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ABSTRACT

A numerous earth observing satellites have been launched to the orbit to capture the

images of the earth surface. The satellite acquires images of earth surface in panchro-

matic (Pan) and multispectral (MS) modes. The Pan image contains high spatial details

whereas MS image holds rich spectral information but low spatial resolution. The re-

mote sensing applications require both the qualities in a single image.

Many pan-sharpening methods were developed to transfer the spatial detail of Pan

image to the MS image, to have a single image with both high spatial and rich spec-

tral information. One of the primary objectives of the present research is to determine

the suitable pan-sharpening technique for improving the spatial resolution and retaining

the spectral information of MS image. Therefore, the present study focuses on nine

different pan-sharpening methods like principal component analysis (PCA), modified-

intensity hue saturation (M-IHS), multiplicative, brovey transform (BT), wavelet prin-

cipal component analysis (W-PCA), hyperspherical colour sharpening (HCS), high pass

filter (HPF), gram-schmidt (GS) and Fuze Go. These were used for fusing the Pan and

MS imageries of Quickbird-2 and Landsat-8. The effectiveness of these pan-sharpening

method should not distort the spectral information of an MS image while enhancing the

spatial resolution.

To evaluate the performance of the above mentioned pan-sharpening methods, both

qualitative and quantitative approaches were adopted. In the quantitative approach the

spectral indices like correlation coefficient (CC), structural similarity index measure

(SSIM), root mean square error (RMSE), signal to noise ratio (SNR), universal quality

index (Q) and peak signal noise ratio (PSNR) were used to assess the spectral quality

of pan-sharpened image. The spatial indices like correlation coefficient (SCC), Gra-

dient and image entropy (E) were used to assess the spatial quality of pan-sharpened

image. Further, quality with no reference (QNR) indices were also performed to eval-

uate both spectral and spatial quality of pan-sharpened image. The results of qualita-

tive and quantitative approaches indicate that the Fuse Go method outperformed other
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pan-sharpening methods in providing a image with the highest spatial details and rich

spectral information.

In addition, the effectiveness of improving the spatial resolution of MS image was

studied by employing the Fuse Go pan-sharpened image for the extraction of buildings

using Quickbird-2 imagery and for estimating the bathymetry of near shore ocean using

Landsat-8 imagery.

To extract the buildings from the original and Fuze Go pan-sharpened Quickbird-

2 imagery, both automatic and manual approaches were adopted and compared using

qualitative and metric analysis. In automatic approach firstly, the vegetation portion

were removed from the input image. Secondly, adaptive k-means clustering algorithm

were adopted to cluster the pixels into different classes. Finally, the morphological fill

and open operator was implemented to extract the buildings. In the manual approach,

area of interest (AOI) was created from the input image. Later, the generated AOI was

used to subset the interested features from the image. The results of qualitative and

metric analysis indicate that the building detection percentage of automatic algorithm

for the original and pan-sharpened image are reasonable for such a challenging MS im-

age. The results of manual method indicate that the extraction of buildings is achieved

with minimum loss of information in comparison with the automatic method. How-

ever, improving the spatial resolution of the original MS image, helps to determine the

buildings information more precisely in terms of spatially as well as spectrally.

The procedure based on ratio-transform algorithm was adopted on original and Fuse

Go pan-sharpened imagery of Landsat-8 for estimating the bathymtery of near shore

ocean along the coast of Mangaluru, India. The performance of the procedure was

evaluated using root mean square error (RMSE) and mean absolute error (MAE). The

results of RMSE and MAE indicate that the procedure better estimates the depth up to

5 m and 10 m for the original and improved spatial resolution of Landsat-8 imagery.

Therefore, the Fuse Go method can be used for remote sensing applications, which

demands both high spatial and spectral information in a single image.

Keywords: Pan-sharpening, Spatial, Spectral, Qualitative, Quantitative, Adaptive

K-means algorithm, Morphological operators, Ratio transform algorithm
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Chapter 1

INTRODUCTION

1.1 General

The chapter provides the brief introduction of Remote sensing, Pan-sharpening, Extrac-

tion of buildings and Bathymetry mapping.

1.2 Remote sensing

Remote sensing is a significant tool for capturing the images of the earth surface. To

obtain such images, many countries began to launch earth observing satellites such as

LANDSAT, IRS, SPOT, and Quickbird series etc. All these satellites were launched to

the orbit carrying two different sensors, one for capturing the image in Pan (black and

white) band and the other for capturing the image in multiple bands. These satellite

sensors record images of the land surface and send them to the ground stations. These

images help researchers to visually interpret the features present on the earth surface

and to analyse changes of various features over a certain period.

The former provides the Pan images in only a single band with high spatial resolu-

tion, whereas the latter can provide images in multiple bands with rich spectral resolu-

tion, but low spatial resolution (Zhang and Mishra, 2013). Pan images of high spatial

resolution enable analysis and differentiation of the features based on spatial detail;

MS images with high spectral resolution can differentiate the features based on spectral

information (Ranchin and Wald, 2000). For every successive launch of the earth ob-

serving satellites into orbit, both Pan and MS sensors are upgraded to higher versions

for capturing the images with improved spatial detail and rich spectral resolution. How-
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ever, satellites launched into orbit till date have not been able to acquire images with

both high spatial and rich spectral resolution in a single image (Nikolakopoulos, 2008),

even though remote sensing applications such as feature extraction and classification

demand a single image with both high spatial and rich spectral information (Ghosh and

Joshi, 2013).

The sensors have two technical constraints for delivering an image with both high

spatial and rich spectral resolution (Zhang, 2004). The first is the quantity of radiation

energy received by the sensor. Traditionally, Pan sensors are designed to capture an im-

age in a broader range of wavelengths, whereas MS sensors cover a much smaller range

of wavelengths (Yusuf et al., 2012). The size of the Pan detector is smaller than that

of the MS detector. Thus, the energy collected by Pan detectors over the broader range

of wavelengths provides high spatial resolution but decreased the spectral resolution,

whereas the energy collected by MS detectors over the narrow range of wavelengths

provides high spectral resolution but decreased spatial resolution (Amro et al., 2011).

The second constraint is the amount of information collected by the sensor. The amount

of information collected by an MS sensor with the spatial resolution of a Pan sensor may

lead to technical limitations in on-board storage capacity and the transmission rate of

data from space to the ground station (Nikolakopoulos, 2008). The alternate solution

for the limitation of sensor is an pan-sharpening or image fusion techniques.

1.3 Pan-sharpening

Pan-sharpening is the process of fusing the high spatial details of a Pan image and the

rich spectral resolution of an MS image by transferring the spatial information of the

Pan image to the MS image while retaining the spectral data of the MS image to cre-

ate a single image with both high spatial and rich spectral information (Zhang, 2010).

From late 1980 to present, many pan-sharpening techniques have been developed such

as PCA (Chavez and Kwarteng, 1989), M-IHS (Siddiqui, 2003), multiplicaptive (Crip-

pen, 1989), BT (Hallada and Cox, 1983), SRM (Ashraf et al., 2012), Ehlers (Ehlers

et al., 1984), HCS (Padwick et al., 2010), HPF (Chavez et al., 1991), GS (Laben and

Brower, 2000) and some hydrid fusion methods such as W-PCA and W-IHS. These hy-
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brid methods work by the principle of wavelet decomposition (King and Wang, 2001).

Further detail work of this method can be found in (Gonzalez-Audicana et al., 2005).

During the process of pan-sharpening, the two most key quality aspects of fused

images are the enhancement of spatial resolution and preservation of spectral informa-

tion. In other words, the effectiveness of image pan-sharpening algorithm should not

distort the spectral information of an MS image while enhancing the spatial resolution.

To evaluate the performance of the pan-sharpening methods, researchers have proposed

methods of qualitative (visual) and quantitative analyses. The visual analysis evaluates

the quality of fused image by visual interpretation (Fonseca et al., 2011). The quanti-

tative analysis is adopted using two approaches namely, i) with reference image and ii)

without reference image. When the reference image is available, the following quality

metrics like, RMSE (Zoran, 2009), SAM (Alparone et al., 2007), ERGAS (Du et al.,

2007), MB (Yusuf et al., 2012), PFE (Naidu, 2010), SNR (Alimuddin et al., 2012),

PSNR (Naidu, 2010; Kumar and Singh, 2010), CC (Vandermeer, 2006), RASE (Wald,

2000), SSIM (Wang et al., 2004), SCC (Choi, 2006), Gradient (Wu et al., 2015) and E

(Du et al., 2007) may be used. The reference image, which is an important requirement

for processing the above mentioned indices, should be an MS image with the same size

as that of Pan image. When the reference image is not available, the quality of the fused

image is evaluated using the following quality metrics, such as σ (Wang and Chang,

2011), SF (Yang et al., 2010) and QNR image (Alparone et al., 2008). More details of

quantitative analysis can be found in (Shahdoosti and Ghassemian, 2015).

The effectiveness of improving the spatial resolution of MS image can be addressed

using various remote sensing applications. However, in the present work, two ap-

plications have been taken up namely, i) Extraction of buildings, ii) Estimating the

bathymetry of near-shore ocean.

1.4 Extraction of buildings

Extraction of buildings from remote sensing satellite imagery is one of the most chal-

lenging problems. Recently, improvement in the spatial and spectral resolution of re-

mote sensing satellite imagery has driven researchers to develop different algorithms
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(i.e. automatic and semi-automatic) for the extraction of buildings from very high reso-

lution satellite imageries. Detection of buildings from the satellite imagery has various

significant applications in the domain of urban mapping, urban planning, urban change

detection analysis, target detection and GIS (Shorter and Kasparis, 2009). Further, de-

tection of buildings is important to assess the extent of destruction caused after natural

disasters such as floods, earthquake and military operation.

Many factors that appear in the satellite imageries, have made the extraction of

buildings, more complex and difficult, even though the new sensors provide satellite

imageries with improved resolutions. Factors such as scene complexity, building vari-

ability and sensor resolution (Mayer, 1999) affect the overall accuracy for the detection

of buildings. The man-made feature (i.e. building) is one of the most significant fea-

tures among the other features, which consumes time and cost to extract, for the reason

of their variability, complexity and abundance in urban areas (Chaudhuri et al., 2016).

Generally, very high resolution satellite imagery is necessary to extract detailed spa-

tial and spectral information of buildings. In reality, procurement of very high resolu-

tion satellite imagery is expensive. On the other hand, pan-sharpening or image fusion

methods are developed to obtain the image with both high spatial and spectral reso-

lution. Therefore, to meet this goal, various image fusion or pan-sharpening methods

have been proposed in the literature to improve the spatial resolution of MS imageries.

1.5 Bathymetry mapping

Estimating the bathymetry of ocean is one of the important parameters which plays a

significant role in planning near-shore structure activities like engineering work, port

management, pipeline laying, fishing, dredging operation, oil drilling, aquaculture, etc.,

and it is also significantly important to determine the underwater topography, movement

of sediments and to generate hydrographic charts for safe ocean transportation.

Typically, the depth of ocean is measured using conventional methods such as pre-

measured rope or cable passage, placed on the side of the vessel and allowed to reach the

seabed. This method can retrieve the depth of a single point in time. This method was

soon replaced by echo-sounders fitted to hydrographic ships such as single beam and
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multi beam echo-sounders. The echo-sounding method is capable of determining the

depths accurately over clear water coastal environment, In the shallow water environ-

ment, the method is often inaccessible to the hydrographic ships carrying the sounding

instruments (Su et al., 2014). Generally, the speed of ship constrains the surveyors to

map the ocean region at a slightly different scale than the desired scale. It is to be noted

that the method would take about 200 years of survey time to complete swath survey of

deep ocean and it would take even more time for shallow coastal areas (Carron et al.,

2001).

In order to overcome this inefficiency, various ALB and LiDAR systems like LADS,

CHARTS, SHOLAS and EAARL etc., were established to infer the bathymetry of

oceans. This method can effectively determine the depth of both shallow and clear

water deep coastal environment, but this technique is limited by its high purchasing and

maintenance costs.

Almost all of the above methods take a long interval of time to revisit the same

location and thus it is difficult to monitor the frequent changes of seabed morphology.

Further, it is difficult to infer the bathymetry of shallow water region, as those areas

are inflexible to access by hydrographic ships carrying echo sounding instruments. Re-

mote sensing technology can be regarded as one of the most promising alternative tools

to map the bathymetry of shallow water regions by pairing remote sensing data with

ground based measurements (Winterbottom and Gilvear, 1997).

Bathymetry mapping using remote sensing technology is attained from the principle

in which the total amount of electromagnetic energy observed and reflected from the

water body determines the water depth. The remote sensing technique is available to

determine the depth of ocean, for the reason that the water attenuates signal from the

bottom of the ocean with a strong wavelength dependency (Dekker et al., 2011). On the

other hand, penetration of electromagnetic wave energy is limited. Therefore, remote

sensing technique is primarily adopted to infer the depth of clear and shallow water

region (Zheng et al., 2014).

The two important approaches such as analytical method and empirical method are

adopted to retrieve the bathymetry of ocean using satellite image. A number of ana-
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lytical algorithms are available in literature, which are proposed by (Lyzenga, 1981;

Lyzenga et al., 2006; Philpot, 1989). In order to adopt the analytical method for map-

ping the bathymetry of ocean, a number of input parameters such as water column,

properties of atmosphere and bottom reflectance, spectral signatures of suspended and

dissolved materials etc., are required (Spitzer and Dirks, 1986). Though the analytical

method is moderately complex and difficult, it has been adopted by many researchers

(Mobley et al., 2005; Brando et al., 2009; Giardino et al., 2012). On the other hand,

the empirical method establishes the relationship between the remotely observed light

of water body and the depth of water at sampled locations and depth is determined

empirically without regard to how light is diffused in water (Gao, 2009). By compar-

ison, empirical method requires only a few parameters as input and does not require

water column parameters. However, for the calibration function, the method requires

hydrographically measured data.

A number of empirical algorithms have been proposed to retrieve the bathymetry of

ocean, among which the most commonly used algorithm is the ratio transform algorithm

developed by (Stumpf et al., 2003). The ratio transform algorithm operates by the

mixture of two bands (blue and green) to detach the difference in depth from difference

in bottom albedo. The algorithm works on the principle that the observance of water

differs from band to band, when the depth of water changes. Generally, the spectral

band of green is high in absorptivity, in which the reflected irradiance declines quicker

than in the low absorptivity of blue band (Pe’eri et al., 2014). Therefore, the ratio

between the green and blue band declines linearly with penetration, when they are log-

transformed. It is important to note that both bands are affected similarly with the

changes in the bottom albedo. But the high absorption band green is affected more

when the depth varies.

The mapping of bathymetry in the clear ocean water is successfully mapped up

to the depth of 25 to 30 m by adopting the remote sensing technique (Lyzenga et al.,

2006; Eugenio et al., 2015; Mishra et al., 2007). To determine the depth of ocean and

marine water environment, the blue and green (visible bands) of spectrum wavelength

are selected for remotely sensing bathymetry. In the visible bands, light infiltrates the
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water column, and an exponential attenuation of radiance as a function of both depth

and wavelength delivers the primary principle for estimating the depth (Gao, 2009).

The satellite imagery with high spatial and rich spectral resolution is important for

many remote sensing applications. Therefore, in the present study the spatial resolution

of MS image is enhanced using pan-sharpening techniques. The qualitative and quanti-

tative approaches were adopted for the selection of best pan-sharpened image. Further,

the effectiveness of improving the spatial resolution of multispectral imagery is studied,

by extracting the buildings and by estimating the bathymetry of near-shore ocean.
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Chapter 2

LITERATURE REVIEW

2.1 General

The chapter presents the literature available in the area of Pan-sharpening, extraction of

buildings and estimation of bathymetry using remote sensing imagery.

2.2 Pan-sharpening

This section provides an overview of the work, contributed by various researchers on

pan-sharpening.

(Burt and Adelson, 1983) adopted laplacian pyramid to improve the spatial reso-

lution of multispectral image, which is a multi-scale representation obtained through

a recursive low-pass filtering and decimation. The laplacian pyramid decomposition

was divided into two steps: the first was gaussian pyramid decomposition; the second

was to translate the gaussian pyramid to laplacian pyramid. Each level of the Lapla-

cian pyramid were recursively constructed from its lower level using four basic proce-

dures: Blurring (low-pass filtering), subsampling (reduce size), interpolation (expand in

size) and differencing (to subtract two images pixel-by-pixel). This method preserves

spectral and spatial distortions in the fused image. However, the method losses some

information in the fused image due to the subsampling and interpolation procedure.

(Gillespie et al., 1987) developed brovey transfrom pan-sharpening method, and it

was also known as colour normalization transform, the method was based on the chro-

maticity transform and the concept of intensity modulation. The method BT requires

only arithmetical operations without any statistical analysis of filter design. It was de-
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veloped to provide contrast in features such as shadows, water and high reflectance

areas. However, color distortion problem are often produced in the fused images.

(Chavez and Kwarteng, 1989) developed principal component analysis method to

improve the spatial resolution of MS image. PCA is a general statistical technique that

transforms multivariate data with correlated variables into uncorrelated variables. The

PCA method has the advantage that it does not have the three band limitation and can

be applied to any number of bands at a time. However, the method introduces spectral

distortion in the fused image.

(Carper et al., 1994) employed IHS method to improve the resolution of MS image.

The intensity represents the total amount of the light in a colour, the hue is the property

of a colour determined by its wavelength, and the saturation is the purity of the colour.

The method cannot decompose an image into different frequencies in frequency space

such as higher or lower frequency. Hence the IHS method cannot be used to enhance

certain image characteristics. However, the method severely distorts the spectral values

of the original colour of the MS image. Thus IHS technique is good only for visual anal-

ysis, and not for machine classification based on the spectral signatures of the original

MS image. Moreover, the method limited to three bands at a time.

(Kingsbury, 1999) adopted undecimadted algorithm to solve the shift-variance prob-

lem which was caused by the decimation process. It does by suppressing the down-

sampling step of the decimated algorithm using zeros between the filter coefficients.

As with the decimated algorithm, the filters were applied first to the rows and then to

the columns. In this process, four images were produced (one approximation and three

detail images) at half the resolution of the original image. The approximation images

from undecimated algorithm represents the spatial resolution becoming coarser at each

higher level and the size remains as the original image. It also requires more space to

store the results of each level of transformation and although it is shift-invariant it does

not resolve the problem of feature orientation.

(Laben and Brower, 2000) developed gram-schmidt transformation method. In this

process, the spatial resolution of panchromatic image was simulated and employed as

the first band in the gram-schmidt transformation. The statistics of the higher spatial res-

9



olution panchromatic image were adjusted to match the statistics of the first transform

band resulting from the gram-schmidt transformation and the higher spatial resolution

panchromatic image (With adjusted statistics) is substituted as the first transform band

to produce a new set of transform bands. Finally, the inverse gram-schmidt transfor-

mation is performed on the new set of transform bands to produce the enhanced spatial

resolution multispectral image.

(Petrovic and Xydeas, 2004) developed gradient pyramid method to obtain high

spatial resolution of multispectral image using a set of 4 directional gradient filters

(horizontal, vertical and 2 diagonal) to the gaussian pyramid. At each level, these 4

directional gradient pyramids were combined together to obtain a combined gradient

pyramid which was similar to the laplacian pyramid. The gradient pyramid fusion is

same as laplacian pyramid except replacing the laplacian pyramid with the combined

gradient pyramid. The method demonstrated fused image with minimum loss of colour

distortion, however it generates the loss of edge information in the fused image.

(Gonzalez-Audicana et al., 2005) adopted non-separated algorithm for dealing with

shift variance problem using two-dimensional wavelet filter derived from the scaling

function. This produces only two images, one approximation image, and one detail

image, called the wavelet plane. The wavelet plane was computed as the difference

between the original and the approximation images which contains all the loss of in-

formation , from the result of the wavelet decomposition. A coarser approximation is

achieved using up-sampling the filter at each level of decomposition; correspondingly,

the filter was down-sampled at each level of reconstruction. Some redundancy between

adjacent levels of decomposition was possible in this approach, but since it was not

decimated, and not involve separate filtering in the horizontal and vertical directions, it

better preserves feature orientation.

The major problem with the above standard discrete wavelet transforms was the

poor directional selectivity, meaning poor representation of features with orientations

that are not horizontal or vertical, which is a result of separate filtering in these direc-

tions.
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(Fowler and Member, 2005) developed dual-tree complex wavelet transform to

overcome the above major problem of discrete wavelet transform. The DT-CWT was a

complete wavelet transform which provides both good shift invariance and directional

selectivity over the DWT, two fully decimated trees are produced, one for the odd sam-

ples and one for the even samples generated at the first level. The DT-CWT has reduced

over completeness compared with the signal invariance discerete wavelet transform,

and increased directional sensitivity over the DWT and was able to distinguish between

positive and negative orientations. Therefore DT-CWT better preserves feature in the

fused image. This method is limited to an increased memory and computational cost.

(Amolins et al., 2007) adopted conventional discrete wavelet transform using dec-

imated algorithm. In the decimated algorithm the signal was downsampled after each

level of transformation. Down-sampling was performed by keeping one out of every

two rows and columns, and generated the image with one quarter of the original size

and half the original resolution. In this method, filtering and down-sampling were first

applied to the rows of the image and then to the columns. This produces four images

at the lower resolution, one approximation image and three wavelet coefficient or de-

tail images. Drawback of decimated algorithm is not shift-invariant, which means that

it was sensitive to shifts of the input image. The decimation process also has a nega-

tive impact on the linear continuity of spatial features that do not have a horizontal or

vertical orientation. These two factors tend to introduce artefacts in the fused image.

(Gangkofner et al., 2008) proposed high pass filter additive fusion method which

inserts structural and textural details of the higher resolution image into the lower res-

olution image, whose spectral properties are thereby retained largely. In this process,

various input image pairs, workable sets of HPFA parameters have been derived with

regard to high-pass filter properties and injection weights. Improvements are the stan-

dardization of the HPFA parameters over a wide range of image resolution ratios and

controlled the trade-off between resulting image sharpness and spectral properties. The

results of HPFA were evaluated visually and also using spectral and spatial metrics. In

comparison with wavelet-based image fusion, it was concluded that proposed method

HPFA outperformed.
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(Yang et al., 2010) developed a counterlet transform image analysis tool, which was

anisotropic and has good directional selectivity. This method can accurately represent

the edge information of image with different scales and different direction frequency

sub-bands. Contourlet transform is a multi-scale and multi-direction framework of dis-

crete image. In the transform, the multiscale analysis and the multi-direction analysis

were separated in a serial way. The laplacian pyramid was first used to capture the point

discontinuities, and then directional filter bank was used to link point discontinuities

into linear structures. The pyramidal filter bank structure of the contourlet transform

has fewer redundancy. However, designing best filters for the contourlet transform was

a difficult task. In addition, due to down samplers and upsamplers present in both the

laplacian pyramid and the DFB, the contourlet transform is not shift-invariant, therefore

it tends to introduce artefacts in the fused image.

(Padwick et al., 2010) proposed a hyperspherical colour space method which ac-

cepts any number of input bands. For an image with N bands, one forms a single

intensity component and N-1 angles on the hypersphere. Ten different World View-2

satellite images which representing a variety of land cover types were used. The re-

sults of HCS method were quantitatively compared with the methods like PCA and GS

methods. It was concluded that HCS method is outperforming the other methods.

(Ashraf et al., 2012) proposed subtractive resolution merge which belongs to a

new class of data fusion techniques that uses a mix of both spatial and spectral cen-

tric approaches. SRM produces a low-resolution panchromatic synthetic image from

the weighted sum of the low resolution multispectral image. The LRPISYN was then

up-sampled to a HRPISYN and then subtracted from HRPI (which is not synthetic) pro-

vides the edge details. The SRM also uses a mix of high pass filter and low pass filter to

control spatial details. The results of SRM method were quantitatively and qualitatively

compared with conventional techniques like BT, principal component substitution, lo-

cal mean and variance matching, optimised high pass filter and concluded that SRM

method was performed better than other techniques.

(Chai et al., 2012) proposed an nonsubsampled contourlet transform to overcome

the limitation of contourlet transform. NSCT transform divided into two shift-invariant
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parts: 1) a nonsubsampled pyramid structure that ensures the multiscale property and

2) a nonsubsampled DFB structure that provides directionality. The combinations of

these two can preserve more detail in source images and further improve the quality of

fused image. The multiscale property of the NSCT was obtained from a shift-invariant

filtering structure that achieves sub-band decomposition similar to that of the laplacian

pyramid. The NSCT was a fully shift-invariant, multiscale and multidirection expan-

sion which has a fast implementation. The design problem was much less constrained

than that of contourlets. This enables NSCT to design filters with better frequency se-

lectivity there by achieving better sub band decomposition. NSCT provide a framework

for filter design that ensures good frequency localization in addition to have a fast im-

plementation through ladders steps. However, the method do not represent the source

images effectively and completely.

(Yusuf et al., 2012) compared the effectiveness of five fusion techniques such as GS,

HPF, M-IHS, Fast Fourier transforms - enhanced IHS and W-PCA. The result of this

techniques were evaluated through visual inspection, histogram analysis and correlation

analysis. It was concluded that the GS method followed by HPF yields the best quality

information in the fused image. The study further suggested that GS and HPF method

was suitable for improving visual interpretation and data quality from the viewpoint of

remote sensing applications.

(Ghosh and Joshi, 2013) compared and assessed 12 fusion techniques, namely BT,

Ehlers, GS, HCS, HPF, M-IHS, multiplicative, PanSHARP, PanSHARP2, PC, W-PCA

and W-IHS. The result of these methods were evaluated using qualitative and quanti-

tative analysis. It was concluded that the HPF and PanSHARP methods produced the

most visually appealing images, whereas quantitative values indicated that HCS, HPF,

and PanSHARP methods performed better than other methods.

(Du et al., 2013) investigated the impacts of different pan-sharpening techniques

like GS, PCA, GIHS, WT, and HPF on change detection analysis. The result of differ-

ent fusion techniques on change detection were evaluated using unsupervised similarity

metric and supervised accuracy indices. Comparing the average similarities of change

maps from different pan-sharpening techniques, it was found that the GS gets the high-
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est score and others were ranked from high to low as: PCA, GIHS, WT, and HPF.

Therefore, the overall accuracy of change detection was increased using image fusion

techniques.

(Jiang and Wang, 2014) proposed a morphological component analysis which be-

lieves that an image contains structures with different spatial morphologies and can be

accordingly modeled as a superposition of the cartoon and texture components, and

that the sparse representations of these components can be obtained by some specific

decomposition algorithms, which exploit the structured dictionary. MCA employs the

morphological diversity of an image and provides more complete representation of an

image. He compared MCA fusion results with six single-component fusion methods,

the results of this method are evaluated through visual inspection and quantitative meth-

ods; thus show that proposed method can produce better fused images when compared

with other single-component fusion methods.

(Leung et al., 2014) proposed an improved adaptive intensity-hue-saturation in which

the amount of spatial detail was injected into each band of the multispectral (MS) image

which was appropriately determined using weighting matrix on the basis of the edges

of the panchromatic and the proportions between the MS bands. The results of AIHS

method were evaluated using both visual inspection and quantitative analysis. It was

concluded that the AIHS method can maintain good spectral quality and best spatial

quality in the fused image.

(Cheng et al., 2015) proposed a pan-sharpening method, which combines the wavelet

transform and sparse representation. Firstly, IHS transform was applied to the MS im-

age. Then, the wavelet transform were used to the intensity component of MS image,

the Pan image to construct the multi-scale representation respectively. Sparse represen-

tation with training dictionary was introduced into the low-frequency sub-image fusion.

Finally, the fused results were obtained through inverse wavelet transform and inverse

IHS transform. The wavelet transform has the ability to extract the spectral information

and the global spatial details, while sparse representation can extract the local structures

of images effectively. The experimental results demonstrated that proposed method was

maintained the spectral characteristics of fused images with a high spatial resolution.
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(Nejati et al., 2015) proposed a novel multi-focus image fusion method in spatial

domain that utilizes a dictionary which were learned from local patches of source im-

ages. Sparse representation of relative sharpness measure over this trained dictionary

were pooled together to obtain the corresponding pooled features. Correlation of the

pooled features with sparse representations of input images produces a pixel level score

for a decision map of fusion. Finally, a regularized decision map was obtained using

MRF optimization. The result of proposed method outperforms existing state-of-the-art

methods, in terms of visual and quantitative evaluations.

(Xu et al., 2015) proposed a regression based fusion method. This method was

proposed to overcome the problem of component substitution, which assumes a linear

relation between Pan and MS images. Due to the nonlinear spectral response of satel-

lite sensors, the qualified low-resolution Pan image cannot be well approximated using

weighted summation of MS bands, which leads to significant gray value difference be-

tween a Pan and MS images. The proposed method divides Pan and MS images into

several pixel groups using k-means algorithm. Then, the low-resolution Pan image was

estimated using weighted summation of MS bands on each groups of classified pixel.

Finally, the fused image was generated by ratio enhancement method. Experimental

results demonstrated that the proposed technique can provide significant improvements

in reducing color distortion.

(Song et al., 2015) proposed learning-based super-resolution method to fuse two

data types such as Landsat TM and SPOT 5. They first modeled the imaging process

from a SPOT image to a TM/ETM+ image at their corresponding bands, by building an

image degradation model via blurring and down sampling operations. In the proposed

method two important steps to fuse the images are, 1) learning a dictionary pair rep-

resenting the high and low resolution details from the given SPOT5 and the simulated

TM/ETM+ images; 2) super resolving the input Landsat images based on the dictio-

nary pair and a sparse coding algorithm. To examine the performance of the proposed

method, the classification experiment was implemented on the input image and fused

image. It was concluded that the accuracy of fused image classification outperforms the

input image classification.
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The major driving force for research in the domain of Pan-sharpening, is to over-

come the technical problem of satellite sensors (Pan and MS) which are not able to

acquire a single image with a high spatial and rich spectral information. Further, most

of the remote sensing applications such as change detection analysis, LULC and de-

tection of buildings requires both high spatial and rich spectral information in a single

image. Therefore, to achieve the both qualities in a single image many pan-sharpening

methods were developed and utilized for fusing the Pan and MS imagery.

Generally, pan-sharpening methods like PCA, M-IHS, BT, Multiplicative, W-PCA,

HCS, HPF and GS were widely used for fusing the Pan and MS imagery for various

remote sensing applications. The M-IHS method works by substituting the intensity

component with the Pan image and attains the pan-sharpened image by an inverse M-

IHS transformation, the results of this method generally preserves spatial detail of the

Pan image, at the same time it generates some spatial and spectral distortion. While,

other pan-sharpening methods like PCA, HCS and GS also generates the spatial and

spectral distortion. For instance, the PCA method generates the spatial and spectral dis-

tortions. The PCA method often generates the pan-sharpened image with exaggerated

information. The method BT provides the excellent spatial detail but generates the high

spectral distortion. By comparison, the GS method generates the more spatial detail by

improving the concentration of Pan band, however the spectral distortions occurs fre-

quently in the pan-sharpened image, the HCS method can generates the pan-sharpened

image with high spectral fidelity, but it generates blurred spatial information.

The main constrains of these pan-sharpening methods are severe spectral distortion

(i.e. spectral information presents in the original MS) is not retained completely during

fusion process. For example, the red vegetation in the original MS image changed to

black color after fusion. To overcome spectral distortion, several methods like HPF and

wavelet have also been attempted, the HPF methods produces a fused image with less

spectral distortion, but often generates the spatial distortion for the reason of combi-

nation between the spectral and spatial information is not smooth. The wavelet based

methods better preserves the spectral information because of their ability to describe

and retrieve the spatial and spectral information in different scale. However, detailed
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coefficients components are injected to each MS bands, the method sometime produces

the artefacts in fused image through a high pass filter. The satellite image with high

spatial and rich spectral information is required for remote sensing applications. More-

over, the availability of satellite images acquired by advanced sensors has improved the

spatial resolution of the Pan and spectral resolution of MS images. Therefore, it is nec-

essary to adopt the new pan-sharpening algorithm and compare with the widely used

pan-sharpening algorithms using qualitative and various quantitative approach.

The results of pan-sharpening methods requires quality analysis, before they adopted

for remote sensing applications. Generally, qualitative and quantitative analyses were

used for the evaluation of spatial and spectral quality of fused image. One of the major

limitation observed in the pan-sharpening studies was that the performance of many

existing pan-sharpening algorithms were compared and assessed using limited quanti-

tative analysis. Therefore, it is necessary to evaluate the quality of pan-sharpened using

qualitative and various quantitative approach and the selection of best pan-sharpening

method can be applied for remote sensing applications like extraction of buildings and

estimating the bathymetry of near-shore ocean.

2.3 Extraction of buildings

This section provides an overview of the work, carried out by various researchers on

the extraction of buildings.

(Attarzadeh and Momeni, 2012) proposed a new automatic algorithm based on ob-

ject approach for the detection of buildings from the satellite imagery. Here, the stable

and variable features were utilised jointly; the stable features were obtained from the

inherent qualities of building phenomenon and the variable features were detected us-

ing separability and threshold analysis tool. The proposed algorithm was adopted on

Quickbird imagery and the visual analysis indicate that the proposed algorithm can de-

tect major rectangular buildings clearly.

(Wang et al., 2013) proposed a novel approach using corner detection, segmenta-

tion and adaptive windowed Hough transform for detecting buildings from Quickbird

satellite imagery. Firstly, the input image was segmented into a number of classes us-
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ing a mean shift segmentation algorithm. Secondly, the corners of the buildings were

extracted using the scale invariant feature transform. Finally, extraction of building was

achieved using adaptive windowed hough transform. The visual analysis indicates that

the proposed method can detect buildings with rectangular shape.

(Ghaffarian and Ghaffarian, 2014) Detected buildings from high resolution Google

earth image using the following process: At first, the shadow areas were detected and

masked using novel double threshold method. Training samples for performing the su-

pervised classification were chosen automatically by forming a buffer zone for each

building. The statics value for each buffer zone was calculated to perform the improved

parallelepiped supervised classification for the detection of buildings further, the paral-

lelepiped classification method and morphological operators were adopted to improve

the overall accuracy. The pixel and object based performance of proposed method was

evaluated quantitatively. The proposed method can detect the buildings without influ-

encing from their geometric characteristics and also it provides the training data sample

automatically to the supervised classification. However, the method classifies the non-

buildings features as building features, when they have equivalent spectral values.

(Liasis and Stavrou, 2016) developed a framework based on the active contour seg-

mentation, processed by analysing the properties of RGB representation and the hold-

ings of HSV were used to extract the buildings from the satellite image. Initially, the

vegetation and shadow features were removed using the clustering technique. The new

active contour model was developed, based on the HSV representation of the image to

attain superior segmentation, a new energy span was encoded for biasing the contour.

Finally, the morphological operator was adopted to remove misleading information.

Both, qualitative and quantitative analyses were performed to estimate the performance

of proposed method. The proposed method detects the buildings with arbitrary shapes

and sizes. A limitation of the proposed method was that some non-building objects

like bridges, roads were classified as buildings. Further, buildings which are close to

each other were classified as a single building. Moreover, the performance of proposed

method is depend on the assessment of structural element size for the morphological

operation like erosion and dilation.
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(Chaudhuri et al., 2016) introduced a novel framework for extracting the buildings

from high-resolution Pan imagery of Quickbird-2 and Ikonos. The key steps in the

framework are: Firstly, the input image was enhanced using morphological operator

to improve the visual effect and also to differentiate the targeted object from the non

targeted object. Secondly, multiseed based clustering technique using internal gray

variance were used to separate the man-made features from the non man made features.

The presence of shadow from the flat road feature was detected and separated from the

buildings using positional information of both building edge and shadow. Later, adap-

tive threshold based segmentation technique was used to segment and to extract the

buildings from the input image. A limitation of proposed method was that, if the top of

the building is partially bright and partially dark, then this technique will detect only a

part of the building. This occurs for the reason that proposed segmentation algorithm

works based on the threshold value for a specific region of interest. The proposed ap-

proach relies on the shadows of the buildings to accurately locate the buildings, images

with low rise buildings in urban area do not have sufficient shadows in that situation the

buildings are not detected accurately.

In previous studies, buildings were extracted using google earth image, Pan image,

and MS image with the combination of R, G, and B color mode. Majority of algorithms

work efficiently for detecting buildings with the same shape (i.e. rectangular, square),

colour and size. The major driving force for research in the domain of building extrac-

tion, is to extract the buildings from the MS image with the combination of R, G, B and

NIR color mode, in which buildings are in different shapes, colours and sizes. How-

ever, high spatial resolution and rich spectral information is important and required to

obtain high spatial and rich spectral information of buildings. Therefore, it is necessary

to address these limitations by pan-sharpening techniques and to frame a methodology

for the extraction of buildings with different shapes, sizes and colour.

2.4 Bathymetry mapping

The section provides an overview of important literature, contributed by a number of

researchers for estimating the bathymetry of ocean using remote sensing technology
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and is discussed below:

(Lyzenga et al., 2006) proposed a physically based algorithm to determine the bot-

tom depth of ocean. The algorithm corrects the range of variations in both water atten-

uation and bottom reflectance using linear combination of log-transformed radiances in

the blue and green channels. The proposed algorithm were adopted to different regions

like Hawaii, Cancun and Mexico using Ikonos satellite imagery. The performance of

the proposed algorithm was compared with ground-truth measurements using RMSE

indices and the value of RMSE revealed that the proposed algorithm results well co-

related to the ground-truth measurements.

(Su et al., 2008) developed an automated method for calibrating the parameters for a

non-linear inversion model based on the Levenberg-Marquardt optimization algorithm

for determining the bathymetry of south shore of Molokai Island, Hawaii using Ikonos

satellite imagery. Depth data derived from the non-linear inversion model were com-

pared with the conventional log-linear inversion model. It was observed that the overall

performance of both the models were similar. The study concluded that the non-linear

inversion model produced slightly better and accurate estimation of deeper depth of

10-15 m, but slightly less accurate for very shallow regions (i.e. <5 m).

(Sheng et al., 2014) proposed a linear logarithm ratio model for estimating shallow

water depth from hyperspectral data. The proposed method was based on the different

responses of shallow water reflectance of depth and substrate type. Two parameters

like similarity coefficient and pearson correlation coefficient was used to model a linear

logarithm ratio algorithm. The results of the proposed algorithm were validated using

RMSE indices. The value of RMSE indicate that the proposed method was capable to

estimate the depth >20 m in shallow water.

(Su et al., 2014) used a geographically adaptive inversion and conventional global

inversion model to estimate the bottom depth over Kauai and Barbuda Island using

high resolution Ikonos and Landsat ETM+ satellite imagery. The performance of con-

ventional global inversion model was limited, when the bottom type and water quality

vary spatially within the scene. The geographically adaptive inversion model divides

the image scene into local areas to calibrate the inversion models for each submission
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to improve the accuracy and reliability of retrieving the bathymetry from remote sens-

ing imagery. It was demonstrated that the geographically adaptive inversion model

estimates the bathymetry better than the conventional model.

(Eugenio et al., 2015) implemented the multichannel physical s-based algorithm to

determine the bathymetry of Granadilla (Tenerife island) and Corralejo (Fuerteventura

island) areas using Worldview-2 imagery. To retrieve the depth accurately, the physi-

cal s-based algorithm was coupled with radiative transfer model. The coupled model

estimates the depth effectively up to 25 m. The model declines the prediction of depth

greater than 25 m.

(Vahtmäe and Kutser, 2016) investigated linear band model and the log-transformed

band ratio model for determining the bathymetry of optically complex Baltic sea region

using airborne Hyspex Hyperspectral images. The results of the models were compared

using statistical indices like R2 and RMSE. The value of these indices indicate that the

linear band model was outperformed the log-transformed band ratio model by accu-

rately estimating the depth of 4 m. The log transform model provides inaccurate results

for the reason of high albedo in the near coastal regions.

The following literature represents the estimation of bathymetry along the coast of

India:

(Pattanaik et al., 2015) used a simple radioactive model and linear radioactive model

for estimating the depth along the coast of Odisha, India using IRS LISS-III multispec-

tral imagery. The statistical indices R2 was used to compare the result of two models.

The indices value indicated that the linear radioactive model outperformed the simple

radioactive model. It was concluded that both the methods were effective to determine

the depth of 4-5 m.

The major driving force for research in the domain of bathymetry, is to frame the

procedure to estimate the bathymetry of near-shore ocean using Landsat-8 satellite im-

agery. Generally, bathymetry of near-shore ocean was established using in-situ instru-

ments which are expensive. Therefore, immense focus has been on application of satel-

lite imageries due to their global coverage, which addresses the limitation associated

with the in-situ instruments. Satellite data also have limitations, but they are subsided
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by the advantages like - global coverage, low or free cost of data. The existing literature

(globally) provided detailed information of the estimation of bathymetry using remote

sensing data. It is noted that, bathymetry study using remote sensing data was small in

number (Indian scenario). Moreover, in an ocean port it is mandatory to maintain cer-

tain depth throughout the year for the smooth transportation of large ships. The in-situ

instruments used in the ports to maintain the depth is limited by its high purchasing and

maintenance costs. Therefore, it is necessary to address these limitations with satellite-

based data and a methodology to assess the batyhmetry of near-shore ocean that can be

applied to other sites.

The literature survey carried out under each section, helped in gathering vital infor-

mation on the existing and current research in the domain of pan-sharpening techniques,

algorithm for the extraction of building and also for estimating the bathymetry of ocean.

For many remote sensing applications it is necessary to have both high spatial and

rich spectral information in a single image. For this purpose many pan-sharpening

algorithms have been developed and the selection of best pan-sharpening method is

challenging. Therefore, it is necessary to study the effectiveness of widely used pan-

sharpening algorithms with the new pan-sharpening algorithm, using qualitative and

various quantitative approach. Further effectiveness of improving the spatial resolution

of multispectral image is needed to be addressed by extracting the buildings and by

estimating the bathymetry of near-shore ocean.

2.5 Problem formulation

As discussed in section 2.2 to 2.4, the two sensors Pan and MS have both advantages

and disadvantages: Pan sensor provides the Pan image in a single band, with high

spatial resolution but it cannot provide images in multiple bands with high spectral

resolution, whereas MS sensor can provide images in multiple bands which contains a

rich spectral resolution but low spatial resolution. Further, it was seen that there are two

technical constraints of the sensor to deliver an image with both high spatial and rich

spectral resolution- i) Quantity of radiation energy received by the sensor, ii) amount of

information collected by the sensor. Therefore, earth observation satellites like Landsat
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and Quickbird series, provide simultaneously low spatial and high spectral resolution

of MS image and high spatial and low spectral resolution Pan image.

Hence to overcome this constraint, the pan-sharpening algorithms is proposed to be

adopted in the present work such as PCA, M-IHS, BT, multiplicative, HPF, W-PCA,

HCS, GS and Fuze Go to improve the spatial resolution of MS image. To evaluate the

quality of pan-sharpened image, researchers evaluated and compared the efficiency of

different pan-sharpening methods using limited quality metrics. Therefore, it is pro-

posed to evaluate the spatial and spectral quality of pan-sharpened image using qualita-

tive and various quantitative approaches.

Further, the effectiveness of improving the spatial resolution of MS image is studied

in the present work by extracting the buildings and by estimating the bathymetry of

near-shore ocean.

2.6 Objectives of the Study

Based on the literature summary, the objective of the present research is:-

• To improve the spatial resolution of multispectral (MS) imagery of Quickbird-2

and Landsat-8 using pan-sharpening methods.

The scope of the present research is as follows:

• To evaluate the spatial and spectral quality of pan-sharpened image using quali-

tative and quantitative analysis.

• Extraction of building from the best pan-sharpened image and from the original

MS image.

• To estimate the bathymetry of near-shore ocean, before and after improving the

spatial resolution of landsat-8 imagery.

2.7 Organisation of thesis

The information congregated from the work is presented in five chapters followed by

list of references.
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Chapter 1 provides the brief introduction of remote sensing, pan-sharpening, extrac-

tion of buildings and bathymetry mapping.

Chapter 2 provides a supporting literature review in the domain of pan-sharpening,

extraction of buildings and bathymetry mapping are helped in understanding the con-

cepts. The objectives are thus framed to address the limitations and enhance existing

knowledge.

Chapter 3 presents the overall methodology and detailed framework of each objec-

tive, detail information on the characteristics of data and study location.

Chapter 4 discusses the results obtained for pan-sharpening methods and quality

evaluation of pan-sharpened image using qualitative and quantitative analysis, auto-

matic and manual approach for the extraction of buildings and estimation of bathymetry

along the coast of Mangaluru.

Finally, conclusions drawn from the study are presented in Chapter 5 along with

limitations and future scope of work.
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Chapter 3

MATERIALS AND METHODOLOGY

3.1 General

Remote sensing satellite sensors capture the images of the earth surface and deliver

them to the ground station as images, and have gained importance for the global cov-

erage capacity. These imageries can be a source for understanding and identifying the

different features. They also help to analyse the changes of features spatially and spec-

trally over a period of time. The high (spatial) resolution and spectral information is

available in (Pan) and MS imageries, respectively. It is necessary for remote sensing

applications to have both high spatial and rich spectral resolution in a single image.

There are limitations associated with satellite sensors to provide both characteristics in

a single image. The pan-sharpening techniques have been focused to enhance the spatial

resolution of MS image. On the other hand, the effectiveness of improving the spatial

resolution of MS image are required to be emphasized by extracting the buildings and

by estimating the bathymetry of near-shore ocean.

The chapter present the overview of the study area, data products and also the over-

all methodology of the research work. Subsequently, detailed methodology for improv-

ing the spatial resolution of MS image, extraction of buildings and for estimating the

bathymetry of near-shore ocean is also discussed.

3.2 Study area

The coastal region of Dakshina Kannada district of Karnataka state, India stretches

from Talapadi in the south to Baindur in the north over a distance of about 140 Km.
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The region is enclosed by the Arabian Sea on the west and the Western Ghats on the

east. Generally, the coast of Dakshina Kannada adores the tropical hot monsoon climate

due to its latitudinal position. The coast is influenced by the southwest monsoon which

receives heavy rainfall during the months from June to September, ranging from 3000

mm to 3900 mm. The coast experiences high temperature throughout the year with

relatively constant high humidity. During the monsoon period, wave height of 6.5 m

is recorded along the coast of Dakshina Kannada and in the non-monsoon period, the

height of wave is less than 1 m.

Figure 3.1 Location map of study area

The study area covers the total length of 25 Km extending from ullal region in

the south to surathkal in the north roughly (12◦51′0′′S74◦50′0′′E) shown in Fig. 3.1.

Mangaluru is the major city in the coast of Dakshina Kannada, which gains economic

importance due to urbanization and industrialization. The Netravathi and Gurpur rivers

originate in the western ghats and flows westward, then it takes a right angle bend
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near the coast and then flow north (Gurpur) and south (Netravathi) parallel to the coast.

These rivers join together at some point before they merge into the Arabian sea. The

study area along the coast of Mangaluru covers the range of depth up to 25 m and also

encompasses the New Mangaluru Port Trust.

3.3 Data used

In the present study, two different sets of satellite imageries acquired from Quickbird-2

and Landsat-8 were fused separately. In this process, certain important conditions must

be satisfied (Fonseca et al., 2008): a) Both Pan and MS images must have been captured

at the same time and should encompass the same expanse; b) the spectral range of the

Pan and MS images should be in the same range of wavelength or as close as possible.

A high-resolution imaging satellite named Quickbird-2 was launched on October

18, 2001. Quickbird-2 acquires five bands covering Pan, B, G, R and NIR. The speci-

fications of Quickbird-2 imagery are shown in Table 3.1. The satellite sensor captures

the Pan image with a high spatial resolution of 0.60 m and MS image with high spectral

resolution but a low spatial resolution of 2.4 m as shown in the Figs. 3.2(a) and (b). The

re-sampled MS image to the size of the Pan image is shown in Fig. 3.2(c).

The data location is the opera house in Sydney, Australia (33◦51′25′′S151◦12′55′′E)

provided by DigitalGlobe. The wavelength range of four bands such as B, G, R and

NIR matches with the Pan band thus, all four bands are layer stacked to obtain the MS

image. The image of Quickbird-2 covers the features like commercial buildings, urban

area, road, vehicles, water, roof, tree, grass and shadows. In the MS image the shape of

the vehicles, building roofs are not easily identified; on the other hand, these are easily

recognized in the Pan image. Therefore, enhancing the spatial resolution of MS image

of Quickbird-2, helps in increasing the spatial and spectral information of features.

The Landsat-8 satellite, launched on February 11, 2013, acquires 11 bands including

Pan, B, G, R and NIR. The specifications of Landsat-8 imagery are shown in Table 3.2.

The satellite sensors offer Pan images with high spatial resolution of 15 m is shown in

the Fig. 3.3(a) and MS image with rich spectral information, but low spatial resolution
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Table 3.1 Specifications of Quickbird-2 imagery

Satellite/sensor name Bands
Resolution

(in meters)

Spectral range

(in nanometers)

Quikbird-2/Early

Bird Panchromatic (EBP)
Pan 0.61 405-1053

Quikbird-2/Early

Multispectral (EBM)

B 2.4 430-545

G 2.4 466-620

R 2.4 590-710

NIR 2.4 715-918

(a) Pan (b) MS (c) Re-sampled MS

Figure 3.2 Quickbird-2 satellite imagery

of 30 m is shown in the Fig. 3.3(b). The re-sampled MS image to the size of the Pan

image is shown in Fig. 3.3(c).

The spectral range of bands B, G, and R are close to those of Pan image; there-

fore, bands B, G, and R were layer-stacked to produce the MS image. The data loca-

tion is the Mangaluru, Dakshina Kannada district, in Karnataka, India approximately

(12◦51′0′′S74◦50′0′′E). Landsat-8 imagery is downloaded from the United States Geo-

logical Survey (USGS) website (http://www.usgs.gov) acquired during March 13, 2014.

The high spectral resolution is observed in the MS image helps to better distinguish the

objects like roads and buildings. The high spatial resolution of Pan image leads to ac-

curate delineation of the objects. Therefore the Pan and MS images are fused to obtain
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a single image with both high spatial and spectral informations.

The dataset used for the present study satisfies the conditions; therefore, the Pan

and MS images of both Landsat-8 and Quickbird-2 were fused using different pan-

sharpening techniques.

Table 3.2 Specifications of Landsat-8 imagery

Satellite/sensor name Bands
Resolution

(in meters)

Spectral range

(in micrometers)

Landsat-8/Operational

Land Imager (OLI)

Pan 15 0.50-0.68

B 30 0.45-0.51

G 30 0.53-0.59

R 30 0.64-0.67

NIR 30 0.85-0.88

(a) Pan (b) MS (c) Re-sampled MS

Figure 3.3 Landsat-8 satellite imagery

3.4 Methodology

The section delivers overall methodology for executing the present work is shown in

the Fig. 3.4. The detailed framework for improving the spatial resolution of MS image

is shown in the Fig. 3.5. The methodology of automatic and manual methods for
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the extraction of buildings are shown in Figs. 3.10 and 3.11. The methodology for

estimating the bathymetry of near-shore ocean is shown in the Fig. 3.12. Subsequently,

detailed explanation of each methodology are described.

Figure 3.4 Overall methodology of the proposed work

3.5 Pan-sharpening

Pan-sharpening is the process of fusing the high spatial detail of a Pan image and the

rich spectral resolution of an MS image. It transfers the spatial information of the Pan
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Figure 3.5 Methodology for improving the spatial resolution of MS image

image to the MS image while retaining the spectral data of the MS image for creat-

ing a single image with both high spatial and rich spectral information (Zhang, 2010).

To improve the spatial resolution of MS image various pan-sharpening algorithms are

developed like PCA, M-IHS, BT, Multiplicative, W-PCA, HCS, HPF and GS. These

pan-sharpening algorithms were used widely and compared fusing the different set of

satellite imageries.

31



However, advanced remote sensing satellites has improved the acquisition of im-

age with high spatial Pan image and rich spectral MS image. Therefore it is necessary

to re-evaluate the above mentioned pan-sharpening algorithms. The existing literature

provides the detailed information of fusing the Pan and MS imagery using above men-

tioned pan-sharpening algorithms. The pan-sharpening study using Fuze Go method

were less in number, therefore the effectiveness of Fuze Go method is compared with

the above mentioned methods by fusing Quickbird-2 and Landsat-8 imageries. The

detailed execution for improving the spatial resolution of MS image are described as

below.

3.5.1 Pre-processing

An important requirement for processing the pan-sharpening algorithm is accurate co-

registration of Pan and MS image. The dataset of both Pan and MS imageries of

Quickbird-2 and Landsat-8 were attained at the same time by the same sensor, therefore

the images were fused directly without co-registration (Padwick et al., 2010).

3.5.2 Band selection

The wavelength range of MS bands matches with the Pan band; thus, all the correspond-

ing spectral range of multispectral bands was merged to generate the MS image. Later,

the MS image is fused with the Pan image.

3.5.3 Resampling

Up-sampling the original MS image to the spatial resolution of Pan image is important

prerequisite for performing many pan-sharpening techniques like PCA, M-IHS, BT, W-

PCA, HCS and HPF. The most common resampling methods are nearest neighbour,

bilinear interpolation, and cubic convolution. The best suitable resampling methods

for pan-sharpening technique was selected on the basis of present literature, as well as

recommendation in the software manuals.
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3.6 Overview of pan-sharpening techniques

The section discuss the detailed execution of pan-sharpening techniques like PCA, M-

IHS, BT, Multiplicative, W-PCA, HCS, HPF, GS and Fuze Go are as described below.

3.6.1 Principal component analysis

Based on a statistical technique, PCA tends to transfer the correlated data into uncor-

related data. In general, PCA transformation is applied on MS images to generate

uncorrelated images such as PC1, PC2,..., PCn. Traditionally, this method assumes that

the PC1 image is a good indicator of a Pan image; conversely, PC2,..., PCn collect the

spectral data of MS images. The uncorrelated PC1 image is replaced by a Pan image

with high spatial resolution. Finally, the inverse transformation is applied to obtain a

fused image.

3.6.2 Modified-intensity hue saturation

The M-IHS method works by replacing the intensity component with the Pan band. To

derive the intensity component, the original spectral bands of the MS image is trans-

ferred to IHS. In the first mode, this method replaces the intensity component of the

MS image by the corresponding intensity of the Pan band. In the second mode, it re-

produces the original MS colours. Thus, this method works best when the wavelength

ranges of both Pan and MS images are overlapped. The M-IHS method can be used to

merge images of more than three bands by running several passes of the algorithm to

fuse the resulting layers.

3.6.3 Multiplicative

The multiplicative method works by processing a simple multiplicative algorithm. The

following equation is used to merge the Pan and MS images.

(DNPan)× (DNMS) = DNnewMS (3.1)

The equation is simple and one of the quickest methods for fusing two different

datasets. It requires the least amount of resources for running the algorithm effectively.

In general, this method increases the intensity component in merged image, which have
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a tendency to highlight the urban features; hence, it is desirable for urban studies. How-

ever, the multiplicative method cannot contain the radiometric information of the MS

image in the fused image.

3.6.4 Brovey transform

The BT method generates a new MS image with the spatial detail of Pan image by

multiplying the individual pixels of each low spatial resolution band of the MS image

by the ratio of the high spatial resolution of the Pan image and dividing by the sum

of the MS images. This method generates visually appealing images by improving the

contrast of the lowest and highest ends of the histogram of an image. However, it fails

to prevent the radiometric data of the original MS image from appearing in the fused

image, and it can fuse only three bands at a time. The general mathematical formula of

BT based fusion is

DN(i) f used =
[
DN(i)

/
∑DN(i)

]
×DNPan (3.2)

3.6.5 Wavelet-principal component analysis

The W-PCA method is a hybrid of wavelet and PCA. The procedure of this method can

be stated as follows: PCA is applied to the MS image to obtain the first principal com-

ponent (PC1). Histogram match the Pan image to the PC1 image. Decimated wavelet

decomposition is applied to the histogram matched Pan and PC1 images. During this

process, Daubechies 4 wavelet coefficients are applied to the Pan and PC1 images to

obtain an approximation image with three wavelet coefficient sub-images correspond-

ing to horizontal decomposition , vertical decomposition , and diagonal decomposition.

By using the inverse multi-resolution wavelet decomposition, the coefficients of the Pan

image are inserted into the PC1 image, and inverse PCA transform is applied to the PC1

image to obtain an MS image with the spatial detail of the Pan image. A common flow

chart for W-PCA method is shown in Fig. 3.6.
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Figure 3.6 General flow chart for W-PCA method

3.6.6 Hyperspherical colour sharpening

The HCS method works by transforming the MS image to a new color space, in which

the intensity is orthogonal to the color information. During the transformation, the

intensity of multispectral image is matched to the intensity component of Pan image.

The histogram-matching is employed to minimize the intensity difference between Pan

and MS image. Further, the intensity component of the MS image is replaced by the

corresponding intensity form of the Pan band. The reverse transformation is employed

using the substituted intensity component transform back to the original color space.

The HCS fusion process has the advantage of merging more than three bands.

3.6.7 High pass filter

The HPF technique is an enhanced version of wavelet resolution merge, which requires

less computational time and data space. The overall processing of the HPF algorithm is

described as: The ratio R is computed between the pixel size of the Pan and MS images.

A small high pass filter is placed on the Pan image, and the pixel size of the MS image
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is resampled to that of the high pass Pan image. The filtered high pass Pan image is

added to the resampled MS image to obtain a merged image with both high spatial and

rich spectral information. The common flow chart of HPF method is shown in the Fig.

3.7.

Figure 3.7 General flow chart for HPF method

3.6.8 Gram-schmidt

The GS method was developed to sharpen the spatial resolution of MS images while

preserving the spectral qualities of the MS image. The process of this method can

be described as: The Pan band is simulated to the lower spatial resolution of the MS

band through the weighted sum of the MS bands. The weights of the MS bands are

determined from the sensors optical diffusion and from the spectral ranges of the MS

and Pan bands. GS transformation is executed on the simulated Pan and MS bands by

using the simulated Pan band as the first band. The statistics of the high pixel-sized Pan

band are adjusted to balance the statistics of the first band of the GS transformation.

Then, the first band of the GS transformation is replaced with the adjusted high spatial

detail of the Pan band. Finally, inverse GS transformation is applied to generate a MS

image with the spatial resolution of the Pan image. The common flow chart of GS

method is shown in the Fig. 3.8.

3.6.9 Fuze Go

A common flow chart for the Fuze Go method is shown in Fig. 3.9. The Fuze Go

method achieves a pan-sharpened MS image by implementing the following process:
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Figure 3.8 General flow chart for GS method

Figure 3.9 General flow chart for Fuze Go method

The MS bands having a spectral range equal to that of the Pan band are selected. Stan-

dard deviation, mean, and covariance are calculated for both the selected MS bands

and the Pan band. Then, histogram standardization is implemented on both bands. By

implementing the mean and standard deviation, all of the selected sets of MS and Pan

bands are standardized. The coefficient values are computed by applying the selected

MS and Pan bands. Band weights calculated from the covariance matrix are applied

for simulating a synthetic Pan band. Subsequently, a synthetic Pan band is created by

applying the selected MS bands and set weights. The product-synthetic ratio is deter-

mined by applying the standardized Pan band, standardized MS bands, and synthetic

Pan image to obtain the fused image.
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3.7 Quality assessment of fused image

Pan-sharpening is the process of transferring the spatial information of a Pan image to

an MS image to generate an image with enhanced spatial detail equal to the Pan im-

age while preserving at the same time spectral information of the MS image (Du et al.,

2007). During the translation of data from the Pan to MS image, pan-sharpening meth-

ods may generate spatial and spectral distortion in the fused image. Therefore, evalua-

tion of the quality of the fused image is required using quality metrics like qualitative

and quantitative analyses.

3.7.1 Qualitative analysis

Qualitative analysis evaluates the fused image by visual interpretation; this analysis

is also referred to as visual analysis. In qualitative analysis, a group of members is

formed to visually evaluate the fused image by comparison with the original MS and

Pan images based on various optical parameters such as spatial detail, geometric pattern,

sizes of objects, and colour (Du et al., 2007). This type of analysis is a straightforward

practice used to assess the quality of the fused image. However, it depends mostly on

the viewing conditions and the experience of the viewer (Fonseca et al., 2011). If the

viewer has excellent knowledge of the terrain in the fused image, qualitative analysis is

appropriate for evaluating the quality of the fused image.

3.7.2 Quantitative analysis

Quantitative analysis is based on a mathematical model that estimates the amount of

spatial and spectral distortion present in the fused image in comparison with and with-

out reference image. In the present study, following ten quality indices were used to

assess the quality of the fused image and compared the performances of the nine pan-

sharpening methods.

The spectral indices such as CC (Vandermeer, 2006), Q (Alparone et al., 2004)

RMSE (Zoran, 2009), SSIM (Wang et al., 2004) SNR (Alimuddin et al., 2012) and

PSNR (Kumar and Singh, 2010) are used for evaluating the spectral quality of the fused

image. The reference image, which is an important requirement for processing these
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indices, should be an MS image with the same size as that of the Pan image. In prac-

tice, obtaining a reference image with this requirement is challenging. Nevertheless, a

reference image can be obtained by resampling the original MS image to the size of the

Pan image (Gangkofner et al., 2008). The spatial indices such as E (Du et al., 2007),

Gradient (Wu et al., 2015) and SCC (Choi, 2006) are used for the evaluation of spatial

quality with the Pan image as a reference image. The QNR (Alparone et al., 2008)

indices are also used for the evaluation of spectral and spatial quality, when the ideal

reference image is not available.

3.8 Quantitative indices for assessing spectral distortion

Resampling the MS image to the spatial resolution of Pan image is processed for pan-

sharpening, therefore the reference MS image with the dimensions of Pan image is

available for the assessment of spectral distortion (Alparone et al., 2008).

3.8.1 CC

It represents the similarity of the spectral features between the reference and fused

image. The ideal value 1 is the best spectral performance of the fused image. The

general mathematical form of CC is

CC =
σxy

σxσy
(3.3)

3.8.2 RMSE

Measures the spectral quality of fused image. The value 0 indicates best spectral infor-

mation was retained in the fused image. The equation of RMSE is expressed as

RMSE =

√
∑

n
i=1(xi− yi)2

n
(3.4)

3.8.3 Q

Represents the amount of transformation of relevant data from the original image to the

fused image. The ideal value 1 is the best spectral performance of the fused image. The

mathematical form of Q is
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Q =
4σxyxiyi(

σ2
x +σ2

y
)
[x2

i + y2
i ]

(3.5)

3.8.4 SSIM

It compares the local patterns of pixel intensities between the reference and fused im-

ages. The value 1 denotes the best fused image. The mathematical form of SSIM is

SSIM =
(2xiyi + c1)(2σxσy + c2)

(x2
i + y2

i + c1)(σ2
x +σ2

y + c2)
(3.6)

3.8.5 PSNR

It is computed by the number of gray levels in the image divided by the corresponding

pixels in the reference and the fused images. The higher PSNR value denotes the best

spectral information in the fused image and it is computed using following equation

PSNR = 10log10

(
L2

1
mn ∑

m
i=1 ∑

n
j=1(x(i, j)− y(i, j))2

)
(3.7)

3.8.6 SNR

It measures the ratio between the noise and information present in the fused image.

The higher SNR value indicates the best spectral information in the fused image. The

following equation is used to calculate the value of SNR

SNR = 10log10

(
∑

m
i=1 ∑

n
j=1(x(i, j))2

∑
m
i=1 ∑

n
j=1(x(i, j)− y(i, j))2

)
(3.8)

3.9 Quantitative indices for assessing spatial distortion

The following indices determines the spatial distortion of fused image by comparing

the spatial resolution of fused and original Pan image.

40



3.9.1 SCC

It represents the similarity of the spatial features between the Pan and fused image. The

value of SCC differs from -1 to 1. The higher value of SCC represents the best fused

image with high spatial detail. The mathematical form of SCC is expressed as

SCC( f ,y) =
∑∑( f −µ f )

2(y− yi)
2√

∑( f −µ f )2 ∑(y− yi)2
(3.9)

3.9.2 E

It measures the information content of the fused image. The higher value of E denotes

the fused image with more spatial information. The equation of E is expressed as

E =−
n−1

∑
i=0

p(i) ln[p(i)] (3.10)

3.9.3 Gradient

The larger value of G denotes high gradation of the image and high spatial detail. The

value of G is computed using following formula

G =
1

(m−1)(n−1)

m

∑
i=1

n

∑
j=1

√
1
2
[∆x f (i, j)2 +∆y f (i, j)2 (3.11)

3.10 Quality with no reference image (QNR)

The QNR index evaluates the quality of fused image without demanding a reference im-

age. It is efficient for assessing both the spectral Dλ and spatial Ds distortions of fused

image at the full scale of Pan image. The best value of QNR is 1, which denotes that

fused image contains zero spatial and spectral distortion. The mathematical equation of

QNR is,

QNR = (1−Dλ )
α(1−Ds)

β (3.12)

where, α and β are set to one.
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Dλ = p

√
1

n(n−1)

n

∑
i=1

n

∑
j=1, j 6=i

∣∣di, j(a,y)
∣∣p (3.13)

Ds = q

√
1
n

n

∑
i=1

∣∣Q(yi, f )−Q(ai, fl p)
∣∣q (3.14)

where, p and q are set to one and di, j(a,y) = Q(ai,a j)−Q(yi,y j).

For determining the spectral distortion, the parameter Q is calculated at both low

and fused resolution, among each of the MS bands. For determining spatial distortion,

the Q index is calculated between each MS bands and Pan image over both the low and

high resolutions.

The inter-band computation at the two scales aid to define if there is a difference

between the spectral content between MS bands across scale, thus indicating spectral

distortion. The intra-band calculations at the two scales help determine the difference

between the spatial information between MS bands and pan image across scale, indi-

cating spatial distortion.

The pan-sharpening methods like PCA, M-IHS, BT, Multiplicative, W-PCA, HCS,

HPF, GS and Fuze Go are adopted to fuse Pan and MS imagery of Quickbird-2 and

Landsat-8. The pan-sharpened image obtained from the above mentioned pan-sharpening

methods were evaluated using two approaches namely; qualitative and quantitative anal-

yses. The input from these two analyses were considered for the selection of best

pan-sharpening method which generates the image with less spatial and spectral dis-

tortion. Further, the best pan-sharpened image is adopted to the study the effectiveness

of improving the spatial resolution of MS image, by extracting the buildings and by

estimating the bathymetry of near-shore ocean.

3.11 Extraction of Buildings

3.11.1 General

Extraction of buildings from the satellite imageries has various significant applications

in the domain of urban mapping, urban planning, urban change detection analysis, target

detection and GIS. Numerous algorithms were developed for the extraction of buildings.

However, majority of the algorithms work efficiently for detecting the buildings which
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are in same shapes, sizes and colours.

Therefore, it is necessary to frame a methodology for the extraction of buildings

which are in different sizes, shapes and colours. In order to extract the buildings; two

approaches were adopted i) automatic, ii) manual as shown in the Figs. 3.10 and 3.11.

However, satellite imagery with high spatial and spectral information in a single image

is required to extract detail spatial and spectral information of buildings. The effec-

tiveness of improving the spatial resolution of original MS image for the extraction of

buildings were studied using automatic and manual methods.

Figure 3.10 Methodology for extracting the building using automatic method
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Figure 3.11 Methodology for extracting the building using manual method

3.12 Methodology for the extraction of buildings automatically

The detailed explanation of methodology for extracting the buildings automatically are

explained as below, the algorithm processes automatically without pre-classification or

any training sets, however some initial algorithm parameters must be set by the user.

3.12.1 Removal of vegetation portion

The multispectral image with the combination of bands B, G, R and NIR were used.

From the input image in Fig. 3.2(b), it is visualised that the vegetation feature is quite

dominant compared to the other features; therefore the portion of vegetation is removed

based on the intensity value. The threshold value of Red > 120, Green < 100 and

Blue < 100 were used for the removal of vegetation. These values need to be manually

adjusted by the user.

3.12.2 Adaptive K-means clustering

The Adaptive K-means clustering algorithm functions by automatically choosing the

appropriate K elements from the input image (Pappas, 1992; Chen et al., 1998). The

algorithm automatically determines the K elements and generates the group of clusters

(i.e. the feature with the same intensity value are grouped together). Generally, the

algorithm classifies each pixel into the clusters, based on their intensity values. Firstly,
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the algorithm computes the distance between the selected element and the number of

clusters. This process also helps to determine the distance between the two elements.

To compute the distance, it is important to normalize the distance properties, so

that the domination of distance from one property (or) certain properties are not omit-

ted from the computation of distance. The method, euclidean distance is adequate

for determining the distance between two elements. If the input data encompass n-

dimension, then the distance of two elements such as A1 = {A11,A12, . . . ,A1n} and

A2 = {A21,A22, . . . ,A2n} is given by,

Distance(A1,A2) =
√

(A11−A21)2 +(A12−A22)2 + · · ·+(A1n−A2n)2 (3.15)

By the distance function, the further processing of the algorithm is denoted below:

The distance is computed for each of the clusters from one another. The computed

distance is warehoused in two-dimensional array as a triangular matrix. Later, the min-

imum distance (dmin) among any two clusters (i.e. Bm1 and Bm2 ) and also the two

nearest clusters are identified. For any un-clustered element Ei , it computes the dis-

tance of Ei from every cluster. To assign the element Ei to the appropriate cluster, the

following three different processes are mentioned.

• If the distance of the element Ei is zero from the clusters, then allocate Ei to that

cluster and examine the other un-clustered elements.

• If the distance of the element Ei from the known clusters is less than the distance

(dmin) then allocate Ei to the nearest clusters. By allocating Ei to the clusters, the

centroid representation of clusters may differ; therefore the centroid is recalcu-

lated for all the elements presented in the respective clusters. Further, the distance

of disturbed clusters from the other clusters, minimum distance between the two

clusters and the two clusters that are near to each other is also recomputed.

• If the distance (dmin) is less than the element distance from the neighbouring clus-

ters, then possible two nearest clusters are selected (e.g. Cm1 and Cm2) then merge

Cm2 into Cm1. Later the elements presented in the Cm2 cluster are removed and

also the representation of respective cluster is deleted. Further, new elements are
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added to the empty cluster and distance between all the clusters are re-determined

and two nearest clusters are recognized again.

The above mentioned steps are iterated for all the elements to be clustered.

3.12.3 Morphological fill and open operation
3.12.3.1 Fill operation

It is used to fill the holes in the grayscale image I. A hole is defined as an area of dark

pixels surrounded by lighter pixel. The following matlab syntax is used to fill holes in

the image

I2 = im f ill(I) (3.16)

Where, I is the binary image. The advantage of fill operation is to fill the holes in

the image by describing an area of dark pixels bounded by light pixels and producing

another binary image I2 .

3.12.3.2 Open operation

The morphological open operator were normally applied to the binary image. It is used

to remove the features that are smaller than the value of P pixels and retains the large

structure in the image.

The following matlab syntax is used to extract the objects from the input image.

IM = bwareaopen(I,P) (3.17)

The open operation eliminates all the associated components (i.e. objects) that have less

then P pixels from the binary image I producing another binary IM image.

3.13 Quality analysis

To evaluate the performance of automatic algorithm both qualitative and metric analysis

are adopted. The following two metrics proposed by (Lin and Nevatia, 1998) were used.

Here, the performance of algorithm were compared with the ground truth data which is

derived manually.

DP =
100×T P
T P+T N

(3.18)

BF =
100×FP
T P+FP

(3.19)
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Where, T P denotes the detection of buildings by both automatic algorithm and man-

ual. FP indicates the number of buildings detected by the algorithm but not manually.

T N denotes buildings extracted using a manual approach but not by the automatic al-

gorithm. The detection of building is rated, if at least a small portion of it is detected

by the automatic algorithm (Chaudhuri et al., 2016). The two metrics are computed

by comparing the buildings detected by the manual approach and automatic algorithm.

The metric DP calculates how many of the buildings in the image are extracted by the

automatic algorithm and BF denotes how many buildings are found erroneously.

3.14 Extraction of buildings using manual method

The brief explanation of each step in the manual method is explained as below.

• Firstly, AOI is generated by drawing the polygon over the interested building on

the input image.

• Secondly, the created AOI portion of the building is used to subset the buildings

from the input image.

The above described approaches like automatic and manual procedures were adopted

to extract the buildings from the original MS imagery of Quickbird-2 and the same pro-

cedures are adopted to extract buildings from the best Pan-sharpened image and the

results of both were compared using qualitative and metric approaches.

3.15 Bathymetry Mapping

3.15.1 General

The bathymetry of ocean is surveyed using ship carrying echo sounders. Although

most of the areas are unexplored due to the complications of transporting the ship to

the deep ocean, estimating the bathymetry using ship is cost effective. The remote

sensing based technique has advantages in comparison with the present echo sounder

technique. The remote sensing satellite sensor absorbs the globe with uniform resolu-

tion and repetivity of collecting data over the same area helps to monitor changes in
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the bathymetry of ocean. There are several commercially available multispectral satel-

lite data acquired through Ikonos and Worldview, which can be used to determine the

bathymetry of ocean. However, the Landsat-8 satellite imagery is available freely in the

open domain. Hence, Landsat-8 imagery is utilised for determining the bathymetry of

near-shore ocean. The procedure for estimating the bathymetry of near-shore ocean is

shown in the Fig. 3.12.

3.16 Bathymetry from space

The Landsat -8 imagery used for the present study is downloaded from the USGS web-

site, acquired during March 13, 2014. The Landsat-8 satellite acquires total of 11 bands

including, B and G with the spatial resolution of 30 m and Pan band with the spatial

resolution of 15 m. The hydrograhic chart of the study area is acquired during March

18, 2014 from NMPT, Mangaluru, India. The chart contains the sounding data, which

is used against the satellite imagery as a reference data to determine the bathymetry of

near-shore ocean.

The bathymetry of near-shore ocean is estimated using the B and G band pair, both

the satellite imagery and hydrographic charts are co-registered correctly. The hydro-

graphic chart represents the ground data with respect to the chart datum. The depth

soundings of hydrographic chart were used to reference the satellite derived bathymetry

to the chart datum. To perform the ratio transform algorithm, m1 and m0 values are com-

puted from the soundings which are used as control points for the algorithm results.

During the satellite image acquisition, instant water level is very unlikely to cor-

respond with the chart datum (e.g., MLLW (or) LAT), the measurement of tide height

during the acquisition of satellite image is not needed, because it is automatically ac-

counted for using the control points which are selected from a hydrographic chart to

define the transformation parameters. Generally, the water levels over small spatial

magnitude are normally well approximated as a vertical offset, and do not harm the

linear relationship between the hydrographic chart soundings and the algorithm results.

Thus, the procedure excludes the need for tide-corrected satellite imagery and for tide

correctors (Pe’eri et al., 2014).
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Figure 3.12 Methodology for estimating the bathymetry of near-shore ocean

The detailed explanation of methodology for estimating the bathymetry of near-

shore ocean is described as below;

3.16.1 Spatial filtering

During the acquisition of image, sensors in the orbit may generate the speckle noise.

The primary cause for the speckle noise is the interference of the reflectance energy

at the transducer aperture. Therefore, it is important to pre-process the B, G and NIR

bands of landsat-8 imagery to remove the speckle noise. A spatial filtering technique

called low pass filter (kernel size 5x5) is applied on the B, G and NIR bands of Landsat-
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8 imagery to remove the speckle noise. The low pass frequency components denotes

smooth (water) regions, therefore low pass-filter is appropriate to remove the speckle

noise.

3.16.2 Water separation

It is important to separate land from water to estimate the bathymetry of ocean. For this

purpose, NIR band is used due to the appearance of water in dark and land in bright.

Here, the land/water threshold value is obtained by drawing a line that crosses from

land (bright areas) into the water (dark areas). The obtained threshold value is applied

on the B and G band of Landsat-8 imagery to separate land from water.

3.16.3 Glint and cloud correction

This step is intended to correct the radiometric contribution from sun glint and low

clouds; the method proposed by (Hedley et al., 2005) is performed to rectify the ra-

diometric correction on the B and G bands. The linear relationship between the NIR

and visible bands (i.e. G and B) is established using the linear regression, based on a

selected sample area of the image pixels. Following the recommendation of (Hochberg

et al., 2003) sample region of image is selected which is evident of sun glint, but the

spectral brightness of the selected region is expected to be consistent, wherein the re-

gion of deep water is ultimate for this. The equation for removing the sun glint and low

clouds is shown below.

R′i = Ri−bi(RNIR−MinNIR) (3.20)

Where, Ri is the pixel value in B and G band, bi is the regression slope, RNIR−

MinNIR is the difference between the pixel NIR value of RNIR and the ambient NIR

level MinNIR which gives the R′i sun glint corrected pixel brightness in the band B and

G. The value of MinNIR indicates the pixel brightness of NIR with no sun glint, and can

be assessed by the minimum NIR value, which is found in the regression sample. Gen-

erally, the minimum NIR pixel is less prone to problematic outliers than the maximum

NIR pixel. The following steps are implemented to remove the radiometric correction

on B and G bands.
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• Select the sample area where the range of sun glint is evident. It is important to

note that the image might be more or less homogeneous, if the sun glint was not

present (in deep water) and estimate the MinNIR in the sample.

• To remove the sun glint from the bandi(bandblue,bandgreen), perform the linear

regression by using the selected pixels of NIR brightness (x-axis) against bandi

(y-axis). And determine the slope of the regression line for the bandi , which is

denoted as bi .

• To remove the sun glint from the bandi (for all pixels in the image), subtract the

outcome of bi and the NIR brightness of the pixel minus MinNIR from the pixel

value in the bandi.

3.16.4 Ratio transform algorithm

The ratio transform algorithm was proposed by (Stumpf et al., 2003), is used to estimate

the bathymetry of near-shore ocean. The algorithm makes use of two bands in order

to reduce the number of parameters to infer the depth of the ocean. It decreases the

bottom most radiance of one band more rapidly with respect to depth, when compared

to another band. This leads to the ratio between the two bands to differ with respect to

the depth. A near constant attenuation value will be preserved between the ratio of two

bands which is nothing but the difference of the diffuse attenuation coefficient at two

different wavelengths; just depending on notion that water column is uniformly mixed.

The algorithm can cut down the error coupled with varying radiation in the at-

mosphere, water column and sea floor, for the reason that both bands are distributed

equally. Typically in the coastal environment, radiance in the blue wavelength (400-

500 nm) attenuates faster with depth, than light in the green wavelength (500-600 nm).

Thus, the variation in ratio between the bands is affected further by the depth than by

bottom reflectance. To infer the bathymetry, the algorithm establishes the linear rela-

tionship between the ratio of radiance in two bands (G, B) and water depth.

The algorithm relays on the circumstance that the absorptivity of water differs spec-

trally from band to band. As the depth of water increases, reflectance values of the

band with higher absorption will decrease proportionately faster than reflectance value
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of the band with lower absorption. Therefore, when two bands are transformed, it exist

a linear decrease between a ratio of high absorption band to a low absorption band and

water depth.

The following equation is used to determine the depth of the near-shore ocean:-

z = m1

(
ln(Lobs(Bandi))

ln(Lobs(Band j))

)
−m0 (3.21)

Where, m1 and m0 are determined empirically. The advantage of ratio transform al-

gorithm is that, it takes very few parameters and does not require any optical properties

to determine the depth of ocean.

3.16.5 Identifying the extinction depth

The statistical analysis R2 is adopted to estimate the extinction of depth. The R2 clos-

est to 1 indicates that there exists a linear relationship between the satellite derived

bathymetry and the reference hydrographic chart datum. Here, the reference hydro-

graphic chart is overlaid on the output of ln(Lobs(Bandblue))/ ln(Lobs(Bandgreen)) and

the corresponding pixel value from the satellite image and corresponding hydrographic

chart value is obtained to determine the extinction of depth. The region deeper than

the extinction depth do not match the algorithm results with the reference hydrographic

chart, therefore the value of R2 does not show clear correlation. The parameters such as

m1 and m0 are obtained from the analysis of coefficient of determination and they are

further fine tuned to match the algorithm result.

Finally, the calculated parameter such as observed radiance of band from the ratio

of band B and G, the value of m1 and m0 are provided as input to the ratio transform

algorithm and identified the depth along the near-shore ocean of Mangaluru coast, Kar-

nataka. The following statistical indices like RMSE and MAE are used to evaluate the

performance of ratio transform algorithm.

RMSE =

√
∑

n
i=1(ri− ti)2

n
(3.22)

MAE =
∑

n
i=1 |ri− ti|

n
(3.23)
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The procedure for estimating the bathymetry are processed using the ArcGIS 10.2

environment. The same procedure is adopted on before and after improving the spatial

resolution and the results of both were compared using statistical indices.

The study focuses on improving the spatial resolution of multispectral imagery of

Quickbird-2 and Landsat-8 using nine different pan-sharpening methods. The inputs

obtained from the qualitative and quantitative analysis were considered for selecting the

best pan-sharpening method. The effectiveness of improving the spatial resolution of

Quickbird-2 imagery is studied by extracting the buildings from the best pan-sharpened

and original MS images. Further, the effectiveness of improving the spatial resolution

of Landsat-8 imagery is studied by estimating the bathymetry of near-shore ocean using

best pan-sharpened and original MS images.

53



Chapter 4

RESULTS AND DISCUSSION

4.1 General

The work comprises of four objectives that have been designed. They are: to improve

the spatial resolution of multispectral imagery of Quickbird-2 and Landsat-8 using nine

pan-sharpening techniques to overcome the constrains of satellite sensors, to explore

an efficient pan-sharpening method using qualitative and quantitative analysis. Further-

more, the best pan-sharpened image is then selected and employed for the extraction

of buildings from the Quickbird-2 imagery, and for estimating the bathymetry of near-

shore ocean using Landsat-8 imagery. The results indicate that, the best pan-sharpened

image can be used for remote sensing applications studies which demands both high

spatial and rich spectral information in a image. The deliverables of the study are pre-

sented in three sections below:

4.2 Pan-sharpening the multispectral imagery of Quickbird-2 and
Landsat-8 and quality evaluation using qualitative and quanti-
tative analysis

The Quickbird-2 and Landsat-8 satellite sensors acquires images of earth surface in two

modes like Pan and MS. The Pan image have high spatial information, whereas MS

image have rich spectral information but low spatial resolution. The remote sensing

applications requires both the qualities in a single image. Therefore, nine different pan-

sharpening techniques were adopted to improve the spatial resolution of multispectral

imagery of Quickbird-2 and Landsat-8. To evaluate the quality of these pan-sharpening

techniques both qualitative and quantitative analysis were performed and compared for
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the selection of best pan-sharpening technique. The results obtained from the different

pan-sharpening techniques and their quality evaluation using qualitative and quantita-

tive approaches are presented and discussed as below.

The image size of landsat-8 is 170 km x 185 km and image size of Quickbird-2

is 16.5 km x 16.5 km. Since the size of the images is large, it was not promising to

compare visually every individual feature; therefore subset images were presented to

highlight the effect of nine pan-sharpening methods.

The original Quickbird-2 MS images with the band combination of R, G, B, and

NIR in addition to the Pan image are displayed in Figs. 3.2(a) and 3.2(b). The original

MS image was resampled to the size of the Pan image is shown in Fig. 3.2(c). The

fused results of Quickbird-2 imagery attained from the nine different pan-sharpening

methods are presented in Figs. 4.1(a) - 4.1(i).

The original MS image with the combined R, B, and G bands in addition to the Pan

image of Landsat-8 are shown in Figs. 3.3(a) and 3.3(b). The resampled MS image to

the size of the Pan image is shown in Fig. 3.3(c). All of the Landsat-8 fused images

obtained by the nine different pan-sharpening methods are presented in Figs. 4.2(a) -

4.2(i).

4.2.1 Qualitative analysis

All of the pan-sharpened images and the original MS image of Landsat-8 imagery are

displayed in the RGB color mode as bands 1, 2 and 3 for each respective color. Those

of Quickbird-2 are displayed in the RGB color mode as bands 4, 3 and 2 also for each

respective color. For reasonable assessment and comparison of the quality of the pan-

sharpened images, all of the pan-sharpened, MS, and Pan images of Quickbird-2 and

Landsat-8 are displayed at the same zoom level. A group of eight remote sensing experts

(with Master’s qualification in remote sensing and GIS) was engaged to evaluate the

quality of the pan-sharpened images based on improvement in the spatial information,

preservation of the spectral information, and spatial and spectral distortion. The inputs

obtained from the experts is shown in the Table 4.1 (best fused image are shown in

bold) were considered in the ranking of pan-sharpening methods. Generally, all of the

pan-sharpening methods increased the spatial detail of the MS image to that of the Pan
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image. Furthermore, small features that were not noticeable in the original MS image

were identified in the pan-sharpened image.

(a) PCA (b) M-IHS (c) Multiplicative

(d) BT (e) W-PCA (f) HCS

(g) HPF (h) GS (i) Fuze Go

Figure 4.1 Quickbird-2 pan-sharpened image

The pan-sharpened images obtained using the PCA method are shown in Figs.

4.1(a) and 4.2(a). The spatial information was improved, and the PCA generated mi-

nor color variations in the fused image. The pan-sharpened images generated by the

M-IHS method, presented in Figs. 4.1(b) and 4.2(b), preserved the color information

and rendered better spatial details similar to the original MS and Pan image. The results

of multiplicative fused images are presented in Figs. 4.1(c) and 4.2(c). This method

failed to generate a satisfactory fused image because the spectral details and spatial in-

formation were not preserved. The pan-sharpened image of the multiplicative method

contained more spectral and spatial distortion, which is differs significantly from the
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(a) PCA (b) M-IHS (c) Multiplicative

(d) BT (e) W-PCA (f) HCS

(g) HPF (h) GS (i) Fuze Go

Figure 4.2 Landsat-8 pan-sharpened image

original MS and Pan images. The BT pan-sharpened images, shown in Figs. 4.1(d)

and 4.2(d), best preserved the spectral information and increased the contrast, which

resulted in visually appealing image.

Among the PCA, BT, M-IHS, and multiplicative pan-sharpened images, the PCA

and BT methods were similar. The BT method is superior to PCA because it preserved

the color information, whereas M-IHS performed slightly better than the PCA, BT and

multiplicative methods.

In the pan-sharpened images produced by the W-PCA method, as shown in Figs.

4.1(e) and 4.2(e), improvement was noted in the spatial information. Moreover, the

spectral information retained was nearly identical to the original MS image. The pan-

sharpened images obtained using HCS method, presented in Figs. 4.1(f) and 4.2(f),

preserved the spectral information. However, fewer spatial details were retained com-

pared with those in the original Pan image such that small features were unable to be
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identified. The HPF fused images, shown in Figs. 4.1(g) and 4.2(g), exhibit high spatial

details, and the spectral information was preserved. The pan-sharpened images ob-

tained by the GS method, displayed in Figs. 4.1(h) and 4.2(h), best preserved the color

intensity, although the borders of the features were not as sharp.

The pan-sharpened images obtained using W-PCA, HPF, and GS methods appear

to be similar. However, the color intensity of the W-PCA images is marginally weaker

than that in the HPF and GS methods. The HPF method performed slightly better than

the W-PCA and GS methods.

The pan-sharpened images obtained by the Fuze Go method, shown in Figs. 4.1(i)

and 4.2(i), contain high spatial details and preserved spectral information. Because it

produces a sharper pixel size and preserves the spectral information in the fused image,

this method has an advantage of enabling the identification and differentiation of small

features spatially and spectrally. Moreover, this method generates images that match

the spatial details of Pan image and the color information of MS image.

In comparison with other methods such as HPF, GS, M-IHS, and W-PCA, the Fuze

Go method performed better by improving the spatial detail and by preserving the color

information. In the qualitative analysis, the Fuze Go processed image was ranked first

by five of the remote sensing experts. The HPF-processed image was ranked first by

three experts, and the GS method was ranked second by three experts. It is concluded

that the Fuze Go method is superior, followed by the HPF and GS methods.

4.2.2 Quantitative analysis

To validate the results of qualitative analysis, the spatial and spectral indices were used

to assess the quality of Quickbird-2 and Landsat-8 fused images. These indices require

the following conditions to be satisfied for selecting the best fused image with high

spatial details and spectral information: i) SCC, CC, Q, QNR and SSIM should be

close to one; ii) RMSE should be close to zero; iii) E, PSNR, SNR and Gradient should

have a higher value.

The results obtained from ten statistical indices are shown in the Tables 4.2 - 4.7.

The bold value in the tables shows best fused image. Tables 4.2 and 4.3 represent the
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Table 4.1 Ranking of different fusion methods by remote sensing experts
``````````````̀Fusion methods

Experts
A B C D E F G H

Fuze Go 2 1 2 1 1 2 1 1

PCA 6 8 7 7 6 7 8 8

M-IHS 5 7 6 8 7 4 6 5

BT 8 5 8 4 5 6 7 4

W-PCA 4 4 3 5 4 5 4 6

HPF 1 2 1 3 2 1 3 3

GS 3 3 4 2 3 3 2 2

HCS 7 6 5 6 8 8 5 7

M 9 9 9 9 9 9 9 9

results of spatial indices such as SCC, Gradient and Entropy obtained for Quickbird-2

and Landsat-8 imagery.

Table 4.2 Spatial indices comparison between different fusion methods for Quickbird-2
imagery
hhhhhhhhhhhhhhhhhhParameter

Fusion methods
Fuze Go PCA M-HIS BT W-PCA HPF GS HCS M

SCC 0.9113 0.6591 0.7083 0.6076 0.7329 0.8895 0.7453 0.7229 0.5367

Gradient 5.5737 3.5317 3.9222 3.8177 4.8269 5.0191 4.9807 3.1271 1.0489

E 7.1288 2.9177 2.7031 2.5449 5.6749 7.5436 5.8037 3.9769 1.2348

Table 4.3 Spatial indices comparison between different fusion methods for Landsat-8
imagery
hhhhhhhhhhhhhhhhhhParameter

Fusion methods
Fuze Go PCA M-HIS BT W-PCA HPF GS HCS M

SCC 0.9359 0.7276 0.7680 0.6516 0.8206 0.8753 0.7860 0.6829 0.5106

Gradient 8.7132 4.5047 5.2222 4.6720 6.7169 7.1158 6.9807 4.1146 2.9987

E 6.1288 4.8177 4.7031 3.5449 5.5749 6.3126 5.8037 4.0769 0.2348

Here the value of SCC and Gradient indicates that the method Fuze Go produced

the fused image with less spatial distortion, therefore best preserved the spatial details

followed by HPF and GS. The value of entropy ranges from 0.2-7.5 approximately;
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the highest value of 7.54 and 6.31 for Quickbird-2 and Landsat -8 images has been

attained in the HPF fused image, consequently the method produced image with less

spatial distortion. It is also notable that the method multiplicative was ranked last for all

the spatial indices and hence this method generated fused image with high spatial and

spectral distortion.

Table 4.4 Spectral indices comparison between different fusion methods for Quickbird-
2 imagery
hhhhhhhhhhhhhhhhhhFusion methods

Parameter
CC RMSE Q SSIM PSNR SNR

Fuze Go 0.9611 1.6351 0.7215 0.9525 37.8464 28.4753

PCA 0.6591 2.8454 0.4825 0.5191 26.6675 21.0095

M-IHS 0.6482 2.9212 0.4939 0.5221 25.1466 19.0125

BT 0.5076 3.2092 0.3594 0.4048 19.1225 16.7299

W-PCA 0.7895 2.0881 0.6207 0.7719 34.4284 19.8285

HPF 0.8253 1.8512 0.6746 0.8971 39.2962 26.0784

GS 0.8029 1.9804 0.8140 0.8639 35.2943 25.1253

HCS 0.6367 2.6126 0.5868 0.6303 28.4325 20.9784

M 0.5061 6.8153 0.2167 0.0801 15.4581 12.5013

Table 4.5 Spectral indices comparison between different fusion methods for Landsat-8
imagery
hhhhhhhhhhhhhhhhhhFusion methods

Parameter
CC RMSE Q SSIM PSNR SNR

Fuze Go 0.8359 1.7641 0.7615 0.9475 29.8652 23.4172

PCA 0.6276 2.9524 0.5382 0.6966 19.7685 19.3511

M-HIS 0.6680 3.4715 0.5639 0.6821 20.5256 18.0379

BT 0.6216 3.6398 0.4294 0.5126 12.0824 14.8724

W-PCA 0.7453 2.6531 0.6907 0.7531 27.7991 19.4603

HPF 0.7860 1.9026 0.7146 0.8354 30.2962 21.1372

GS 0.7229 2.1298 0.8940 0.7739 26.2943 20.6510

HCS 0.6906 2.9173 0.5868 0.7525 24.0478 18.1047

M 0.4619 8.0512 0.3812 0.1825 15.0824 11.3721
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Table 4.6 Evaluation of different fusion methods using QNR indices for Qucikbird-2
imagery
hhhhhhhhhhhhhhhhhhParameter

Fusion methods
Fuze Go PCA M-IHS BT W-PCA HPF GS HCS M

QNR 0.9177 0.5595 0.5978 0.5871 0.7835 0.8598 0.8121 0.7025 0.3274

Table 4.7 Evaluation of different fusion methods using QNR indices for landsat-8 im-
agery
hhhhhhhhhhhhhhhhhhParameter

Fusion methods
Fuze Go PCA M-HIS BT W-PCA HPF GS HCS M

QNR 0.8930 0.6037 0.6354 0.5702 0.7537 0.8440 0.8247 0.7144 0.3106

Spectral indices like CC, RMSE, Q, SSIM, PSNR and SNR obtained for Quickbird-

2 and landsat-8 imagery are shown in the Tables 4.4 and 4.5. From the value of CC,

RMSE, SSIM and SNR, it is observed that the fused image produced by the Fuze Go

method best preserves the spectral information followed by HPF and GS methods. The

Q index value indicates that the value of GS method was very close to the original value

of Q followed by Fuze Go and HPF methods; therefore, the GS retained the maximum

spectral information in the fused image similar to the original MS image. For PSNR,

the highest value was obtained by HPF followed by Fuze Go and GS. The index values

of Fuze Go and HPF varied about by 1. However, the merged image obtained by the

HPF method contained less noise and more spectral information.

Tables 4.6 and 4.7 represents the result of QNR obtained for Quickbird-2 and landsat-

8 imagery. The statistical value of QNR indicates that the index value of the Fuze Go

method is superior, followed by HPF and GS methods. In comparison with other meth-

ods, the Fuze Go method is efficient for generating a fused image with high spatial and

spectral quality.

Overall, the results of the three spatial quantitative analyses revealed that the Fuze

Go method was ranked first of the two statistical indices like SCC and Gradient. There-

fore, Fuze Go method best enhanced the spatial resolution of MS image followed by

HPF method. The result of the six spectral quantitative analyses revealed that the Fuze

Go method was ranked first of the four indices like CC, RMSE, SSIM, and SNR,
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whereas the HPF method ranked first by PSNR. The method GS was ranked first by

Q. Therefore, the Fuze Go method best preserves the spectral information of the pan-

sharpened image followed by HPF and GS methods.

4.3 Differences between Fuze Go and other algorithms

The pan-sharpening algorithm such as PCA, IHS, BT, Wavelet and HPF are developed

based on the assumption that, the grey value data of Pan and MS images are similar.

Therefore, fused images can be attained by extracting high spatial resolution informa-

tion from the Pan image and then adding it into all bands of the MS image.

Numerous other pan-sharpening algorithms including GS and modified algorithms

assume that the image difference affected by seasonal and regional, differences does

not impact the quality of image unless the sensor differences are considered. Therefore,

one set of fusion parameters that are effective for some images of a specified sensor

can be applied to the fusion of all images of the sensor, without considering spectral

differences caused by seasonal and regional differences.

However, the pan-sharpening algorithm processed by these assumption will attain

good fusion results for some images, but fails with other images. On the contrary,

Fuze Go algorithm treats each set of Pan and MS images separately to find out the

finest fit between the Pan and MS images and then fuse them together. Therefore, it

constantly achieves good fusion results regardless of the differences in sensors, seasons,

and regions.

The spatial resolution of multispectral imagery of Quickbird-2 and Landsat-8 was

improved using different pan-sharpening techniques, the quality of these pan-sharpening

techniques was evaluated using qualitative and quantitative analysis. The results of

these analyses revealed that the fused image generated by the Fuze Go method best en-

hanced the spatial details and preserved the spectral information. Therefore the fused

image of Fuze Go method is further employed for the extraction of buildings from

the Quickbird-2 imagery and for estimating the bathymetry of near-shore ocean using

Landsat-8 imagery.
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4.4 Extraction of buildings

The buildings from the original mutlispectral imagery of Quickbird-2 were extracted

using automatic and manual approach. In the automatic approach; firstly, the vegeta-

tion portion was removed from the input image. Secondly, adaptive k-means clustering

algorithm was adopted to cluster the pixels into different classes. Finally, the morpho-

logical fill and open operator was implemented to extract the buildings. In the manual

approach, AOI was created from the input image. Later, the generated AOI was used

to subset the interested features (i.e. buildings) from the image. Further, to study the

effectiveness of improving the spatial resolution of multispectral imagery, the same

procedure is adopted on the pan-sharpened image generated by the Fuze Go method

and the results of both were compared using qualitative and quantitative approaches are

presented and discussed as below.

The original Pan and MS images are shown in the Figure 3.3(a) and 3.3(b). The

original MS with the combination of band B, G, R and NIR contains different features

like buildings, roads, vehicles and vegetation etc. It is important to note that the pattern,

shape, size and spectral reflectance of the buildings vary from each other. It is also visu-

alized that the color reflectance of roads and color reflectance of buildings are similar.

Therefore, the attempt is made to extract the buildings with different size, shape, color

and pattern.

The automatic approach for extracting the buildings from the original MS image

is shown in Fig. 4.3. Firstly, the vegetative portion of the image is removed based

on the intensity value and shown in Fig. 4.3(a). The threshold value of red > 120,

green < 100 and blue < 100 were used for the removal of vegetation. These values

need to be manually adjusted by the user. In this experiment, the above mentioned

values are found to give satisfactory results for the removal of vegetation. Secondly,

the adaptive k-means clustering algorithm automatically classifies the different pixels

based on the intensity value into five different classes as shown in the Fig. 4.3(b), and

here the majority of buildings were observed in the class two. It is further observed

that only the roof tops coming under class four and five appear comparatively brighter.

Majority of building portion comes under the class two, therefore, the pixels coming
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under the class four and five were removed to extract the majority of buildings. From

the classified image, it is notable that the buildings with the same intensity value are

clustered into one class. Further, it is also noted that the intensity value corresponding

to some buildings is close to the intensity value of roads and hence it is segregated in

the same class.

(a) Removal of vegetation (b) Adaptive k-means
clustering

(c) Conversion of classi-
fied image into binary im-
age

(d) Morphological fill op-
eration

(e) Morphological area
open operation

(f) Conversion of binary
image (area open) to
RGB

Figure 4.3 Automatic approach for the extraction of buildings using original MS image
of Quickbird-2

Majority of buildings were found only in class two. Therefore the binary image

is created only for the class two and is shown in the Fig. 4.3(c), the small portion of

buildings which are presented in other classes were ignored. It clearly indicates that

some portion of the road is identified as building due to the similarity in intensity value

and spectral reflectance. The same behaviour is noticed in literature (Ghaffarian and

Ghaffarian, 2014; Liasis and Stavrou, 2016). However, the morphological fill operation

helps in restoring some of these pixels which were lost in the above process. Since

some buildings roof top are void, in order to reduce the potential error, the voids were

filled using morphological fill operator (i.e. the void presented in the buildings, after the

classification process is identified with the reference to the original pan image) which is
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shown in Fig. 4.3(d). To extract the buildings from the image, the morphological area

open operator is adopted and the result is shown in Fig. 4.3(e). The extracted buildings

in the RGB color mode is shown in Fig. 4.3(f).

To determine the effectiveness of improving the spatial resolution of the original

MS image. The same methodology of automatic approach for the extraction of build-

ings were adopted on the Fuze Go pan-sharpened image and shown in the Fig. 4.4. The

removal of vegetation portion is shown in Fig. 4.4(a). The classification of different

features using adaptive k-means clustering is shown in Fig. 4.4(b). Consequently, con-

version of classified image into the binary image followed by morphological fill and

open operation are shown in Figs. 4.4(c), (d) and (e). The extraction of building in the

RGB color mode is shown in the Fig. 4.4(f).

(a) Removal of vegetation (b) Adaptive k-means
clustering

(c) Conversion of classi-
fied image into binary im-
age

(d) Morphological fill op-
eration

(e) Morphological area
open operation

(f) Conversion of binary
image (area open) to
RGB

Figure 4.4 Automatic approach for the extraction of buildings using pan-sharpened im-
age

To evaluate the performance of automatic algorithm both metrics and visual analysis

were used. The total number of buildings presented in the input image is twelve. The

performance of automatic algorithm using two metrics like DP and EF is shown in the

Table 4.8. Here, the building detection percentage of automatic algorithm for before
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fusion image and after fusion image were reasonable for such a challenging MS image.

However, the branch factor indicates the percentage of buildings found erroneously. It

is notable that some portion of the road is identified as buildings due to the similarity

in intensity value and spectral reflectance. However, the loss of information is higher in

pan-sharpened image compared to the original image. The consequence of the spatial

resolution of image for detecting the buildings are presented in (Segl and Kaufmann,

2001). The common challenge for detecting buildings from less than or equal to 1m

pixel resolutions are low-signal to noise ratio and weak objects signal.

Generally, it is well understood that the loss of information is evident for the extrac-

tion of buildings using any automatic algorithm. The loss of information may be higher

or lower which is totally dependent on the scene complexity, building variability and

abundance in the urban areas. If there exists a significant difference in the feature size,

pattern and shape, loss of information ensues. In our case, majority of buildings were

found in the class two. Therefore, the binary image is created only for the class two,

and the small portion of buildings which are presented in other classes were ignored.

However, the morphological fill operation helps in restoring some of these pixels which

were lost in the above process. If the threshold value for morphological open operation

is too large or small, it may lead to over and under segmentation respectively.

Table 4.8 Evaluation of automatic algorithm using two metrics DP and BF.

Image TP FP TN DP(%) BF(%)

Original MS 09 03 03 75 25

Pan-sharpened 08 04 04 66.6 33.3

The visual comparison of spatial and spectral information of extracted buildings

from the automatic approach (i.e. before fusion and after fusion) are shown in Fig. 4.5.

Here, the circle indicates the sample location to differentiate the extracted buildings in

terms of spatial and spectral information.

The circles A, B and C represent the sample extraction of building which differ in

pattern, color, size and shape. In the circle A of Fig. 4.5(b), a small white portion on top
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(a) Extraction of
buildings from the
original MS imagery of
Quickbird-2

(b) Extraction of
buildings from the
pan-sharpened image

Figure 4.5 Qualitative analysis for the extraction of buildings using automatic approach

of the building is clearly visible both spatially and spectrally, whereas the same object is

not clearly visible in Fig. 4.5(a). The circle B of Fig. 4.5(b), representing the rooftop of

the building is clearly interpreted both spatially and spectrally, when compared to circle

B in Fig. 4.5(a). Moreover, the circle C in Fig. 4.5(b) indicates that the building roof

top with tiny structures, is clearly visible in size, shape and color, whereas the same tiny

structures are not identified in Fig. 4.5(a).

Therefore, it is evident that the improvement in the spatial and spectral informa-

tion helps to determine the information of buildings more effectively. However, loss of

information is visible in both the images due to various factors such as pattern, size,

shape and color of buildings which are different from each other and some of the build-

ings having same color reflectance as a road. Moreover, detailed spatial and spectral

information about buildings are high in the pan-sharpened image when compared to the

original MS image.

In order to extract the buildings without any loss of information, the manual extrac-

tion method is adopted using ERDAS imagine 2014 software. At first, area of interest

(AOI) was created with the interested features (i.e. buildings) in the input image. Sec-

ondly, the same AOI is used to subset the interested features from the image. The

same methodology adopted to extract the buildings from the original MS image and the

pan-sharpened image are shown in Fig. 4.6. Here, the manual method extracts all the

buildings without any loss of information. The pan-sharpened image with high spatial

and spectral information helps to extract the buildings information effectively. Never-
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theless, manual extraction of building is time consuming and also depends on the user

experience to digitize the boundary of buildings for effective extraction of buildings.

(a) original MS imagery (b) Pan-sharpened image

Figure 4.6 Manual approach for the extraction of buildings using original MS image
and pan-sharpened image

By comparing the results of both automatic and manual methods, it is understand-

able that the automatic algorithm works efficiently when the interested features in the

image are recognized to be in the same pattern and size. Generally, the loss of informa-

tion is common regardless of input image (i.e. features with the same size or different

size, same shape or different shape and same pattern or different pattern). Here, the

loss of information in the automatic algorithm is noted for various reasons like different

building size, shape, pattern and color. In the case of manual method, the loss of infor-

mation for extracting buildings is less, but the method requires more time to complete

the process.

4.5 Estimation of Bathymetry

The procedure based on the ratio transform algorithm is adopted to estimate the bathymetry

of near-shore ocean along the coast of Mangaluru, India using Landsat-8 imagery, and

the same procedure is adopted on the Fuze Go pan-sharpened image. The results of both

original and pan-sharpened image were compared using statistical indices like RMSE

and MAE. The obtained results from both the images are presented and discussed as

below.

For this study, B, G and NIR bands of Landsat-8 imagery are used. The spatial res-

olution of band B, G and NIR is 30 m. The reason for applying the B and G band in the

coastal environment is that radiance in the B band (450- 515 nm) decreases more rapidly
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with depth than radiance in the G band (525-600 nm). Generally, light at wavelengths

above 700 nm has a very low transmittance in sea water. Therefore, water appears dark

and the land appears bright. For this reason, the NIR band (845-885 nm) is used for

distinguishing water from land. Figs. 4.7(a), (b) and (c) represents the B, G and NIR

bands of Landsat-8 satellite imagery.

(a) B band (b) G band (c) NIR band

Figure 4.7 B, G and NIR bands of Landsat-8 imagery

To estimate the bathymetry of near-shore ocean, a procedure based on ratio-transform

was adopted using the Landsat-8 satellite imagery. The results of the procedure imple-

mented are presented in Figs. 4.8 to 4.17. It is important to pre-process the satellite

image before estimating the bathymetry of near-shore ocean. Therefore, the low-pass

filter is applied on the band B, G and NIR as shown in Figs. 4.8(a), (b) and (c) respec-

tively. To separate the land from water, the threshold value estimated from the band

NIR is shown in Fig. 4.9, which indicates the smooth section with low values repre-

senting water, whereas the fluctuating high values represent land. Thus, the threshold

value 7000 is applied on the band B and G to separate the water from land as shown in

Figs. 4.10(a) and (b).

To remove the silver glint, (Hedley et al., 2005) method is adopted. First, the poly-

gon is drawn which covers only the water area (from the recommendations of (Hochberg

et al., 2003), areas of deep water ideal for this). The polygon is created over the NIR

band. The extracted polygon covers only the water area is next used to extract the water

body of the B and G bands and shown in Figs. 4.11(a) and (b).
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(a) B band (b) G band (c) NIR band

Figure 4.8 Low pass filter of band B, G and NIR

Figure 4.9 Threshold value to separate the land from water

(a) B band (b) G band

Figure 4.10 Removal of land from water for B and G bands

Secondly, linear regression is established for all the selected area of each visible

band against the NIR band as shown in Figs. 4.12(a) for B band and 4.12(b) for G

band, where x-axis represents the NIR band brightness and y-axis represents the visible

band. To remove the sun glint and cloud, the following parameters such as Ri, bi, RNIR

and MinNIR are needed. Ri is the pixel value in the corresponding B and G bands, the

regression slope bi is calculated for the band B and G using the following equation.
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(a) B band (b) G band

Figure 4.11 Extraction of polygon for band B and G

(a) B band (b) G band

Figure 4.12 Linear regression is established to determine the MinNIR

Slope =
y2− y1

x2− x1
(4.1)

Where, the value of x1, x2, y1, y2 and the value of MinNIR (pixel brightness of NIR)

are obtained from Fig. 4.12(a) for band B and 4.12(b) for band G. RNIR is the pixel

value of NIR band. Consequently, the removal of sun glint of band B and G are shown

in Figs. 4.13(a) and 4.13(b).

(a) B band (b) G band

Figure 4.13 Removal of sun glint for band B and G

The ratio transform algorithm is adopted on the pre-processed B and G bands,

the important requirement for estimating the bathymetry of near-shore ocean using
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the ratio transform algorithm is reference depth value (hydrographic chart). The hy-

drographic chart is prepared by using the in-situ data; collected using multi beam

echo sounders and it is corrected to mean lower low water (MLLW). The outcome

of ln(Lobs(Bandblue))/ ln(Lobs(Bandgreen)) (i.e. named as bathy image) is shown in Fig.

4.14(a). The reference depth value (hydrographic chart) is overlaid on the bathy image

and is shown in the Fig. 4.14(b). The pixel value of the bathy image is obtained with

the reference of hydrographic chart value and so there is no need to measure the tidal

height during the image acquisition(Pe’eri et al., 2014).

(a) Bathy image (b) Hydrogarphic chart
overlaid on bathy image

Figure 4.14 Represents the bathy image and hydrographic chart overlaid on bathy image

To study the effectiveness of improving the spatial resolution of Landsat-8 imagery.

The original B and G bands with the spatial resolution of 30 m is fused separately with

the Pan band of 15 m spatial resolution. Improved spatial resolution of band B and G

obtained using the Fuze Go pan-sharpening method are shown in the Figs. 4.15(a) and

(b). The same procedure for estimating the bathymetry of near-shore is adopted on the

improved spatial resolution of B and G bands, and the results obtained before and after

improving the spatial resolution are compared.

The depth points in the hydrographic chart and the corresponding pixel values from

the bathy image are obtained and the scatter plot is plotted which is shown in Figs.

4.16(a) and (b) for before and after improving the spatial resolution in which, x-axis

represents the hydrographic chart depth and y-axis represents the corresponding pixel

value. To estimate the bathymetry of near-shore ocean using ratio transform algorithm,

certain parameters are required such as Lobs, m1 and m0 where, Lobs are observed
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(a) B band (b) G band

Figure 4.15 Improved spatial resolution of blue and green band

radiance of bands, obtained from the ratio of band blue and green which is shown in

Fig. 4.14(a) and m1 and m0 are obtained empirically by correlating the corresponding

pixel value to the hydrographic chart value [Figs 4.16(a) and (b)] are shown in the

Tables 4.9 and 4.10 .

Table 4.9 m1 and m0 values before improving the spatial resolution of Landsat-8 im-
agery

Range of Depth (m) m1 m0

0-5 155.16 172.09

5-16 148.42 158.7

16 -25 143.9 147.36

Table 4.10 m1 and m0 values after improving the spatial resolution of Landsat-8 imagery

Range of Depth (m) m1 m0

0-10 316.9 353.9

10-16 123.47 130.05

16 -25 81.09 86.668

The effectiveness of improving the spatial resolution of Landsat-8 imagery for de-

termining the bathymetry of near-shore ocean is examined by comparing the results of

both (i.e. before improving the spatial resolution 30 m and after improving the spatial

resolution to 15 m by Fuze Go method). To validate the ratio transform algorithm, the
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(a) Before improving

(b) After improving

Figure 4.16 Extinction of depth before and after improving the spatial resolution

statistical index such as RMSE and MAE is computed between the algorithm results

and hydrographic chart depth.
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The Fig. 4.16(a) represents the result of estimating the bathymetry of near-shore

ocean before improving the spatial resolution of satellite image (i.e. 30 m), where the

top portion of the image shows the scatter plot of the corresponding pixel value against

the hydrographic chart depth, which indicates good correlation value of R2 = 0.8503 for

depth up to 5 m. It is also seen that the value of R2 = 0.5132 for the depth from 5 to 16

m indicates that the pixel value moderately match the hydrographic chart depth and the

value of R2 = 0.3943 for the depth from 16 to 25 m indicates that the pixel value and

hydrographic chart depth do not match.

The bottom portion of the image explains the pixel value and their relation to the

depth of extinction. Areas deeper than the extinction depth (i.e. 5 m) do not have a

good correlation between the pixel value and the reference hydrographic chart depth.

Therefore, the ratio transform algorithm can retrieve the depth up to 5 m for the 30 m

spatial resolution of Landsat-8 imagery.

The Fig. 4.16(b) represents the result of estimating the bathymetry of near-shore

ocean (i.e. after improving the spatial resolution of satellite image to 15 m), where the

top portion of the image shows the scatter plot of the corresponding pixel value against

the hydrographic chart depth which indicates the good correlation value of R2 = 0.8951

for the depth up to 10 m. It is also seen that the value of R2 = 0.6214 for the depth from

10 to 16 m indicates that the pixel value moderately match the hydrographic chart depth

and the value of R2 = 0.4512 for the depth from 16 to 25 m indicates that the pixel value

and hydrographic chart depth matches unlikely.

The bottom portion of the image explains that the areas deeper than the extinction

depth 10 m do not have a good correlation between the pixel value and the reference

hydrographic chart depth. Therefore, it is evident that improving the spatial resolution

of satellite image helps to determine the higher depth precisely.

The required parameters such as Lobs (obtained from the ratio of band blue and

green), m1 and m0 (obtained empirically by correlating the corresponding pixel value to

the hydrographic chart value) are provided as input to the ratio transform algorithm and

obtained depth z. Further, the parameter m1 is fine tuned for producing better matches

between the algorithm results and the reference hydrographic chart value. To validate

75



the ratio transform algorithm, the statistical index such as RMSE and MAE is computed

between the algorithm results and hydrographic chart depth is shown in the Tables 4.11

and 4.12.

Table 4.11 RMSE and MAE values before improving the spatial resolution of Landsat-8
imagery

Range of Depth (m) RMSE (m) MAE (m)

0-5 0.94 0.89

5-16 2.51 2.47

16 -25 5.63 5.59

Table 4.12 RMSE and MAE values after improving the spatial resolution of Landsat-8
imagery

Range of Depth (m) RMSE (m) MAE (m)

0-10 0.86 0.79

10-16 2.39 2.25

16 -25 5.21 5.09

Table 4.11 indicates that the range of depth between 0-5 m has higher accuracy

(RMSE = 0.94; MAE=0.89). From Table 4.12 it is observed that the highest accu-

racy of (RMSE=0.86; MAE=0.79) is achieved for the range of depth between 0-10 m.

Therefore, the ratio transform algorithm can better estimate the depth up to 10 m for the

improved spatial resolution of Landsat-8 imagery.

Figs. 4.17(a) and (b) represents the estimation of bathymetry before and after im-

proving the spatial resolution of satellite image along the coast of Mangaluru, Kar-

nataka. The Landsat-8 image with the spatial resolution of 30 m provided better esti-

mation of depth up to 5 m which is indicated in light blue and shown in Fig. 4.17(a)

and the depth from 5 to 16 m is shown in blue and the depth from 16 to 25 m are

shown in dark blue in which the algorithm results and hydrographic chart depth do not

match. Therefore, the Landsat-8 image with spatial resolution of 30 m better estimates

the depth up to 5 m.
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(a) Before improving

(b) After improving

Figure 4.17 Estimation of depth before and after improving the spatial resolution

The Landsat-8 image with the spatial resolution of 15 m can better estimate the

depth up to 10 m (which is coloured in light blue) is shown in Fig. 4.17(b) and the

depth from 10 to 16 m is shown in blue and the depth from 16 to 25 m is shown in dark

blue indicates that the algorithm results and hydrographic chart depth do not match.

Therefore, the Landsat-8 image with improved spatial resolution of 15 m better esti-

mates the depth up to 10 m.
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Chapter 5

CONCLUSIONS

5.1 General

The study focused on improving the spatial resolution of multispectral imagery of

Landsat-8 and Quickbird-2 using nine pan-sharpening techniques. Further, all of the

pan-sharpened image generated by the pan-sharpening techniques were evaluated using

qualitative and quantitative approaches. In addition, the effectiveness of improving the

spatial resolution of multispectral imagery of Landsat-8 and Quickbird-2 was studied

by employing the best pan-sharpened image for the extraction of buildings and for es-

timating the bathymetry of near-shore ocean. The automatic and manual approaches

were adopted to extract the buildings from the original MS and pan-sharpened imagery

of Quickbird-2. Furthermore, the procedure based on the ratio-transform algorithm for

estimating the near-shore bathymetry was adopted on original B, G and pan-sharpened

imageries of Landsat-8.

The key conclusions framed after analysing the results obtained and subsequent

discussion, have been presented this chapter with brief summary for convenience. Also,

limitations of the study and future scope for further studies are enumerated.

5.1.1 Pan-sharpening the multispectral imagery of Quickbird-2 and
Landsat-8 and quality evaluation using qualitative and quan-
titative analysis

In this study, nine different pan-sharpening methods like PCA, M-IHS, Multiplicative

BT, W-PCA, HCS, HPF, GS and Fuze Go were applied to fuse Pan and MS imageries

of Landsat-8 as well as Quickbird-2. The pan-sharpened images obtained for each
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of the pan-sharpening methods were evaluated and compared using quantitative and

qualitative (or) visual approaches. In quantitative analysis the spectral indices like CC,

SSIM, RMSE, SNR, PSNR and Q were used to assess the spectral quality of pan-

sharpened image. The spatial indices like SCC, Gradient and image entropy were used

to assess the spatial quality of pan-sharpened image. Further, QNR indices was also

performed to evaluate both spectral and spatial quality of pan-sharpened image. The

inputs from the qualitative and quantitative analysis were considered for the selection

of best pan-sharpened image. Following conclusions are drawn from the present study:

• The qualitative assessment of the pan-sharpened images revealed that all of the

pan-sharpening methods increased the spatial detail in the fused image. However,

the multiplicative method generated an unsatisfactory fused image with high spa-

tial and spectral distortion. The BT and HCS methods best preserved the spectral

information but retained fewer spatial details.

• The PCA method improved the spatial details but generated colour distortion.

Although the M-IHS and W-PCA methods improved the spatial details and pre-

served the spectral information, the results were not as good as those obtained by

Fuze Go, HPF, and GS. Visual assessment of the pan-sharpened image revealed

that the Fuze Go method generated the pan-sharpened image with the highest

spatial and spectral quality followed by HPF and GS.

• The results from seven of the ten quantitative indices revealed that the Fuze Go

method ranked first followed by HPF and GS methods. The assessment results

of qualitative and quantitative analyses also showed that the Fuze Go method

performed better than the other pan-sharpening methods. It is also noticeable

that the multiplicative method ranked last by both qualitative and quantitative

analyses. Hence, a general agreement was observed among the results of the two

analyses.

• The Fuze Go method was able to produce the image with the highest spatial de-

tails and rich spectral information, can be used for identifying and differentiating
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small features spatially and spectrally. This method can be used for remote sens-

ing applications like feature extraction, urban planning, classification, etc.

5.1.2 Extraction of buildings

In this study, automatic and manual approaches were adopted to extract the buildings

from the original MS and Fuze Go pan-sharpened imagery of Quickbird-2. In the auto-

matic approach, firstly the vegetation portion was removed, secondly adaptive k means

clustering algorithm was performed to classify the pixels into a number of classes which

then was followed using morphological operators to extract the buildings. The perfor-

mance of automatic approach for the both imageries were compared using quantitative

and qualitative analysis. The manual method was also adopted to study the effectiveness

of improved spatial resolution of the original MS imagery for the extraction of buildings

and are compared qualitatively. Following conclusions were derived from this study:

• From the results of automatic approach, it is visualized that the major buildings

are detected correctly for the original MS and pan-sharpened image. However,

the loss of information is evident in both the images. The results of manual

method indicate that the extraction of buildings is achieved with minimum loss

of information in comparison with the automatic method.

• The results from both the automatic and manual methods of pan-sharpened image

indicate that the spatial and spectral information of buildings are clearly iden-

tifiable. Therefore, improving the spatial resolution of the original MS image

increases the spatial and spectral information of buildings.

• In the case of any input image (i.e. if the interested features are identified to be

different from each other in terms of shape, size and color), manual method is

recommended, in order to reduce loss of information. However, the effectiveness

of the method depends on the user experience and it is a time consuming process.

• It is to be noted that the performance of automatic algorithm is effective when all

buildings are in rectangular shape. In our case, the building shapes are different
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from one another and nevertheless, the performance of automatic approach for

the extraction of buildings with different shape, size and color is reasonable.

5.1.3 Estimation of Bathymetry

The procedure based on the ratio transform algorithm was adopted to determine the

bathymetry of near-shore ocean along the coast of Mangaluru, India using Landsat-8

imagery. The effectiveness of improving the spatial resolution of B and G bands was

studied by employing the procedure on the original and pan-sharpened imageries of

Landsat-8, and the results of both the imageries were compared using RMSE and MAE

indices. Following conclusions are derived from this study:

• The procedure can be best used as an exploration tool to infer the bathymetry of

coastal region before a high resolution hydrographic survey is operated using an

expensive instrument like multi-beam echo sounder etc.

• The results of satellite image show a good correlation of R2 = 0.8503 with the

hydrographic chart data for the depth up to 5 m for the 30 m spatial resolution of

Landsat-8 imagery.

• The results of satellite image after improving the spatial resolution to 15 m, show

a good correlation of R2 = 0.8951 with the hydrographic chart data for depths up

to 10 m. Therefore, improving the spatial resolution helps to infer higher depths

in the coastal region.

• The results of RMSE and MAE between the ratio transform algorithm and hy-

drographic chart indicates that the algorithm better estimates the depth up to 10

m for the improved spatial resolution of Landsat-8 imagery.

• The procedure used for deriving the satellite bathymetry can be used by marine

surveyors and hydrographic officers. By using the results of this procedure, ma-

rine surveyors can assess the current amount of change in depth, and if a weaker

R2 value is observed, it necessitates the updation of high resolution hydrographic

chart to the existing one.
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• To derive the bathymetry using the satellite imagery, environmental conditions

such as water clarity, cloud cover, a sun glint is needed to be considered that

could deteriorate the accuracy of estimated depth.

• It is also to be noted that the selection of reference hydrographic chart is impor-

tant; due to the age of the hydrographic survey or the old technique and equipment

used to conduct the survey.

• Finally, regardless of improvement in the satellite derived bathymetry, the proce-

dure evolved can be used as an exploration tool for operating the hydrographic

survey and this is not an alternative for acoustic hydrographic survey.

5.2 Limitation of study

• The pan-sharpening techniques are not processed for cross sensor satellite im-

agery.

• The close acquisition date of satellite image and sounding data was available only

for NMPT regions which restricted the validation of procedure for estimating the

bathymetry of different regions.

5.3 Future scope of study

• Pan-sharpening the cross sensor imagery.

• Evaluation of pan-sharpening techniques using classification methods.
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