation (L) becomes

KRm =
1
2

Jmϕ̇
2
m +

1
2

Jaϕ̇
2
a (1.3)

VRm = 0 (1.4)

LRm = KRm−VRm (1.5)

The Euler-Lagrange equation gives
∂

∂ t
∂LRm

∂ ϕ̇ j
− ∂LRm

∂ϕ j
= τ j (1.6)

(Jm + r2Ja)ϕ̈−0 = τ (1.7)

Where τ = u− fmϕ̇ comes from the input torque u and the torque from the friction fmϕ̇ .

The differential equation for the system can thus be written as:

(Jm + r2Ja)ϕ̈m + fmϕ̇m = u (1.8)
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Figure 1.2 : Two-mass rigid model of a single-link robot (Spong and Vidyasagar, 2008).

In general, the resulting model can often be written as:

D(ϕ)ϕ̈ +C(ϕ, ϕ̇)ϕ̇ +g(ϕ) = τ (1.9)

Where D(ϕ) is the inertia matrix, g(ϕ) is the gravity, τ is the motor torque, C(ϕ, ϕ̇)ϕ̇

represents a matrix of Coriolis and centrifugal forces. This model denotes the rigid arm.

They have stiff gear box connection which makes it possible to see them as only one

mass.

(Jm + r2Ja)ϕ̈m + fmϕ̇m = τ (1.10)

The inertia of the arm is multiplied, due to gear, with square of the gear ratio. The ratio

of the gear box for robot is r = 1
118 . Sometimes, the modified arm inertia is used in the

robot community instead of J̃a = r2Ja.

The two-mass flexible model of a single-link robot indicating spring constant Ka

and its damping coefficient da is illustrated in Figure 1.3. The equations for the two-

mass flexible model are

Jmϕ̈m + fmϕ̇m + r.da(rϕ̇m− ϕ̇a)+ r.ka(rϕm−ϕa) = τ (1.11)

Jaϕ̈a−da(rϕ̇m− ϕ̇a)− ka(rϕm−ϕa) = 0 (1.12)

These equations can be transformed into state space form. It will be turn out practical
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Figure 1.3 : Two-mass flexible model of a single-link robot (Spong and Vidyasagar,
2008).

to use y = ϕ̇m

x(t) =


rϕm(t)−ϕa(t)

ϕ̇m(t)

ϕ̇a(t)

 (1.13)

ẋ(t) = Ax(t)+Bu(t) (1.14)

y(t) =Cx(t) (1.15)

A =


0 r −1

− r.ka
Jm
− fm+r2.da

Jm

r.da
Jm

ka
Ja

r.da
Ja

−da
Ja

 (1.16)

B =


0

1
Jm

0

C =

[
0 1 0

]
(1.17)

Dynamic equation of the robot manipulator with n-DOF can be characterized as:

D(q)q̈+C(q, q̇)q̇+G(q)+F(q, q̇)+ τd = τ (1.18)

where q, q̇ and q̈ ∈ Rn are the link position, velocity, and acceleration vectors, respec-
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tively, D(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇)q̇ ∈ Rn×n is

a matrix of Coriolis and centrifugal forces, G(q) ∈ Rn×1 consolidates the gravitational

force, F(q, q̇) ∈ Rn×1 incorporates the friction terms and τd represents external distur-

bances (Spong and Vidyasagar, 2008).

1.4 DESIGN OF CONTROL SYSTEM FOR ROBOT
MANIPULATOR

Robot manipulators are compelling elements of today’s industry. They are capable

of performing many different tasks, and operations, are accurate and do not require

standard safety and comfort elements which are necessary for humans. However, it

needs much effort and many resources to make a robot function properly. Dynamic

modeling means deriving equations that explicitly describes the relationship between

force and motion in a system. In order to control a robot manipulator, as required by

its operation, it is essential to consider the dynamic model in the design of the control

algorithm and simulation of motion. The system is unstable in the open loop, and that

achieves global asymptotic stability in the closed loop with gravity compensation and

by building linear-nonlinear controllers or adaptive controllers with independent joint

control schemes.

1.4.1 Control Schemes

The control schemes are organized in two approaches, some of them are listed below:

1. Linear Control Methods

• PID Control Methods

• Linear Quadratic Regulator (LQR)

• H∞ Control

• State Feedback Control

2. Non-linear Control Methods
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• Feedback Linearizion Control Algorithm

• Sliding Mode Control

• Backstepping Control

• Adaptive fuzzy control

• PI, PD, PID like Fuzzy logic, Neural/ Artificial Neuro-Fuzzy Inference Sys-

tem (ANFIS) Controllers

1.4.2 Controller Design for Robot Manipulator

The objectives of the controller is to determine the characteristics of the controller so

that the controlled output can be

1. Set to equal the reference; (i.e., Tracking).

2. Maintained at the reference values despite the unknown disturbances; (i.e., Dis-

turbance rejection).

3. Conditions (1) and (2) are met despite the inherent uncertainties and changes in

the plant dynamic characteristics; (i.e., Robustness)

1.5 STABILITY OF NON-LINEAR SYSTEMS

Unlike linear systems, the stability of nonlinear systems depends not only on physical

properties of the system but also on the magnitude and nature of the input as well as the

initial conditions as mentioned below

• A system is said to have local stability at an equilibrium state if, after a small

perturbation, it eventually returns to that state.

• A system is said to have global stability at an equilibrium state if, for any pertur-

bation (small or large), it eventually returns that state.
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1.5.1 Lyapunov’s Method

For any given state of equilibrium, it is common practice to transform coordinates in

that state space so that the origin becomes the point of equilibrium. This is convenient

for examining local stability and can be done for each point of equilibrium (Khalil,

2002; Branicky, 1998; Park et al., 2007).

1. V (x) is a continuous and has first partial derivatives at origin.

2. V (x)> 0 for x 6= 0 and V (0) = 0

3. V̇ (x)< 0 for all x 6= 0

Note that these conditions are sufficient but not necessary for stability. V (x) is often

called a Lyapunov function. Now, Let us consider the stability analysis of the resulting

closed-loop system from the following Lyapunov function candidate:

V =
1
2

zT
1 K1z1 +

1
2

zT
2 D(q)z2 +

1
2

˙̃qT D(q) ˙̃q (1.19)

where ˙̃q = q̇− ˙̂q is denoted as the velocity estimation error. Finally, Torque equation

can be defined as:

τ = D(q)q̈d +C(q, ˙̂q)+F(q)−Kd( ˙̂q− q̇r)−K1z1 (1.20)

where the control gains Kd , KI and Ld are positive definite diagonal matrices with Kd =

kdI, KI = kII and Ld = ldI; where kd , kI and ld are positive constants.

1.6 MOTIVATION OF THE WORK

In practice, it is strenuous to ascertain the system dynamics due to non-linearities, un-

certainties, elasticity, cross coupling, and frictional effects, which make the system

highly complex. Capturing of such dynamics are essential for reliable conventional

controller design. Thus, emerged are the nonlinear control method based controllers.

However, the nonlinear methods require prior information of the non-linear frictions,

the flexibility of links, backlash, etc.

In case of a direct-drive robot, the problems of the backlash, friction, and compli-

ance due to gears are excluded. The coupling among the links is important, and the
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actuator dynamics add on to the system complexity. The critical issue involved in such

an operation is suppression of disturbances at each robot joint due to all the modeled

dynamics, such as nonlinearity, coupling effects and payload uncertainties.

Among the wide-ranging available controllers (hard and soft), it is apparent that no

specific solution seems to stand out from the others remarkably. On this line, the re-

search work in this thesis aims to investigate the fusion/hybridization of hard and soft

controllers for enhancing the operational behavior of the dynamic system. As an out-

come, adaptive SMC, neuro-fuzzy for 2-DOF robot manipulator and NN based adaptive

observer control with SMC for 3-DOF manipulator is developed.

1.7 CONTRIBUTION OF THE THESIS

The control of robotic systems is vital, and these systems are in general MIMO and non-

linear. The primary objective of the proposed control system is to follow the desired

trajectory, which postulates the generation of a control signal to reduce the tracking

error between the robot manipulator actual position and desired position to zero.

This thesis describes a new adaptive SMC for 2-DOF and 3-DOF robot manipulators

with a proportional integral derivative (PID) sliding surface methodologies. The adap-

tive SMC algorithm can estimate the value of adaptive gain constant (KWANF ) and adap-

tive boundary layer thickness (φANF ) in real time. An adaptive PIDSMC that can handle

different levels of input torque disturbances is derived, and the stability of the closed-

loop system has been established. Two adaptive controllers, i.e., neuro and neuro-fuzzy

controllers are proposed, and their performances are also compared. The numerical

simulation is presented to verify the effectiveness of the proposed control scheme. It

is further shown that the proposed neuro-fuzzy based adaptive PIDSMC (APIDSMC)

scheme offers several advantages such as consistent estimation of KWANF and φANF and

considerable robustness to parameter variation and external disturbance.

Different type of control approaches for 3-DOF overhead transmission line de-icing

robot manipulator (OTDIRM) is proposed to eliminate the effect of disturbances and

uncertainties associated with the direct measurement. The control laws for tracking of
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the OTDIRM are developed by combining different types of modified SMC techniques

and NN-based approximations. For a precise trajectory tracking performance and en-

hanced disturbance rejection under various operating conditions, NN-based adaptive

observer non-linear SMC methodologies have been developed. The parameters of the

proposed SMC methodologies and neural network (NN) adaption weights are derived

using the minimization of the quadratic performance indices, wherein the minimization

is achieved with particle swarm optimization (PSO).

Further, RBFNN-based observer estimates the position and velocity vectors of the

link of the overhead transmission line de-icing robot manipulator (OTDIRM) without

any measurements feedback. The Chattering effect is mitigated by applying boundary

layer phenomenon, and the controller stability is proved by using Lyapunov stability

analysis. Both simulation and experiment results are provided to demonstrate the valid-

ity and effectiveness of the proposed control methods.

1.8 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

Chapter 1 deals with the introduction to the topics covered in the thesis namely linear

and non-linear control methods of robot manipulators. It also includes literature survey

on these issues and the framed objectives, in addition to the organization of the thesis

at the end.

In chapter 2, different types of controllers are developed for the two-mass model

of a single link robot to acquire dynamic properties and improve the global stability.

The primary objectives of these controllers are to provide stability, good disturbance

rejection and small tracking error. The proportional derivative (PD) and proportional

integral derivative (PID) conventional controllers are developed for three different con-

trol strategies, i.e., Integral absolute time error (IATE), Integral square error (ISE) and

Integral square time-weighted error (ISTE) using “Fminsearch” and GA. The perfor-

mances of these controllers are compared with various torque disturbances regarding

path tracking and disturbance rejection.
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Another control strategy for the robotic manipulator based on the coupling of the

ANFIS with BSMC is presented. Initially, the PID controllers have been developed for

the three different control strategies (IATE, ISE, and ISTE) using PSO. The coefficients

of sliding surface and switching gains of SMC are designed for the best optimal crite-

rion using PSO. Finally, an ANFIS network is trained, which can generate the adaptive

control signal for the robot manipulator. The stability of the system is validated by

the checking the Lyapunov stability theorem. The simulation results of this controller

are compared with various torque disturbances regarding path tracking and disturbance

rejection.

In chapter 3, different combinations of linear and non-linear control methodolo-

gies are developed for the 2-DOF robot manipulator to acquire dynamic properties and

improve the global stability. These control strategies for robot manipulator are based

on the coupling of the ANFIS and SMC techniques. Initially, SMC with PID sliding

surface is adapted to control the robot manipulator. The parameters of the sliding sur-

face are obtained by minimizing quadratic performance indices using PSO. Finally, an

ANFIS adaptive controller is proposed to generate the adaptive control signal.

Chapter 4 examines the structure of an observer-based several typical sliding mode

controllers design (i.e., SMC, BSMC, and IBSMC) for 3-DOF OTDIRM. Primarily,

the control laws for tracking of the OTDIRM are formulated by a combination of SMC,

BSMC, and IBSMC with NN approximation techniques (i.e., NNSMC, NNBSMC, and

NNIBSMC). RBFNN observer-based adaptive controllers (i.e., NNAOSMC, NNAOB-

SMC, and NNAOIBSMC) are designed for the robust control of the OTDIRM, which

are the combinations of SMC, BSMC, IBSMC, NN estimation and adjustment laws.

In all these methodologies, the weights of both NN observer and NN approximator are

tuned off-line utilizing PSO. The RBFNN-based adaptive observers are intended to es-

timate the tracking position and velocity vectors of the OTDIRM. The stability of the

developed control schemes is checked by using detailed Lyapunov stability analysis. Fi-

nally, the abilities of the proposed NN-based adaptive observer sliding mode controllers

are tested against input disturbances and uncertainties.

Chapter 5 discusses the composition of an observer-based different terminal sliding

14



mode controllers (i.e., Terminal sliding mode control (TSMC), Backstepping termi-

nal sliding mode control (BTSMC) and Integral backstepping terminal sliding mode

control (IBTSMC)) for 3-DOF OTDIRM. Primarily, the control laws for tracking of

the OTDIRM are formulated by the combination of TSMC, BTSMC, and IBTSMC

with NN approximation techniques (i.e., NNTSMC, NNBTSMC, and NNIBTSMC).

For the precise trajectory tracking performance and enhanced disturbance rejection un-

der various disturbance conditions, NN-based adaptive observer different types of ter-

minal sliding mode controller are developed (i.e., NNAOTSMC, NNAOBTSMC, and

NNAOIBTSMC). The weights of both NN observer and NN approximator are adjusted

off-line utilizing PSO to obviate the local minima problems. The RBFNN-based ob-

servers are intended to estimate the tracking position and velocity vectors of the OT-

DIRM. The Lyapunov stability functions are used to verify the stability of the proposed

control methods. Finally, the robustness of the proposed methods are checked against

input disturbances and uncertainties.

Chapter 6 gives the overall summary of the results described in the previous chap-

ters. Further, the scope for future research work in this area is also discussed.
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Chapter 2

CONVENTIONAL LINEAR AND
NON-LINEAR CONTROL METHODS FOR
A SINGLE-LINK ROBOT

This chapter discusses the different types of conventional linear and non-linear con-

trollers which are developed for a two-mass model of a single-link robot.

2.1 INTRODUCTION

Industrial robot manipulators are playing an essential role in the growing industry.

Adaptive control schemes are playing a crucial role in recent robotics research work

(Mittal and Nagrath, 2003; Pradhan, 2013). In general, the actuator of the robotic ma-

nipulator provides necessary torque to drive the joints and to maintain the required

motion of links. In order to meet the prescribed trajectory, the controller has to provide

commands, which in turn control the actuator (Benosman and Le Vey, 2004). In (Lewis

et al., 1993), authors have explained the conventional controllers with local search op-

timization techniques for robot manipulators, which may not give the desirable results.

But controllers with optimization techniques such as GA, neural and fuzzy provide reli-

able results and are simple to implement. In (Merchán-Cruz and Morris, 2006), authors

have discussed the role of computed torque controller (CTC), which is used to control

the robot manipulator. To provide the required torque, CTC uses feedback linearization

and non-linear feedback control law (Houpis and Sheldon, 2013).

An optimal controller provides excellent stability, better disturbance rejection, and
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small tracking error. To improve the system performance, the controller has to sense

the information from linear or non-linear functions concerning the payload variations

and uncertainties. The payload variations and uncertainties should be considered while

developing an optimal adaptive controller. Controller with soft computing techniques

(i.e., GA, neural and fuzzy based algorithms) will be able to provide such an adaptive

controller for variation in the payloads and uncertainties.

2.2 DESIGN OF CONVENTIONAL PID CONTROLLER

The computed PID control torque required to control a robot system is defined as

τ = D(q)(q̈d +u)+C(q, q̇)q̇+G(q)+F(q, q̇)+ τd (2.1)

The PID controller law can be described as

u = Kpe+Ki

∫
edt +Kd

d
dt

e (2.2)

where, error e (desired path(qd) – actual Path(q)), Kp is n×n positive proportional gain

matrix, Ki is n × n positive integral matrix, and Kd is n×n positive derivative gain

matrix parameters.

The resulting linear error dynamics are

q̈d +Kpe+Ki

∫
edt +Kd

d
dt

e = 0 (2.3)

The equivalent control (τ0) is defined from Eq.(2.1) as

τ0 = D(q)(q̈d)+C(q, q̇)q̇+G(q)+F(q, q̇)+ τd (2.4)

The PID controller should be providing a sufficient degree of stability for disturbance in

the input torque and the step change in the end effector load. The integral of the position

error should be minimized with different optimum control strategies. According to the

linear system theory, convergence of the tracking error to zero is guaranteed (Siciliano

and Khatib, 2016) .The block diagram of the PID controller for a single-link robot is

given in Figure 2.1.

A complete review of the existing PD control schemes with gravity compensation

can be found in (Kelly, 1997) with robustness analysis. Integral action is added (PID

control) to reject the constant perturbations at the cost of reduced bandwidth in the

closed-loop system. There is an consideerable increase in use of PID control in in-
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Figure 2.1 : Block diagram of the PID controller for a single-link robot.

dustrial manipulators; however, only the local asymptotic stability can be guaranteed

(Arimoto, 1996). In (Hu et al., 2011), authors have discussed the role of tuning tech-

niques for PID controller and address the iterative tuning method of PID control for

robot manipulator based on the response of the closed-loop system. Implementation

of PID controllers and tuning techniques were also discussed by (Ang et al., 2005). In

(Gopinathan et al., 2012), authors have proposed a class of stabilizing decentralized

PID controllers for a n-link robot manipulator system. The range of decentralized PID

control parameters for a n-link robot manipulator is obtained using Kharitonov theorem

and stability boundary equations.

2.2.1 Optimal Control Systems

The optimal control system parameters depend on the definition of optimality. Mostly, it

involves zero steady state step error systems; the primary function of a feedback control

system is to minimize the error. The integral of position error should be minimized

for different performance indices (Tarokh and Zhang, 2014). The system optimum

parameters depend on the definition of optimality i.e., to minimize objective function J

given in equation (2.5).

J =
∫

∞

0
tb[e]mdt (2.5)
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where J is the objective function value, e is the error of position signal. Normally m=2; b

= 0, 1 and 2 represent three different optimum criterion: ISE, ISTE and Integral Squared

Time Squared-Weighted Error (IST2E) respectively. The same equation (2.5) can be

used to derive IATE by taking m=1 and b=1. In optimal control design, the controller

parameters are obtained by minimizing certain predefined performance indices. These

performance indices can be ISE, ISTE, IATE, IST2E or any user-defined function as

taken in case of the LQR. Usually, conventional local search algorithms such as gradient

descent, conjugate gradient descent, etc., are used to minimize the performance indices.

However, the convergence of these gradient-based algorithms are highly dependent on

initial search point and there are possibilities for the solution to reach local minimum,

especially for a multi-modal performance index. These limitations of the conventional

local search algorithms can be addressed by using global search algorithms such as

evolutionary computation (EC), GA, PSO or any other derivative-free algorithm.

The block diagram given in Figure 2.2 indicates the optimum control strategies (i.e.,

IST E) to find the better solution and finally converges for the solution with optimum

tuning parameters and minimum objective function value.

2.2.2 Local Search

Local search algorithm (i.e., Fminsearch) provides the minimum solution from a random

variable as an initial value. The command function is x = f minsearch( f un,x0), and it

starts at the point x0 and returns a value x which is local minimization of the function.

Initial state can be a scalar, vector, or matrix.

The Fminsearch uses the simplex search method, and it is a direct search method that

does not use numerical or analytical gradients. If nmin is the length of x, a simplex in

nmin-dimensional space is characterized by the nmin + 1 distinct vectors. In two-space,

a simplex is a triangle; in three-space, it is a pyramid. At each step of the search, a

new point in or near the current simplex is generated. The function value at the new

simplex and, usually one of the vertices is replaced by the new point, giving a new

simplex. This step is repeated until the diameter of the simplex is less than the specified
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Figure 2.2 : Block diagram of PID controller with ISTE optimal criterion.

tolerance (Lagarias et al., 1998).

2.2.3 Genetic Algorithm

The genetic algorithm (GA) is a computational model of biological evaluation based

on random search. It searches from population to population but not individual to in-

dividual. It does not involve any derivatives to get solutions. Hence, it is called a

derivative-free optimization technique (Lin and Brandt, 1998; Kim and Kang, 2003).

It begins with the initial population of binary strings called chromosomes. Each

chromosomes representing a possible solution to the given problem and finally con-

verged with an optimum criterion. Reproduction, crossover, and mutation are the pri-

mary operations of GA. The overall steps involved in implementing a GA are:

1. Generate an initial, random population of individuals for a fixed size.

2. Evaluate their fitness function.
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3. Select the fittest members of the population.

4. Reproduce using a probabilistic method (e.g., Roulette Wheel).

5. Implement crossover operation on the reproduced chromosomes.

6. Execute mutation operation with low probability.

7. Repeat step 2 until a predefined convergence criterion is met.

2.2.4 Particle swarm optimization (PSO)

PSO (Chen et al., 2009; Agrawal et al., 2008) is a stochastic global optimization method

which is based on simulation of social behavior. As in GA and EC, PSO exploits a pop-

ulation of potential solutions to probe the search space. In PSO, no operators inspired

by natural evolution are applied to extract a new generation of candidate solutions.

Instead of mutation, PSO relies on the exchange of information between individuals,

called particles, of the population, called a swarm. In effect, each particle adjusts its

trajectory towards its own previous best position, and towards the best former position

attained by any member of its neighborhood. In the global variant of PSO, the whole

swarm is considered as the neighborhood. Thus, global sharing of information takes

place and particles profit from the discoveries and previous experience of all other com-

panions during the search for promising regions of the landscape. Several variants of

PSO have been proposed up to date, following Eberhart and Kennedy who were the first

to introduce this method (Ge et al., 2007).

Initially, assuming the search space is d-dimensional, so the ith particle of the swarm

is represented by a d-dimensional vector Xi = [Xi1,Xi2, ...,Xid] and best particle of the

swarm, i.e., the particle with the lowest function value, is denoted by index gα . The best

previous position of the ith particle is recorded and represented as Pi = [Pi1,Pi2, ...,Pid]

and the position change (velocity) of the ith particle is Vi = [Vi1,Vi2, ...,Vid]. The particles

are manipulated according to the equation 2.6

V k+1
i = χ(wαV k

i + c1rk
r1(P

k
i −Xk

i )+ c2rk
i2(P

k
gα
−Xk

i )) (2.6)

Xk+1
i = Xk

i +V k+1
i (2.7)
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where i = 1,2, ,N and N is the size of the population which is used to control and con-

strict velocities; wα is the inertia weight, c1 and c2 are two positive constants, called the

cognitive and social parameter respectively; ri1 and ri2 are random numbers uniformly

distributed within the range [0 1]. Equation 2.6 is used to determine the ith particle’s

new velocity, at each iteration, as well as a new position of the ith particle, adding its

new velocity, to its current position. The performance of each particle is measured ac-

cording to a fitness function. In optimization problems, the fitness function is usually

identical with the objective function under consideration. The role of the inertia weight

wα is considered important for the PSO’s convergence behavior. The inertia weight is

employed to control the impact of the previous history of velocities on the current ve-

locity. A large inertia weight facilitates exploration while a small one tends to facilitate

exploitation of current search area. A proper value for the inertia weight wα provides

the balance between the global and local exploration ability of the swarm, and, thus

results in better solutions. The following steps describe the algorithm for PSO.

• Step 1: Initialize a population of particles with random positions and velocities

on d-dimensions in the problem space.

• Step 2: For each particle, evaluate the desired optimization fitness function in d

variables.

• Step 3: Compare particle’s fitness evaluation with it’s pbest. If current value is

better than pbest, then set pbest equal to the current value, and pi equals to the

current location xi in d-dimensional space.

• Step 4: Identify the particle in the neighborhood with the best success so far, and

assign its index to the variable.

• Step 5: Change the velocity and position of the particle according to equation

(2.6).

• Step 6: Move to step (2) until a criterion is met, usually a sufficiently good fitness

or a maximum number of iterations.
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2.3 RESULTS AND DISCUSSIONS FOR TWO-MASS
SINGLE-LINK ROBOT

Simulation is carried out for the two-mass single-link model shown in Figure 1.3. The

robot controller is designed for IATE, ISE and ISTE control strategies for different

torque disturbance conditions. Results are obtained by tuning conventional controllers

with the local Fminsearch algorithm and global controller with GA under various distur-

bance conditions. The parameters of two-mass flexible single-link robot are considered

as: Jm = 9×10−4 Kg.m2, Ja = 10.9Kg.m2, fm = 6.3×10−2 N , Ka = 1.5×105, da = 70

and r = 1
118 .

Table 2.3.1 : Fminsearch (PD Controller) for 10% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp -15.433 -9.066 -12.504

2 Kd 10.719 8.361 10.612

Objective

Function Value (J) 0.014 0.0039 7.7×10−4

Table 2.3.2 : Fminsearch (PID Controller) for 10% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp -11.025 -13.088 -17.22

2 Ki -11.619 11.221 12.642

3 Kd 10.587 8.476 10.736

Objective

Function Value (J) 0.01408 0.0039 7.769×10−4

Table 2.3.1 shows the PD tuning parameters from Fminserch for the controller of the

two-mass flexible single-link robot with IATE, ISE, and ISTE control strategies for 10%

torque disturbance. Table 2.3.2 shows PID tuning parameters from Fminserch method

for the controller of robot model with IATE, ISE, and ISTE control strategies for 10%

torque disturbance. Table 2.3.3 shows PD Tuning parameters from GA Method with
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Table 2.3.3 : GA (PD controller) for 10% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.013 0.003 0.005

2 Kd 10.771 10.838 10.826

Objective Function

Value (J)
0.0144 0.0033 8.01×10−5

Table 2.3.4 : GA (PID Controller) for 10% torque disturbance.

S.No Controlling Parameters IATE ISE ISTE

1 Kp 0.005 0.009 0.06

2 Ki 0.05 0.146 0.24

3 Kd 10.737 8.371 10.806

Objective Function

Value (J)
0.0144 0.00394 8.01×10−5

IATE, ISE and ISTE control strategies for 10% torque disturbance. Table 2.3.4 shows

the PID tuning parameters of single-link robot for different control strategies with 10%

torque disturbances. From these results, it is inferrred that the GA (PID controller) gives

better performance for the considered three optimal strategies. Hence, further analysis

are carried out with GA (PID controller) for various operating conditions.

Table 2.3.5 : GA (PID Controller) for 0% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.006 0.003 0.008

2 Ki 0.053 0 0

3 Kd 10.722 8.281 10.657

Objective Function

Value (J)
0.0144 0.00394 8.01×10−5

Tables 2.3.6, 2.3.7, 2.3.8 and 2.3.9 are showing the PID parameters of GA based con-

troller for 0 %, 20%, 30%, 40%, and 50% torque disturbances, respectively. Objective

values of all controllers with ISTE are minimum in comparison with other optimum

criteria. Hence, by observing these values for various disturbances, PID controller with

ISTE optimum criterion provides better tracking performance.

25



Table 2.3.6 : GA (PID controller) for 20% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.028 0.002 0.011

2 Ki 0.027 0.378 0.438

3 Kd 10.794 8.353 10.836

Objective Function

Value (J)
0.0144 0.00394 8.01×10−5

Table 2.3.7 : GA (PID controller) for 30% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.007 0.001 0.031

2 Ki 0.026 0.001 2.707

3 Kd 10.763 8.325 10.985

Objective Function

Value (J)
0.0144 0.00394 8.03×10−5

Table 2.3.8 : GA (PID controller) for 40% torque disturbance

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.021 0.015 0.013

2 Ki 0.144 0.002 0.021

3 Kd 10.814 8.316 10.777

Objective Function

Value (J)
0.01443 0.00394 8.05×10−5

Table 2.3.9 : GA (PID controller) for 50% torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.062 0.025 0.039

2 Ki 0.07 0.025 0.062

3 Kd 10.797 8.313 10.859

Objective Function

Value (J)
0.01443 0.0039 8.1×10−5

Figure 2.3 to Figure 2.7 show the responses of a single-link robot model for various

torque disturbances with ISTE optimum criterion. In these responses, it is observed that

GA PID controller can able to provide optimal tuning parameters to meet the robust de-
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sired trajectory. Figure 2.8 shows the error response plot for 0% and 40% disturbances.

From this figure, it is inferred that with the increase in the disturbance levels, the dis-

turbance rejection capacity is decreasing.
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Figure 2.3 : Comparison of PID controller responses with ISTE for 0% step torque
disturbance.
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Figure 2.4 : Comparison of PID controller responses with ISTE for 10% step torque
disturbance.

2.4 DESIGN AND STABILITY OF SLIDING MODE
CONTROLLER

SMC is one of the influential non-linear controllers for linear and non-linear systems. It

provides a systematic solution for two primary essential control challenges, i.e., stability
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Figure 2.5 : Comparison of PID controller responses with ISTE for 20% step torque
disturbance.
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Figure 2.6 : Comparison of PID controller responses with ISTE for 30% step torque
disturbance..
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Figure 2.7 : Comparison of PID controller responses with ISTE for 40% step torque
disturbance.
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and robustness (Amer et al., 2011). The block diagram of the conventional SMC is

shown in Figure 2.9.

Figure 2.9 : Block diagram of the conventional SMC

Total input control torque to the robot is defined as:

τ = τ0 + τc (2.8)

where ‘τ0’ is the equivalent control torque, ‘τc’ is the sliding mode control torque. A

time varying sliding surface ‘s’ is given by the following equation

s = ė+λe (2.9)

where ‘λ ’ is positive constant. The main aim of this method is to keep ‘s’ near to zero.

The purpose of SMC is to force tracking error ‘e’ to approach the sliding surface and

then move along the sliding surface to the origin. Therefore, the sliding surface should
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be stable, which means the error dies out asymptotically and this implies that the system

dynamics tracks the desired trajectory. The derivative of sliding surface concerning time

can be expressed as follows:

ṡ = ë+λ ė (2.10)

ṡ = q̈d− q̈+λ ė (2.11)

where ë = q̈d − q̈, substituting the value of q̈ from equation (1.2) in equation (2.11)

gives

ṡ = q̈d +λ ė−D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (2.12)

The control effort is derived from the solution of ṡ = 0. This control effort is known

as equivalent control effort represented by τ0, which is required to achieve the desired

performance without uncertainties (i.e., τd = 0).

ṡ = q̈d +λ ė−D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇))] = 0 (2.13)

τ0 = D(q)[q̈d +λ ė]+ (C(q, q̇)q̇+G(q)+F(q, q̇)) (2.14)

However, if unpredictable disturbances or uncertainties occur, the equivalent control

effort cannot ensure the favorable control performance. Therefore, auxiliary control

effort is designed to eliminate the effect of the unpredictable disturbances. To prove

the stability of the control system, Lyapunov like Lemma is used. For this purpose, the

Lyapunov function is chosen as:

V =
1
2

sT s (2.15)

A sufficient condition to guarantee that the trajectory of the tracking position error will

translate from reaching phase to sliding phase is to select proper control strategy, also

known as the reaching condition.

V̇ = sT ṡ < 0,s 6= 0 (2.16)

To obtain the reaching control signal τc, equation (2.16) can be defined as:

V̇ = sT [q̈d +λ ė−D−1(q)[(τ0 + τc)]−D−1(q)(C(q, q̇)q̇+G(q)+F(q, q̇))] (2.17)

Substituting equation (2.14) into equation (2.17), we get

V̇ = sT ṡ =−sT D−1(q)τc (2.18)

To ensure sT ṡ < 0, the reaching control law is selected as:

τc = D(q)Kwsign(s) (2.19)
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Substituting equation (2.19) in equation (2.18), the Lyapunov stability condition be-

comes

V̇ <−sT D−1(q)D(q)Kwsign(s) (2.20)

V̇ <−KwsT sign(s)

V̇ <−Kw|s| (2.21)

where |s|= sT sign(s).

In equation (2.19) the sign function is used. This function creates more chattering on

the control torque. To avoid this chattering effect, sign function is replaced by the tanh

(hyperbolic tangent) function.

V̇ <−KwsT tanh(s) (2.22)

In above equation, sT tanh(s) is always positive so that entire equation becomes negative

provided that s satisfies the following conditions.

1. if s is positive and tanh(s) is also positive then sT tanh(s) is always positive

2. if s is negative and tanh(s) is also negative then sT tanh(s) is always positive

Finally, the reaching control signal τc is given as follows

τc = KwD(q) tanh
( d

dt
e+λe

)
(2.23)

Where, Kw = diag{Kw1,Kw2...Kwn} represents reaching control gain matrix with the up-

per bound of uncertainties. Tuning positive time constant Kw given equation in (2.23)

is one of the most important challenges in conventional SMC. Based on the discontinu-

ous part, the chattering phenomenon can lead to oscillations in output (Ho et al., 2009).

The boundary layer concept is used to reduce the chattering on the control signal. In

boundary layer (φ ) method, the basic idea is to replace the discontinuous function by a

smooth saturation function near to small neighborhood of the switching surface. This

replacement causes an increase in performance error. Therefore, to compensate the er-

ror performance an updated control law is needed. In this work, the saturation function

is considered as given in equation (2.24).

sat
(

s
φ

)
=


tanh

(
s
φ

)
, for

∣∣∣∣ s
φ

∣∣∣∣≥ 1;

s
φ
, for

∣∣∣∣ s
φ

∣∣∣∣< 1.

(2.24)
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Finally, the SMC control law with boundary layer becomes

τc = K tanh
( d

dt e+λe
φ

)
(2.25)

where K is positive gain matrix and it is defined as K = KwD(q).

2.5 DESIGN AND STABILITY OF BACKSTEPPING
SLIDING MODE CONTROLLER

The backstepping methodology is a nonlinear scheme generally utilized as a part of

controller design. The mathematical model of robot is expressed in (2.26), (2.27) and

(2.28) as:

ẋ1 = x2 (2.26)

ẋ2 = q̈ = D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (2.27)

y = x1 (2.28)

where x1 and x2 are the position and velocity vectors of the robot.

The position tracking error of the system is given as:

e1 = qd−q (2.29)

The stabilizing function is characterized as

α1 = λ1e1 (2.30)

where α1 and λ1 are steady term and positive constant, respectively. The upgraded

tracking error of velocity of the robot is characterized in (2.31) and appeared as:

e2 = ė1 +α1 (2.31)

The primary Lyapunov stability function is characterized as:

V1 =
1
2

e2
1 (2.32)

Equations (2.33) and (2.34) are derived from (2.31) and (2.32) that expressed as:

e2 = q̇d− q̇+α1 (2.33)

V̇1 = e1(e2−α1) = e1e2−λ1e2
1 (2.34)

From (2.33), we get

ė2 = q̈d−D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)]+ α̇1 (2.35)
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The second Lyapunov stability function is described as:

V =V1 +
1
2

sT s (2.36)

The satisfactory condition, which gives the affirmation that the tracking error will make

an elucidation from achieving stage to sliding stage, is called the achieving condition

and given in (2.37).

V̇ < 0,s 6= 0 (2.37)

Where ‘s’ is the sliding surface. It is characterized as:

s = e1 + e2 (2.38)

The derivative of the second Lyapunov stability function is given in (2.39).

V̇ = e1e2−λ1e2
1 + sT (ė1 + ė2) (2.39)

By substituting ė1 and ė2 in (2.39), yields:

V̇ = e1e2−λ1e2
1 + sT [(1+λ1)ė1 + q̈d−D−1(q)[τ− (C(q, q̇)q̇ (2.40)

+G(q)+F(q, q̇)+ τd)]]

The total input control torque (τ) to the robot is characterized as:

τ = τ0 + τc (2.41)

By substituting (2.41) in (2.40), we get

V̇ = e1e2−λ1e2
1 + sT [(1+λ1)ė1 + q̈d−D−1(q)[τ0 + τc− (C(q, q̇)q̇ (2.42)

+G(q)+F(q, q̇)+ τd)]]

The arrangement of ṡ = 0 gives the control signal, which is known as equivalent con-

trol law and it is denoted by ‘τ0’. This equivalent control law is essential to fulfill

the execution of favored trajectory tracking without considering the disturbances and

uncertainties (i.e., τd = 0).

τ0 = D(q)((1+λ1)ė1 + q̈d)+C(q, q̇)q̇+G(q)+F(q, q̇) (2.43)

An extra control exertion is needed to wipe out the unpredictable disturbances and un-

certainties as equivalent control torque (τ0) is lacking to provide the favored tracking

performance. Ultimately, the tracking error dies out asymptotically, which means the

sliding surface becomes stable. To exhibit the stability of the created control framework

for robot, the Lyapunov-like Lemma is utilized.
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From (2.42) and (2.43) we arrive at an expression for V̇ as follows:

V̇ = e1e2−λ1e2
1 + sT (−D−1(q)τc) (2.44)

To meet the Lyapunov stability condition, the corrective control law (τc) is defined as

τc = D(q)(e2 +Kwsign(s)). It is substituted in (2.44) which yields:

V̇ =−λ1e2
1− e2

2−KwsT sign(s) (2.45)

where Kw is the sliding gain.

V̇ ≤−λ1e2
1− e2

2−Kw|s| (2.46)

where |s|= sT sign(s).

The chattering effect on the control input signal is introduced by the signum function

(‘sign’), which is utilized as a part of (2.45), so as to diminish or dispense with this

impact, the signum function (‘sign’) is replaced by the hyperbolic tangent function

(‘tanh’) as given in (2.47).

V̇ ≤−λ1e2
1− e2

2−KwsT tanh(s) (2.47)

The term ‘sT tanh(s)’ in (2.47) is constantly positive so that whole condition gets to be

negative (i.e., sT tanh(s)> 0 if either s > 0 or s < 0 ).

The achieving control signal (τc) is given as:

τc = D(q)[e2 +Kw tanh((1+λ1)e1 +
d
dt

e1)] (2.48)

Where Kw = diag{Kw1,Kw2, ...,Kwn} is control gain matrix.

The BSMC control law is defined as:

τc = D(q)e2 +K tanh
((1+λ1)e1 +

d
dt e1

φ

)
(2.49)

where K = D(q)Kw.

Figure 2.10 illustrates the frame work of the BSMC for single-link robot model. Where,

φ is the boundary layer thickness of the BSMC controller and K is the sliding gain

constant.

2.6 ADAPTIVE BSMC

In the adaptive neuro-fuzzy inference system (ANFIS), for a given input and output data

set, the toolbox function makes a fuzzy inference system (FIS) whose membership func-

tions are tuned using either a back propagation algorithm alone or in a compounding
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Figure 2.10 : Block diagram of the BSMC.

with the least method. Both artificial neural network (ANN) and fuzzy logic are used

in ANFIS architecture. In the process of developing the ANFIS adaptive controller,

the training was performed on MATLAB environment under various input membership

functions for different operating conditions.

Figure 2.11 : Block diagram of the adaptive BSMC.

2.6.1 Stability of Adaptive BSMC

Similar to equation 2.38, the sliding surface for adaptive BSMC can be defined as:

s = e1 + e2 (2.50)
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From equation (2.39), we can define Lyapunov stability equation for ABSMC is

V̇ = V̇1 + sT ṡ (2.51)

= e1e2−λANFe2
1 + sT ṡ (2.52)

= e1e2−λANFe2
1 + sT (ė1 + ė2) (2.53)

A sufficient condition for stability is defined as:

V̇ ≤ 0, s 6= 0 (2.54)

V̇ ≤−λANFe2
1− e2

2−KANFsT tanh(s) (2.55)

where λANF is an ANFIS/adaptive positive coefficient and KANF is ANFIS/adaptive

reaching control coefficient of ABSMC. Equation (2.55) can be written as:

V̇ ≤−eT Qe−KANFsT tanh(s) (2.56)

In above equation sT tanh(s) is always positive so that entire equation becomes negative

provided that s satisfies the following conditions.

• if s is positive and tanh(s) is also positive then sT tanh(s) is always positive

• if s is negative and tanh(s) is also negative then sT tanh(s) is always positive

Finally, the reaching control signal τc is given as follows

τc = e2 +(KANF) tanh
(
(1+λANF)e1 +

d
dt e1

φANF

)
(2.57)

where φANF is the thickness of boundary layer provided by ANFIS. Table 2.6.1 gives

the training error values for switching gain constant (KANF ), boundary layer thickness

(φANF ) and positive constant (λANF ) of ANFIS adaptive BSMC under various member-

ship functions.

From Table 2.6.1, it is observed that the ‘gauss2mf’ membership function provides

minimum training error for all three cases. Finally, ‘gauss2mf’ membership function is

used for designing of ANFIS network for adaptive BSMC.

2.7 RESULTS AND DISCUSSIONS WITH BSMC FOR
TWO-MASS SINGLE-LINK ROBOT

Simulation is carried out for the two-mass flexible single-link robot in MATLAB. Ini-

tially, the optimum PID controller is designed for IATE, ISE, and ISTE control strate-
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Table 2.6.1 : The obtained predicted results of the different membership functions.

Sl. No Membership Function Training Error Training Error Training Error

for KANF for φANF for λANF

1 gaussmf 0.001068 2.16×10−7 3.23×10−4

2 gauss2mf 0.001053 1.09×10−7 1.02×10−4

3 primf 0.001072 3.29×10−7 4.34×10−4

4 dsimf 0.001133 2.37×10−7 3.48×10−4

5 psigmf 0.001123 2.37×10−7 3.57×10−4

6 gbellmf 0.097216 1.36×10−7 3.18×10−4

7 trimf 0.001202 2.07×10−7 3.51×10−4

8 trapmf 0.001089 2.40×10−7 2.47×10−4

gies for various torque disturbance conditions and with uncertainty in parameters. Re-

sults are accomplished by tuning the parameters through global search algorithm, i.e.,

PSO under various operating conditions.

Table 2.7.1 : PD tuning parameters for 10% disturbance in torque.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.021 0.002 0.015

2 Kd 13.17 24.83 15.82

Objective

Function Value (J) 0.0267 0.00457 0.062

Table 2.7.2 : PID tuning parameters for 10% disturbance in torque.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp 0.023 0.042 0.634

2 Ki 0.023 0.123 0.434

3 Kd 11.24 19.27 16.30

Objective

Function Value (J) 0.0104 0.00294 8.106×10−5

Tables 2.7.1 and 2.7.2 shows the performance index values and tuning parameters for
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different optimal control strategies with 10% torque disturbance and 10% uncertainty in

parameters by PSO. From these tables, it is noticed that PID controller gives minimum

objective function value than the PD controller. And also, it is observed that the model

with ISTE control strategy gives minimum objective function values compared to IATE

and ISE optimal control strategies. In view of these results, PID controller with ISTE

control strategy has been selected for further simulation works.

Table 2.7.3 : PID tuning parameters for various disturbances.

Sl. No Torque Disturbance Kp Ki Kd J

(%)

1 0 0.102 0.314 12.432 8.102×10−5

2 10 0.634 0.434 16.30 8.106×10−5

3 20 0.021 0.323 11.638 8.10×10−5

4 30 0.024 3.808 11.096 8.4×10−5

5 40 0.043 0.102 11.88 8.52×10−5

6 50 0.048 0.072 10.829 8.56×10−5

Table 2.7.3 shows the PID tuning parameters from PSO for controller of two-mass

single-link robot model with ISTE control strategies for 0%, 20%, 30%, 40%, and 50%

disturbances in input torque. Table 2.7.4 provides the tuning parameters of BSMC. The

objective values which are provided by BSMC are very less in comparison with PID

controller objective values.

The complete controller arrangement (shown in Figure 2.11) can provide good track-

ing trajectory for a single-link robot model even in the presence of disturbances in input

torque and with 10% uncertainty in system parameters. Figure 2.12 shows the error

response plot for various disturbance conditions and it is inferred that the disturbance

rejection capacity has improved with increase in disturbance levels. Figures 2.13b to

2.14c illustrates the responses of robot model for various torque disturbances with ISTE

as optimum criterion.

Totally 50 iterations have been taken into consideration to create a dataset of pa-

rameters (% of disturbance, K, λ1 and φ ) for the ANFIS controller. Here KANF , λANF ,

and φANF are tuned adaptively for input disturbances ranging from 0% to 50%. Fi-
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Table 2.7.4 : BSMC tuning parameters for various disturbances.

Sl. No Torque Disturbance λ1 φ K J

(%)

1 0 9.325 0.214 963.02 3.14×10−7

2 10 4.32 0.033 257.25 3.246×10−7

3 20 8.612 0.147 372.02 4.565×10−7

4 30 8.324 0.333 452.13 7.10×10−7

5 40 7.0165 0.408 918.662 2.34×10−6

6 50 9.847 0.637 762.348 3.626×10−6
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Figure 2.12 : Tracking error with ISTE for 0% and 50% disturbances.

nally, an ANFIS controller has been developed to generate the adaptive control signal

for the robot manipulator. Figure 2.15a shows the control input to the arm link of the

robot. The results of optimized adaptive BSMC controller is compared with BSMC

controller for 10% disturbance and shown in Figure 2.15b. The adaptive BSMC results

are satisfactory.
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(a) : Position tracking of single-link robot model for 0% disturbance.
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(b) : Position tracking of single-link robot model for 10% disturbance.
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(c) : Position tracking of single-link robot model for 20% disturbance.

Figure 2.13 : Tracking Positions of end-effector with ISTE for various disturbances in
input torque.

40



time (sec)

0 1 2 3 4 5

p
o

si
ti

o
n

 (
ra

d
)

-1.5

-1

-0.5

0

0.5

1

1.5
Desired Path

Actual Path

0.05 0.1 0.15 0.2

0.5

0.6

0.7

0.8

0.9

1

(a) : Position tracking of single-link robot model for 30% disturbance.
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(b) : Position tracking of single-link robot model for 40% disturbance.
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(c) : Position tracking of single link robot model for 50% disturbance.

Figure 2.14 : Tracking Positions with ISTE for various disturbances.
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(a) : Control input of actuator using ABSMC proposed controller.

(b) : Tracking Positions of single-link robot using ABSMC proposed controller.

Figure 2.15 : Control input and tracking positions of single-link with ISTE for 10%
disturbances.

2.8 SUMMARY

The two-mass flexible single-link robot with the gearbox is developed, and the control

parameters are tuned using Fminsearch and GA for different torque disturbances and

uncertainties. The following inferences are observed from the simulation results,

• GA tuning algorithm provides better stability, minimum tracking error and good

disturbance rejection over Fminsearch tuning algorithm.

• The tracking of robot manipulator by considering ISTE control strategy provides
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minimum objective function value in comparison with IATE and ISE.

• PID tuning with GA for ISTE gives minimum tracking error and good disturbance

rejection compared to other algorithms.

Hence, the PID controller with GA tuning algorithm and ISTE optimum criterion is

considered as an adaptive controller for the single-link robot.

The control parameters of the two-mass single-link robot are also tuned using PSO.

The following inferences are observed from the simulation results,

• PSO based PID tuning parameters gives minimum tracking error and good dis-

turbance rejection.

• The tracking of the robot model while considering the ISTE control strategy pro-

vides minimum objective function value in comparison with IATE and ISE.

• ANFIS adaptive BSMC controller is robust while considering the uncertainties in

the system parameters and disturbances in the input torque.
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Chapter 3

PSO BASED NEURO-FUZZY SLIDING
MODE CONTROL FOR A ROBOT
MANIPULATOR

This chapter discusses the variations of SMC controller in which PID sliding surface

is taken into consideration for the control of 2-DOF and 3-DOF robot manipulators.

3.1 INTRODUCTION

This non-linear controller provides acceptable control performance with stability and

robustness for non-linear systems (Iordanou and Surgenor, 1997). However, conven-

tional SMC which are used extensively has certain disadvantages. Firstly, chattering

problem can cause high-frequency oscillations in the controller output, secondly sen-

sitivity to input disturbances and parameter uncertainties. Chattering phenomenon can

cause issues such as saturation and heat in mechanical parts of the robot manipulators.

To overcome the chattering problem, various solutions have been reported in the litera-

ture which can be classified into two catergories: boundary layer saturation method and

estimated uncertain method (Khalil, 2002; Curk and Jezernik, 2001).

In recent years, Neural Networks (NNs), Fuzzy logic, and Neuro-fuzzy are com-

bined with SMC. These combinations are used in non-linear, time variant, and uncer-

tain plant. Some researchers applied the fuzzy logic methodology in SMC to reduce

the chattering (Barrero et al., 2002), and other researchers have used sliding mode

methodology in a fuzzy logic controller (FLC) to improve the stability of the system

(Aloui et al., 2011). The utilization of the adaptive neural networks to a robot manipu-
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lator is presented in (Perez et al., 2012) which explains recurrent neural networks and

Lyapunov function methodology. An adaptive type-2 FLC for flexible-joint manipula-

tors with structured and unstructured dynamical uncertainties have been introduced in

(Chaoui et al., 2013). In (Abdel et al., 2011), the authors have proposed fuzzy partition

to the state variables based on the Lyapunov synthesis. Authors in (Zeinali and Notash,

2010) have presented a methodology that enables the designer to derive the rule base of

the control method systematically.

This chapter presents a new adaptive SMC methodologies for 2-DOF and 3-DOF

robot manipulators. The adaptive SMC algorithm can estimate the value of the switch-

ing gain constant (Kw) and boundary layer thickness (φ ) in real time. A PID sliding sur-

face method is adopted instead of a conventional sliding surface method. An adaptive

PID sliding mode control with boundary layer (APIDSMCB) that can handle different

level of input torque disturbances is derived, and the stability of the closed-loop system

is established. The numerical simulation is presented to verify the effectiveness of the

proposed control scheme. It is inferred that the proposed APIDSMCB scheme offers

several advantages such as substantial robustness to parameter variation and external

disturbance.

3.2 CONTROLLER DESIGN AND STABILITY ANAL-
YSIS FOR A 2-DOF ROBOT MANIPULATOR

In this work, PSO is used to minimize the objective functions. Simulations are carried

out to estimate the following design control parameters

1. Finding the optimal sliding surface parameters Kp, Ki and Kd of conventional PID

controller.

2. Calculating the optimal parameters λ , Kw and φ of SMC and SMC with boundary

layer (i.e., SMCB) controllers.

3. Calculating the optimal parameters Kp, Ki, Kd , Kw, and φ of PIDSMCB controller.
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3.2.1 SMCB with PID sliding surface and stability analysis

In SMC, it is very important to implement the sliding surface ‘s’ which is expected to

provide desired control specifications and performance. The trajectories are enforced

to lie on the sliding surface. The block diagram of SMCB with PID sliding surface is

given in Figure 3.1

The sliding PID surface in the space of tracking error can be defined as

s = Kpe+Ki

∫
edt +Kd

d
dt

e (3.1)

Figure 3.1 : Block diagram of the SMCB with PID sliding surface.

The derivative of sliding surface with respect to time is expressed as

ṡ = Kpė+Kie+Kd[q̈d− q̈] (3.2)

Substituting equation (1.2) into above equation (3.2), we get

ṡ = Kpė+Kie+Kd[q̈d−D−1(q)(τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd))] (3.3)

The control effort is derived as the solution of ṡ = 0, without uncertainties (i.e., τd = 0) to

achieve the desired performance under nominal model is referred as equivalent control

effort, represented by τ0.

ṡ = Kpė+Kie+Kd[q̈d−D−1(q)(τ− (C(q, q̇)q̇+G(q)+F(q, q̇)))] = 0 (3.4)

τ0 = Kd
−1KpD(q)ė+Kd

−1KiD(q)e+D(q)q̈d +[C(q, q̇)q̇+G(q)+F(q, q̇)] (3.5)

However, in case of unpredictable disturbances or uncertainties, the equivalent control

effort cannot ensure the favorable control performance. Therefore, auxiliary control

effort should be designed to eliminate the effect of the unpredictable disturbances. For
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this purpose, the Lyapunov function can be chosen as:

V =
1
2

sT s (3.6)

The reaching condition can be defined as:

V̇ = sT ṡ < 0,s 6= 0 (3.7)

To obtain the reaching control signal τc, equation (3.7) is defined as:

V̇ = sT [Kpė+Kie+Kd q̈d]− sT KdD−1(q)[τ0 + τc]+ sT KdD−1(q)[C(q, q̇)]q̇

+G(q)+F(q, q̇)] (3.8)

Substituting equation (3.5) into equation (3.8), we get

V̇ = sT [0]− sT KdD−1(q)τc (3.9)

To ensure sT ṡ < 0, the reaching control law should be selected as:

τc = Kd
−1D(q)Kwsign(s) (3.10)

τc = Ksign(s) (3.11)

where K = Kd
−1KwD(q) is a positive gain matrix. Obviously, substituting equation

(3.10) into equation (3.9) we get

V̇ <−sT KdD(q)−1(Kd
−1D(q)Kwsign(s)) (3.12)

V̇ <−KwsT sign(s)

V̇ <−Kw|s| (3.13)

In order to avoid chattering effect, the sign function in equation (3.11) is replaced by

the tanh (hyperbolic tangent) function.

V̇ <−KwsT tanh(s) (3.14)

Similar to equation (2.22), we can prove stability condition for above equation. Finally,

the reaching control signal τc is given as follows

τc = K tanh
(

Kpe+Ki
∫

edt +Kd
d
dt e

φ

)
(3.15)
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3.3 ADAPTIVE PIDSMCB DESIGN AND STABILITY
ANALYSIS

3.3.1 Artificial Neural Network (ANN) Based PIDSMCB

In ANN, two-layer feed-forward networks with sigmoid hidden neurons and linear

output neurons can fit well in the multi-dimensional mapping problems, given con-

sistent data and enough neurons in its hidden layer. The network will be trained with

Levenberg-Marquardt backpropagation algorithm. Backpropagation is a specific tech-

nique for implementing descent in weight space for a multilayer feedforward network.

In hidden layer, the network is trained with 10 number of neurons.

Similar to equation (3.1), the sliding surface for adaptive PIDSMCB can be defined as

s = Kpe+Ki

∫
edt +Kd

d
dt

e (3.16)

From equation (3.7), we can define the necessary conditions for Lyapunov stability

V̇ = sT ṡ < 0, s 6= 0 (3.17)

Similarly, the stability of this controller can be proved from equation (3.14)

V̇ <−sT tanh(s) (3.18)

Finally, we can define the final control law developed by Neuro based adaptive PIDSMCB

is

τc = KNN tanh
(

Kpe+Ki
∫

edt +Kd
d
dt e

φNN

)
(3.19)

Where KNN = (KWNN)K−1
d D(q) and KWNN = diag{KWNN1,KWNN2...KWNNn} is adap-

tive switching gain matrix and φNN is adaptive boundary layer thickness of NN-based

APIDSMCB.

3.3.2 Artificial Neuro Fuzzy Inference System (ANFIS) Based
PIDSMCB

In ANFIS, for a given input/output data set, the toolbox function constructs a FIS whose

membership functions are tuned (adjusted) using either a backpropagation algorithm

alone or in combination with the least square method. Both ANN and fuzzy logic

are used in architecture (Jang, 1993). In the process of developing the ANFIS adaptive

controller, the training was performed on MATLAB environment by using various input
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membership functions with multiple training datasets under different disturbance con-

ditions. Figure 3.2 illustrates the framework of the ANFIS adaptive SMCB with PID

sliding surface. Here, ANFIS model provides adaptive KANF and φANF to the SMCB

for different torque disturbance conditions.

Figure 3.2 : Block diagram of the ANFIS adaptive SMCB with PID sliding surface.

Similar to equation (3.1), the sliding surface for adaptive PIDSMCB can be defined as

s = Kpe+Ki

∫
edt +Kd

d
dt

e (3.20)

From equation (3.7), we can define the necessary conditions for Lyapunov stability

V̇ = sT ṡ < 0, s 6= 0 (3.21)

The stability of of this controller can be proved from equation (3.14), then

V̇ <−sT tanh(s) (3.22)

Finally, we can define the final control law developed by APIDSMCB is

τc = (KANF) tanh
(

Kpe+Ki
∫

edt +Kd
d
dt e

φANF

)
(3.23)

Where KANF = (KWANF)K−1
d D(q) and KWANF = diag{KWANF1,KWANF2...KWANFn} is

adaptive switching gain matrix. Table 3.3.1 gives the training error values for adap-

tive switching gain constant (KWANF ) and adaptive boundary layer thickness (φANF ) of

SMC under various membership functions. Totally 8 membership functions and 300
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Epochs are considered for training of each ANFIS network. From Table 3.3.1 , it is ob-

Table 3.3.1 : The predicted results of different membership function for various inputs.

Sl. No Used Membership No. of Membership Functions Epochs Training Error Training Error
Function (MF) Values for KWANF Values for φANF

1 gaussmf 10 300 0.001068 2.16×10−7

2 gauss2mf 10 300 0.001053 1.09×10−7

3 primf 10 300 0.001072 3.29×10−7

4 dsimf 10 300 0.001133 2.37×10−7

5 psigmf 10 300 0.001123 2.37×10−7

6 gbellmf 10 300 0.097216 1.36×10−7

7 trimf 10 300 0.001202 2.07×10−7

8 trapmf 10 300 0.001089 2.40×10−7

served that the ‘gauss2mf ’provides minimum training error for the both cases. Finally,

gauss2mf membership function is used in designing of the ANFIS network for SMC.

3.4 RESULTS AND DISCUSSIONS FOR THE 2-DOF
ROBOT MANIPULATOR

Simulation is carried out for the 2-DOF robot manipulator in MATLAB. Initially, the

optimum robot manipulator controller is designed for IATE, ISE, and ISTE control

strategies for different torque disturbances. Results are obtained by tuning the param-

eters through global search algorithm, i.e., PSO under various input torque disturbance

conditions.

The dynamic equation of the robot manipulator model (shown in Figure 3.3) is given by

D11 D12

D21 D22


q̈1

q̈2

+
C1(q1,q2)q̇2

C2(q1,q2)q̇1

+
G1(q1)

G2(q2)

=

τ1

τ2

+
τd1

τd2


where

D11 =

[(
1
3

m1 +m2

)
L2

1

]
+

1
3

m2L2
2 +m2L1L2Cos(q2)

D12 = D21 = m2

[
1
3

L2
2 +

1
2

L1L2Cos(q2)

D22 =
1
3

m2L2
2
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Figure 3.3 : Rigid two link robot manipulator (Mittal and Nagrath, 2003).

C1(q1,q2) =−m2L1L2Sin(q2)q̇1−
1
2

m2L1L2Sin(q2)q̇2

C2(q1,q2) =
1
2

m2L1L2Sin(q2)q̇1

G1(q1) =

[(
1
2

m1 +m2

)
L1Cos(q1)+

1
2

m2L2Cos(q1 +q2)

]
g

G2(q2) =
1
2

m2L2Cos(q1 +q2)g (3.24)

The physical parameters under consideration are listed as follows: m1=10 kg, m2=10

kg, L1= 0.5 m, L2=0.5 m and g = 9.8m/s2. m1 and m2 are the two joint masses, L1 and

L2 are the arm lengths, τ1, τ2 are input torque and τd1, τd2 are disturbance torques of

robot manipulator.

Table 3.4.1 and 3.4.2 show the conventional PID control tuning parameters resulted

from PSO with IATE, ISE, and ISTE control strategies for 5% and 10% torque dis-
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Table 3.4.1 : PID tuning parameters for 5% input torque disturbance.

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp1 514.5 819.5 532.8

2 Ki1 156.6 574.8 217.8

3 Kd1 42.55 459.9 168.7

4 Kp2 204.7 119.73 686.7

5 Ki2 318.8 257.6 329.4

6 Kd2 901.3 40.21 164.8

Objective

function value (J) 0.5147 0.0180 0.0168

Table 3.4.2 : PID tuning parameters for 10% input torque disturbance.

Sl.No Controlling Parameters IATE ISE ISTE

1 Kp1 814.9 665.6 814.9

2 Ki1 631.5 799.5 631.5

3 Kd1 745.1 122.1 745.1

4 Kp2 380.2 416.7 380.2

5 Ki2 427.6 716.5 427.6

6 Kd2 169.7 777.6 169.7

Objective

Function value (J) 0.5506 0.09713 0.0313

turbances. From the above tables, it is observed that the model with ISTE control

strategy gives minimum objective function values (i.e., 0.0168 and 0.0313 for 5% and

10% disturbances in input torque, respectively) compared to IATE and ISE optimal con-

trol strategies. Finally, ISTE control strategy has been selected for further simulation

works of robot manipulator. Table 3.4.3 shows the SMC parameters and objective

function values for 5%, 7.5%, and 10% torque disturbances resulting from PSO. Ta-

ble 3.4.4 shows the SMCB parameters and objective function values for 5%, 7.5%, and

10% torque disturbances resulting from PSO. The maximum operating torque (τ) under

10% input torque disturbance is 0.8×104 Nm. For a 10% disturbance of input torque

(i.e. 800 Nm) the PID parameters obtained from PSO tuning of PIDSMCB are found

53



Table 3.4.3 : SMC parameters for 5%, 7.5%, and 10% input torque disturbances.

Sl.No Parameters of SMC 5%dis 7.5%dis 10%dis

1 K 297.1 178.3932 315.7

2 λ 57.42 550.8505 9.25

Objective

Function Value (J) 0.0009 0.00058 0.0073

Table 3.4.4 : SMCB parameters for 5%, 7.5%, and 10% input torque disturbances.

Sl.No Parameters of SMCB 5%dis 7.5%dis 10%dis

1 K 454.25 634.8768 589.03

2 λ 934.49 816.5764 870.44

3 φ 0.3858 0.5959 0.0842

Objective

Function Value (J) 3.386×10−6 5.5×10−6 6.742×10−7

Table 3.4.5 : PIDSMCB parameters for 5%, 7.5%, and 10% input torque disturbances.

Sl.No Controlling Parameters 5%dis 7.5%dis 10%dis

1 Kp1 870.5 439.8 734.5

2 Ki1 265.6 217.5 780.2

3 Kd1 573.7 533.1 461.3

4 Kp2 411.9 831.4 747.2

5 Ki2 36.9 450.4 786.4

6 Kd2 490.4 600.9 106.1

7 K 662.6 766.2 992.9

8 φ 0.5215 0.4978 0.1709

Objective

Function Value (J) 1.498×10−5 3.437×10−6 6.168×10−7

to be, Kp1 = 734.5, Ki1 = 780.2, Kd1 = 461.3, Kp2 = 742.2, Ki2 = 786.4 and Kd2 = 106.1

as given in Table 3.4.5. These tuned PID parameters are kept fixed for all iterations but

the sliding control parameters (K and φ ) are calculated using PSO. For data generation,

K and φ are obtained for various input disturbances ranging from 0% to 11% with a

step size of almost 0.1% disturbance. Total 115 number of data sets (% of disturbance,
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K and φ ) are collected by PSO tuned PIDSMCB. Among those data sets, 110 number

of data sets are used for training and the rest 5 data sets are used for testing the AN-

FIS controller. Finally, results of the APIDSMCB are compared with the PSO tuned

PIDSMCB controller in Table 3.4.6.

Table 3.4.6 : Comparison of control parameters from different approaches.

Sl. No
Disturbance in

input Torque (%)
Parameters from PSO Objective Function

Value (J)
Parameters from ANFIS Objective Function

Value (JANF )Kw φ KWANF φANF

1 1.75 913.5 0.381 2.45×10−6 722.1 0.048 4.61×10−4

2 2.85 962.8 0.755 6.01×10−6 924 0.022 4.25×10−5

3 7.55 367.8 0.766 3.5×10−5 1026 0.175 2.88×10−5

4 9.35 699.7 0.763 3.49×10−5 994.5 0.016 4.03×10−6

5 10.82 602.8 0.487 4.09×10−6 964.4 0.065 8.08×10−6

Figures 3.4 and 3.5 show the response of robot manipulator link positions for 10% dis-

turbance in input torque with ISTE optimum criterion under PID, SMC, and SMCB

methods. Figures 3.6 and 3.4 show the response of robot manipulator link positions

for 10% disturbance in input torque with ISTE optimum criterion under PIDSMCB and

APIDSMCB methods. From the Figures 3.4 and 3.7, it is clear that the tracking error is

minimum for PIDSMCB compared to conventional PID, SMC, and SMCB. Figures 3.8

and 3.9 show control torque input by using SMC and APISMCB proposed controllers,

respectively. Figure 3.10 shows the tracking error responses for 10% disturbance in

input torque under PIDSMCB.
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Figure 3.4 : Tracking positions of Link 1 with PID, SMC and SMCB for 10% distur-
bance in input torque.

55



time (sec)

0 0.5 1 1.5 2

p
o

si
ti

o
n

 (
ra

d
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Desired Path

Actual Path with PID

Actual Path with SMC

Actual Path with BSMC

0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.04

0.06

0.08

Desired Path

Actual Path with PID

Actual Path with SMC

Actual Path with SMCB

Figure 3.5 : Tracking positions of Link 2 with PID, SMC and SMCB for 10% distur-
bance in input torque.
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3.5 RESULTS AND DISCUSSIONS FOR 3-DOF ROBOT
MANIPULATOR

Numerical simulations are performed for the 3-DOF rigid robot manipulator in MAT-

LAB and SIMULINK. Figure 3.11 shows three-link rigid robot manipulator, where

q1(t), q2(t)and q3(t) are angular positions, m1, m2 and m3 are link masses, L1, L2 and L3

are the link lengths, τ1(t), τ2(t) and τ3(t) are the input torque of robot manipulator. The

physical parameters under consideration are listed as follows: m1=5.4 kg, m2=29.5 kg,

m3=18.5 kg, L1= 0.58 m, L2=0.5 m, L3=0.79 m and g = 9.8m/s2. Initial conditions are

q(0) = [q1(0),q2(0),q3(0)]T = 0 and q̇(0) = [q̇1(0), q̇2(0), q̇3(0)]T = 0. The reference

tracking signals are qd1(t) = 0.09sin(πt)+ 0.03sin(14πt), qd2(t) = 0.07sin(17πt)+

0.056sin(9πt) and qd3(t) = 0.12sin(5πt)+0.09sin(2πt). The most essential parame-

ters that affect the control performance of the robot manipulator are frictional terms (i.e.

F(q(t), q̇(t)))) and external disturbances (τd). Considered friction terms are F(q1, q̇1) =

5q̇1 +5sign(q̇1), F(q2, q̇2)) = 10q̇2 +10sign(q̇2) and F(q3, q̇3)) = 15q̇3 +15sign(q̇3).

Table 3.5.1 shows the conventional PID control tuning parameters resulted from PSO

with IATE, ISE, and ISTE control strategies for 10% torque disturbance. From the

Table 3.5.1, it is observed that the model with ISTE control strategy gives minimum

objective function value compared to IATE and ISE optimal control strategies. Finally,

ISTE control strategy has been taken as the performance index for further simulation
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Figure 3.11 : A 3-DOF planar articulated robot manipulator (Lai et al., 2015).

Table 3.5.1 : PID Tuning Parameters for 10% disturbance in input torque

Sl. No Controlling Parameters IATE ISE ISTE

1 Kp1 814.9 665.6 627.3

2 Ki1 631.5 799.5 631.5

3 Kd1 745.1 122.1 745.1

4 Kp2 380.2 416.7 380.2

5 Ki2 427.6 716.5 427.6

6 Kd2 169.7 777.6 169.7

7 Kp3 703.8 554.5 516.2

8 Ki3 520.4 688.4 520.4

9 Kd3 117.5 127.5 871.2

Objective

Function Value (J) 0.5506 0.09713 0.0113

works of the robot manipulator.

Table 3.5.2 shows the SMC parameters and objective function values for 5%, 7.5%,

and 10% torque disturbances resulting from PSO. Table 3.5.3 shows the SMCB parame-

ters and objective function values for 5%, 7.5%, and 10% torque disturbances resulting

from PSO. Figures 3.12a to 3.12c shows the responses of robot manipulator link po-
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Table 3.5.2 : SMC Parameters for 5%, 7.5%, and 10% input torque disturbances

Sl. No Parameters of SMC 5%dis 7.5%dis 10%dis

1 Kw 297.1 178.3932 315.7

2 λ 57.42 550.8505 9.25

Objective

Function Value (J) 0.009 0.0058 0.073

sitions for 10% disturbance in input torque with ISTE optimum criterion under PID,

SMC, SMCB and PIDSMCB methods. From these figures, it is clear that the tracking

error is minimum for SMCB compared to conventional PID and SMC.

For a 10% disturbance of input torque, the PID parameters obtained from PSO tun-

ing of PIDSMCB are found to be, Kp1 = 734.5, Ki1 = 780.2, Kd1 = 461.3, Kp2 = 742.2,

Ki2 = 786.4 and Kd2 = 106.1, Kp3=814.9, Ki3=631.5 and Kd3=745.1 as given in Table

3.5.4. These tuned PID parameters given are kept fixed for all iterations but the sliding

control parameters (Kw and φ ) are calculated by using PSO. For data generation Kw and

φ are obtained for various input disturbances ranging from 0 to 11% with a step size of

almost 0.1% disturbance. Total 115 number of data (% of disturbance, Kw and φ ) are

collected by PIDSMCB tuned by PSO. Among those data 110 has been used for train-

ing and rest 5 data are used for testing adaptive controllers. Finally, testing results of

the neuro and neuro-fuzzy based APIDSMCB are compared using the statistical anal-

ysis ANOVA (Analysis of variance) as shown in Figure 3.15. In descriptive statistics,

‘anova1’ performs a one-way ANOVA for comparing the means of two or more groups

of data.

Figures 3.13a, 3.13b and 3.13c show control torque input by using PID, SMC, and

PIDSMCB respectively. From the figures, it is clear that conventional SMC creates

more chattering in control torque compared PIDSMCB method. Figures 3.14a, 3.14b

and 3.14c show the Tracking error response under 10% torque disturbance in input

torque under PID, SMC, and PIDSMCB methods.
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Table 3.5.3 : SMCB Parameters for 5%, 7.5%, and 10% input torque disturbances

Sl. No Parameters of SMCB 5%dis 7.5%dis 10%dis

1 Kw 454.25 634.8768 589.03

2 λ 934.49 816.5764 870.44

3 φ 0.3858 0.5959 0.0842

Objective

Function Value (J) 3.386 ×10−4 5.5×10−4 6.742×10−4

Table 3.5.4 : PIDSMCB parameters for 5%, 7.5% and 10% input torque disturbances

Sl.No Controlling Parameters 5%dis 7.5%dis 10%dis

1 Kp1 870.5 439.8 734.5

2 Ki1 265.6 217.5 780.2

3 Kd1 573.7 533.1 461.3

4 Kp2 411.9 831.4 747.2

5 Ki2 36.9 450.4 786.4

6 Kd2 490.4 600.9 106.1

7 Kp3 814.9 665.6 814.9

8 Ki3 631.5 799.5 631.5

9 Kd3 745.1 122.1 745.1

10 Kw 662.6 766.2 992.9

11 φ 0.5215 0.4978 0.1709

Objective

Function Value (J) 1.498×10−5 3.437×10−5 6.168×10−5

Table 3.5.5 : Comparison of Control parameters from different approaches

Disturbance Parameters from PSO J Parameters from NN JNN Parameters from ANFIS JANF

(%) Kw φ KWNN φNN KWANF φANF

1.75 913.5 0.381 2.45×10−6 140 0.048 7.91×10−5 722.1 0.048 4.61×10−4

2.85 962.8 0.755 6.01×10−6 228 0.022 1.11×10−4 924 0.022 4.25×10−5

7.55 367.8 0.766 3.5×10−5 604 0.8354 6.36×10−4 1026 0.175 2.88×10−5

9.35 699.7 0.763 3.49×10−5 700 0.108 5.21×10−4 994.5 0.016 4.03×10−6

10.82 602.8 0.487 4.09×10−6 865.6 0.03427 2.81×10−4 964.4 0.065 8.08×10−6
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(a) : Position tracking of Link 1, Link 2 and Link 3 with PID controller.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

Time (sec)

P
o

si
ti

o
n

 (
ra

d
)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

Time (sec)

P
o

si
ti

o
n
 (

ra
d
)

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1

Time (sec)

P
o

si
ti

o
n
 (

ra
d

)

 

 

Link1 Desired Path

Link1 Actual Path

Link2 Desired Path

Link2 Actual Path

Link3 Desired Path

Link3 Actual Path

(b) : Position tracking of Link 1, Link 2 and Link 3 with SMC.
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(c) : Position Tracking of Link 1, Link 2 and Link 3 with PIDSMCB.

Figure 3.12 Comparison of position tracking responses with different control schemes
for 10% disturbance in input torque.
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(a) : Control input for Link 1, Link 2 and Link 3 with PID controller.
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(b) : Control input for Link 1, Link 2 and Link 3 with SMC.
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(c) Control input for Link 1, Link 2 and Link 3 with PIDSMCB controller.

Figure 3.13 Control input of Link 1, Link 2 and Link 3 using different proposed con-
trollers for 10% disturbance in input torque.
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(a) : Tracking error for Link 1, Link 2 and Link 3 with PID controller.
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(b) : Tracking error for Link 1, Link 2 and Link 3 with SMC.
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(c) : Tracking error for Link 1, Link 2 and Link 3 with PIDSMCB controller.

Figure 3.14 : Comparison of position tracking error responses with different control
techniques for 10% disturbance in input torque.
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Figure 3.15 : Side-by-side anova1 plots for PSO, NN, and ANFIS approaches.

3.6 SUMMARY

This chapter discusses variations of SMC controller in which PID sliding surface is

taken into consideration. The PSO is used to obtain the optimal sliding surface pa-

rameters and sliding control parameters with objective functions as IATE, ISE, and

ISTE. Simulation results show that the ISTE control strategy provides minimum ob-

jective function value compared to ISE and IATE. Control performance of SMCB and

PIDSMCB are anlysed in terms of tracking error, disturbance rejection, and elimina-

tion of chattering. For a real-time control, neuro and neuro-fuzzy based APIDSMCB

are recommended. It is found that the neuro-fuzzy based APIDSMCB gives better per-

formance compared to neuro APIDSMCB. A neuro-fuzzy based APIDSMCB can be

used for real-time control of robot manipulator where the sliding control parameters are

changed adaptively. Lyapunov stability theorem rigorously guarantees the stability of

the proposed control system.
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Chapter 4

NEURAL NETWORK BASED MODIFIED
SLIDING MODE CONTROL TECHNIQUES
WITH OBSERVER DESIGN FOR ROBOT
MANIPULATORS

This chapter discusses different types of observer-based sliding mode controllers (i.e.,

SMC, BSMC and Integral BSMC (IBSMC)) for 3-DOF OTDIRM. The results are com-

pared using different performance methods.

4.1 INTRODUCTION

Control of the robotic systems that are non-linear and MIMO is vital due to their wide

range of applications. The main aim of the robot control is to track the reference tra-

jectory (Gracia et al., 2012). In general, nonlinear controllers can handle different

problems with more robustness in the presence of system uncertainties and external

disturbances. Most common nonlinear control strategies such as feedback linearization

control, SMC and adaptive or artificial intelligence based control methodologies have

been proposed to solve MIMO control system problems (Piltan and Sulaiman, 2012;

Kohrt et al., 2013). SMC is one of the influential robust controllers to control robot

manipulators, which have been analyzed by many researchers.

The performance of the robot manipulator using SMC can provide robust trajec-

tory tracking under uncertainties and different disturbance conditions. Design of this

controller can be carried out by considering system parameters without including the

67



dynamic effects, such as backlash, elasticity of joints or links and non-linear friction,

etc. A chattering free adaptive second order terminal sliding mode (SOTM) control is

proposed for trajectory tracking of the robot manipulator (Mondal and Mahanta, 2014).

Hybrid learning sliding surfaces, a new fast decoupled terminal sliding mode control

(FDTSMC) scheme is presented in (Liu and Li, 2014; Zhao et al., 2014) which de-

scribes the elimination of the singularity problem in control law. NISMC for uncertain

nonlinear systems is addressed in (Zheng et al., 2015). Icing formation on overhead

transmission line is hazardous and it may result in damage to power systems during

fault conditions (Xie and Li, 2006). In (Tran et al., 2015), authors discussed SMC

methodology based on CRLSMC to the 3-link de-icing robot manipulator (DIRM) for

achieving the robust tracking without strict conditions and system dynamics. The dy-

namic neural network (DNN) based robust control method for uncertain nonlinear sys-

tems is addressed in (Dinh, 2012).

(Sun et al., 2011) have designed a neural network based adaptive observer and con-

troller for a two-link robot manipulator. In (Rossomando et al., 2014), authors have

developed a neuroadaptive sliding mode control for a mobile robot manipulator for

compensating the time delay. (Huang and Lewis, 2003), have proposed a recurrent

neural network (RNN) based predictive control for a nonlinear dynamic system. In

those papers, the authors have not considered OTDIRM as a system which has high

dynamical complexity. This chapter mainly differs from (Sun et al., 2011; Rossomando

et al., 2014; Sharma et al., 2011; Huang and Lewis, 2003) by considering a different

complex dynamic system. However, the authors in (Wei et al., 2012) have taken the

OTDIRM system but they have directly used the wavelet NN controller instead of tak-

ing the observer-based controller.

OTDIRM is a highly complex dynamic system. Without considering dynamic com-

plexities, it is difficult to meet the desired trajectory. In view of this, (Tran et al., 2015)

has developed a control techniques for a 3-link de-icing robot considering the dynamic

conditions. In the present work, an alternate control strategy is developed with better

input and output performance.

Electrical overhead transmission lines are affected during cold weather due to wet
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snow or ice accretion which increases wind load effects, thereby increasing the trans-

mission line tension. The increase in line tension causes undesirable effects on the

power systems. Therefore, de-icing of electrical transmission lines have to be carried

out. The use of robot manipulators is a good solution for de-icing. In this chapter dif-

ferent control approaches of 3-DOF OTDIRM are discussed to eliminate the effect of

noises or disturbances and uncertainties associated with the direct measurement. The

control laws for tracking of the OTDIRM are developed by combining different types

of modified SMC techniques and NN-based approximations. For the precise trajectory

tracking performance and enhanced disturbance rejection under various operating con-

ditions, NN-based adaptive observer non-linear SMC methodologies are developed in

this work. The parameters of different SMC methodologies and NN adaption weights

are obtained by minimizing the quadratic performance indices, wherein, the minimiza-

tion is dealt with PSO.

The primary goal of the anticipated controller is to maintain the steadiness and ro-

bustness of overall approach in the presence of uncertainties and disturbances under

various operative conditions. RBFNN-based observer estimates the position and ve-

locity vectors of the link of the OTDIRM without any measurements. The predicted

positions and velocities from one RBFNN are fed as a contribution to another RBFNN

identifier whose output is the auxiliary control signal (τNN). However, on the downside,

many computations are required to design the parameters of the proposed methods.

Chattering effect is mitigated by applying boundary layer phenomenon, and the con-

troller stability is proved by using Lyapunov stability analysis. Both simulation and

experiment results demonstrate the validity and effectiveness of the proposed control

methods.

4.2 OVERHEAD TRANSMISSION LINE DE-ICING
ROBOT MANIPULATOR

Transmission line icing is one of the most significant factors affecting the safety and re-

liability of a power system. The adverse impact of icing on transmission lines can result
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in tower collapse, unnecessary tripping, and power outages. This inevitably poses se-

vere challenges to power utilities. Robot manipulator de-icing technology can mitigate

icing problems without interrupting power supply on transmission lines.

Figure 4.1 and 4.2 shows the architecture of a 3-DOF single-arm and dual-arm ar-

ticulated OTDIRM respectively. The joint velocity vector is q̇ = [q̇1, q̇2, q̇3]
T and the

joint position vector is q = [q1,q2,q3]
T .

Figure 4.1 : A 3-DOF single-arm articulated OTDIRM

Figure 4.2 : A 3-DOF dual-arm articulated OTDIRM (Tran et al., 2015)
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4.3 NEURAL NETWORK-BASED MODIFIED SLID-
ING MODE CONTROL (NNSMC)

Neural network (NN) based adaptive control systems are used to approximate the un-

known non-linearities, due to their inherent approximation capabilities. In this design,

the radial basis activation function (RBF) is considered to approximate the unknown

non-linearities of the OTDIRM. The approximation function is f (X) : Rq → R3 and

defined as:

f (X) =W T
σ(X)+ ε(X) (4.1)

where ‘X’ is input vector, W ∈ Rm×3 is the weight matrix, ‘m’ is the number of neurons

(m> 1), and ‘ε’ is the approximation error and σ(X)= [σ1(X),σ2(X),σ3(X)....σm(X)]T

is the Gaussian RBF function. This Gaussian RBF function is defined as:

σi(X) = exp
(
− ||X−Ci||2

2b2
i

)
, i = 1,2, ...,m (4.2)

where ‘Ci’ and ‘bi’ are the center and widths of the ith neuron respectively. The schematic

representation of NNSMC is shown in Figure 4.3. The combined SMC and RBFNN

identifier is designed for the OTDIRM to provide better trajectory tracking performance

and disturbance rejection under unknown non-linearities.

Figure 4.3 : Block diagram of the NNSMC scheme.

The tracking error of position (e) is defined as

e = qd−q (4.3)
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q̇r = q̇d +λ1e (4.4)

where ‘q̇r’ and ‘λ1’ are auxiliary signal and positive definite constant matrix respec-

tively. Then sliding surface is redefined as:

s = q̇r− q̇ = ė+λ1e (4.5)

By substituting Eqs. (4.4) and (4.5) in Eq. (1.18), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (4.6)

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (4.7)

where ‘X’ is a state vector, X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T and ‘τd’ represents torque distur-

bances and uncertainties. The estimation of f (X) is defined as:

f̂ (X) = Ŵ T
σ(X) (4.8)

Using Eqs. (4.1), (4.6) and (4.8) yields

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ ε
∗+ τd− τ (4.9)

where W̃ =W ∗−Ŵ , W ∗ is ideal weights matrix.

Theorem 4.3.1. Consider the robot manipulator is demonstrated by (1.18),if the total
control torque is defined as τ = τ0+τc+τNN , in which modified SMC law is defined as
τc = k1s+K tanh( s

φ
), τ0 is equivalent control torque and the NN identifier is expressed

as τNN = Ŵ T σ(X) with estimated adaptation law. The estimated adaptation law for
NN identifier is defined as:

˙̂W =− ˙̃W = Bσ(X)sT (4.10)
where ‘B’ is a positive definite matrix, the tracking errors of position and velocity (i.e.,
e and ė) of the system asymptotically converge to zero as t→ ∞.

Proof. The Lyapunov stability function is defined as:

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (4.11)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (4.12)
By substituting Eq (4.9) in Eq (4.12), we get

V̇ =
1
2

sT{Ḋ(q)−2C(q, q̇)}s+ sT{W̃ T
σ(X)+ ε

∗+ τd− k1s (4.13)

−K tanh
(

s
φ

)
}+ tr(W̃ T B−1 ˙̃W )

=
1
2

sT{Ḋ(q)−2C(q, q̇)}s+ sT{ε∗+ τd− k1s−K tanh
(

s
φ

)
} (4.14)

+tr{W̃ T (B−1 ˙̃W +σ(X)sT )}
Since, Ḋ(q)−2C(q, p) is skew symmetric (i.e., 1

2sT [Ḋ(q)−2C(q, q̇)]s = 0), from Eqs.
(2.22) and (4.10), V̇ can be rewritten as:

V̇ ≤−k1sT s+ ||s||δ0 (4.15)
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where ‘δ0’ is upper bound of ||ε∗ + τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 + ρδ 2
0 ), where ρ > 0 is chosen such that

∫
∞

0 ρdt < ∞ and then substituted in
Eq. (4.15) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (4.16)

Integrating both sides of Eq. (4.16) from t = 0 to T , yields

V (T )−V (0)≤−(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (4.17)

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)
[V (0)+

1
2

δ
2
0

∫
∞

0
ρdt] limsup

T→∞

1
T

= 0 (4.18)

From the Eqs. (4.17) and (4.18), we can obtain s→ 0 as t→∞. Therefore, we can con-
clude, from the Eq.(4.5), the trajectory tracking errors e and ė asymptotically converge
to zero as t→ ∞. Therefore, proposed NNSMC satisfies the stability criteria.

4.4 NN BASED ADAPTIVE OBSERVER DESIGN AND
CONTROL

4.4.1 Neural network-based adaptive observer (NNAO)

The NN based adaptive observer is developed to estimate link or joint positions and

velocities of the OTDIRM.

Let us define the following variables

q̇ = p (4.19)

where ‘q’ and ‘p’ are link position and velocity vectors of OTDIRM. Eq. (1.18) is

redefined as:

ṗ = H(q, p)−D−1(q)τd +D−1(q)τ (4.20)

where H(q, p) =−D−1(q)[C(q, p)p+G(q)+F(q, p)]. According to the approximation

property of NN, the estimation function of H(q, p) is defined as:

H(q, p) =W ∗To σo(q, p)+ ε
∗
o (q, p), ||ε∗o (q, p)|| ≤ ε0N (4.21)

where ‘W ∗To ’ is an optimal weight matrix, ‘ε∗o (q, p)’ and ‘ε0N’ are approximation error,

and it’s upper bound limit respectively. The NN based adaptive observer estimates q

and p as q̂ and p̂ respectively, and the observer estimation errors are q̃ = q− q̂ and

p̃ = p− p̂. Then, the functional estimate of Eq. (4.21) in terms of q̂ and p̂ can be given

by Eq. (4.22) and is shown as:

H(q, p) = Ŵ T
o σo(q̂, p̂) (4.22)
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Let us define the proposed NN based adaptive observer as

˙̂q = p̂+Λ1q̃ (4.23)

˙̂p = Ŵ T
o σo(q̂, p̂)+D−1(q)τ +Λ2q̃+Λ3 ˙̃q (4.24)

where Λ1,Λ2 and Λ3 are positive design constants.

˙̃q = p̃−Λ1q̃ (4.25)

˙̃p = ṗ− ˙̂p (4.26)

˙̃p = W ∗To σo(q, p)−W ∗To σo(q̂, p̂)+W ∗To σo(q̂, p̂)−Ŵ T
o σo(q̂, p̂) (4.27)

−D−1(q)τd−Λ2q̃−Λ3 ˙̃q

˙̃p =W ∗To σ̃o(q, p)+W̃ T
o σo(q̂, p̂)−D−1(q)τd + ε

∗
o −Λ2q̃−Λ3 ˙̃q (4.28)

By substituting Eq. (4.25) in Eq. (4.28), we get

˙̃p =W ∗To σ̃o(q, p)+W̃ T
o σo(q̂, p̂)−D−1(q)τd + ε

∗
o −Λ3 p̃ (4.29)

where σ̃o(q, p) = σo(q, p)−σo(q̂, p̂), W̃o =W ∗o −Ŵo and Λ2 = Λ1Λ3, p̃ = ˙̃q.

Theorem 4.4.1. Let NN observer is characterized by (4.23)and (4.24) respectively and
the evaluated adaptation law for the observer is designed as

˙̂Wo =− ˙̃Wo = Boσo(q̂, p̂)p̃T (4.30)
where ‘Bo’ denotes a positive definite matrix, then the estimated errors of observer q̃
and p̃ are asymptotically converge to zero.

Proof. Lyapunov stability function of observer is defined as:

V =
1
2

p̃T p̃+
1
2

tr(W̃o
T B−1

o W̃o) (4.31)

V̇ = p̃T{W ∗To σ̃o(q, p)+W̃ T
o σo(q̂, p̂)−D−1(q)τd + ε

∗
o −Λ3 p̃} (4.32)

+tr(W̃o
T B−1

o
˙̃Wo)

V̇ = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε
∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo (4.33)

+σo(q̂, p̂)p̃T )

V̇ ≤−Λ3 p̃T p̃+ ||p̃||β0 (4.34)
where ‘β0’ is an upper bound of ||W ∗To σ̃o(q, p)−D−1(q)τd + ε∗o ||. The term ||p̃||β0 is
bounded by ||p̃||β0≤ 1

2(||p̃||
2+ρβ 2

0 ) and then substituted in Eq. (4.34) to get a stability
criteria with finite boundedness.

V̇ ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (4.35)

Integrating both sides of Eq. (4.35) from t = 0 to T , yields

V (T )−V (0)≤−(Λ3−
1
2
)
∫ T

0
||p̃||2dt +β

2
0

∫ T

0
ρdt, (∀ Λ3 > 2) (4.36)
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Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||p̃||2dt ≤ 1

(Λ3− 1
2)
[V (0)+

1
2

β
2
0

∫
∞

0
ρdt] limsup

T→∞

1
T

= 0 (4.37)

From Eqs. (4.36) and (4.37), we can obtain p̃→ 0 as t→∞. Therefore, we can conclude
q̃→ 0 and p̃→ 0, i.e., the proposed NNAO satisfies the stability criteria.

4.4.2 Neural Network-Based Adaptive Observer Sliding Mode Con-
trol (NNAOSMC)

In this section, design of NNAO is used to develop the NNAOSMC for trajectory track-

ing of OTDIRM. Figure. 4.4 shows the schematic diagram of NNAOSMC.

The estimation errors of link position and velocity are defined as:

Figure 4.4 : Block diagram of the NNAOSMC scheme.

ê = qd− q̂ (4.38)

˙̂e = q̇d− ˙̂q (4.39)

We can define estimated sliding surface as:

ŝ =
˙̂e+λ2ê

φ
(4.40)

Theorem 4.4.2. Consider robot manipulator described by (1.18). Let the NN observer
estimates q and p as q̂ and p̂, respectively and the observer estimation errors are q̃ =
q− q̂ and p̃ = p− p̂. Based on the estimation of q and p, the estimation of f (X) defined
in Eq. (4.7) is expressed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (4.41)
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where ‘Ŵc’ is adaptation law of NN approximation in the NNAOSMC scheme. The
adaptation law is defined as:

˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (4.42)
where ‘Bc’ is a positive definite constant matrix. The control law of the NNAOSMC is
defined as:

τ = Λ3ŝ+K tanh
(

ŝ
φ

)
+Ŵc

T
σ(X̂) (4.43)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the NN approximation to robot manipulator, then the estimation errors q̃ and p̃ are
asymptotically converges to zero.

Proof. Consider the Lyapunov stability function for NNAOSMC as
V =Vo +Vc (4.44)

where ‘Vo’ and ‘Vc’ are observer and controller stability candidate functions respec-
tively.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (4.45)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (4.46)
The derivative of Eq. (4.46) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (4.47)

=
1
2

sT{Ḋ(q)−2C(q, p)}s+ sT{W̃c
T

σ(X)+Ŵ T
c σ̃(X)+ ε

∗+ τd (4.48)

−Λ3ŝ−K tanh
(

ŝ
φ

)
}+ tr(W̃ T

c B−1
c

˙̃Wc)

Since, Ḋ(q)−2C(q, p) is skew symmetric and s = ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, we get
V̇c = ŝT{Ŵ T

c σ̃(X̂)+ ε
∗+ τd)}+ p̃T{W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+ ε
∗+ τd)} (4.49)

−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
(

ŝ
φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

We can denote ‘γ0’ is an upper bound of ||Ŵ T
c σ̃(X̂)+ ε∗+ τd|| and ζ = {W̃c

T
σ(X̂)+

Ŵ T
c σ̃(X̂)+ ε∗+ τd}, then there exists positive constant ‘ζ0’ such that ||ζ || ≤ ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (4.50)
The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1

2(||ŝ||
2+ργ2

0 ), ||p̃||ζ0 ≤
1
2(||p̃||

2+ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. The bounded terms are
substituted in Eq. (4.50) to get a stability criteria with finite boundedness.
Finally, we get:

V̇c ≤−
(

Λ3

2
− 1

2

)
||ŝ||2 +

(
Λ3

2
+

1
2

)
||p̃||2 + 1

2
ρ

(
γ

2
0 +ζ

2
0

)
, ∀ (Λ3 > 2) (4.51)

The derivative of Eq. (4.45) and from Eq. (4.33), we get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo (4.52)

+σo(q̂, p̂)p̃T )

Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1
2(||p̃||

2+
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ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (4.53)

V̇ = V̇o +V̇c (4.54)

V̇ ≤−1
2

(
Λ3−2

)
||p̃||2− 1

2

(
Λ3−1

)
||ŝ||2 + 1

2
ρ

(
γ

2
0 +ζ

2
0 +β

2
0

)
, ∀ (Λ3 > 2)

(4.55)
Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2

(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2

(
Λ3−2

)∫ T

0
||p̃||2dt (4.56)

+
1
2

(
γ

2
0 +ζ

2
0 +β

2
0

)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

sup
1
T

{(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

}
(4.57)

≤ 2[V (0)+
1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt] limsup

T→∞

1
T

= 0

From Eqs. (4.56) and (4.57), it is clear that p̃→ 0, ŝ→ 0 as t→∞. That concludes q̃→ 0
and p̃→ 0. Therefore, the proposed NNAOSMC satisfies the stability criteria.

4.5 RESULTS AND DISCUSSIONS FOR SMC METHOD-
OLOGIES

Simulation was carried out for the 3-DOF OTDIRM in MATLAB and SIMULINK.

Figure 4.1(b) shows three-link OTDIRM, where q1, q2 are angular positions (rad) and

q3 is displacement position (m) and m1, m2 and m3 are link masses (kg), L1, L2 and L3

are the link lengths (m), τ1, τ2 and τ3 are the input torques of the robot manipulator

(Nm).

4.5.1 Dynamic Parameters of OTDIRM

Using the dynamic equation of over head de-icing robot manipulator, from Eq. (1.18),

the system parameters are defined as follows:

D(q) =


D11 D12 D13

D21 D22 D23

D31 D32 D33
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D11 =
9
4

m1L1 +m2

(
1
4

c2L2 +L2
1 +L1L2[c2

1− s2
1]

)
+m3(c2L−22 +L2

2 +2c2L1L2)

D22 =
1
4

m2L2
2 +m3L2

2 +
4
3

m1L2
1

D23 = D32 = m3c2L2

D33 = m3

D13 = D31 = D12 = D21 = 0

C(q, q̇) =


C11 C12 C13

C21 C22 C23

C31 C32 C33


C11 =−8m2L1L2c1s1q̇1−

(
1
2

m2L2
2c2s2 +2m3[L1L2s2 +L2

2c2s2]

)
q̇2

C22 =−m3L2s2q̇3

C23 =−2m3L2s2q̇2

C32 =−m3L2s2q̇2

C33 =C12 =C13 =C31 = 0

G(q) =



(
1
2c1c2L2 + c1L1

)
m2g(

− 1
2s1s2L2m2 + c2L2m3

)
g

m3g


(4.58)

where c1 = cos(q1), c2 = cos(q2), s1 = sin(q1) and s2 = sin(q2). The physical pa-

rameters of the system, the desired reference trajectories and important parameters that

affect the control performance of the robotic systems (i.e. uncertainties and external

disturbances) are considered according to literature (Tran et al., 2015). All the sim-

ulated responses of the proposed method are compared with those presented in (Tran

et al., 2015) and are positively verified. The physical parameters under consideration

are listed as follows: m1 = 3 kg, m2 = 2 kg, m3 = 2.5 kg, L1 = 0.14 m, L2 = 0.32 m

and g = 9.8 m/s2. Initial conditions are q(0) = [q1(0),q2(0),q3(0)]T = [0,1,1]T and

q̇(0) = [q̇1(0), q̇2(0), q̇3(0)]T = [1,0,0]T . The reference tracking signals are qd1(t) =

sin(t), qd2(t) = cos(t) and qd3(t) = cos(t).

The most important parameters that affect the control performance of the robot ma-
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nipulator are friction terms F(q, q̇)) and external disturbances (τd). Considered fric-

tion terms are F(q1, q̇1)) = 20q̇1 + 0.8sign(q̇1), F(q2, q̇2)) = 4q̇1 + 0.16sign(q̇2) and

F(q3, q̇3)) = 4q̇3 + 0.16sign(q̇3). The external disturbances are τd1 = 5sin(5t), τd2 =

0.5sin(5t) and τd3 = 0.5sin(5t). SMC parameters are Kw1 = 931.51, Kw2 = 931.51 and

Kw3 = 931.51, λ = 156 and φ = 0.1. The simulated responses of overhead transmission

line deicing robot manipulator, which includes position tracking, tracking error, control

torque and means square error (MSE) are depicted in Figure 4.5 to Figure 4.13.
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Figure 4.5 : Position tracking of link 1.
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Figure 4.6 : Position tracking of link 2.

The MSE of the position tracking responses is expressed as:

MSEi =
1
T

T

∑
t=1

(qdi− q̂i)
2, i = 1,2,3 (4.59)
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Figure 4.7 : Position tracking of link 3.
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Figure 4.8 : Control torque for link 1.
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Figure 4.9 : Control torque for link 2.

where qdi and q̂i are the desired and estimated positions of ith link respectively, T is the

total sampling time. Table 4.5.1 explains the MSE values of link 1, link 2, and link 3

tracking positions of overhead transmission line deicing robot manipulator. From the ta-
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Figure 4.10 : Control torque for link 3.
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Figure 4.11 : MSE of link 1 position tracking.

time (sec)

0 5 10 15 20 25 30

m
se

 o
f 

li
n
k

 2

×10
-3

0

2

4

6

8
mse 2 CRLSMC

mse 2 NNSMC

mse 2 NNAOSMC

8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4

×10
-5

-5

0

5

10

Figure 4.12 : MSE of link 2 position tracking.

ble, it is clear that the proposed NNAOSMC has better trajectory tracking performance

and MSE values are lower than the CRLSMC (Tran et al., 2015) and NNSMC. Figure

4.5 to Figure 4.7 illustrate tracking positions, Figure 4.8 to Figure 4.10 show control
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Figure 4.13 : MSE of link 3 position tracking.

Table 4.5.1 : MSE comparison of CRLSMC (Tran et al., 2015), NNSMC and
NNAOSMC.

Sl.No MSE CRLSMC NNSMC NNAOSMC

1 MSE1 2.732×10−6 4.203×10−13 5.616×10−15

2 MSE2 3.526×10−5 2.425×10−14 4.847×10−18

3 MSE3 4.864×10−6 2.061×10−15 2.115×10−18

input torque and Figure 4.11 to Figure 4.13 illustrate mean square error of tracking

positions of link 1, link 2, and link 3 of overhead transmission line deicing robot ma-

nipulator.

4.6 NEURAL NETWORK-BASED MODIFIED BACK-
STEPPING SLIDING MODE CONTROL (NNB-
SMC)

In this section, the RBFNN is utilized to build up the control plans for the OTDIRM

to track the desired trajectories under unknown dynamics of the system. Figure 4.14

demonstrates the schematic representation of NNBSMC.

Tracking error of position is defined as:

e1 = qd−q (4.60)

q̇r = q̇d +(1+λ1)e1 (4.61)

82



Figure 4.14 : Schematic arrangement of the NNBSMC.

where ‘q̇r’ is auxiliary signal.

The modified sliding surface (s) is characterized as:

s = q̇r− q̇ = ė1 +(1+λ1)e1 (4.62)

From (1.18), (4.61) and (4.62), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (4.63)

where ‘τd’ represents external torque disturbances.

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (4.64)

where X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T .

The approximation of f (X) is defined in (4.65).

f (X) = Ŵ T
σ(X) (4.65)

where ‘Ŵ ’ is the NN adjustment law, σ(X) is the basis function. Now (4.63) can be

revised as:

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ ε
∗+ τd− τ (4.66)

where W̃ = W ∗−Ŵ , W ∗ and ε∗ are ideal weights matrix and approximation error re-

spectively.

Theorem 4.6.1. Consider the robot manipulator is demonstrated by (1.18), if the total
control torque is expressed as τ = τ0 + τc + τNN , in which control law of BSMC is de-

fined as τc = k1s+K tanh
( (1+λ1)e1+

d
dt e1

φ

)
and τNN = Ŵ T σ(X). The evaluated adaptive

law for the NN identifier is characterized as:
˙̂W T =− ˙̃W T = Bσ(X)sT (4.67)

where ‘B’ is a positive definite matrix, the tracking errors of position and velocity (i.e.,
e and ė) of the system asymptotically converge to zero as t→ ∞.
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Proof. NNBSMC stability function is given in (4.68).

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (4.68)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (4.69)
By substituting (4.66) in (4.69), we get

V̇ =
1
2

sT [Ḋ(q)−2C(q, q̇)]s+ sT [W̃ T
σ(X)+ ε

∗+ τd− k1s (4.70)

−K tanh
( s

φ

)
]+ tr(W̃ T B−1 ˙̃W )

Since, Ḋ(q)−2C(q, q̇) is a skew symmetric matrix, the first term in (4.70) becomes zero
(i.e., 1

2sT [Ḋ(q)−2C(q, q̇)]s = 0), from (2.47) and (4.67), V̇ can be rewritten as:
V̇ ≤−k1sT s+ ||s||δ0 (4.71)

where ‘δ0’ is the upper bound of ||ε∗+ τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 +ρδ 2
0 ), where ρ > 0 is picked to such an extent that

∫
∞

0 ρdt < ∞ and further
substituted in (4.71) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (4.72)

Integrating both sides of (4.72) from t = 0 to T , yields

V (T )−V (0) ≤ −(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (4.73)

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)

[
V (0) (4.74)

+
1
2

δ
2
0

∫
∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From (4.73) and (4.74), we can get s→ 0 as t → ∞. Subsequently, we can conclude,
from (4.62), the tracking errors of position and velocity (i.e., e and ė) asymptotically
converges to zero as t→ ∞. Therefore, the stability criteria is fulfilled by the proposed
NNBSMC scheme.

4.7 AN ADAPTIVE OBSERVER BASED CONTROL
OF OTDIRM

The neural network based adaptive observer backstepping sliding mode control (NNAOB-

SMC) is developed with the help of NNAO for precise desired trajectory tracking and

improve the disturbance rejection under different working conditions ( i.e., external dis-

turbances and uncertainties) of OTDIRM. Figure 4.15 demonstrates the structure of the

NNAOBSMC. The evaluated error of the link position is characterized as:

ê1 = qd− q̂ (4.75)

84



Figure 4.15 : Block diagram of the NNAOBSMC scheme.

˙̂e1 = q̇d− ˙̂q (4.76)

The estimated sliding surface ‘ŝ’ is designed as:

ŝ =
˙̂e1 +(λ1 +1)ê1

φ
(4.77)

Theorem 4.7.1. Let the NNAO estimates q and p as q̂ and p̂, estimation errors are
q̃ = q− q̂ and p̃ = p− p̂. Then, the approximation function of f (X) described in (4.64)
is conveyed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (4.78)

where ‘Ŵc’ is estimated adaptation matrix.
The adaptation law is defined as:

˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (4.79)
The NNAOBSMC law is characterized as:

τ = Λ3ŝ+K tanh
( ŝ

φ

)
+Ŵc

T
σ(X̂) (4.80)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the approximation function to robot manipulator, then the estimation errors q̃ and p̃ are
asymptotically converge to zero.

Proof. The Lyapunov stability candidate function for NNAOBSMC is characterized as:
V =Vo +Vc (4.81)

where ‘Vo’ and ‘Vc’ are the observer stability and controller stability candidate functions
respectively.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (4.82)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (4.83)
The derivative of (4.83) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (4.84)
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Since, Ḋ(q)−2C(q, p) is a skew symmetric matrix and s = ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, we get
V̇c = ŝT{Ŵ T

c σ̃(X̂)+ ε
∗+ τd}+ p̃T{W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+ ε
∗+ τd} (4.85)

−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
( ŝ

φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

where ‘γ0’ is maximum limit of ||Ŵ T
c σ̃(X̂)+ε∗+τd|| and ζ = {W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+
ε∗+τd}, corresponding to this ‘ζ ’, there exists a positive constant ‘ζ0’ such that ||ζ || ≤
ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (4.86)
The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1

2(||ŝ||
2+ργ2

0 ), ||p̃||ζ0 ≤
1
2(||p̃||

2 +ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. To induce stability cri-
teria with finite boundedness, the constrained terms are substituted in (4.86). The ex-
pression for V̇c gets to be:

V̇c ≤ −
(Λ3

2
− 1

2
)
||ŝ||2 +

(Λ3

2
+

1
2
)
||p̃||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0
)
, ∀ (Λ3 > 2) (4.87)

The derivative of (4.82) and from (4.33), we will get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo (4.88)

+σo(q̂, p̂)p̃T )}
Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1

2(||p̃||
2+

ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (4.89)

V̇ = V̇o +V̇c (4.90)

V̇ ≤ −1
2
(
Λ3−2

)
||p̃||2− 1

2
(
Λ3−1

)
||ŝ||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0 (4.91)

+β
2
0
)
, ∀ (Λ3 > 2)

Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2
(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2
(
Λ3−2

)∫ T

0
||p̃||2dt (4.92)

+
1
2
(
γ

2
0 +ζ

2
0 +β

2
0
)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

[(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

]
≤ 2
[
V (0) (4.93)

+
1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From (4.92) and (4.93), it is clear that p̃→ 0, ŝ→ 0 as t → ∞. That concludes q̃→ 0
and p̃→ 0. Thus, the proposed NNAOBSMC fulfills the stability criteria.
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4.8 RESULTS AND DISCUSSIONS FOR BACKSTEP-
PING SMC METHODOLOGIES

4.8.1 Simulation studies

In this section, MATLAB/SIMULINK tool has been used to carry out simulations for

the 3-DOF OTDIRM. Figure 4.1 demonstrates the architecture of a de-icing robot ma-

nipulator. The link position and velocity vectors are q= [q1,q2,q3]
T and q̇= [q̇1, q̇2, q̇3]

T

respectively. The desired reference trajectories for de-icing robot manipulator and es-

sential parameters that influence the control activity of the robotic systems(i.e., uncer-

tainties and external disturbances) are considered according to literature (Tran et al.,

2015). The physical parameters of the OTDIRM are listed in Table 4.8.1.

Table 4.8.1 : Physical parameters of the de-icing robot manipulator

Sl. No Symbol Definition Value

1 m1 Mass of the link 1 3(kg)

2 m2 Mass of the link 2 2(kg)

3 m3 Mass of the link 3 2.5(kg)

4 L1 Length of the link 1 0.14(m)

5 L2 Length of the link 2 0.32(m)

6 g Gravitational constant 9.81(m/s2)

Initial conditions are q(0) = [0.9,0.1,0.1]T and q̇(0) = [0,0,0]T . The reference track-

ing signals are qd1(t) = sin(t), qd2(t) = cos(t) and qd3(t) = cos(t). Considered friction

terms are F(q1, q̇1)= 20q̇1+0.8sign(q̇1), F(q2, q̇2)= 4q̇2+0.16sign(q̇2) and F(q3, q̇3)=

4q̇3+0.16sign(q̇3). The external disturbances are τd1 = 5sin(5t), τd2 = 0.5sin(5t) and

τd3 = 0.5sin(5t). BSMC parameters are λ1 = 60, Kw1 = 540, Kw2 = 540, Kw3 = 540 and

φ = 0.004. The simulated responses of the OTDIRM are compared with those presented

in (Tran et al., 2015) are shown in figures from 4.16 to 4.27.

Output performance: To evaluate output performance, the MSE of tracking po-

sitions are computed. The total sampling time is ‘T ’, desired trajectory is ‘qdi’ and

estimated trajectory is ‘q̂i’ of the ith link, tracking position mean square error (MSE) is
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Figure 4.16 : Position tracking of link 1.
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Figure 4.17 : Position tracking of link 2.
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Figure 4.18 : Position tracking of link 3.
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Figure 4.19 : Tracking error of link 1.
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Figure 4.20 : Tracking error of link 2.
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Figure 4.21 : Tracking error of link 3.
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Figure 4.22 : Control input for link 1.
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Figure 4.23 : Control input for link 2.

given in (4.94).

MSEi =
1
T

T

∑
t=1

[qdi− q̂i]
2, i = 1,2,3 (4.94)

The MSE values of the 3-DOF OTDIRM trajectories under different control method-

88



time (sec)

0 5 10 15 20 25 30

τ
3

 (
N

m
)

15

20

25

30

35
τ

3
 CRLSMC

τ
3

 NNBSMC

τ
3

 NNAOBSMC

Figure 4.24 : Control input for link 3.
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Figure 4.25 : MSE of link 1.
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Figure 4.26 : MSE of link 2.
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Figure 4.27 : MSE of link 3.

Table 4.8.2 : MSE examination of CRLSMC, NNBSMC and NNAOBSMC

Sl. No MSE CRLSMC NNBSMC NNAOBSMC

1 link 1 2.732×10−6 2.642×10−15 6.285×10−16

2 link 2 3.526×10−5 2.171×10−14 5.589×10−19

3 link 3 4.864×10−6 1.007×10−15 2.385×10−15

ologies, such as CRLSMC, NNBSMC and NNAOBSMC are presented in Table 4.8.2.

From the table, it is ascertained that NNAOBSMC provides least MSE values in com-

parison with other methods (i.e., NNAOBSMC system has better tracking trajectory

performance). Figure 4.16 to Figure 4.18 indicate tracking positions, Figure 4.19 to

Figure 4.21 indicate tracking errors and Figure 4.22 to Figure 4.24 show control torque.

From the Figure 4.22 to Figure 4.24, it is clear that the control torque is smoother

for NNAOBSMC compared with existing CRLSMC. This indicates that the proposed

method requires less control effort for same trajectory tracking. The MSE response

plots of the OTDIRM link trajectories exhibited from Figure 4.25 to Figure4.27.

Input performance: In order to evaluate the manipulated input usage, total variation
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(TV ) (Mondal and Mahanta, 2014) of the input u(t) is calculated as

TV =
∞

∑
j=1
||u j+1−u j|| (4.95)

This should be as small as possible. The TV is a good measure of the signal ”smooth-

ness”. A large value of TV means more excessive input usage or more complex con-

trollers (Mondal and Mahanta, 2014).

Energy of the input signal is calculated by using the 2-Norm method. The control

energy is expected to be as small as possible. The output and input performance are

calculated for the period from 0 to 30 sec with a sampling time of 0.0001 sec.

From Table 4.8.3 and 4.8.4, it clear that the values of TV and 2-Norm of input for

proposed methods are very small as compared to existing method CRLSMC in (Tran

et al., 2015).

Table 4.8.3 : Total variance examination of CRLSMC, NNBSMC and NNAOBSMC

Sl. No Total Variance (TV) CRLSMC NNBSMC NNAOBSMC

1 link 1 6.1354 1.8393 1.7750

2 link 2 4.8902 3.5519 3.5407

3 link 3 20.8775 5.1932 5.1339

Table 4.8.4 : 2-Norm of input examination of CRLSMC, NNBSMC and NNAOBSMC

Sl. No 2-Norm of Input CRLSMC NNBSMC NNAOBSMC

1 link 1 2.4778×103 2.2123×103 2.207×103

2 link 2 3.4905×103 3.4535×103 3.4530×103

3 link 3 1.3727×104 1.3550×104 1.3549×104

Figure 4.28, Figure 4.29 and Figure 4.30 show the box plot of control torque for link 1,

link 2, and link 3, respectively, with the mean, median, ±25% quartiles (notch bound-

aries), ±75% quartiles (box ends), ±95% bounds and the outliers. From the size of the

boxes shown, it is clear that the NNAOBSMC control strategy experiences minimum

variation than others. Comparing the box plot of NNBSMC and NNAOBSMC, it ob-

served that NNAOBSMC has less variation in control input torque for link 1, link 2,

and link 3 of the OTDIRM.
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Figure 4.28 : Box plot representation of control torque for link 1.
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Figure 4.29 : Box plot representation of control torque for link 2.
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Figure 4.30 : Box plot representation of control torque for link 3.

4.8.2 Experimental studies

A two-link manipulator is designed to demonstrate the effectiveness of the proposed

NNAOBSMC method. Considering the trade-off between the cost and performance,

a microcontroller-based DC servo motor drivers have been used for the implementa-

tion of a two-link manipulator as shown in Fig. 4.31. The control board used in this
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work is a 32-bit Arduino DUE, which offers a two-fold simplification on the hard-

ware and software development process. On the hardware front, the microcontroller

(Atmel R©SAM3X8E) has an operating frequency of 84MHz with a flash memory of 512

KB and SRAM of 100 KB on the ARM R© CortexTM-M3 processor.

On the software front, writing, modeling and deploying the code to the Arduino

DUE board is made easy because of the open-source Arduino Software Development

Environment, which has numerous libraries. RMCS-220X high-torque encoder dc

Figure 4.31 : Microcontroller-based experimental setup for a two-link manipulator.

servo motor and drivers are used as actuators for the two-link manipulator. RMCS-

220X is designed for easy installation and operation with multiple interfaces. It inte-

grates a high-torque dc motor with 18000 RPM base motor and metal gearbox and gears

for 10RPM. It houses a 0.2 deg resolution quadrature optical encoder on its output shaft

that allows the superior position and speed control with zero backlash at the output. It

offers speed and position control via UART, I2C, PPM input signal and simple analog

voltage input.

The physical parameters of the two-link manipulator are listed as follows: m1 =

0.484 kg, m2 = 0.310 kg, L1 = 0.22 m, L2 = 0.328 m and g = 9.8 m/s2. Initial conditions

are q(0) = [0,1]T and q̇(0) = [1,0]T . The reference tracking signals are qd1(t) = sin(t)

and qd2(t) = cos(t). Considered friction terms are F(q1, q̇1) = 0.2q̇1 + 0.12sign(q̇1),
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F(q2, q̇2) = 0.4q̇2 + 0.16sign(q̇2). The external disturbances are τd1 = 0.5sin(5t) and

τd2 = 0.55sin(5t). The external disturbances are applied in off-line mode. It is to

mention here that the control variable and other sensed parameter values through sen-

sors are taken into MATLAB and are plotted then after. BSMC parameters are λ1 =

6.5042, Kw1 = 1, Kw2 = 1 and φ = 0.322. Simulated MSE values of link 1 and link 2 are

MSE1 = 1.5968× 10−8 and MSE2 = 6.894× 10−9. Experimental MSE values of link

1 and link 2 are MSE1 = 1.2×10−4 and MSE2 = 1.4×10−3.

Figures 4.32 and 4.33 present the tracking performance of desired trajectories by pro-
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Figure 4.32 : Position tracking of link 1.
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Figure 4.33 : Position tracking of link 2.

posed method (i.e., NNAOBSMC). Figure 4.35 represents MSE response and Figure

4.36 shows the control torque for link 1 and link 2 of the two-link manipulator. The

experimental results in Figures 4.32 and 4.33 show that, in the interval from beginning

to 2 sec, a favorable tracking response cannot be obtained due to the sudden impact

93



time (sec)

0 5 10 15 20 25 30

tr
ac

k
in

g
 e

rr
o
r 

(r
ad

)

-0.2

0

0.2

0.4

0.6

0.8

1
link1 Simulation link 1 Experimental link2 Simulation link 2 Experimental

5 10 15 20

-0.15

-0.1

-0.05

0

0.05

e
11

 Simulation e
11

 Experimental e
22

 Simulation e
22

 Experimental

Figure 4.34 : Position tracking error of link 1 and link 2.
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Figure 4.36 : Control torque for link 1 and link 2.

of nonlinearities, external disturbances, and uncertainties. From Figure 4.35, it is clear

that the trajectory errors of two-link manipulator asymptotically converges to zero and

the theoretical analysis of the proposed method (i.e., NNAOBSMC) is verified.
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4.9 DESIGN OF INTEGRAL BACKSTEPPING SLID-
ING MODE CONTROLLER (IBSMC)

The backstepping methodology is a nonlinear scheme utilized as a part of controller

design. The various points of interest in this approach incorporate its expansive ar-

rangement of all around and asymptotically settling control laws and its ability to en-

hance robustness and take care of versatile issues. Backstepping sliding mode control

includes non-linear frameworks into numerous subsystems. The mathematical model

of OTDIRM is expressed in Eqs. (4.96), (4.97) and 4.98 are given as:

ẋ1 = x2 (4.96)

ẋ2 = q̈ = D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (4.97)

y = x1 (4.98)

where x1 and x2 are the position and velocity vectors of the OTDIRM. The position

tracking error of the system is given as:

e1 = qd−q (4.99)

The stabilizing function is characterized as:

α1 = λ1e1 (4.100)

The integral action of the tracking error of position is characterized as:

α2 = λ2

∫ t

0
e1dt (4.101)

where λ1 and λ2 are positive constants. The tracking error of the velocity has upgraded

with stability function and integral action of tracking error of the position of the OT-

DIRM. It is characterized in Eq. (4.102) and appeared as:

e2 = ė1 +α1 +α2 (4.102)

The primary Lyapunov stability function is characterized as:

V1 =
1
2

e2
1 (4.103)

By taking the derivative of the Eq. (4.103), we get:

V̇1 = e1ė1 (4.104)

From Eq. (4.102), can be changed as:

e2 = q̇d− q̇+α1 +α2 (4.105)

V̇1 = e1(e2−α1−α2) = e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt (4.106)
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By taking the derivative of e2, it becomes:

ė2 = q̈d− q̈+λ1ė1 +λ2e1 (4.107)

From Eq. (1.2) and Eq. (4.107), we get:

ė2 = q̈d−D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)]+λ1ė1 (4.108)

+λ2e1

The second Lyapunov stability function is characterized as:

V =V1 +
1
2

sT s (4.109)

The satisfactory condition, which gives the affirmation that the tracking error will make

an elucidation from achieving stage to sliding stage, is called the achieving condition

and given in Eq. (4.110) is imparted as:

V̇ < 0,s 6= 0 (4.110)

The sliding surface (‘s’) is characterized as:

s = e1 + e2 (4.111)

The derivative of the second Lyapunov stability function is characterized as:

V̇ = V̇1 + sT ṡ (4.112)

= e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt + sT (ė1 + ė2) (4.113)

By substituting ė1 and ė2 in above Eq. (4.113), yields

= e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt + sT ((1+λ1)ė1 +λ2e1 + q̈d− q̈) (4.114)

V̇ = e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt + sT [(1+λ1)ė1 +λ2e1 + q̈d (4.115)

−D−1(q)(τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd))]

The total input control torque (τ) to the OTDIRM is characterized as:

τ = τ0 + τc (4.116)

By substituting Eq. (4.116) in Eq.(4.115), we get

V̇ = e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt + sT [(1+λ1)ė1 +λ2e1 + q̈d (4.117)

−D−1(q)((τ0 + τc)− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd))]

The arrangement of ṡ = 0 gives the control signal, which is known as equivalent control

law and it is denoted by ‘τ0’. This equivalent control law is essential to fulfilling the exe-

cution of favored trajectory tracking without considering disturbances and uncertainties
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(i.e., τd = 0).

ṡ = (1+λ1)ė1 +λ2e1 + q̈d−D−1(q)[τ0− (C(q, q̇)q̇+G(q)+F(q, q̇))] = 0 (4.118)

τ0 = D(q)((1+λ1)ė1 +λ2e1 + q̈d)+C(q, q̇)q̇+G(q)+F(q, q̇) (4.119)

An extra control exertion is needed to wipe out the unpredictable disturbances and un-

certainties as equivalent control torque (τ0) is lacking to provide the favored tracking

performance. Ultimately, the tracking error dies out asymptotically, which means the

sliding surface becomes stable. To exhibit the stability of the created control framework

for OTDIRM, the Lyapunov-like Lemma is utilized. From Eqs. (4.117) and (4.119).

We arrive at an expression for V̇ as follows:

V̇ = e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt + sT (−D−1(q)τc) (4.120)

The corrective control law (τc) is defined as:

τc = D(q)
(

1
sT (e1e2−λ2e1

∫ t

0
e1dt)+KW sign(s)

)
(4.121)

V̇ = e1e2−λ1e2
1−λ2e1

∫ t

0
e1dt− sT

(
1
sT (e1e2−λ2e1

∫ t

0
e1dt)+KW sign(s)

)
(4.122)

V̇ =−λ1e2
1−KwsT sign(s) (4.123)

where Kw is the sliding gain.

V̇ ≤−λ1|e2
1|−Kw|s| (4.124)

where |s|= sT sign(s). The chattering effect on the control input signal is introduced by

the signum function (‘sign’), which is utilized as a part of Eq. (4.123), to diminish or

dispense with this impact, the signum function (‘sign’) is substituted by the hyperbolic

tangent function (‘tanh’) and communicated in Eq. (4.125).

V̇ ≤−λ1e2
1−KwsT tanh(s) (4.125)

The term ‘sT tanh(s)’ in Eq. (4.125) is constantly positive so that whole condition gets

to be negative (i.e., sT tanh(s)> 0 if either s > 0 or s < 0 ). The achieving control signal

(τc) is modified as:

τc = D(q)
[

1
sT (e1e2−λ2e1

∫ t

0
e1dt)+Kw tanh

(
(1+λ1)e1 +λ2

∫ t

0
e1dt +

d
dt

e1

)]
(4.126)
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Where Kw = diag{Kw1,Kw2, ...,Kwn} is positive gains matrix.

The IBSMC control law is defined as:

τc = D(q)
(

1
sT (e1e2−λ2e1

∫ t

0
e1dt)

)
+K tanh

(
(1+λ1)e1 +λ2

∫ t
0 e1dt + d

dt e1

φ

)
(4.127)

where K = D(q)Kw.

4.10 DESIGN OF NEURAL NETWORK BASED IN-
TEGRAL BACKSTEPPING SLIDING MODE CON-
TROL (NNIBSMC)

In this section, the RBFNN is utilized to build up the control plans for the OTDIRM

to track the desired trajectories under unknown dynamics of the system. Figure 4.37

demonstrates the schematic representation of NNIBSMC.

Figure 4.37 : Schematic arrangement of the NNIBSMC.

Tracking error of position is defined as:

e1 = qd−q (4.128)

q̇r = q̇d +(1+λ1)e1 +λ2

∫ t

0
e1dt (4.129)

where ‘q̇r’ is auxiliary signal. The modified sliding surface (s) is characterized as:

s = q̇r− q̇ = ė1 +(1+λ1)e1 +λ2

∫ t

0
e1dt (4.130)
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From (1.18), (4.129) and (4.130), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (4.131)

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (4.132)

where X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T . The approximation of f (X) is defined in Eq. (4.133)

as:

f̂ (X) = Ŵ T
σ(X) (4.133)

where ‘Ŵ ’ is the NN adjustment law, σ(X) is the basis function. The Eq. (4.131) can

be revised as:

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ τd− τ (4.134)

where W̃ =W ∗−Ŵ , W ∗ is ideal weights matrix.

Theorem 4.10.1. Consider the robot manipulator is demonstrated by (1.18), if the total
control torque is expressed as τ = τ0 + τc + τNN , in which control law of IBSMC is

defined as τc = k1s+K tanh
(

(1+λ1)e1++λ2
∫ t

0 e1dt+ d
dt e1

φ

)
, τ0 = D(q)

(
ė1(1+λ1)+λ2e1+

q̈d

)
+C(q, q̇)q̇+G(q)+F(q, q̇) and τNN = Ŵ T σ(X). The evaluated adaptive law for

the NN identifier is characterized as:
˙̂W T =− ˙̃W T = Bσ(X)sT (4.135)

where ‘B’ is denoted as a positive definite matrix, the tracking errors of position and
velocity (i.e., e and ė) of the system asymptotically converge to zero as t→ ∞.

Proof. NNIBSMC stability function is given in Eq. (4.136) and characterized as:

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (4.136)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (4.137)
By substituting Eq. (4.134) in Eq. (4.137), we get

V̇ =
1
2

sT{Ḋ(q)−2C(q, q̇)}s+ sT{W̃ T
σ(X)+ ε

∗+ τd− k1s (4.138)

−K tanh
(

s
φ

)
}+ tr(W̃ T B−1 ˙̃W )

=
1
2

sT{Ḋ(q)−2C(q, q̇)}s+ sT{ε∗+ τd− k1s−K tanh
(

s
φ

)
} (4.139)

+tr{W̃ T (B−1 ˙̃W +σ(X)sT )}
Since, Ḋ(q)−2C(q, p) is skew symmetric (i.e., 1

2sT [Ḋ(q)−2C(q, q̇)]s = 0), from Eqs.
(4.125) and (4.135), V̇ can be rewritten as:

V̇ ≤−k1sT s+ ||s||δ0 (4.140)
where ‘δ0’ is an upper bound of ||ε∗+ τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 +ρδ 2
0 ), where ρ > 0 is picked to such an extent that

∫
∞

0 ρdt < ∞ and further
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substituted in Eq. (4.140) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (4.141)

Integrating both sides of Eq. (4.141) from t = 0 to T , yields

V (T )−V (0)≤−(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (4.142)

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)

[
V (0)+

1
2

δ
2
0

∫
∞

0
ρdt
]

limsup
T→∞

1
T

= 0 (4.143)

From the Eqs. (4.142) and (4.143), we can get s→ 0 as t→ ∞. Subsequently, from the
Eq. (4.130), the tracking errors of position and velocity (i.e., e and ė) are asymptotically
converge to zero as t → ∞. Therefore, the stability criteria is fulfilled by the proposed
NNIBSMC scheme.

4.11 AN ADAPTIVE OBSERVER BASED CONTROL
OF OTDIRM

4.11.1 Design of Neural Network Based Adaptive Observer Inte-
gral Backstepping Sliding Mode Control(NNAOIBSMC)

The NNAOIBSMC is developed with the help of NNAO for precise desired trajectory

tracking and improve the disturbance rejection under different working conditions (

i.e., external disturbances and uncertainties) of OTDIRM. Figure. 4.38 demonstrates

the structure of the NNAOIBSMC.

Figure 4.38 : Schematic arrangement of the NNAOIBSMC.
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The evaluated error of the link position is characterized as:

ê1 = qd− q̂ (4.144)

˙̂e1 = q̇d− ˙̂q (4.145)

The estimated sliding surface ‘ŝ’ is designed as:

ŝ =
(1+λ1)ê1 +λ2

∫ t
0 ê1dt + d

dt ê1)

φ
(4.146)

Theorem 4.11.1. The NNAO estimates q and p as q̂ and p̂, estimation errors are
q̃ = q− q̂ and p̃ = p− p̂. Then, the perspective of q̂ and p̂, the approximation func-
tion of f (X) described in Eq. (4.132) is conveyed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (4.147)

where ‘Ŵc’ is estimated adaptation matrix. The adaptation law is defined as:
˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (4.148)

The NNAOIBSMC law is characterized as:

τ = Λ3ŝ+K tanh
(

ŝ
φ

)
+Ŵc

T
σ(X̂) (4.149)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the NN estimation to robot manipulator, then the estimation errors q̃ and p̃ are asymp-
totically converges to zero.

Proof. The Lyapunov stability candidate function for NNAOIBSMC is characterized
as:

V =Vo +Vc (4.150)
where ‘Vo’ is observer stability function and ‘Vc’ is controller stability candidate func-
tion.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (4.151)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (4.152)
The derivative of Eq. (4.152) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (4.153)

=
1
2

sT{Ḋ(q)−2C(q, p)}s+ sT{W̃c
T

σ(X)+Ŵ T
c σ̃(X)+ ε

∗+ τd (4.154)

−Λ3ŝ−K tanh
(

ŝ
φ

)
}+ tr(W̃ T

c B−1
c

˙̃Wc)

Since, Ḋ(q)− 2C(q, p) is skew symmetric (i.e., 1
2sT [Ḋ(q)− 2C(q, q̇)]s = 0) and s =

ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, we get
V̇c = ŝT{Ŵ T

c σ̃(X̂)+ ε
∗+ τd)}+ p̃T{W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+ ε
∗ (4.155)

+τd)}−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
(

ŝ
φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

where ‘γ0’ is maximum limit of ||Ŵ T
c σ̃(X̂)+ε∗+τd|| and ζ = {W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+
ε∗+ τd}, at that point there exists a positive constant ‘ζ0’ such that ||ζ || ≤ ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (4.156)
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The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1
2(||ŝ||

2+ργ2
0 ), ||p̃||ζ0 ≤

1
2(||p̃||

2 +ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. To induce stability cri-
teria with finite boundednness, the contrained terms are substituted in Eq. (4.156). The
expression for V̇c gets to be:

V̇c ≤−
(

Λ3

2
− 1

2

)
||ŝ||2 +

(
Λ3

2
+

1
2

)
||p̃||2 + 1

2
ρ

(
γ

2
0 +ζ

2
0

)
, ∀ (Λ3 > 2) (4.157)

The derivative of Eq. (4.151) and from Eq. (4.33), we get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo +σo(q̂, p̂)p̃T )}

(4.158)
Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1

2(||p̃||
2+

ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (4.159)

V̇ = V̇o +V̇c (4.160)

V̇ ≤−1
2

(
Λ3−2

)
||p̃||2− 1

2

(
Λ3−1

)
||ŝ||2 + 1

2
ρ

(
γ

2
0 +ζ

2
0 +β

2
0

)
, ∀ (Λ3 > 2)

(4.161)
Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2

(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2

(
Λ3−2

)∫ T

0
||p̃||2dt (4.162)

+
1
2

(
γ

2
0 +ζ

2
0 +β

2
0

)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

{(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

}
≤ (4.163)

2
[
V (0)+

1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From Eqs. (4.163) and (4.163), it is clear that p̃→ 0, ŝ→ 0 as t → ∞. That concludes
q̃→ 0 and p̃→ 0. Thusly, the proposed NNAOIBSMC fulfills the stability criteria.

4.12 RESULTS AND DISCUSSIONS FOR INTEGRAL
BACKSTEPPING SMC METHODOLOGIES

MATLAB/SIMULINK tool has been used to carry out simulations for the 3-DOF OT-

DIRM. The link position and velocity vectors are q = [q1,q2,q3]
T and q̇ = [q̇1, q̇2, q̇3]

T

respectively. The desired reference trajectories for de-icing robot manipulator and es-

sential parameters that influence the control activity of the robotic systems (i.e., uncer-

tainties and external disturbances) are considered according to literature (Tran et al.,

2015). IBSMC parameters are λ1 = 100, λ2 = 20, Kw1 = 970, Kw2 = 970, Kw3 = 970
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and φ = 0.004. The simulated responses of the OTDIRM are compared with those

presented in (Tran et al., 2015) are shown in figures from 4.39 to 4.50.
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Figure 4.39 : Position tracking of link 1.
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Figure 4.40 : Position tracking of link 2.
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Figure 4.41 : Position tracking of link 3.
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Figure 4.42 : Tracking error of link 1.
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Figure 4.43 : Tracking error of link 2.
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Figure 4.44 : Tracking error of link 3.
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Figure 4.45 : Control input for link 1.
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Figure 4.46 : Control input for link 2.

The MSE values of the 3-DOF OTDIRM trajectories under different control method-

ologies, such as CRLSMC in (Tran et al., 2015), NNIBSMC and NNAOIBSMC are
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Figure 4.47 : Control input for link 3.
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Figure 4.48 : MSE of link 1.
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Figure 4.49 : MSE of link 2.

time (sec)

0 5 10 15 20 25 30

m
se

 o
f 

li
n
k
 3

×10
-4

0

1

2

3

4
mse 3 CRLSMC

mse 3 NNIBSMC

mse 3 NNAOIBSMC

0 1 2 3 4 5 6 7 8 9 10

×10
-13

0

2

4

6

5 5.2 5.4 5.6 5.8 6 6.2

×10
-15

0

4

Figure 4.50 : MSE of link 3.

Table 4.12.1 : MSE examination of CRLSMC, NNIBSMC and NNAOIBSMC

Sl. No MSE CRLSMC NNIBSMC NNAOIBSMC

1 MSE1 2.732×10−6 4.202×10−15 6.054×10−16

2 MSE2 3.526×10−5 3.939×10−15 3.299×10−17

3 MSE3 4.864×10−6 3.14×10−16 5.287×10−20

presented in Table 4.12.1. From the table, it is ascertained that NNAOIBSMC provides

least MSE values in comparison with other methods (i.e., NNAOIBSMC system has

better tracking trajectory performance). Figure 4.39 to Figure 4.41 indicate tracking

positions, Figure 4.42 to Figure 4.44 indicate tracking errors and Figure 4.45 to Fig-

ure 4.47 show control torque. From the Figure 4.45 to Figure 4.47, it is clear that the

control torque is smoother for NNAOIBSMC compared with existing CRLSMC (Tran

et al., 2015). This indicates that the proposed method requires less control effort for

same trajectory tracking. The MSE response plots of the OTDIRM link trajectories ex-

hibited from Figure 4.48 to Figure4.50. From Table 4.12.2 and 4.12.3, it clear that the

values of TV and 2-Norm of input for proposed methods are very small as compared

to existing method CRLSMC (Tran et al., 2015). The energy of the input signal is cal-

culated by using the 2-Norm method. The control energy is expected to be as small as
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Table 4.12.2 : Total variance examination of CRLSMC (Tran et al., 2015), NNIBSMC
and NNAOIBSMC

Sl. No Total Variance (TV) CRLSMC NNIBSMC NNAOIBSMC

1 link 1 6.1354 1.8414 1.7751

2 link 2 4.8902 3.5523 3.5407

3 link 3 20.8775 5.1943 5.1339

possible. The output and input performances are calculated for the period from 0 to 30

sec with a sampling time of 0.0001 sec.

Table 4.12.3 : 2-Norm of input examination of CRLSMC (Tran et al., 2015), NNIBSMC
and NNAOIBSMC

Sl. No 2-Norm of Input CRLSMC NNIBSMC NNAOIBSMC

1 link 1 2.4778×103 2.2124×103 2.2079×103

2 link 2 3.4905×103 3.4535×103 3.4530×103

3 link 3 1.3727×104 1.3555×104 1.3549×104
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Figure 4.51 : Box plot representation of control torque for link 1.

Figure 4.51, Figure 4.52 and Figure 4.53 show the box plot of control torque for link

1, link 2 and link 3 with the mean, median, ±25% quartiles (notch boundaries), ±75%

quartiles (box ends), ±95% bounds and the outliers. From the size of the boxes shown,

it is clear that the NNAOIBSMC control strategy experiences minimum variation than

others. Comparing the box plot of NNIBSMC and NNAOIBSMC, it observed that

NNAOBTSMC has less variation in control input torque for link 1, link 2 and link 3 of
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Figure 4.52 : Box plot representation of control torque for link 2.
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Figure 4.53 : Box plot representation of control torque for link 3.

the OTDIRM.

4.13 SUMMARY

In this chapter, different control methodologies are proposed for the 3-DOF OTDRIM.

The proposed control approaches are based on the modified sliding mode control tech-

niques; neural network based approximators and observers to provide robustness to

external disturbances and parameter uncertainties. In general, the results illustrate

that the proposed observer-based controller offers a superior tracking performance and

smoother control input compared to other existing methods. The derivation of the con-

trol law guarantees the convergence of the tracking error. Several performance methods

are examined to support the strength of the proposed and existing control approaches.

The box plots of control torques show that the observer-based control scheme has less

variation in control input compared to other methods.

106



Chapter 5

NEURAL NETWORK BASED OBSERVER
DESIGN AND MODIFIED TERMINAL
SLIDING MODE CONTROL
METHODOLOGIES FOR ROBOT
MANIPULATOR

This chapter discusses different types of the observer-based terminal sliding mode con-

trol methodologies, i.e., TSMC, BTSMC and IBTSMC for a 3-DOF OTDIRM. Finally,

the results are verified by comparing the input and output performances.

5.1 INTRODUCTION

In this chapter, discussion is carried out on different control methods of 3-DOF OT-

DIRM to eliminate the effects of disturbance and uncertainty associated with the direct

measurements. The designing of a new controller considers the combination of differ-

ent types of modified TSMC schemes with NN identifier and NN observer. The optimal

weights of the NN observer, NN identifier, and the various TSMC parameters are ob-

tained with the help of PSO. Estimated position and velocity vectors of the RBFNN

based observer are fed to another RBFNN based identifier to approximate the auxiliary

control input torque to the de-icing robot manipulator. The chattering effect is mitigated

by utilizing the boundary layer phenomenon while the Lyapunov stability test ensures

the stability of the anticipated control strategy.

In (Tran et al., 2015), authors discussed the CRLSMC for the de-icing robot manip-
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ulator to achieve the desired trajectory tracking performance under various operating

conditions. In (Rossomando et al., 2014), authors have designed a conventional SMC

scheme based on NN for better trajectory tracking of the mobile robot manipulator. The

position control of the 2-link robot manipulator is designed by considering the combi-

nation of conventional SMC and NN based observer (Sun et al., 2011). In (Wei et al.,

2012), the WNN based controller is designed for the de-icing robot manipulator with-

out consideration of an observer-based control structure. This chapter mainly differs

from (Tran et al., 2015), (Rossomando et al., 2014), (Sun et al., 2011) and (Wei et al.,

2012), by replacing conventional SMC with the modified backstepping TSMC scheme

in combination with PSO based observer and identifier. Several performance methods

are examined to show the effectiveness of the proposed control technique.

5.2 DESIGN AND STABILITY OF TERMINAL SLID-
ING MODE CONTROL (TSMC)

In the conventional SMC, the convergence of the state is usually asymptotic due to the

linearity of the switching plane. However, this convergence can only be achieved in

infinite time, although the SMC parameters can be adjusted to make convergence faster.

For high-precision control systems, faster convergence is the priority and can only be

achieved at large control inputs. These large control inputs can lead to the saturation

of the actuator. The TSMC includes nonlinear function in the outline of the sliding

hyperplane. By using a nonlinear sliding surface, TSMC enables the rapid convergence

of the state without the need for an extensive control action. A non-singular terminal

sliding mode manifold is used to design a chattering free adaptive control scheme for

the robot manipulator.

The input control torque (τ) to the OTDIRM is defined as:

τ = τ0 + τc (5.1)

Where ‘τ0’ and ‘τc’ are the equivalent and the sliding mode control torques respectively.

A time varying sliding surface vector ‘s’ is given by the following Equation (5.2) and
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defined as:

s = ė+
1
λ

e
Ω1
Ω2 (5.2)

where λ , Ω1 ,and Ω2 (1 < Ω1
Ω2

< 2) are positive odd numbers. The purpose of terminal

sliding mode control law is to force tracking error (‘e’) to approach the sliding surface

and then move along the sliding surface (‘s’) to the origin. The derivative of sliding

surface with respect to time is expressed in Equation (5.3) and (5.4) as follows:

ṡ = ë+
Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė (5.3)

ṡ = q̈d− q̈+
Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė (5.4)

where ë = q̈d− q̈ and substituting the value of q̈ from Equation (1.2) in Equation (5.4)

gives

ṡ = q̈d +
Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė−D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (5.5)

The control effort is derived from the solution of ṡ = 0. This control effort is known as

equivalent control effort represented by ‘τ0’, which is required to achieve the desired

trajectory tracking without considering disturbances and uncertainties (i.e., τd = 0).

ṡ = q̈d +
Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė−D−1(q)[τ0− (C(q, q̇)q̇+G(q)+F(q, q̇))] = 0 (5.6)

τ0 = D(q)
(
q̈d +

Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė

)
+C(q, q̇)q̇+G(q)+F(q, q̇) (5.7)

However, if unpredictable disturbances or uncertainties occur, the equivalent control

effort (τ0) cannot ensure the desired trajectory tracking performance. Therefore, an

auxiliary control effort is required to eliminate the effect of the unpredictable distur-

bances. Finally, the sliding surface should be stable, which means the error dies out

asymptotically. The Lyapunov like Lemma is used to prove the stability of the designed

control system. The Lyapunov stability function is defined as:

V =
1
2

sT s (5.8)

A sufficient condition, which guarantees that the tracking position error will translate

from reaching phase to sliding phase is also known as the reaching condition and ex-

pressed in Eq. (5.9).

V̇ = sT ṡ < 0,s 6= 0 (5.9)
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To get the control torque (‘τc’), the Eq. (5.9) can defined as:

V̇ = sT [q̈d +
Ω1

λΩ2
e

Ω1−Ω2
Ω2 ė−D−1(q)(τ0 + τc)−D−1(q)(C(q, q̇)q̇+G(q)+F(q, q̇))]

(5.10)

Substituting Eq. (5.7) into Eq. (5.10), we get

V̇ = sT ṡ =−sT D−1(q)τc (5.11)

To ensure sT ṡ < 0, the control torque is chosen as:

τc = D(q)Kwsign(s) (5.12)

Substituting Eq. (5.12) into Eq. (5.11), then the Lyapunov stability condition becomes

V̇ <−sT D−1(q)D(q)Kwsign(s) (5.13)

V̇ <−KwsT sign(s)

V̇ <−Kw|s| (5.14)

where |s| = sT .sign(s). The ‘sign’ function, which is used in Eq. (5.12) creates more

chattering effect on the control torque. In order to avoid this chattering effect, the ‘sign’

function is replaced by the ‘tanh’ (hyperbolic tangent) function and expressed in Eq.

(5.15).

V̇ <−KwsT tanh(s) (5.15)

The term ‘sT tanh(s)’ in Eq. (5.15) is always positive so that entire equation becomes

negative provided that ‘s’ satisfies the following conditions.

1. if ‘s’ is negative and tanh(s) is also negative then sT tanh(s) is always positive

2. if ‘s’ is positive and tanh(s) is also positive then sT tanh(s) is always positive

Finally, the reaching control torque (τc) is given in Eq. (5.16) and follows as:

τc = KwD(q) tanh
(
ė+

1
λ

e
Ω1
Ω2
)

(5.16)

where Kw = diag{Kw1,Kw2, ...,Kwn} is control gain matrix with the upper bound of

uncertainties. Tuning positive time constant Kw given in Eq. (5.16) is one of the most

important challenges in conventional sliding mode control.

Finally, the SMC control law with boundary layer becomes

τc = K tanh
( d

dt e+ 1
λ

e
Ω1
Ω2

φ

)
(5.17)
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where ‘K’ is positive gain matrix and it is defined as K = KwD(q). When s = 0 is

reached at t = tr, e = 0 becomes terminal surface. The effect of terminal surface will

take the state of e from e(tr) 6= 0 to e(tr + ts)=0 with finite time ts given by

ts =
λΩ2

Ω1−Ω2

(
e1−Ω1

Ω2
)

(5.18)

5.3 DESIGN OF NEURAL NETWORK BASED TER-
MINAL SLIDING MODE CONTROL (NNTSMC)

In this section, the RBFNN is utilized to build up the control plans for the robot manip-

ulator to track the desired trajectories under unknown dynamics of the system. Figure

5.1 demonstrates the schematic representation of NNBTSMC.

Figure 5.1 : Block diagram of NNTSMC scheme.

Tracking error of position is defined as:

e = qd−q (5.19)

q̇r = q̇d +
1
λ

e
Ω1
Ω2 (5.20)

where ‘q̇r’ is auxiliary signal. The modified sliding surface (s) is characterized as:

s = q̇r− q̇ =
d
dt

e+
1
λ

e
Ω1
Ω2 (5.21)

From (1.18), (5.20) and (5.21), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (5.22)
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where ‘τd’ represents external torque disturbances.

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (5.23)

where X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T .

The approximation of f (X) is defined in (5.24).

f (X) = Ŵ T
σ(X) (5.24)

where ‘σ(X)’ is the basis function and ‘Ŵ ’ is the NN adjustment law. Now (5.22) can

be revised as:

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ ε
∗+ τd− τ (5.25)

where W̃ = W ∗−Ŵ , W ∗ and ε∗ are ideal weights matrix and approximation error re-

spectively.

Theorem 5.3.1. Consider the robot manipulator is demonstrated by (1.18), if the total
control torque is expressed as τ = τ0 + τc + τNN , in which control law of TSMC is
characterized as τc = k1s+K tanh( s

φ
) and τNN = Ŵ T σ(X). The evaluated adaptive

law for the NN identifier is characterized as:
˙̂W T =− ˙̃W T = Bσ(X)sT (5.26)

where ‘B’ is a positive definite matrix and the tracking errors of position and velocity
(i.e. e and ė) of the system asymptotically converge to zero as t→ ∞.

Proof. NNTSMC stability function is given in (5.27).

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (5.27)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (5.28)
By substituting (5.25) in (5.28), we get

V̇ =
1
2

sT [Ḋ(q)−2C(q, q̇)]s+ sT [W̃ T
σ(X)+ ε

∗+ τd− k1s (5.29)

−K tanh
( s

φ

)
]+ tr(W̃ T B−1 ˙̃W )

Since, Ḋ(q)−2C(q, q̇) is a skew symmetric matrix, the first term in (5.29) becomes zero
(i.e. 1

2sT [Ḋ(q)−2C(q, q̇)]s = 0), from (5.15) and (5.26), V̇ can be rewritten as:
V̇ ≤−k1sT s+ ||s||δ0 (5.30)

where ‘δ0’ is the upper bound of ||ε∗+ τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 +ρδ 2
0 ), where ρ > 0 is picked to such an extent that

∫
∞

0 ρdt < ∞ and further
substituted in (5.30) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (5.31)

Integrating both sides of (5.31) from t = 0 to T , yields

V (T )−V (0) ≤ −(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (5.32)
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Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)

[
V (0)+

1
2

δ
2
0

∫
∞

0
ρdt
]

limsup
T→∞

1
T

= 0 (5.33)

From (5.32) and (5.33), we get s→ 0 as t → ∞. Subsequently, we can conclude, from
(5.21), the tracking errors of position and velocity (i.e. e and ė) asymptotically converge
to zero as t→ ∞. Therefore, the stability criteria is fulfilled by the proposed NNTSMC
scheme.

Remark 5.3.2. The addition of TSMC and NN identifier provides the robust controller,
and such errors caused by extrinsic disturbances and uncertainties. The NN identi-
fier can be remunerated to give better trajectory tracking and intensify the disturbance
rejection under different disturbance conditions.

5.4 AN ADAPTIVE OBSERVER BASED CONTROL
OF ROBOT MANIPULATOR

The neural network based adaptive observer terminal sliding mode control (NNAOTSMC)

is developed with the help of NNAO for the precise desired trajectory tracking and to

improve the disturbance rejection under different working conditions ( i.e., external

disturbances and uncertainties) of the robot manipulator. Figure 5.2 demonstrates the

structure of the NNAOTSMC.

Figure 5.2 : Block diagram of the NNAOTSMC scheme.

The evaluated error of the link position is characterized as:

ê = qd− q̂ (5.34)
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The estimated sliding surface ‘ŝ’ is designed as:

ŝ =
d
dt ê+ 1

λ
ê

Ω1
Ω2

φ
(5.35)

Theorem 5.4.1. Considered robot manipulator described by (1.18). Let the NNAO es-
timates q and p as q̂ and p̂, estimation errors are q̃ = q− q̂ and p̃ = p− p̂. Then, the
approximation function of f (X) described in (5.23) is conveyed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (5.36)

where ‘Ŵc’ is estimated adaptation matrix.
The adaptation law is defined as:

˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (5.37)
The updated control law of NNAOTSMC is characterized as:

τ = Λ3ŝ+K tanh
( ŝ

φ

)
+Ŵc

T
σ(X̂) (5.38)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the approximation function to robot manipulator, then the estimation errors q̃ and p̃ are
asymptotically converge to zero.

Proof. The Lyapunov stability candidate function for NNAOTSMC is characterized as:
V =Vo +Vc (5.39)

where ‘Vo’ and ‘Vc’ are the observer stability and controller stability candidate functions
respectively.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (5.40)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (5.41)
The derivative of (5.41) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (5.42)

Since, Ḋ(q)− 2C(q, p) is a skew symmetric matrix and s = ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, then
we get

V̇c = ŝT{Ŵ T
c σ̃(X̂)+ ε

∗+ τd}+ p̃T{W̃c
T

σ(X̂)+Ŵ T
c σ̃(X̂)+ ε

∗+ τd} (5.43)

−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
( ŝ

φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

where ‘γ0’ is maximum limit of ||Ŵ T
c σ̃(X̂)+ε∗+τd|| and ζ = {W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+
ε∗+τd}, corresponding to this ‘ζ ’, there exists a positive constant ‘ζ0’ such that ||ζ || ≤
ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (5.44)
The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1

2(||ŝ||
2+ργ2

0 ), ||p̃||ζ0 ≤
1
2(||p̃||

2 +ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. To induce stability cri-
teria with finite boundedness, the constrained terms are substituted in (5.44). The ex-
pression for V̇c gets to be:

V̇c ≤ −
(Λ3

2
− 1

2
)
||ŝ||2 +

(Λ3

2
+

1
2
)
||p̃||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0
)
, ∀ (Λ3 > 2) (5.45)
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The derivative of (5.40) and from (4.33), we will get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo (5.46)

+σo(q̂, p̂)p̃T )}
Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1

2(||p̃||
2+

ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (5.47)

V̇ = V̇o +V̇c (5.48)

V̇ ≤ −1
2
(
Λ3−2

)
||p̃||2− 1

2
(
Λ3−1

)
||ŝ||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0 (5.49)

+β
2
0
)
, ∀ (Λ3 > 2)

Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2
(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2
(
Λ3−2

)∫ T

0
||p̃||2dt (5.50)

+
1
2
(
γ

2
0 +ζ

2
0 +β

2
0
)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

[(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

]
≤ 2
[
V (0) (5.51)

+
1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From (5.50) and (5.51), it is clear that p̃→ 0, ŝ→ 0 as t → ∞. That concludes q̃→ 0
and p̃→ 0. Thus, the proposed NNAOTSMC fulfills the stability criteria.

5.5 RESULTS AND DISCUSSIONS FOR TSMC

The desired reference trajectories for de-icing robot manipulator and essential param-

eters that influence the control activity of the robotic systems (i.e., uncertainties and

external disturbances) are considered according to literature (Tran et al., 2015). The

physical parameters of the OTDIRM are listed in Table 4.8.1. TSMC parameters are λ

= 200, Ω1=5, Ω2=3, Kw1 = 440, Kw2 = 440, Kw3 = 440 and φ = 0.1. The finite times

for proposed method (i.e., NNAOTSMC) are calculated as 0.0621 sec, 0.0642 sec and

0.0639 sec for link 1, link 2, and link 3 respectively. The simulated responses of the

OTDIRM are compared with those presented in (Tran et al., 2015) are shown in Figures

from 5.3 to 5.14.

Output performance : To evaluate output performance, the MSE of tracking positions
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Figure 5.3 : Position tracking of link 1.
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Figure 5.4 : Position tracking of link 2.
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Figure 5.5 : Position tracking of link 3.
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Figure 5.6 : Tracking error of link 1.
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Figure 5.7 : Tracking error of link 2.
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Figure 5.8 : Tracking error of link 3.
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Figure 5.10 : Control input for link 2.

are computed. The total sampling time is ‘T ’, desired trajectory is ‘qdi’ and estimated

trajectory is ‘q̂i’ of the ith link, tracking position mean square error (MSE) is given in

(5.52).

MSEi =
1
T

T

∑
t=1

[qdi− q̂i]
2, i = 1,2,3 (5.52)

The MSE values of the 3-DOF OTDIRM trajectories under different control method-
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Table 5.5.1 : MSE examination of CRLSMC (Tran et al., 2015), NNTSMC and
NNAOTSMC

Sl. No MSE CRLSMC NNTSMC NNAOTSMC

1 link 1 2.732×10−6 9.465×10−15 1.723×10−14

2 link 2 3.526×10−5 4.649×10−18 1.526×10−18

3 link 3 4.864×10−6 2.136×10−16 2.924×10−18

ologies, such as CRLSMC in (Tran et al., 2015), NNTSMC and NNAOTSMC are pre-

sented in Table 5.5.1. From the table, it is ascertained that NNAOTSMC provides least

MSE values in comparison with other methods (i.e., NNAOTSMC system has better

tracking trajectory performance). Figure 5.3 to Figure 5.5 indicate tracking positions,

Figure 5.6 to Figure 5.8 indicate tracking errors and Figure 5.9 to Figure 5.11 show

control torque. From the Figure 5.9 to Figure 5.11, it is clear that the control torque is

smoother for NNAOTSMC compared with existing CRLSMC (Tran et al., 2015). This

indicates that the proposed method requires less control effort for same trajectory track-

ing. The MSE response plots of the OTDIRM link trajectories exhibited from Figure

5.12 to Figure5.14.

Input performance : In order to evaluate the manipulated input usage, we calculated
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TV (Mondal and Mahanta, 2014) of the input u(t) is calculated as

TV =
∞

∑
j=1
||u j+1−u j|| (5.53)

This should be as small as possible. The total variation is a good measure of the sig-

nal ”smoothness”. A large value of TV means excessive input usage or more complex

controllers (Mondal and Mahanta, 2014). The energy of the input signal is calculated

Table 5.5.2 : Total variance examination of CRLSMC (Tran et al., 2015), NNBTSMC
and NNAOBTSMC

Sl. No Total Variance (TV) CRLSMC NNTSMC NNAOTSMC

1 link 1 6.1354 2.6311 2.0468

2 link 2 4.8902 3.6610 3.5803

3 link 3 20.8775 6.9904 5.3970

by using the 2-Norm method. The control energy is expected to be as small as possible.

The output and input performances are calculated for the period from 0 to 30 sec with

a sampling time of 0.0001 sec. From Table 5.5.2 and 5.5.3, it clear that the values of

Table 5.5.3 : 2-Norm of input examination of CRLSMC (Tran et al., 2015), NNTSMC
and NNAOTSMC

Sl. No 2-Norm of Input CRLSMC NNTSMC NNAOTSMC

1 link 1 2.4778×103 2.2653×103 2.2263×103

2 link 2 3.4905×103 3.4582×103 3.4547×103

3 link 3 1.3727×104 1.3570×104 1.3552×104

TV and 2-Norm of input for proposed methods are very small as compared to exist-

ing method CRLSMC (Tran et al., 2015). Figure 5.15, Figure 5.16 and Figure 5.17

show the box plot of control torque for link 1, link 2 and link 3 with the mean, me-

dian, ±25% quartiles (notch boundaries), ±75% quartiles (box ends), ±95% bounds

and the outliers. From the size of the boxes shown, it is clear that the NNAOTSMC

control strategy experiences minimum variation than others. Comparing the box plot of

NNTSMC and NNAOTSMC, it observed that NNAOTSMC has less variation in control

input torque for link 1, link 2 and link 3 of the OTDIRM.
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Figure 5.15 : Box plot representation of control torque for link 1.
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Figure 5.16 : Box plot representation of control torque for link 2.
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5.6 DESIGN AND STABILITY OF BTSMC

The backstepping methodology is a nonlinear scheme generally utilized as a part of

controller design. The mathematical model of the robot manipulator is expressed in

(5.54), (5.55) and (5.56) as:

ẋ1 = x2 (5.54)
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ẋ2 = q̈ = D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (5.55)

y = x1 (5.56)

where x1 and x2 are the position and velocity vectors of the robot manipulator. The

tracking error of the position is given as:

e1 = qd−q (5.57)

The stabilizing function is characterized as

α1 = λ1e1 +
1
λ2

e
Ω1
Ω2
1 (5.58)

where λ1, λ2 and Ω1, Ω2 (1 < Ω1
Ω2

< 2) are positive odd numbers. The tracking errror of

the velocity has upgraded with stability function. It is characterized in Eq. (5.59) and

appeared as:

e2 = ė1 +α1 (5.59)

The primary Lyapunov stability function is characterized as:

V1 =
1
2

e2
1 (5.60)

V̇1 = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 (5.61)

From (1.2) and (5.59), we get

ė2 = q̈d−D−1(q)
(
τ−
(
C(q, q̇)q̇+G(q)+F(q, q̇)+ τd

))
+λ1ė1 (5.62)

+
Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1

The second Lyapunov stability function is described as:

V =V1 +
1
2

sT s (5.63)

The satisfactory condition, which gives the affirmation that the tracking error will make

an elucidation from achieving stage to sliding stage, is called the achieving condition

and given in (5.64).

V̇ < 0,s 6= 0 (5.64)

The sliding surface ‘s’ is characterized as:

s = e1 + e2 (5.65)

The derivative of the second Lyapunov stability function is given in equation (5.66).

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 + sT (ė1(1+λ1)+

Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 + q̈d− q̈) (5.66)
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The total control torque (τ) to the robot manipulator is characterized as:

τ = τ0 + τc (5.67)

By substituting (5.67) in (5.66), we get

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 + sT [ė1(1+λ1)+

Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 (5.68)

+q̈d−D−1(q)((τ0 + τc)− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd))
]

The arrangement of ṡ = 0 gives the control signal, which is known as equivalent control

law and it is denoted by ‘τ0’. This equivalent control law is essential to fulfill the exe-

cution of favored trajectory tracking without considering disturbances and uncertainties

(i.e. τd = 0).

τ0 = D(q)
(
ė1(1+λ1)+

Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 + q̈d

)
+C(q, q̇)q̇+G(q)+F(q, q̇) (5.69)

An extra control exertion is needed to wipe out the unpredictable disturbances and un-

certainties as equivalent control torque (τ0) is lacking to provide the favored tracking

performance. Ultimately, the tracking error dies out asymptotically, which means the

sliding surface becomes stable. To exhibit the stability of the created control framework

for robot manipulator, the Lyapunov-like Lemma is utilized.

From (5.68) and (5.69) we arrive at an expression for V̇ as follows:

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 + sT (−D−1(q)τc) (5.70)

To meet the Lyapunov stability condition, the corrective control law (τc) is defined as

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 +KW sign(s)

)
(5.71)

By substituting τc in (5.70) and yields:

V̇ =−λ1e2
1−KwsT sign(s) (5.72)

where Kw is the sliding gain.

V̇ ≤−λ1|e2
1|−Kw|s| (5.73)

where |s|= sT sign(s). The chattering effect on the control input signal is introduced by

the signum function (‘sign’), which is utilized as a part of (5.72), so as to diminish or

dispense with this impact, the signum function (‘sign’) is substituted by the hyperbolic

tangent function (‘tanh’) as given in (5.74).

V̇ ≤−λ1e2
1−KwsT tanh(s) (5.74)
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The term ‘sT tanh(s)’ in (5.74) is constantly positive so that whole condition gets to be

negative (i.e. sT tanh(s)> 0 if either s > 0 or s < 0 ). The achieving control signal (τc)

is modified as:

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 +Kw tanh

(
s
)

(5.75)

Where Kw = diag{Kw1,Kw2, ...,Kwn} is control gain matrix.

The BTSMC control law is defined as:

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 )

)
+K tanh

( s
φ

)
(5.76)

where K = D(q)Kw.

When s = 0 is reached at t = tr, e1 = 0 becomes terminal surface, i.e. e1 + e2 = 0. The

effect of terminal surface will take the state of e1 from e1(tr) 6= 0 to e1(tr + ts)=0 with

finite time ts given by

ts =
1

(1+λ1)(
Ω1
Ω2
−1)

(
ln((1+λ1)e1 +

1
λ2

e
Ω1
Ω2
1 )− Ω1

Ω2
ln(e1)

)
(5.77)

5.7 DESIGN OF NNBTSMC

In this section, the RBFNN is utilized to build up the control plans for the robot manip-

ulator to track the desired trajectories under unknown dynamics of the system. Figure

5.18 demonstrates the schematic representation of NNBTSMC.

Figure 5.18 : Block diagram of NNBTSMC scheme.
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Tracking error of position is defined as:

e1 = qd−q (5.78)

q̇r = q̇d +(1+λ1)e1 +
1
λ2

e
Ω1
Ω2
1 (5.79)

where ‘q̇r’ is auxiliary signal. The modified sliding surface (s) is characterized as:

s = q̇r− q̇ = (1+λ1)e1 +
1
λ2

e
Ω1
Ω2
1 +

d
dt

e1 (5.80)

From (1.18), (5.79) and (5.80), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (5.81)

where ‘τd’ represents external torque disturbances.

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (5.82)

where X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T .

The approximation of f (X) is defined in (5.83).

f (X) = Ŵ T
σ(X) (5.83)

where ‘σ(X)’ is the basis function and ‘Ŵ ’ is the NN adjustment law. Now (5.81) can

be revised as:

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ ε
∗+ τd− τ (5.84)

where W̃ = W ∗−Ŵ , W ∗ and ε∗ are ideal weights matrix and approximation error re-

spectively.

Theorem 5.7.1. Consider the robot manipulator is demonstrated by (1.18), if the total
control torque is expressed as τ = τ0 + τc + τNN , in which control law of BTSMC is
characterized as τc = k1s+K tanh( s

φ
) and τNN = Ŵ T σ(X). The evaluated adaptive

law for the NN identifier is characterized as:
˙̂W T =− ˙̃W T = Bσ(X)sT (5.85)

where ‘B’ is a positive definite matrix and the tracking errors of position and velocity
(i.e. e and ė) of the system asymptotically converge to zero as t→ ∞.

Proof. NNBTSMC stability function is given in (5.86).

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (5.86)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (5.87)
By substituting (5.84) in (5.87), we get

V̇ =
1
2

sT [Ḋ(q)−2C(q, q̇)]s+ sT [W̃ T
σ(X)+ ε

∗+ τd− k1s (5.88)

−K tanh
( s

φ

)
]+ tr(W̃ T B−1 ˙̃W )

Since, Ḋ(q)−2C(q, q̇) is a skew symmetric matrix, the first term in (5.88) becomes zero
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(i.e. 1
2sT [Ḋ(q)−2C(q, q̇)]s = 0), from (5.74) and (5.85), V̇ can be rewritten as:

V̇ ≤−k1sT s+ ||s||δ0 (5.89)
where ‘δ0’ is the upper bound of ||ε∗+ τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 +ρδ 2
0 ), where ρ > 0 is picked to such an extent that

∫
∞

0 ρdt < ∞ and further
substituted in (5.89) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (5.90)

Integrating both sides of (5.90) from t = 0 to T , yields

V (T )−V (0) ≤ −(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (5.91)

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)

[
V (0)+

1
2

δ
2
0

∫
∞

0
ρdt
]

limsup
T→∞

1
T

= 0 (5.92)

From (5.91) and (5.92), we get s→ 0 as t → ∞. Subsequently, we can conclude, from
(5.80), the tracking errors of position and velocity (i.e. e and ė) asymptotically converge
to zero as t→∞. Therefore, the stability criteria is fulfilled by the proposed NNBTSMC
scheme.

Remark 5.7.2. The addition of BTSMC and NN identifier provides the robust controller,
and such errors caused by extrinsic disturbances and uncertainties. The NN identifier
can be remunerated to give better trajectory tracking and intensify the disturbance re-
jection under different disturbance conditions.

5.8 AN ADAPTIVE OBSERVER BASED CONTROL
OF ROBOT MANIPULATOR

The neural network based adaptive observer backstepping terminal sliding mode con-

trol (NNAOBTSMC) is developed with the help of NNAO for precise desired trajectory

tracking and improve the disturbance rejection under different working conditions ( i.e.

external disturbances and uncertainties) of the robot manipulator. Figure 5.19 demon-

strates the structure of the NNAOBTSMC. The evaluated error of the link position is

characterized as:

ê1 = qd− q̂ (5.93)

The estimated sliding surface ‘ŝ’ is designed as:

ŝ =
(1+λ1)ê1 +

1
λ2

ê
Ω1
Ω2
1 + d

dt ê1

φ
(5.94)

Theorem 5.8.1. Considered robot manipulator described by (1.18). Let the NNAO es-
timates q and p as q̂ and p̂, estimation errors are q̃ = q− q̂ and p̃ = p− p̂. Then, the
approximation function of f (X) described in (5.82) is conveyed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (5.95)
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Figure 5.19 : Block diagram of the NNAOBTSMC scheme.

where ‘Ŵc’ is estimated adaptation matrix.
The adaptation law is defined as:

˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (5.96)
The NNAOBTSMC law is characterized as:

τ = Λ3ŝ+K tanh
( ŝ

φ

)
+Ŵc

T
σ(X̂) (5.97)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the approximation function to robot manipulator, then the estimation errors q̃ and p̃ are
asymptotically converge to zero.

Proof. The Lyapunov stability candidate function for NNAOBTSMC is characterized
as:

V =Vo +Vc (5.98)
where ‘Vo’ and ‘Vc’ are the observer stability and controller stability candidate functions
respectively.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (5.99)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (5.100)
The derivative of (5.100) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (5.101)

Since, Ḋ(q)− 2C(q, p) is a skew symmetric matrix and s = ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, then
we get

V̇c = ŝT{Ŵ T
c σ̃(X̂)+ ε

∗+ τd}+ p̃T{W̃c
T

σ(X̂)+Ŵ T
c σ̃(X̂)+ ε

∗− τd} (5.102)

−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
( ŝ

φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

where ‘γ0’ is maximum limit of ||Ŵ T
c σ̃(X̂)+ε∗+τd|| and ζ = {W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+
ε∗+τd}, corresponding to this ‘ζ ’, there exists a positive constant ‘ζ0’ such that ||ζ || ≤
ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (5.103)
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The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1
2(||ŝ||

2+ργ2
0 ), ||p̃||ζ0 ≤

1
2(||p̃||

2 +ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. To induce stability cri-
teria with finite boundedness, the constrained terms are substituted in (5.103). The
expression for V̇c gets to be:

V̇c ≤ −
(Λ3

2
− 1

2
)
||ŝ||2 +

(Λ3

2
+

1
2
)
||p̃||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0
)
, ∀ (Λ3 > 2) (5.104)

The derivative of (5.99) and from (4.33), we will get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo (5.105)

+σo(q̂, p̂)p̃T )}
Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1

2(||p̃||
2+

ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (5.106)

V̇ = V̇o +V̇c (5.107)

V̇ ≤ −1
2
(
Λ3−2

)
||p̃||2− 1

2
(
Λ3−1

)
||ŝ||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0 (5.108)

+β
2
0
)
, ∀ (Λ3 > 2)

Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2
(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2
(
Λ3−2

)∫ T

0
||p̃||2dt (5.109)

+
1
2
(
γ

2
0 +ζ

2
0 +β

2
0
)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

[(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

]
≤ 2
[
V (0) (5.110)

+
1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From (5.109) and (5.110), it is clear that p̃→ 0, ŝ→ 0 as t→ ∞. That concludes q̃→ 0
and p̃→ 0. Thus, the proposed NNAOBTSMC fulfills the stability criteria.

5.9 RESULTS AND DISCUSSIONS FOR BTSMC

The desired reference trajectories for de-icing robot manipulator and essential param-

eters that influence the control activity of the robotic systems (i.e., uncertainties and

external disturbances) are considered according to literature (Tran et al., 2015). The

physical parameters of the OTDIRM are listed in Table 4.8.1. BTSMC parameters are

λ1 = 980, λ2 = 100, Ω1=5, Ω2=3, Kw1 = 440, Kw2 = 440, Kw3 = 440 and φ = 0.1. The

finite times (ts) for proposed method (i.e., NNAOBTSMC) are calculated as 0.0422 sec,

126



0.0405 sec and 0.0438 sec for link 1, link 2 and link 3 respectively. The simulated re-

sponses of the OTDIRM are compared with those presented in (Tran et al., 2015) are

shown in figures from 5.20 to 5.31.
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Figure 5.20 : Position tracking of link 1.
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Figure 5.21 : Position tracking of link 2.

time (sec)

0 5 10 15 20 25 30

p
o
si

ti
o
n
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5
q

d3

q
3

 CRLSMC

q
3

 NNBTSMC

q
3

 NNAOBTSMC

18.4 18.6 18.8 19 19.2 19.4

0.85

0.9

0.95

1

18.7648 18.7648 18.7648 18.7648

0.9964

0.9964

0.9964

Figure 5.22 : Position tracking of link 3.
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Figure 5.23 : Tracking error of link 1.
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Figure 5.24 : Tracking error of link 2.
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Figure 5.25 : Tracking error of link 3.
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Figure 5.26 : Control input for link 1.
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Figure 5.27 : Control input for link 2.

127



time (sec)

0 5 10 15 20 25 30

τ
3

 (
N

m
)

15

20

25

30

35
τ

3
 CRLSMC

τ
3

 NNBTSMC

τ
3

 NNAOBTSMC

Figure 5.28 : Control input for link 3.
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Figure 5.29 : MSE of link 1.
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Figure 5.30 : MSE of link 2.
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Figure 5.31 : MSE of link 3.

Table 5.9.1 : MSE examination of CRLSMC (Tran et al., 2015), NNBTSMC and
NNAOBTSMC

Sl. No MSE CRLSMC NNBTSMC NNAOBTSMC

1 link 1 2.732×10−6 2.451×10−15 4.118×10−17

2 link 2 3.526×10−5 2.007×10−14 3.924×10−20

3 link 3 4.864×10−6 9.321×10−16 1.44×10−20

The MSE values of the 3-DOF OTDIRM trajectories under different control method-

ologies, such as CRLSMC in (Tran et al., 2015), NNBTSMC and NNAOBTSMC are

presented in Table 5.9.1. From the table, it is ascertained that NNAOBTSMC provides

least MSE values in comparison with other methods (i.e., NNAOBTSMC system has

better tracking trajectory performance). Figure 5.20 to Figure 5.22 indicate tracking

positions, Figure 5.23 to Figure 5.25 indicate tracking errors and Figure 5.26 to Fig-

ure 5.28 show control torque. From the Figure 5.26 to Figure 5.28, it is clear that the

control torque is smoother for NNAOBTSMC compared with existing CRLSMC (Tran

et al., 2015). This indicates that the proposed method requires less control effort for

same trajectory tracking. The MSE response plots of the OTDIRM link trajectories ex-

hibited from Figure 5.29 to Figure5.31. The energy of the input signal is calculated by
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Table 5.9.2 : Total variance examination of CRLSMC (Tran et al., 2015), NNBTSMC
and NNAOBTSMC

Sl. No Total Variance (TV) CRLSMC NNBTSMC NNAOBTSMC

1 link 1 6.1354 1.8337 1.4024

2 link 2 4.8902 3.5510 3.4074

3 link 3 20.8775 5.1885 4.0198

using the 2-Norm method. The control energy is expected to be as small as possible.

The output and input performances are calculated for the period from 0 to 30 sec with

a sampling time of 0.0001 sec. From Table 5.9.2 and 5.9.3, it clear that the values of

Table 5.9.3 : 2-Norm of input examination of CRLSMC (Tran et al., 2015), NNBTSMC
and NNAOBTSMC

Sl. No 2-Norm of Input CRLSMC NNBTSMC NNAOBTSMC

1 link 1 2.4778×103 2.2119×103 2.1856×103

2 link 2 3.4905×103 3.4535×103 3.4452×103

3 link 3 1.3727×104 1.3550×104 1.3530×104

TV and 2-Norm of input for proposed methods are very small as compared to exist-

ing method CRLSMC (Tran et al., 2015). Figure 5.32, Figure 5.33 and Figure 5.34
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Figure 5.32 : Box plot representation of control torque for link 1.

show the box plot of control torque for link 1, link 2 and link 3 with the mean, me-

dian, ±25% quartiles (notch boundaries), ±75% quartiles (box ends), ±95% bounds

and the outliers. From the size of the boxes shown, it is clear that the NNAOBTSMC
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Figure 5.33 : Box plot representation of control torque for link 2.
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Figure 5.34 : Box plot representation of control torque for link 3.

control strategy experiences minimum variation than others. Comparing the box plot of

NNBTSMC and NNAOBTSMC, it observed that NNAOBTSMC has less variation in

control input torque for link 1, link 2 and link 3 of the OTDIRM.

5.10 DESIGN OF IBTSMC

The backstepping methodology is a nonlinear scheme generally utilized as a part of

controller design. The mathematical model of robot manipulator is expressed in (5.111),

(5.112) and (5.113) as:

ẋ1 = x2 (5.111)

ẋ2 = q̈ = D−1(q)[τ− (C(q, q̇)q̇+G(q)+F(q, q̇)+ τd)] (5.112)

y = x1 (5.113)
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where x1 and x2 are the position and velocity vectors of the robot manipulator. The

position tracking error of the system is given as:

e1 = qd−q (5.114)

The stabilizing function is characterized as

α1 = λ1e1 +
1
λ2

e
Ω1
Ω2
1 (5.115)

The integral action of the tracking error of position is characterized as:

α2 = λ3

∫ t

0
e1dt (5.116)

where λ1, λ2, λ3 > 0 and Ω1, Ω2 (1 < Ω1
Ω2

< 2) are positive odd numbers. The tracking

errror of the velocity has upgraded with stability function and integral action of track-

ing error of position of the robot manipulator. It is characterized in Eq. (5.117) and

appeared as:

e2 = ė1 +α1 +α2 (5.117)

The primary Lyapunov stability function is characterized as:

V1 =
1
2

e2
1 (5.118)

V̇1 = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt (5.119)

From (1.2) and (5.117), we get

ė2 = q̈d−D−1(q)
(
τ−
(
C(q, q̇)q̇+G(q)+F(q, q̇)+ τd

))
+λ1ė1 (5.120)

+
Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 +λ3e1

The second Lyapunov stability function is described as:

V =V1 +
1
2

sT s (5.121)

The satisfactory condition, which gives the affirmation that the tracking error will make

an elucidation from achieving stage to sliding stage, is generally called the achieving

condition and given in (5.122).

V̇ < 0,s 6= 0 (5.122)

Where ‘s’ is the sliding surface. It is characterized as:

s = e1 + e2 (5.123)
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The derivative of the second Lyapunov stability function is given in equation (5.124).

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt + sT (ė1(1+λ1) (5.124)

+
Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 +λ3e1 + q̈d− q̈)

The total input control torque (τ) to the robot manipulator is characterized as:

τ = τ0 + τc (5.125)

By substituting (5.125) in (5.124), we get

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt + sT [ė1(1+λ1) (5.126)

+
Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 +λ3e1 + q̈d−D−1(q)((τ0 + τc)− (C(q, q̇)q̇+G(q)

+F(q, q̇)+ τd))
]

The arrangement of ṡ = 0 gives the control signal, which is known as equivalent control

law and it is denoted by ‘τ0’. This equivalent control law is essential to fulfill the exe-

cution of favored trajectory tracking without considering disturbances and uncertainties

(i.e. τd = 0).

τ0 = D(q)
(
ė1(1+λ1)+

Ω1

λ2Ω2
e

(
Ω1−Ω2

Ω2

)
1 ė1 +λ3e1 + q̈d

)
+C(q, q̇)q̇ (5.127)

+G(q)+F(q, q̇)

An extra control exertion is needed to wipe out the unpredictable disturbances and un-

certainties as equivalent control torque (τ0) is lacking to provide the favored tracking

performance. Ultimately, the tracking error dies out asymptotically, which means the

sliding surface becomes stable. To exhibit the stability of the created control framework

for the robot manipulator, the Lyapunov-like Lemma is utilized.

From (5.126) and (5.127) we arrive at an expression for V̇ as follows:

V̇ = e1e2−λ1e2
1−

1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt + sT (−D−1(q)τc) (5.128)

To meet the Lyapunov stability condition, the corrective control law (τc) is defined as

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt)+KW sign(s)

)
(5.129)

by substituting τc in (5.128) and yields,

V̇ =−λ1e2
1−KwsT sign(s) (5.130)
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where Kw is the sliding gain.

V̇ ≤−λ1|e2
1|−Kw|s| (5.131)

where |s|= sT sign(s). The chattering effect on the control input signal is introduced by

the signum function (‘sign’), which is utilized as a part of (5.130), so as to diminish or

dispense with this impact, the signum function (‘sign’) is substituted by the hyperbolic

tangent function (‘tanh’) as given in (5.132).

V̇ ≤−λ1e2
1−KwsT tanh(s) (5.132)

The term ‘sT tanh(s)’ in (5.132) is constantly positive so that whole condition gets to be

negative (i.e. sT tanh(s)> 0 if either s > 0 or s < 0 ). The achieving control signal (τc)

is modified as:

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt)+Kw tanh

(
s
)

(5.133)

Where Kw = diag{Kw1,Kw2, ...,Kwn} is control gain matrix. The IBTSMC control law

is defined as:

τc = D(q)
( 1

sT (e1e2−
1
λ2

e

(
Ω1+Ω2

Ω2

)
1 −λ3e1

∫ t

0
e1dt)

)
+K tanh

( s
φ

)
(5.134)

where K = D(q)Kw.

When s = 0 is reached at t = tr, e1 = 0 becomes terminal surface, i.e. e1 + e2 = 0. The

effect of terminal surface will take the state of e1 from e1(tr) 6= 0 to e1(tr + ts)=0 with

finite time ts given by

ts =
1

(1+λ1)(
Ω1
Ω2
−1)+ λ3

2 (
Ω1
Ω2
−2)e1

(
ln(λ2)− (

Ω1

Ω2
−1)ln(1+λ1)e1(5.135)

+(
Ω1

Ω2
−2)ln(

λ3e1

2
)
)

5.11 DESIGN OF NEURAL NETWORK BASED IN-
TEGRAL BACKSTEPPING TERMINAL SLID-
ING MODE CONTROL (NNIBTSMC)

In this section, the RBFNN is utilized to build up the control plans for the robot manip-

ulator to track the desired trajectories under unknown dynamics of the system. Figure

5.35 demonstrates the schematic representation of NNIBTSMC.
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Figure 5.35 : Block diagram of NNIBTSMC scheme.

q̇r = q̇d +(1+λ1)e1 +
1
λ2

e
Ω1
Ω2
1 +λ3

∫ t

0
e1dt (5.136)

where ‘q̇r’ is auxiliary signal. The modified sliding surface (s) is characterized as:

s = q̇r− q̇ = (1+λ1)e1 +
1
λ2

e
Ω1
Ω2
1 +λ3

∫ t

0
e1dt +

d
dt

e1 (5.137)

From (1.18), (5.136) and (5.137), we get

D(q)ṡ =−C(q, q̇)s+ f (X)+ τd− τ (5.138)

where ‘τd’ represents external torque disturbances.

f (X) = D(q)q̈r +C(q, q̇)q̇r +F(q, q̇)+G(q) (5.139)

where X= [q̈T
d , q̇

T
d ,q

T
d , q̇

T ,qT ]T .

The approximation of f (X) is defined in (5.140).

f (X) = Ŵ T
σ(X) (5.140)

where ‘Ŵ ’ is the NN adjustment law, σ(X) is the basis function. Now (5.138) can be

revised as:

D(q)ṡ =−C(q, q̇)s+W̃ T
σ(X)+Ŵ T

σ(X)+ ε
∗+ τd− τ (5.141)

where W̃ = W ∗−Ŵ , W ∗ and ε∗ are ideal weights matrix and approximation error re-

spectively.

Theorem 5.11.1. Consider the robot manipulator modeled by (1.18), if the total control
torque is expressed as τ = τ0 + τc + τNN , in which control law of IBTSMC is defined
as τc = k1s+K tanh( s

φ
) and τNN = Ŵ T σ(X). The evaluated adaptive law for the NN

identifier is characterized as:
˙̂W T =− ˙̃W T = Bσ(X)sT (5.142)
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where ‘B’ is a positive definite matrix and the tracking errors of position and velocity
(i.e. e and ė) of the system asymptotically converge to zero as t→ ∞.

Proof. NNIBTSMC stability function is given in (5.143).

V =
1
2

sT D(q)s+
1
2

tr(W̃ T B−1W̃ ) (5.143)

V̇ =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T B−1 ˙̃W ) (5.144)
By substituting (5.141) in (5.144), we get

V̇ =
1
2

sT [Ḋ(q)−2C(q, q̇)]s+sT [W̃ T
σ(X)+ε

∗+τd−k1s−K tanh
( s

φ

)
]+tr(W̃ T B−1 ˙̃W )

(5.145)
Since, Ḋ(q)− 2C(q, q̇) is a skew symmetric matrix, the first term in (5.145) becomes
zero (i.e. 1

2sT [Ḋ(q)−2C(q, q̇)]s = 0), from (5.132) and (5.142), V̇ can be rewritten as:
V̇ ≤−k1sT s+ ||s||δ0 (5.146)

where ‘δ0’ is upper bound of ||ε∗ + τd||. The term ||s||δ0 is bounded by ||s||δ0 ≤
1
2(||s||

2 +ρδ 2
0 ), where ρ > 0 is picked to such an extent that

∫
∞

0 ρdt < ∞ and further
substituted in (5.146) to get stability criteria with finite boundedness.

V̇ ≤−k1||s||2 +
1
2
(||s||2 +ρδ

2
0 ) (5.147)

Integrating both sides of (5.147) from t = 0 to T , yields

V (T )−V (0)≤−(k1−
1
2
)
∫ T

0
||s||2dt +

1
2

δ
2
0

∫ T

0
ρdt, (∀ k1 > 2) (5.148)

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

∫ T

0
||s||2dt ≤ 1

(k1− 1
2)

[
V (0)+

1
2

δ
2
0

∫
∞

0
ρdt
]

limsup
T→∞

1
T

= 0 (5.149)

From (5.148) and (5.149), we get s→ 0 as t → ∞. Subsequently, we can conclude,
from (5.137), the tracking errors of position and velocity (i.e. e and ė) asymptotically
converge to zero as t → ∞. Therefore, the stability criteria is fulfilled by the proposed
NNIBTSMC scheme.

Remark 5.11.2. The combination of IBTSMC and NN approximation makes the con-
troller more robust, and errors caused by uncertainties of parameters and external dis-
turbances. The developed NN identifiers can be compensated to provide better tracking
behavior and enhance the rejection of disturbances under various disturbance condi-
tions and parameter uncertainties.

5.12 AN ADAPTIVE OBSERVER BASED CONTROL
OF ROBOT MANIPULATOR

The neural network based adaptive observer integral backstepping terminal sliding mode

control (NNAOIBTSMC) is developed with help of NNAO for precise desired trajec-

tory tracking and improve the disturbance rejection under different working conditions

( i.e. external disturbances and uncertainties) of robot manipulator. Figure 5.36 demon-

strates structure of the NNAOIBTSMC.
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Figure 5.36 : Block diagram of the NNAOIBTSMC scheme.

The evaluated error of the link position is characterized as:

ê1 = qd− q̂ (5.150)

The estimated sliding surface ‘ŝ’ is designed as:

ŝ =
(1+λ1)ê1 +

1
λ2

ê
Ω1
Ω2
1 +λ3

∫ t
0 ê1dt + d

dt ê1

φ
(5.151)

Theorem 5.12.1. Considered robot manipulator described by (1.18). Let the NNAO
estimates q and p as q̂ and p̂, estimation errors are q̃ = q− q̂ and p̃ = p− p̂. Then, the
approximation function of f (X) described in (5.139) is conveyed as:

f̂ (X̂) = Ŵc
T

σ(X̂), X̂ = [q̈T
d , q̇

T
d , q̇

T
d , p̂T , q̂T ]T (5.152)

where ‘Ŵc’ is estimated adaptation matrix.
The adaptation law is defined as:

˙̂Wc =− ˙̃Wc = Bcσ(X̂)ŝT (5.153)
The NNAOIBTSMC law is characterized as:

τ = Λ3ŝ+K tanh
( ŝ

φ

)
+Ŵc

T
σ(X̂) (5.154)

where ‘Λ3ŝ+K tanh( ŝ
φ
)’ is the boundary sliding mode control law and ‘Ŵc

T
σ(X̂)’ is

the approximation function to robot manipulator, then the estimation errors q̃ and p̃ are
asymptotically converge to zero.

Proof. The Lyapunov stability candidate function for NNAOIBTSMC is characterized
as:

V =Vo +Vc (5.155)
where ‘Vo’ and ‘Vc’ are the observer stability and controller stability candidate functions
respectively.

Vo = p̃T p̃+
1
2

tr(W̃ T
o B−1

o W̃o) (5.156)

Vc =
1
2

sT D(q)s+
1
2

tr(W̃ T
c B−1

c W̃c) (5.157)
The derivative of (5.157) becomes

V̇c =
1
2

sT Ḋ(q)s+ sT D(q)ṡ+ tr(W̃ T
c B−1

c
˙̃Wc) (5.158)
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Since, Ḋ(q)− 2C(q, p) is a skew symmetric matrix and s = ŝ+ ˙̃q+Λ1q̃ = ŝ+ p̃, then
we get

V̇c = ŝT{Ŵ T
c σ̃(X̂)+ ε

∗+ τd}+ p̃T{W̃c
T

σ(X̂)+Ŵ T
c σ̃(X̂)+ ε

∗+ τd} (5.159)

−Λ3ŝT ŝ−Λ3 p̃T ŝ−KŝT tanh
( ŝ

φ

)
+ tr{W̃ T

c (B−1
c

˙̃Wc +σ(X̂)ŝT )}

where ‘γ0’ is maximum limit of ||Ŵ T
c σ̃(X̂)+ε∗+τd|| and ζ = {W̃c

T
σ(X̂)+Ŵ T

c σ̃(X̂)+
ε∗+τd}, corresponding to this ‘ζ ’, there exists a positive constant ‘ζ0’ such that ||ζ || ≤
ζ0.

V̇c ≤ ||ŝ||γ0 + ||p̃||ζ0−Λ3ŝT ŝ−Λ3 p̃T ŝ (5.160)
The terms ||ŝ||γ0, ||p̃||ζ0 and−Λ3 p̃T ŝ are bounded by ||ŝ||γ0 ≤ 1

2(||ŝ||
2+ργ2

0 ), ||p̃||ζ0 ≤
1
2(||p̃||

2 +ρζ 2
0 ) and −Λ3 p̃T ŝ≤ Λ3

2 (||p̃||2||+ ||ŝ||2) respectively. To induce stability cri-
teria with finite boundedness, the constrained terms are substituted in (5.160). The
expression for V̇c gets to be:

V̇c ≤−
(Λ3

2
− 1

2
)
||ŝ||2 +

(Λ3

2
+

1
2
)
||p̃||2 + 1

2
ρ
(
γ

2
0 +ζ

2
0
)
, ∀ (Λ3 > 2) (5.161)

The derivative of (5.156) and from (4.33), we will get
V̇o = p̃T{W ∗To σ̃o(q, p)−D−1(q)τd + ε

∗
o}−Λ3 p̃T p̃+ tr{W̃o

T
(B−1

o
˙̃Wo +σo(q̂, p̂)p̃T )}

(5.162)
Since, ||W ∗To σ̃o(q, p)−D−1(q)τd+ε∗o || ≤ β0 and ||p̃||β0 is bounded by ||p̃||β0≤ 1

2(||p̃||
2+

ρβ 2
0 ), then

V̇o ≤−Λ3 p̃T p̃+
1
2
(||p̃||2 +ρβ

2
0 ) (5.163)

V̇ = V̇o +V̇c (5.164)

V̇ ≤−1
2
(
Λ3−2

)
||p̃||2− 1

2
(
Λ3−1

)
||ŝ||2+ 1

2
ρ
(
γ

2
0 +ζ

2
0 +β

2
0
)
, ∀ (Λ3 > 2) (5.165)

Integrating both sides from t = 0 to T , yields

V (T )−V (0) ≤ −1
2
(
Λ3−1

)∫ T

0
||ŝ||2dt− 1

2
(
Λ3−2

)∫ T

0
||p̃||2dt (5.166)

+
1
2
(
γ

2
0 +ζ

2
0 +β

2
0
)∫ T

0
ρdt

Since, V (T )≥ 0 and
∫

∞

0 ρdt < ∞ holds,

limsup
T→∞

1
T

[(
Λ3−1

)∫ T

0
||ŝ||2dt +

(
Λ3−2

)∫ T

0
||p̃||2dt

]
≤ 2
[
V (0) (5.167)

+
1
2
(γ2

0 +ζ
2
0 +β

2
0 )
∫

∞

0
ρdt
]

limsup
T→∞

1
T

= 0

From (5.166) and (5.167), it is clear that p̃→ 0, ŝ→ 0 as t→ ∞. That concludes q̃→ 0
and p̃→ 0. Thus, the proposed NNAOIBTSMC fulfills the stability criteria.

5.13 RESULTS AND DISCUSSIONS FOR IBTSMC

The desired reference trajectories for de-icing robot manipulator and important parame-

ters that affect the control performance of the robotic systems (i.e. uncertainties and ex-
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ternal disturbances) are considered according to literature (Tran et al., 2015). IBTSMC

parameters are λ1 = 980, λ2 = 100, λ3 = 540, Ω1=5, Ω2=3, Kw1 = 440, Kw2 = 440, Kw3

= 440 and φ = 0.01. The finite times (ts) for proposed method (i.e. NNAOIBTSMC) are

calculated as 0.0327 sec, 0.031 sec and 0.0343 sec for link 1, link 2 and link 3 respec-

tively.

The MSE values of the 3-DOF OTDIRM trajectories under different control method-
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Figure 5.37 : Position tracking of link 1.
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Figure 5.38 : Position tracking of link 2.
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Figure 5.41 : Tracking error of link 2.
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Figure 5.42 : Tracking error of link 3.

ologies, such as CRLSMC in (Tran et al., 2015), NNIBTSMC and NNAOIBTSMC are

presented in Table 5.13.1. From the table, it is ascertained that NNAOIBTSMC pro-

vides least MSE values in comparison with other methods (i.e., NNAOIBTSMC system
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Figure 5.46 : MSE of link 1.
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Figure 5.47 : MSE of link 2.
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Figure 5.48 : MSE of link 3.

Table 5.13.1 : MSE examination of CRLSMC (Tran et al., 2015), NNIBTSMC and
NNAOIBTSMC

Sl. No MSE CRLSMC NNIBTSMC NNAOIBTSMC

1 MSE1 2.732×10−6 1.224×10−16 2.52×10−17

2 MSE2 3.526×10−5 3.291×10−16 1.595×10−17

3 MSE3 4.864×10−6 1.004×10−17 6.667×10−22

has better tracking trajectory performance). Figure 5.37 to Figure 5.39 indicate track-

ing positions, Figure 5.40 to Figure 5.42 indicate tracking errors and Figure 5.43 to

Figure 5.45 show control torque. From the Figure 5.43 to Figure 5.45, it is clear that

the control torque is smoother for NNAOIBTSMC compared with existing CRLSMC
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(Tran et al., 2015). This indicates that the proposed method requires less control effort

for same trajectory tracking. The MSE response plots of the OTDIRM link trajectories

exhibited from Figure 5.46 to Figure5.48. The energy of the input signal is calculated

Table 5.13.2 : Total variance examination of CRLSMC (Tran et al., 2015), NNIBTSMC
and NNAOIBTSMC

Sl. No Total variance (TV) CRLSMC NNIBTSMC NNAOIBTSMC

1 link 1 6.1354 1.7592 1.7059

2 link 2 4.8902 3.5363 3.5200

3 link 3 20.8775 5.0991 4.9425

by using the 2-Norm method. The control energy is expected to be as small as possible.

The output and input performances are calculated for the period from 0 to 30 sec with

a sampling time of 0.0001 sec. From Table 5.13.2 and 5.13.3, it clear that the values of

Table 5.13.3 : 2-Norm of input examination of CRLSMC (Tran et al., 2015),
NNIBTSMC and NNAOIBTSMC

Sl. No 2-Norm of Input CRLSMC NNIBTSMC NNAOIBTSMC

1 link 1 2.4778×103 2.2068×103 2.2031×103

2 link 2 3.4905×103 3.4526×103 3.4512×103

3 link 3 1.3727×104 1.3548×104 1.3544×104

TV and 2-Norm of input for proposed methods are very small as compared to existing

method CRLSMC (Tran et al., 2015).
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Figure 5.49 : Box plot representation of control torque for link 1.

140



Control strategy

CRLSMC NNIBTSMC NNAOIBTSMC

C
on

tr
ol

 to
rq

ue
 fo

r l
in

k 
2 

(N
m

)

0

2

4

6

8

10

Figure 5.50 : Box plot representation of control torque for link 2.
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Figure 5.49, Figure 5.50 and Figure 5.51 show the box plot of control torque for link

1, link 2 and link 3 with the mean, median, ±25% quartiles (notch boundaries), ±75%

quartiles (box ends), ±95% bounds and the outliers. From the size of the boxes shown,

it is clear that the NNAOIBTSMC control strategy experiences minimum variation than

others. Comparing the box plot of NNIBTSMC and NNAOIBTSMC, it observed that

NNAOBTSMC has less variation in control input torque for link 1, link 2 and link 3 of

the OTDIRM.

5.14 SUMMARY

In this chapter, the distinctive control techniques of the 3-DOF OTDIRM are addressed.

The different types of neural network-based non-linear control methodologies (i.e.,

NNTSMC, NNBTSMC and NNIBTSMC) are developed to track the desired trajectory

of the robot manipulator in presence of uncertainties and external disturbances. For the

precise trajectory tracking performance and to enhance disturbance rejection under var-
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ious disturbance conditions, neural network-based adaptive observer terminal sliding

mode control methodologies are designed. Lyapunov stability theorem guaranteed the

stability of the proposed control systems. Simulation responses depict the effectiveness

of the terminal sliding mode control based proposed schemes.
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Chapter 6

CONCLUSION

6.1 CONCLUSION

Among the existing controllers, there is a need to investigate, understand the properties

and propose suitable modifications thereby making them more adaptable depending on

the applications. For robotic applications, especially in 2-DOF and 3-DOF, the use

of classical controllers often does not fulfill the desired performance criteria. In such

cases, use of hybrid controllers is more logical. With this thought, the main contribu-

tions of this thesis are the proposal and verification of the variety of fused controller for

the robotic manipulator. It involves in designing/modifying adaptive non-linear control

methods for robot manipulators under different disturbance conditions. The developed

predictive modeling methods are to estimate the position and velocity vectors for pre-

cise trajectory tracking performance and enhance disturbance rejection under various

operating conditions for robot manipulators.

Two-mass single-link robot with the gearbox is developed, and the control parame-

ters are tuned using Fminsearch and Genetic Algorithm. The variation of the SMC con-

troller where the PID sliding surface is taken into consideration and controlling param-

eters are obtained by using PSO for control of 2-DOF robot manipulator. The different

tracking control strategies for 3-DOF robot manipulator are discussed. The composi-

tions of an observer-based different modified sliding mode controllers are developed for

3-DOF OTDIRM. Lyapunov stability theorem guaranteed the stability of the proposed

control systems. In general, the results illustrate that the proposed observer-based con-
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troller offers a superior tracking performance and smoother control input compared to

other existing methods. The derivation of the control law guarantees the convergence of

the tracking error. Several performance methods are examined to support the strength

of the proposed and existing control approaches.

6.2 FUTURE WORK

In the future work, it will be a new and challenging task to develop a control algorithm

for robot manipulator with model parameter uncertainties and various disturbances in

torque. Further, research work will be continued with separate input signals such as

step, triangular waves and high-frequency signals for desired trajectories. Future work

might also include the fault disturbance observer-based tolerant control and an inte-

grated fault diagnosis system for robot manipulator at various operating conditions. In

addition, experimental evaluation of the 3-DOF robot manipulator with the proposed

control strategies will be attempted.
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