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In this article, a finite element (FE) formulation accounting for multiphysics response of multilayered
magneto-electro-elastic (MEE) plates in the thermal environment has been presented. The equilibrium
equations of motion are attained using the principle of total potential energy and coupled constitutive
relations of MEE material. Maxwell’s equation of electrostatics and magnetostatics are used to model
the electric and magnetic behavior. The influence of various through thickness temperature distributions
on the static parameters of stepped functionally graded magneto-electro-elastic (SFG-MEE) plates is
investigated. Further, an extra attention has been devoted to evaluate the effect of product properties
(pyroelectric and pyromagnetic coupling), boundary conditions and aspect ratio on the direct (displace-
ments, electric potential and magnetic potential) and derived quantities (stresses, electric displacement,
and magnetic flux density) of the SFG-MEE plate. A comparative study is also carried out to analyse the
effect of stacking sequence, boundary conditions, pyroeffects, length-to-width ratio and aspect ratios of
the SFG-MEE plate. The credibility of the proposed FE model is verified with the results available in the
literature. It is expected that the findings in this article may be useful for accurate design and analysis of
MEE structures under the thermal environment.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, intelligent structures have drawn a significant atten-
tion of the researchers in various engineering fields. These sophis-
ticated and multifunctional structures exploit the exceptional
characteristics of smart materials. Among them, the magneto-
electro-elastic (MEE) material is a prominent smart material which
displays unique energy conversion capabilities between magnetic,
electric and elastic fields. In addition, they also exhibit different
cross properties which include magneto-electro-elastic, magneto-
elastic and electro-elastic field interactions which are absent in
individual constituents. This makes them adaptable to various
potential applications such as actuators, sensors, transducers, sta-
bility control etc. It is found that the intelligent structures made
of functionally graded (FG) materials display a better structural
performance than the conventional composite materials particu-
larly, in the thermal environment. More recently, FG materials
are used to make effective utilization of MEE coupling properties.
Hence, much of the investigations are being carried out on the
FG-MEE structures (plates, beams, and shells). Many researchers
performed the free vibration analysis of MEE structures adopting
various computational techniques such as exact solution method
[1–3], discrete layer approximate method [4–7], state vector
method [8–11], finite element method [12–14] etc. Using an
asymptotic approach Tsai et al. [15] presented a three-
dimensional (3D) free vibration analysis of doubly curved
FG-MEE shells with open-circuit surface conditions. Ebrahimi and
Barati [16] analysed the free vibration characteristics of smart
nanostructures through a nonlocal higher-order refined magneto-
electro-viscoelastic beam model. In addition, Shooshtari and
Razavi [17] evaluated the free vibration characteristics of MEE
rectangular plate with the aid of higher order shear deformation
theory. Nonlinear vibration control of MEE plates and shells using
active constrained layer damping treatment has been studied by
Kattimani and Ray [18,19] considering different stacking sequence
and boundary conditions. They extended their analysis to the func-
tionally graded MEE plates also [20]. The smart damping of nonlin-
ear vibrations of FG plates in the thermal environment using
piezoelectric composites was investigated by Panda and Ray [21].
Later, Sarangi and Ray [22] extended the similar analysis to doubly
curved FG shells in the thermal environment. The peculiar multi-
physics coupled response of MEE structures has motivated many
researchers to investigate its static behavior under various loading
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Fig. 1. Schematic representation of SFG-MEE plate.

64 M. Vinyas, S.C. Kattimani / Composite Structures 178 (2017) 63–86
conditions [23–28]. Additionally, Zheng et al. [29] investigated the
nonlinear static behavior of MEE plates by employing transverse
shear deformation theory and von Karman plate theory. Pan and
Waksmanski [30] presented an exact closed form solution for
three-dimensional deformation of a layered MEE plate with non-
local effect. Sladek et al. [31–33] evaluated the bending analysis
of MEE plates using a meshless approach based on the local Petrov
– Galerkin approach. Wang and Pan [34] developed a 3D FE formu-
lation to evaluate the bending response of FG multiferroic compos-
ites under different loading conditions. Considering imperfect
interfacial bonding, Nazargah and Cheragi [35] presented a 3D for-
mulation to analyse the bending behavior of FG-MEE plates resting
on elastic foundation. The stability analysis of MEE structures
under various loading conditions was also investigated [36–38].
In accordance with the non-local theory and Timoshenko beam
theory, Ebrahimi and Barati [39] analysed the buckling behavior
of functionally graded MEE nanoplates resting on Winkler- Paster-
nak foundation through refined plate theory. Meanwhile, in the
application of sensors and actuators, an optimal design of MEE
structures becomes prominent. Loja et al. [40] performed the opti-
mization studies to minimize the deformed profile shape of FG-
MEE beam using differential evolution technique. In order to
achieve maximum conversion efficiency from mechanical energy
to electric and magnetic energy, Sun and Kim [41] formulated a
systematic design optimization method for the optimal layering
of MEE composites. The optimization of the effective magnetoelec-
tric voltage coefficient of fibrous composites made of piezoelectric
and piezomagnetic phases was carried out by Kuo and Wang [42].

Due to predominant use of MEE structures in sensors and actu-
ators, a clear understanding of such structures exposed to thermal
environment is very much essential. Some of the scholars have
tried to fill the gaps in the analysis of MEE structures subjected
to thermal loading. Sunar [43] derived the constitutive equations
for the thermopiezomagnetic continuum with the aid of FE formu-
lation. Badri and Kayiem [44] investigated the static and dynamic
analysis of magneto-thermo-electro-elastic (MTEE) plates. An
exact solution was developed by Ootao and Tanigawa [45] to anal-
yse the transient behavior of multilayered magneto-thermo-
electro-elastic (MTEE) strip subjected to non-uniform and
unsteady heating. Kumaravel et al. [46] studied the influence of
both uniform and non-uniform load on the static behavior of
MEE beam. An additional coupling between thermo-electric and
thermo-magnetic fields result in the development of pyroloads
which affects the behavior of MEE structures significantly. Konda-
iah et al. [47–49] considered the effect of pyroelectric and pyro-
magnetic coupling to investigate the static behavior of MEE
beams and plates. Akbarzadeh and Chen [50] derived analytical
solutions and compared the coupled response of functionally
graded and homogeneous thermo-magneto-electro-elastic hollow
cylinder. Meanwhile, Ebrahimi and Barati [51] studied the influ-
ence of different temperature loads on the free vibration behavior
of FG-MEE nanobeams. In case of stepped functionally graded
magneto-electro-elastic (SFG-MEE) structure, each layer possesses
different thermal expansion coefficient. This leads to a unique vari-
ation of displacements, electric potential, magnetic potential and
stresses under thermal loading. To this end, it is prominent to
study the influence of through thickness temperature distribution
on the structural behavior of SFG-MEE structures.

This investigation makes the first attempt to evaluate the influ-
ence of various through thickness temperature distributions on the
direct (displacements, electric potential and magnetic potential)
and derived quantities (stresses, electric displacement, and mag-
netic flux density) of the SFG-MEE plate. A FE formulation for mul-
tilayered MEE plate has been derived using the principle of total
potential energy and coupled constitutive equations of MEE mate-
rial. The equilibrium equations are solved using condensation
method. Few numerical examples are solved to understand the
influence of stacking sequence, boundary conditions, length-to-
width ratio and aspect ratio on the static behavior of MEE plate.
Finally, a special emphasize has been placed on analyzing the con-
tribution of pyroeffects which drastically affects the coupled
response of SFG-MEE plate. It can be said that the various temper-
ature profiles considered in the present analysis closely resemble
the heat sources used in real time application. Hence, it is believed
that the proposed FE formulation may be useful to achieve the
accurate design and analysis of MEE structures in the different
thermal environment.

2. Formulation of the problem

2.1. Geometry and coordinate system

A schematic representation of stepped functionally graded
magneto-electro-elastic (SFG-MEE) plate occupying the domain
a � b � h with respect to a Cartesian coordinate system (x, y, z) is
depicted in Fig. 1. The various boundary conditions considered
for the analysis are illustrated in Fig. 2(a)–(e), respectively. The
constraints corresponding to the different boundary conditions
are given as follows:

Clamped edge ðCÞ : ux ¼ uy ¼ uz ¼ / ¼ w ¼ 0 ð1:aÞ

Free edge ðFÞ : ux ¼ uy ¼ uz ¼ / ¼ w– 0 ð1:bÞ

Simply supported edge ðSÞ : ux – 0; uy ¼ uz ¼ / ¼ w ¼ 0 at
x ¼ 0; a

uy – 0; ux ¼ uz ¼ / ¼ w ¼ 0 at y ¼ 0; b ð1:cÞ
2.2. Constitutive equations

The coupled constitutive equations of MEE material considering
thermal fields, as adaptable in the present finite element formula-
tion can be expressed as follows:

frng ¼ ½Cn�feng � ½en�fEng � ½qn�fHng � fkng ð2:aÞ

fDng ¼ ½en�Tfeng þ ½gn�fEng þ ½mn�fHng þ fpngDh ð2:bÞ

fBng ¼ ½qn�Tfeng þ ½mn�fEng þ ½ln�fHng þ fsngDh ð2:cÞ

fkng ¼ ½Cn�fangDh ð2:dÞ
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in which, the superscript n represents the layer number under con-
sideration. Also, n = 1,2, 3. . .N; where N is the total number of layers.
Further, Dh is the temperature rise from the stress-free reference
temperature h0. The different matrices and vectors in the Eqs. (2.
a)–(2.d) are listed in Appendix A.

2.3. Finite element formulation

The finite element (FE) model of the magneto-electro-elastic
(MEE) plate is discretized by eight noded brick element with five
degrees of freedom at each node. The generalized displacement
vector fdtg, the electric potential vector f/g and the magnetic
potential vector fwg can be expressed in terms of the nodal gener-
alized displacement vector fde

tg, the nodal electric potential vector
f/eg and the nodal magnetic potential vector fweg, respectively as
follows:

fdtg ¼ ½Nt�fde
tg; f/g ¼ ½N/�f/eg; fwg ¼ ½Nw�fweg ð3Þ

in which,

fde
t g ¼ ½fdt1gTfdt2gT . . . fdt8gT �

T
; f/eg ¼ ½/1/2 . . ./8�T ; fweg ¼ ½w1w2 . . .w8�T

½Nt � ¼ ½Nt1Nt2 . . .Nt8�;Nti ¼ niIt ; ½N/� ¼ ½n1n2 . . . n8�; ½Nw� ¼ ½N/�
ð4Þ

where ni is the natural coordinate shape function associated with
the ith node of the element; It is the identity matrix; ½Nt �, ½N/� and
½Nw� are (3 � 24), (1 � 8) and (1 � 8) shape function matrices,
respectively.

Using Maxwell’s fundamental electrostatic and magnetostatic
equations, the electric field and magnetic field can be expressed
in the following forms

fEg ¼ �/;k and fHg ¼ �w;k ð5Þ
where k = x, y and z. By using nodal strain-displacement matrices
½Bt�; ½B/� and ½Bw�, the strain vector, electric field vector and magnetic
field vector of the system can be represented in terms of the nodal
displacement, nodal electric potential and nodal magnetic potential,
respectively as follows:

feg ¼ ½LtNt �fde
tg ¼ ½Bt �fde

tg; fEg ¼ ½L/N/�f/eg ¼ ½B/�f/eg; fHg
¼ ½LwNw�fweg ¼ ½Bw�fweg ð6Þ

where Lt , Lw and L/ are the differential operators. The various nodal
strain displacement relations can be explicitly represented as
follows:

½Bt � ¼

@n1
@x 0 0 @n2
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@x 0 0

0 @n1
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775; ½B/� ¼ ½Bw� ð7Þ
2.4. Equations of motion

The equilibrium equations of motion corresponding to the SFG-
MEE plate in the thermal environment are arrived using the prin-
ciple of total potential energy and coupled constitutive equations.
The total potential energy is minimized by equating its first varia-
tion to zero. It can be explained as follows:
Tp ¼ 1
2

XN
n¼1

R n
V dfengTfrngdVn � RVn d½En�TfDngdVn � RVn d½Hn�TfBngdVn

h i
� RVn dfdtgTfFbodygdVn � dfdtgTfFconcg �

R
A½dfdtgTfFsurfaceg þ df/gQ/

þdfwgQw�dA ¼ 0
ð8Þ

The volume of the nth layer is represented by Vn. Further, the
surface force, the body force and the point force are represented
by {Fsurface}, {Fbody} and {Fconc}, respectively. Likewise, Q/ and Qw

are the surface electric charge density and magnetic charge den-
sity, respectively.

Substitution of Eqs. (2) and (6) in Eq. (8) results in

Tp ¼ 1
2

R
Vn dfde

tg
T ½Bt�T

XN
n¼1

½Cn�
 !

½Bt �fde
tgdVn

(

�RVn dfde
tg

T ½Bt �T
XN
n¼1

½en�
 !

½B/�f/egdVn

)

�1
2

R
Vn dfde

tg
T ½Bt �T

XN
n¼1

½qn�
 !
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�1
2

R
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2
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ð9Þ

Further, bifurcating the terms based on the coefficients of fde
tg

T
,

f/egT and fwegT and globalizing we obtain the equations of motion
as follows:

½K g
tt�fdtg þ ½K g

t/�f/g þ ½K g
tw�fwg ¼ fF g

mg þ fF g
thg

½K g
t/�Tfdtg � ½K g

//�f/g � ½K g
/w�fwg ¼ fF g

/g � fF g
p:eg

½K g
tw�Tfdtg � ½K g

/w�Tf/g � ½K g
ww�fwg ¼ fF g

wg � fF g
p:mg

ð10Þ

The notations of the different global stiffness matrices and glo-
bal load vectors are explicitly described in Appendix A. Meanwhile,
the stiffness matrices and the force vectors can be expressed as
follows:

½K g
tt � ¼ ½Bt�T ½½C1�dV1 þ ½C2�dV2 þ � � � þ ½CN�dVN�½Bt�
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Fig. 2. Boundary conditions (a) clamped on all edges (CCCC) (b) simply supported
on all edges (SSSS) (c) adjacent edges clamped (CFFC) (d) opposite edge clamped
(FCFC) (e) opposite edges simply supported (CSCS).
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½K g
t/� ¼ ½Bt�Tf½e1�dV1 þ ½e2�dV2 þ � � � ½eN �dVNg½Bt �

½K g
tw� ¼ ½Bt�Tf½q1�dV1 þ ½q2�dV2 þ � � � þ ½qN�dVNg½Bt�

½K g
//� ¼ ½B/�Tf½g1�dV1 þ ½g2�dV2 þ � � � þ ½gN �dVNg½B/�

½K g
/w� ¼ ½B/�Tf½m1�dV1 þ ½m2�dV2 þ � � � þ ½mN�dVNg½B/�

½K g
ww� ¼ ½Bw�Tf½l1�dV1 þ ½l2�dV2 þ � � � þ ½lN�dVNg½Bw�

fF g
mg ¼

Z
Vn

½Nt �TfFbodygdVn þ
Z
A
½Nt�TfFsurfacegdAþ ½Nt �TfFconcg

fF g
/g ¼

Z
A
½N/�TQ/dA;

fF g
wg ¼

Z
A
½Nw�TQwdA;

fF g
thg ¼ ½Bt �f½C1�fa1gDh1dV1 þ ½C2�fa2gDh2dV2 þ � � �

½CN �faNgDhNdVNg;

fF g
p:eg ¼ ½B/�Tf½p1�Dh1dV1 þ ½p2�Dh2dV2 þ � � � þ ½pN�DhNdVNg;

fF g
p:mg ¼ ½Bw�Tf½s1�Dh1dV1 þ ½s2�Dh2dV2 þ � � � þ ½sN �DhNdVNg ð11Þ
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Fig. 3. Stepped functionally graded (a
In the present analysis the effect of the mechanical load vector

fF g
mgT , the electric load vector fF g

/gT and magnetic load vector

fF g
wgT are neglected.

½K g
tt �fdtg þ ½K g

t/�f/g þ ½K g
tw�fwg ¼ fF g

thg ð12:aÞ

½K g
t/�Tfdtg � ½K g

//�f/g � ½K g
/w�fwg ¼ fF g

p:eg ð12:bÞ

½K g
tw�Tfdtg � ½K g

/w�Tf/g � ½K g
ww�fwg ¼ fF g

p:mg ð12:cÞ
The displacements due to thermal loads are calculated by con-

densing the Eqs. 12(a)–(c). The detailed procedure is explicitly
described in Appendix B.

Considering the Eq. (12.c) and solving for fwg, we obtain

fwg ¼ ½K g
ww��1½K g

tw�Tfdtg � ½K g
ww��1½K g

/w�Tf/g � ½K g
ww��1fF g

p:mg ð13Þ
Similarly, substituting Eq. (13) in Eq. (12.b) and solving for f/g,

we get

f/g ¼ ½K2��1½K1�fdtg � ½K2��1fF/ solg ð14Þ
Finally, Eqs. (13) and (14) are substituted in Eq. (12.a) to get

½Keq�fdtg ¼ fFeqg ð15Þ
The component stiffness matrices and the equivalent force

vectors associated with the Eqs. (14) and (15) are presented in
Appendix B.

2.5. Stepped functionally graded (SFG) – MEE plate

Stepped functionally graded stacking sequence of MEE plate is
developed by piling up of layers with different volume fraction
(Vf) of Barium Titanate (BaTiO3) and Cobalt Ferric Oxide (CoFe2O4)
as demonstrated in Fig. 3(a) and (b). In the case of SFG-BFB (B labels
pure piezoelectric phase and F labels pure piezomagnetic phase)
MEE plate, the middle layer is composed of pure piezomagnetic
phase (Vf = 0.0), while the top and bottom layers are of pure piezo-
electric phase (Vf = 1.0). Further, the volume fraction of the inter-
mediate layers varies in steps of 0.2 Vf. Analogously, the
piezoelectric phase is replaced by piezomagnetic phase for SFG-
FBF MEE plate.

2.6. Temperature profiles

The SFG-MEE plate is subjected to different temperature profiles
which vary across the plate thickness according to the general
equations given as follows:
(b)

.0 Vf

.2 Vf

.6 Vf

.8 Vf

4 Vf

.0 Vf

.2 Vf

.6 Vf

.0 Vf

.8 Vf
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) BFB (b) FBF stacking sequence.



Table 1
Material properties corresponding to different volume fraction Vf of BaTiO3 – CoFe2O4 (Kondaiah et al. [48]; Wang and Pan [34]).

Material property Material constants 0 Vf 0.2 Vf 0.4 Vf 0.5 Vf 0.6 Vf 0.8 Vf 1 Vf

Elastic constants (GPa) C11 = C22 286 250 225 220 200 175 166
C12 173 146 125 120 110 100 77
C13 = C23 170 145 125 120 110 100 78
C33 269.5 240 220 215 190 170 162
C44 = C55 45.3 45 45 45 45 50 43
C66 56.5 52 50 50 45 37.5 44.5

Piezoelectric constants (C/m2) e31 0 �2 �3 �3.5 �3.5 �4 �4.4
e33 0 4 7 9.0 11 14 18.6
e15 0 0 0 0 0 0 11.6

Dielectric constant (10�9 C2/Nm2) e11 = e22 0.08 0.33 0.8 0.85 0.9 1 11.2
e33 0.093 2.5 5 6.3 7.5 10 12.6

Magnetic permeability (10�4 Ns2/C2) l11 = l22 �5.9 �3.9 �2.5 �2.0 �1.5 �0.8 0.05
l33 1.57 1.33 1 0.9 0.75 0.5 0.1

Piezomagnetic constants (N/Am) q31 580 410 300 350 200 100 0
q33 700 550 380 320 260 120 0
q15 560 340 220 200 180 80 0

Magneto-electric constant (10�12 Ns/VC) m11 =m22 0 2.8 4.8 5.5 6 6.8 0
m33 0 2000 2750 2600 2500 1500 0

Pyroelectric constant (10�7 C/m2 K) p2 0 �3.5 �6.5 �7.8 �9 �10.8 0
Pyromagnetic constant (10�5 C/m2 K) s2 0 �36 �28 �23 �18 �8.5 0
Thermal expansion coefficient (10�6 K�1) a1 = a2 10 10.8 11.8 12.3 12.9 14.1 15.7

a3 10 9.3 8.6 8.2 7.8 7.2 6.4
Density (kg/m3) q 5300 5400 5500 5550 5600 5700 5800

(b)

(c) (d) 

(a)

Fig. 4. Verification plots (a) displacement component in x-direction ux for CCCC MEE plate (b) magnetic potential of CCCC MEE plate (c) normal stress rx of CFFC MEE plate (d)
magnetic flux density Bz of CFFC MEE plate.
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Table 2
Material coefficients of #B and #T materials used in Sladek et al. [33].

Material 1: #B (�1010 Nm�2) Material 2: #T

Cð1BÞ
11

10.989 Cð1TÞ
ij ¼ Cð1BÞ

ij =2

Cð1biBÞ
12

3.297

Cð1BÞ
22

10.989

Cð1BÞ
66

3.846

Cð1BÞ
44 = Cð1BÞ

55
3.846

Table 3
Properties of MEE material used in Sladek et al. [33].

Material
constants

Values Material
constants

Values

c11 = c22 22.6 � 1010 Nm�2 d33 350 NA�1 m�1

c12 12.4 � 1010 Nm�2 d15 275 NA�1 m�1

c33 21.6 � 1010 Nm�2 a11 5.367 � 10�12 Ns (VC)�1

c66 5.1 � 1010 Nm�2 a33 2737.5 � 10�12 Ns (VC)�1

c44 = c55 4.3 � 1010 Nm�2 c11 297 Wb (Am)�1

e31 = e32 �2.2 cm�2 c33 83.5 Wb (Am)�1

e15 5.8 cm�2 q 7500 kg m�3

h33 6.35 � 10�9 C(Vm�1)
h11 5.64 � 10�9 C(Vm�1)
d31 = d32 290.2 NA�1 m�1

(a) 

(b) 

Fig. 5. Verification of transverse displacement component uz of (a) clamped two
layered plate (b) simply supported two layered plate with Sladek et al. [33].

Table 4
Comparison study of the direct quantities of E-FGM MEE plate.

k = 0

Present FEM Wang and Pan [34] % Error

ux (10�14 m) 26.26 27.13 3.24
uy (10�14 m) �26.25 �27.13 3.24
uz (10�14 m) 356.2 346.8 �2.71
l (10�3 V) 1.69 1.65 �2.42
w (10�7 A) �14.03 �13.66 �2.64

Fig. 6. Convergence of electric potential /.
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2.7. Uniform temperature profile

The temperature of the SFG-MEE plate is uniformly raised from
a stress-free temperature h0 to the final temperature hmax. For the
ease of calculation, h0 is assumed to be 0 K. The general tempera-
ture variation relation can be written as

Dh ¼ hmax � h0 ð16Þ
2.8. Linear temperature profile

The SFG-MEE plate is subjected to a temperature distribution
which varies linearly across the plate thickness. The general equa-
tion represented by

Dh ¼ hi þ hmaxðz=hÞ ð17Þ
where, hi is the temperature at the bottom layer of the plate

2.9. Bi-triangular temperature profile

The temperature distribution varies in the form of a tent shape
across the plate thickness. It can be explicitly represented as
follows:

Dh ¼ hmaxð1� zÞ 0 6 z 6 h=2
Dh ¼ hmaxðzÞ h=2 6 z 6 h

ð18Þ
2.10. Parabolic temperature profile

The temperature distribution varying parabolically across the
SFG-MEE plate thickness can be represented as follows:



(a)  

(b) 

(c)        

(d) 

(e) 

Fig. 7. Effect of temperature distributions on (a) displacement component ux (b) displacement component uy (c) displacement component uz (d) electric potential / (e)
magnetic potential w.
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(a) 

(b) 

(c) 

Fig. 8. Effect of temperature distributions on (a) normal stress rx (b) shear stress sxz
(c) shear stress sxy.
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Dh ¼ hmax 1� z
h

� �2� �
0 6 z 6 h ð19Þ

In the Eqs. (16)–(19) hmax is the maximum temperature, z is the
distance of the point of interest from the bottom of the plate and h
is the plate thickness.

3. Results and discussion

The effect of various temperature distributions on the direct and
derived parameters of the SFG-MEE plate is evaluated using the FE
formulation derived in the previous section. The SFG-MEE plate
dimensions considered for the analysis are the length of the plate
a = 0.3 m, width b = 0.3 m and the thickness h = 0.006 m. The
boundary conditions considered for the SFG-MEE plate is illustrated
in Fig. 2(a)–(e). By reducing the present FE model for multilayered
MEE plate to a single layer MEE plate, the results are verified with
those established by Kondaiah et al. [47]. To this end, the material
properties tabulated in Table 1 (Kondaiah et al. [48]) are considered
in the present analysis. It is evident from Fig. 4(a)–(e) that an excel-
lent agreement is obtained based on the present FE formulation.
Further justification for the correctness of the FE formulation is pro-
vided by considering two different examples of FG-MEE plate sub-
jected to mechanical loads. At first, a two-layered square plate with
indifferent layer thickness illustrated by Sladek et al. [33] is solved
with the help of present FE formulation. The bottom layer is
assumed to be made of homogeneous properties whereas, the top
layer is comprised of MEE material. In addition, two trials are car-
ried out with different material corresponding to the bottom layer.
They are represented by #B and#T, respectively. Thematerial prop-
erties corresponding to these homogeneous layers and MEE mate-
rial are tabulated in Table. 2 and Table 3, respectively. The
boundary conditions and loading parameters of the layered plate
are maintained identical to that of Sladek et al. [33]. From Fig. 5
(a) and (b), it can be observed that for both clamped plate and sim-
ply supported plate, the results show an excellent agreement with
Sladek et al. [33]. Further, the static problem of FG-MEE plate sub-
jected to a sinusoidal mechanical load considered byWang and Pan
[34] is also solved and verified. For the purpose of comparison, the
MEE plate made of exponentially functionally graded material (E-
FGM) with exponential factor k = 0 is considered. The boundary
conditions and material properties are chosen identical to Wang
and Pan [34]. From Table 4, it can be observed that the present
results agree very well with Wang and Pan [34]. Further, the con-
vergence study of the present FE model is depicted in Fig. 6 consid-
ering the electric potential / of FCFC MEE plate. It can be observed
from this figure that with the mesh size of 10 � 10 � 12 elements, a
good convergence of the present FE formulation can be achieved.
Further, numerical examples are presented to evaluate the effect
of various temperature distributions, boundary conditions, pyroef-
fects and aspect ratio.

3.1. Effect of temperature loadings

In this section, the influence of through thickness temperature
distributions (Eqs. (16)–(19)) on the static parameters of SFG-BFB
MEE plate is analysed. The MEE plate is considered to be clamped
on all the edges. Fig. 7(a)–(c) represent the variation of displace-
ment components ux, uy and uz, respectively. It can be interpreted
from these figures that uniform temperature load has a significant
influence on the variations of ux, uy and uz across the plate thick-
ness, while parabolic temperature profile has a lesser contribution.



(a)

(b) 

(c)  

(d) 

Fig. 9. Effect of temperature distributions on (a) magnetic flux density Bx (b) magnetic flux density Bz (c) electric displacement Dx (d) electric displacement Dz.

Table 5
Effect of stacking sequence on displacement components (a/h = 50; a/b = 1).

Temperature profile ux (10�5 m) uy (10�5 m) uz (10�6 m)

BFB FBF SFG-BFB SFG-FBF BFB FBF SFG-BFB SFG-FBF BFB FBF SFG-BFB SFG-FBF

Uniform 1.41 1.22 1.55 1.36 0.43 0.34 0.5 0.39 7.43 7.11 7.64 7.29
Parabolic 0.44 0.21 0.53 0.32 0.156 0.14 0.16 0.152 5.01 3.6 5.18 4.8
Linear 0.89 0.74 1.0 0.82 0.27 0.18 0.31 0.21 6.87 5.17 7.85 5.68
Bi-triangular 1.02 0.85 1.2 0.93 0.34 0.21 0.38 0.27 5.78 4.98 5.95 5.24

Table 6
Effect of stacking sequence on electric and magnetic potential (a/h = 50; a/b = 1).

Temperature profile / (kV) w (A)

BFB FBF SFG-BFB SFG-FBF BFB FBF SFG-BFB SFG-FBF

Uniform 10.17 8.8 11.26 10.69 24.85 26.4 28.45 32.4
Parabolic 3.84 2.89 5.21 4.28 3.845 4.03 4.414 4.68
Linear 6.88 5.67 8.64 7.36 11.14 11.601 12.6 13.80
Bi-triangular 7.16 6.94 8.82 7.88 20.67 22.01 25.84 26.84
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Further, the displacement components ux, uy and uz varies symmet-
rically across the plate thickness for uniform and bi-triangular
temperature distributions. In addition, uz is zero at the midlayer
of SFG-BFB MEE plate for these two temperature profiles, Mean-
while, for linear and parabolic temperature profile ux is maximum
at the top layer whereas uy and uz are found to be higher in the bot-
tom layer of the stacking sequence. This may be attributed to the
corresponding temperature distribution. Considering Fig. 7(d),
the uniform temperature rise results in a linear variation of the
electric potential / across the plate thickness whereas, the sym-
metric variation is observed for bi-triangular temperature distribu-
tion. Also, one can draw the same conclusion with respect to
magnetic potential w distribution as shown in Fig. 7(e). It is worth
noting that for the uniform and bi-triangular temperature profiles,
the electric potential and magnetic potential are zero at the mid
layer of the SFG-MEE plate. The study is extended to evaluate the
influence of various through temperature distributions on the
derived quantities. It may be noticed from the results plotted in
Fig. 8(a) that the normal stress rx varies accordingly with the tem-
perature distribution. For the uniform temperature rise, the normal
stress rx remains almost constant across the plate thickness. Like-
wise, for a bi-triangular temperature distribution, the maximum rx

is witnessed at the midplane of the SFG-MEE plate. It is interesting
to say that irrespective of temperature profile, the maximum nor-
mal stress rx is noticed at the top layer of SFG-BFB MEE plate. The
possible reason may be due to the appearance of highest tempera-
ture at the top layer for the corresponding temperature profile.
Also, it can be deduced that among all the through thickness tem-
perature distributions considered, a predominant effect of the uni-
form temperature distribution prevails on rx. This may be due to
the development of constant pyroloads generated through the
Table 7
Effect of stacking sequence on normal stress rx (a/h = 50; a/b = 1).

Temperature profile rx � 108(Pa)

BFB FBF SFG-BFB SFG-FBF

Uniform 2.80 2.77 1.35 1.30
Parabolic 2.58 1.73 1.27 0.87
Linear 2.89 2.70 1.61 1.27
Bi-triangular 3.28 2.83 1.4 1.36

Table 8
Effect of stacking sequence on magnetic flux density components (a/h = 50; a/b = 1).

Temperature
profile

Bx (N/Am) By (N/Am

BFB
(�10�4)

FBF
(�10�2)

SFG-BFB
(�10�3)

SFG-
FBF

BFB
(�10�4)

Uniform 7.21 11.1 0.91 1.3 7.04
Parabolic 1.15 1.9 0.37 0.2 1.13
Linear 3.10 5.19 0.65 0.5 3.03
Bi-triangular 5.71 8.31 0.7 1.1 5.59

Table 9
Effect of stacking sequence on electric displacement components (a/h = 50; a/b = 1).

Temperature
profile

Dx (C/m2) Dy (C/m2)

BFB
(�10�4)

FBF
(�10�7)

SFG-BFB
(�10�4)

SFG-FBF
(�10�7)

BFB
(�10�4)

FBF
(�10�7

Uniform 2.51 18.9 4.4 20.4 2.47 17.6
Parabolic 2.59 2.1 7.2 3.82 2.20 1.87
Linear 3.18 5.89 9.45 8.1 2.66 5.27
Bi-triangular 1.91 1.42 3.6 1.43 1.94 13.2
thickness of SFG-BFB MEE plate. From Fig. 8(b), a significant effect
of linear temperature distribution is noticed with respect to the
variation of shear stress component sxz. Moreover, at the mid-
plane of SFG-MEE plate, the maximum value of sxz is noticed for
linear temperature distribution and parabolic temperature distri-
bution, whereas for the bi-triangular and uniform temperature dis-
tribution, it is found to be the minimum. The variation of stress
component sxy across the plate thickness is depicted in Fig. 8(c),
while Fig. 9(a) and (b) display the variation of magnetic flux den-
sity components Bx and Bz, respectively. It is clearly seen from
Fig. 9(c) and (d) that the linear temperature distribution has a sig-
nificant influence on Dx which is followed by the parabolic, uni-
form, and bi-triangular temperature profiles. But, the uniform
temperature distribution exhibits a predominant effect on Dz.

3.2. Effect of stacking sequence

It is observed from the literature review that the MEE plate with
three layered stacking sequence is the most investigated configura-
tion having either B/F/B or F/B/F arrangement. Here, B label and F
label corresponds to pure piezoelectric phase (BaTiO3) and pure
piezomagnetic phase (CoFe2O4), respectively. In addition, the effect
of intermediate volume fraction of BaTiO3 and CoFe2O4 are
neglected in most of the available literatures. Since, in the present
analysis the through thickness temperature profiles are consid-
ered, the different values of temperature encounters with the
material properties corresponding to the different volume fraction
of BaTiO3 and CoFe2O4. This leads to indifferent coupling effects
across the plate thickness, exhibiting a direct impact on the static
parameters of SFG-MEE plate. Therefore, examining the influence
of stacking sequence on the coupled response of SFG-MEE plate
is of prime importance. As tabulated in Table 5, it can be noticed
that the displacement components ux, uy and uz are higher for
SFG-BFB MEE plate. However, as expected, the electric potential
and magnetic potential are higher for SFG-BFB and SFG-FBF MEE
plates, respectively, as tabulated in Table 6. This may be attributed
to the influence of pyroelectric and pyromagnetic coupling effects
with the corresponding stacking sequences. In addition, the
presence of more number of pure piezoelectric and piezomagnetic
layers also plays a major role. The results from Table 7 suggest that
for all the temperature profiles, a minimum stress is observed for
) Bz (N/Am)

FBF
(�10�2)

SFG-BFB
(�10�3)

SFG-
FBF

BFB FBF SFG-
BFB

SFG-
FBF

11.3 0.91 1.4 0.07 2.42 0.066 2.58
2.51 0.38 0.25 0.04 2.1 0.058 1.49
5.58 0.66 0.6 0.06 2.73 0.075 2.37
8.45 0.69 1.1 0.069 2.45 0.067 2.61

Dz (C/m2)

)
SFG-BFB
(�10�3)

SFG-FBF
(�10�7)

BFB
(�10�2)

FBF
(�10�4)

SFG-BFB
(�10�2)

SFG-FBF
(�10�4)

4.33 20 7.92 3.18 8.32 3.14
6.6 3.81 4.12 1.62 6.39 2.39
8.8 8 6.74 2.67 8.58 3.22
3.5 14.1 7.72 3.08 8.03 3.02



Fig. 10. Effect of boundary condition on (a) displacement component ux (b) displacement component uy (c) displacement component uz (d) electric potential / (e) magnetic
potential w.
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(b)

(c) 

(a) 

Fig. 11. Effect of boundary condition on (a) normal stress rx (b) shear stress sxz (c)
shear stress sxy.

(a) 

(b)

(c) 

Fig. 12. Effect of boundary conditions on (a) magnetic flux density Bx (b) magnetic
flux density By (c) magnetic flux density Bz.
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(a)

(b) 

(c) 

Fig. 13. Effect of boundary conditions on (a) electric displacement Dx (b) electric
displacement Dy (c) electric displacement Dz.
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SFG-FBF MEE plate. From Table 8 and Table 9, a significant influ-
ence of the SFG-FBF and SFG-BFBMEE plate is observed on the mag-
netic flux density components (Bx, By and Bz) and electric
displacement components (Dx, Dy and Dz), respectively. It may be
due to the fact that the electric potential and magnetic potential
has a direct effect on the electric displacements and magnetic flux
density components, respectively. In contrast to conventional three
layered MEE plate, the SFG-MEE stacking sequence results in
higher displacements components and lower stress components
which are highly desirable in the design of smart structures. Hence,
from the comprehensive investigation carried out here, one can
explicitly confirm that the stepped functionally graded magneto-
electro-elastic (SFG-MEE) plate results in a superior performance
in comparison with the conventional three-layered MEE plate.

3.3. Effect of boundary condition

The effect of various boundary conditions (see Fig. 2(a)–(e)) on
the direct and derived quantities of SFG-BFB MEE plate is investi-
gated by considering the bi-triangular temperature distribution
in the analysis. It can be pointed out from Fig. 10(a) that ux is
higher for SSSS MEE plate as compared to other boundary condi-
tions. This may be attributed to the free movement of the plate
in x- direction. Further, the displacement component uy and uz
are higher for CFFC and CCCC MEE plate as shown in Fig. 10
(b) and (c), respectively. The distribution of electric potential for
various boundary conditions is represented in Fig. 10(d). It can
be observed from this figure that CCCC boundary edge has a signif-
icant effect on the electric potential while SSSS boundary edge
exhibits a minimal effect. In contrast to other boundary edges, a
dominant effect of CFCF boundary edge on the magnetic potential
is witnessed as indicated in Fig. 10(e). Furthermore, a significant
influence of CCCC boundary condition is noticed on the variation
of normal stress component rx as shown in Fig. 11(a). For all the
boundary conditions, the maximum value of rx is witnessed at
the midplane of the SFG-MEE plate. It may be due to the fact that
the temperature is higher at the midspan. It may also be noticed
from Fig. 11(b) that a substantial effect of SSSS boundary condition
is noticed on sxz while CFFC boundary condition has a significant
effect on sxy as depicted in Fig. 11(c). Fig. 12(a)–(c) illustrate the
distribution of Bx, By, and Bz, respectively. From these figures, it
may be observed that the SSSS boundary condition has a predom-
inant influence on the variation of Bx and Bz. In addition, it is also
noticed that the CFCF MEE plate results a minimum By. The numer-
ical evaluation is extended to compute Dx, Dy, and Dz. From Fig. 13
(a)–(c), it is observed that in contrast to other boundary conditions,
CCCC MEE plate results in a higher electric displacement.

3.4. Effect of aspect ratio (a/h)

The effect of aspect ratio (a/h) on SFG-BFB MEE plate subjected
to uniform temperature load is evaluated. The clamped boundary
condition is enforced on all the edges of the plate. In order to
clearly distinguish between the effect of thin and thick SFG-BFB
MEE plates, different values of aspect ratios (a/h) have been consid-
ered for the analysis. Fig. 14(a)–(e) illustrate the influence of aspect
ratio on the displacement components (ux, uy and uz), electric
potential /, and magnetic potential w, respectively. It can be
inferred from these figures that SFG-BFB MEE plate with lower
aspect ratio results in a greater value of ux, uy and uz. However,
in contrast to ux and uy a marginal effect of aspect ratio is wit-
nessed on uz. The further numerical study reveals that the thick
plate has a predominant effect on the potentials (/ and w) of the
system. Meanwhile, it is found that the stresses are greatly affected
by the aspect ratios considered. As the SFG-BFB MEE plate becomes
thinner, the normal stress rx drastically reduces across the plate



(a) 

(b) 

(c)

(d) 

(e) 

Fig. 14. Effect of aspect ratio (a/h) on (a) displacement component ux (b) displacement component uy (c) displacement component uz (d) electric potential / (e) magnetic
potential w.
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thickness as illustrated in Fig. 15(a). Analogously, a similar trend of
variation is followed by the shear stress components sxz, sxy, and syz
as elucidated in Fig. 15(b)–(d), respectively. The numerical evalua-
tion is further extended to interpret the influence of different tem-
perature profile on SFG-BFB MEE plate for various aspect ratios. It
can be noticed from Table 10 that irrespective of the temperature
distribution considered, the effect of a/h ratios on the displacement
uz and stress components remains unchanged. In other words,
thick plate (a/h = 3) has a significant effect on the direct quantities
and stress components. Likewise, the results presented in Table 11
suggest that for all forms of temperature loads, a thin plate (a/
h = 100) yields lower electric displacement components (Dx, Dy

and Dz) and magnetic flux density components (Bx, By and Bz) of
SFG-MEE plate (Figs. 16 and 17).

3.5. Effect of length-to-width ratio (a/b)

The numerical evaluation is carried out to explore the effect of
the length-to-width ratio (a/b) on the static parameter of SFG-MEE
plate. The present analysis considers the plate is thick (a/h = 5) and
it is clamped on all the edges (Fig. 2a). The variation of direct quan-
tities such as ux, uy, uz, / and w with respect to different a/b ratio is
plotted in Fig. 18(a)–(e), respectively. As elucidated in these
figures, the displacement components ux, uy and uz exhibit a
(b)

(a) 

Fig. 15. Effect of aspect ratio (a/h) on (a) normal stress rx (b
decreasing trend as a/b ratio increases. Meanwhile, the electric
potential and magnetic potential increases with the increase in
the a/b ratio. However, it is worth stating that for the higher values
of a/b ratio, the discrepancy becomes negligible for uz and /. The
variation of normal stress rx and shear stress sxz along the plate
thickness is shown in Fig. 19(a) and (b), respectively. The observa-
tion from Figs. 20 and 21 reveal that for a/b = 2, a drastic increase in
the electric displacement components (Dx, Dy and Dz) and magnetic
flux density components (Bx, By and Bz) is witnessed. In other
words, for the given aspect ratio (a/h), higher a/b ratio tends to
increase the electric displacement and magnetic flux density com-
ponents along the thickness of SFG-MEE plate. Further, Table 12
depicts the maximum values of direct quantities such as uz, /
and w for different combinations of aspect ratio, the length-to-
width ratio (a/b) and temperature profiles. The results from this
table suggest that irrespective of the temperature profiles, lower
a/h ratio and a/b ratio results in a higher value of uz whereas, the
combination of lower aspect ratio (a/h) and higher of length-to-
width ratio (a/b) yields the maximum value of the direct quantities.

3.6. Influence of product properties

It is familiar that the MEE material displays an additional
thermo-electric (pyroelectric effect) and thermo-magnetic (pyro-
(d) 

(c) 

) shear stress sxz (c) shear stress sxy (d) shear stress syz.



Table 10
Effect of aspect ratio (a/h) on the maximum values of transverse deflection, normal stresses and shear stresses for different temperature profiles.

a/h Temperature profiles uz (�10�6 m) rx (�102 MPa) ry (�102 MPa) rz (�102 MPa) sxz (MPa) sxy (MPa) syz (MPa)

3 Uniform 8.16 1.81 1.68 2.74 6.60 3.92 7.06
Parabolic 5.88 1.35 1.37 2.23 4.22 1.64 2.69
Linear 8.34 1.84 1.81 2.96 6.62 2.71 4.71
Bi-Triangular 6.45 1.70 1.64 2.69 4.73 3.03 5.16

5 Uniform 8.09 1.70 1.64 2.71 6.20 3.22 4.90
Parabolic 5.62 1.32 1.35 2.22 4.17 1.23 2.26
Linear 8.12 1.79 1.78 2.94 6.37 2.18 3.49
Bi-Triangular 6.32 1.66 1.61 2.67 4.42 2.37 3.67

10 Uniform 7.95 1.60 1.53 2.64 4.89 3.06 4.10
Parabolic 5.49 1.27 1.31 2.20 4.13 1.16 2.21
Linear 8.01 1.69 1.71 2.89 5.73 1.97 2.93
Bi-Triangular 6.19 1.56 1.54 2.62 3.70 2.30 3.07

25 Uniform 7.78 1.41 1.37 2.58 1.20 2.96 0.72
Parabolic 5.32 1.25 1.27 2.17 3.97 1.07 2.10
Linear 7.94 1.61 1.62 2.84 4.93 1.95 2.76
Bi-Triangular 6.03 1.44 1.42 2.57 1.24 2.29 0.51

50 Uniform 7.64 1.35 1.36 2.56 0.42 2.17 0.62
Parabolic 5.18 1.22 1.26 2.16 3.50 0.64 1.89
Linear 7.85 1.59 1.61 2.83 4.20 1.47 2.66
Bi-Triangular 5.95 1.41 1.41 2.56 0.41 1.69 0.43

100 Uniform 7.46 1.34 1.34 2.55 0.33 1.77 0.37
Parabolic 5.04 1.20 1.25 2.15 2.05 0.90 1.63
Linear 7.65 1.57 1.59 2.82 2.48 1.23 1.95
Bi-Triangular 5.86 1.40 1.39 2.56 0.21 1.33 0.26

Table 11
Effect of aspect ratio (a/h) on the maximum values of electric displacement components and magnetic flux density components for different temperature profiles.

a/h Temperature profiles Dx (�10�3C/m2) Dy (�10�3C/m2) Dz (�10�3C/m2) Bx (�10�3 N/Am) By (�10�3 N/Am) Bz (�10�3 N/Am)

3 Uniform 4.8 2.5 83.1 35.7 1.4 157.3
Parabolic 1.4 1.4 63.7 15.6 0.59 89.3
Linear 2.9 2.3 83.1 25.3 0.98 128.6
Bi-Triangular 3.4 1.8 75.4 30.4 1.1 152.9

5 Uniform 3.1 2.4 83.3 22.6 1.04 119.7
Parabolic 1.0 1.38 64.2 7.1 0.45 58.2
Linear 1.9 2.2 83.8 13.9 0.83 83.5
Bi-Triangular 2.2 1.7 76.4 16.8 0.71 79.2

10 Uniform 1.2 1.9 84.1 88.6 0.80 109.7
Parabolic 0.9 1.3 64.5 29.2 0.28 49.8
Linear 1.3 2.01 85.2 53.7 0.56 69.3
Bi-Triangular 1.1 1.47 77.7 61.1 0.57 81.7

25 Uniform 1.01 0.76 84.3 44.6 1.2 139.4
Parabolic 0.91 1.27 64.9 13.7 0.45 49.2
Linear 1.28 1.6 86.4 27.6 0.78 85.1
Bi-Triangular 0.85 0.71 78.9 31.8 0.85 112.9

50 Uniform 0.44 0.43 83.2 2.03 0.91 66.7
Parabolic 0.71 0.66 63.9 0.86 0.37 58.1
Linear 0.95 0.88 85.8 1.5 0.66 75.2
Bi-Triangular 0.36 0.35 80.3 1.4 0.69 67.6

100 Uniform 0.39 0.37 82.7 0.91 0.92 66.8
Parabolic 0.65 0.61 63.1 0.39 0.38 58.3
Linear 0.82 0.76 84.6 0.66 0.67 75.5
Bi-Triangular 0.32 0.30 79.5 0.69 0.70 67.8
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magnetic) coupling in the presence of thermal environment. This
distinct property has a beneficial effect on the electric potential
of the MEE structures [47]. Alongside, it is found that the pyroef-
fects are significantly enhanced with functional gradation [52].
Therefore, the investigation of the influence of product properties
(pyroeffects) on the static behavior of SFG-BFB MEE plate is of high
value of significant interest. In this regard, considering different
thermal loading profiles, a comparative study is made to analyse
the distribution of the electric potential with and without pyroef-
fects. It can be clearly observed from Fig. 22(a)–(d) that for all
the temperature distributions, the pyroeffects tend to improve
the electric potential across the thickness of SFG-BFB MEE plate.
According to Table 13, it can be deduced that irrespective of the
temperature profiles and stacking sequences, neglecting the influ-
ence of pyroeffects degrades the maximum attainable electric
potential. In addition, it is also seen that bi-triangular temperature
profile has a higher percentage reduction in the maximum electric
potential when the pyroeffects are neglected. It is followed by
parabolic, uniform and linear temperature profiles. Furthermore,
the contribution of the pyroeffects towards the maximum electric
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Fig. 16. Effect of aspect ratio (a/h) on (a) magnetic flux density Bx (b) magnetic flux
density By (c) magnetic flux density Bz.

(a) 

(b) 

(c) 

Fig. 17. Effect of aspect ratio (a/h) on (a) electric displacement Dx (b) electric
displacement Dy (c) electric displacement Dz.
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(b) 

(c) 

(d) 

(e) 

(a) 

Fig. 18. Effect of length-to-width ratio (a/b) on (a) displacement component ux (b) displacement component uy (c) displacement component uz (d) electric potential / (e)
magnetic potential w.
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(a) 

(b) 

(c) 

Fig. 20. Effect of length-to-width ratio (a/b) on (a) electric displacement Dx (b)
electric displacement Dy (c) electric displacement Dz.

(a) 

(b) 

Fig. 19. Effect of length-to-width ratio (a/b) on (a) normal stress rx (b) shear stress
sxz.
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potential of SFG-BFB MEE plate with different aspect ratios is eval-
uated. The results tabulated in Table 14 reveal that the pyroeffects
have a predominant benefaction for the SFG-BFB MEE plate with
higher aspect ratio. Meanwhile, it gradually becomes insignificant
for thick MEE plates.

4. Conclusion

This article makes the first attempt to analyse the coupled static
response of stepped functionally graded (SFG-MEE) plate under dif-
ferent thermal environment. A FE formulation is derived with the
aid of the principle of total potential energy and coupled constitu-
tive equations accounting the thermal fields. The variations of
direct and derived quantities are evaluated by considering the dif-
ferent temperature distribution. Among the various temperature
profiles considered, a significant effect of the uniform temperature
distribution is noticed on the static behavior of SFG-MEE plate. In
addition, a significant effect of SFG-BFB stacking sequence is also



(b) 

(c) 

(a) 

Fig. 21. Effect of length-to-width ratio (a/b) on (a) magnetic flux density Bx (b) magnetic flux density By (c) magnetic flux density Bz.
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observed on the electric potential and electric displacement com-
ponents while SFG-FBF stacking sequence shows a predominant
influence on the magnetic potential and magnetic flux density
components. Further, numerical investigation reveals that the
lower aspect ratio (a/h) dominates the variation of static parame-
ters across the thickness of the SFG-MEE plate. Meanwhile, for



(a)  

(b) 

(c)          

(d) 

Fig. 22. Pyroeffects on electric potential for (a) uniform (b) parabolic (c) linear (d) bi-triangular temperature distributions.

Table 12
Effect of length-to-width (a/b) ratio on the maximum values of transverse displacement, electric potential and magnetic potential for different temperature profiles and aspect
ratio (a/h).

a/h Temperature profiles uz (�10�6 m) / (kV) w (A)

a/b = 0.5 a/b = 1.0 a/b = 2.0 a/b = 0.5 a/b = 1.0 a/b = 2.0 a/b = 0.5 a/b = 1.0 a/b = 2.0

5 Uniform 7.84 7.76 7.69 16.14 16.28 16.35 24.04 27.48 52.03
Parabolic 3.31 3.23 3.17 5.79 5.86 5.94 13.44 15.46 37.56
Linear 5.54 5.46 5.42 9.21 9.28 9.32 19.30 23.67 40.56
Bi-Triangular 6.83 6.68 6.52 9.56 9.65 9.77 22.52 24.18 43.53

10 Uniform 7.72 7.69 7.51 13.36 13.48 13.53 22.87 27.12 50.06
Parabolic 3.17 3.14 2.97 5.37 5.41 5.56 11.56 13.73 33.36
Linear 5.38 5.28 5.19 8.65 8.74 8.82 18.39 21.11 38.39
Bi-Triangular 6.49 6.38 6.24 9.20 9.23 9.25 20.59 23.87 41.22

50 Uniform 7.67 7.64 7.49 11.21 11.26 11.28 21.15 26.85 49.71
Parabolic 3.13 3.03 2.91 5.17 5.21 5.30 10.21 12.55 29.42
Linear 5.21 5.13 5.04 8.59 8.64 8.67 17.35 20.73 35.72
Bi-Triangular 6.01 5.95 5.83 8.75 8.82 8.93 17.42 20.67 38.13

100 Uniform 7.64 7.55 7.46 11.08 11.13 11.24 19.53 26.76 47.27
Parabolic 3.07 2.98 2.88 5.10 5.12 5.16 9.87 12.14 28.98
Linear 5.16 4.97 4.89 8.51 8.54 8.58 16.83 20.08 34.87
Bi-Triangular 5.98 5.91 5.81 8.63 8.68 8.75 17.11 19.67 35.41
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Table 14
Effect of aspect ratio (a/h) on the maximum electric potential /max for different temperature profiles.

Temperature
profiles

a/h = 100 a/h = 50 a/h = 10 a/h = 5 a/h = 3

W.P Wo.
P

%
Reduction

W.P Wo.
P

%
Reduction

W.P Wo.
P

%
Reduction

W.P Wo.
P

%
Reduction

W.P Wo.
P

%
Reduction

Uniform 9.42 7.06 25.05 11.26 9.93 11.82 11.94 11.48 3.85 12.2 11.9 2.46 13.1 12.88 1.68
Parabolic 4.86 3.64 25.10 5.21 4.42 15.16 5.71 5.44 4.73 6.43 6.18 3.93 7.45 7.26 2.48
Linear 7.23 5.42 25.03 8.64 7.65 11.45 9.06 8.78 3.09 9.61 9.40 2.18 10.18 10.05 1.27
Bi-Triangular 7.38 5.47 25.88 8.82 7.24 17.91 9.42 8.89 5.61 10.06 9.63 4.21 10.87 10.51 3.31

where, W.P – with pyroeffects; Wo. P – without pyroeffects.

Table 13
Influence of pyroeffects on the maximum electric potential /max for different stacking sequences.

Temperature Profile Max. electric potential /max (kV)

SFG-BFB SFG-FBF

With Pyroeffects Without Pyroeffects % Reduction With Pyroeffects Without Pyroeffects % Reduction

Uniform 11.26 9.93 11.82 10.69 9.48 12.62
Parabolic 5.21 4.42 15.16 4.28 3.71 13.3
Linear 8.64 7.65 11.45 7.36 6.48 11.9
Bi-Triangular 8.82 7.24 17.91 7.88 6.74 14.38

84 M. Vinyas, S.C. Kattimani / Composite Structures 178 (2017) 63–86
the given aspect ratio, decreasing the length-to-width (a/b) ratio
results in a higher value of displacement components. However,
the electric potential, magnetic potential and the stress compo-
nents tend to increase with the higher length-to-width (a/b) ratio.
The study on the effect of boundary conditions also reveals that the
CCCC boundary edge exhibits a significant effect on the transverse
displacement, electric potential, normal stress and the electric dis-
placement components. A prominent evaluation is carried out to
investigate the influence of pyroeffects. It is observed that irrespec-
tive of the temperature profiles, the pyroeffects tends to improve
the electric potential of the system. In contrast to the other tem-
perature profiles, the bi-triangular temperature profile exhibits a
significant reduction in the electric potential of the system when
the pyroeffects are neglected. Moreover, the predominant influ-
ence of pyro coupling diminishes as the aspect ratio of SFG-MEE
plate decreases i.e., for thick SFG-MEE plates. It is expected that
the results presented here can provide a significant input in the
design and analysis of SFG-MEE structures under thermal
environment.

Appendix A: List of notation
a
 Length of the SFG-MEE plate

Bx, By, Bz
 Electric displacement components along x,y

and z directions

b
 Width of the SFG-MEE plate

Dx, Dy, Dz
 Magnetic flux density components along x,y

and z directions

h
 Thickness of the SFG-MEE plate

K
 Kelvin

Lt;L/, Lw
 Differential operators

N
 Total number of layers

n
 Layer number under consideration

Q/
 Electric charge density
Qw
 Magnetic charge density

Tp
 Total potential energy of the overall SFG-MEE

plate

ux;uy;uz
 Displacement components along x, y and z

directions
Vn
 Volume of the nth layer of the SFG-MEE plate

Vf
 Volume fraction of Barium Titanate (BaTiO3)

and Cobalt Ferric oxide (CoFe2O4)

z
 Position of the point of interest from the

bottom layer

Matrices and vectors

fBng
 Magnetic flux density vector of the nth layer of

the SFG-MEE plate

½Bt �; ½B/�; ½Bw�
 Derivative of shape function matrices

½Cn�
 Elastic stiffness matrix of the nth layer of the

SFG-MEE plate

fdetg
 The nodal displacement vector
fDng
 Electric displacement vector of the nth layer of
the SFG-MEE plate
½en�
 Piezoelectric coefficient matrix of the nth layer
of the SFG-MEE plate
fEng
 Electric field vector of the nth layer of the SFG-
MEE plate
fFbodyg
 Body force

fFconcg
 Point force

fFeqg
 Equivalent force vector
fFemgT
 Elemental mechanical load vector
fF g
p:eg
 Global pyroelectric load vector
fF g
p:mg
 Global pyromagnetic load vector
fFsurfaceg
 Surface force

fF g

thg
 Global thermal load vector
fFe/gT
 Elemental electric load vector
fFewgT
 Elemental magnetic load vector
fHng
 Magnetic field vector of the nth layer of the
SFG-MEE plate
½Keq�
 Equivalent stiffness matrix

½K g

tt�
 Global elastic stiffness matrix
½K g
t/�
 Global electro-elastic coupling stiffness matrix
½K g
tw�
 Global magneto-elastic coupling stiffness

matrix

½K g

//�
 Global electric stiffness matrix
½K g
ww�
 Global magnetic stiffness matrix
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½K g
/w�
 Global electro-magnetic stiffness matrix
½mn�
 Electromagnetic coefficient matrix of the nth

layer of the SFG-MEE plate

½Nt �; ½N/�; ½Nw�
 Nodal shape function matrices

fpng
 Pyroelectric coefficient vector of the nth layer

of the SFG-MEE plate

½qn�
 Magnetostrictive coefficient matrix of the nth

layer of the SFG-MEE plate

Greek symbols

/
 Electric potential

w
 Magnetic potential

Dh
 Temperature rise

hmax
 The maximum temperature

h0
 Stress free temperature

hi
 Initial temperature at the bottom layer of SFG-

MEE plate

frng
 Stress tensor of the nth layer of the SFG-MEE

plate

fkng
 Thermal stress tensor of the nth layer of the

SFG-MEE plate

fang
 Thermal expansion co-efficient vector of the

nth layer of SFG-MEE plate

feng
 Strain tensor of the nth layer of the SFG-MEE

plate

½gn�
 Dielectric constant matrix of the nth layer of

the SFG-MEE plate

fsng
 Pyromagnetic coefficient vector of the nth layer

of the SFG-MEE plate

½ln�
 Magnetic permeability constant matrix of the

nth layer of the SFG-MEE plate

f/eg
 The nodal electric potential vector

fweg
 The nodal magnetic potential vector
Appendix B

The condensation steps involved in obtaining Eq. (15) can be
explained as follows:

Considering the Eq. (12.c) and solving for fwg, we obtain

fwg ¼ ½K g
ww��1½K g

tw�Tfdtg � ½K g
ww��1½K g

/w�Tf/g � ½K g
ww��1fF g

p:mg ðB:1Þ
Substituting Eq. (B.1) in Eq. (12.b) and solving for {/}, we get

½K g
t/�Tfdtg � ½K g

//�f/g � ½K g
/w�½½K g

ww��1½K g
tw�Tfdtg � ½K g

ww��1½K g
/w�Tf/g

� ½K g
ww��1fF g

p:mg� ¼ fF g
p:eg

fdtg½½K g
t/�T � ½K g

/w�½K g
ww��1½K g

tw�T � � f/g½½K g
//� � ½K g

/w�½K g
ww��1½K g

/w�T �
þ ½K g

/w�½K g
ww��1fF g

p:mg ¼ fF g
p:eg

½K1�fdtg � ½K2�f/g ¼ fF g
p:eg � ½K g

/w�½K g
ww��1fF g

p:mg

½K1�fdtg � ½K2�f/g ¼ fF/ solg

f/g ¼ ½K2��1½K1�fdtg � ½K2��1fF/ solg ðB:2Þ
Further, on substituting Eqs. (B.1) and (B.2) in Eq. (12.a), we

obtain

½K g
tt�fdtg þ ½K g

t/�f/g þ ½K g
tw�½½K g

ww��1½K g
tw�Tfdtg � ½K g

ww��1½K g
/w�Tf/g

� ½K g
ww��1fF g

p:mg� ¼ fF g
thg

fdtg½½K g
tt � þ ½K g

tw�½K g
ww��1½K g

tw�T � þ f/g½½K g
t/� � ½K g

tw�½K g
ww��1½K g

/w�T �
� ½K g

tw�½K g
ww��1fF g

p:mg ¼ fF g
thg
½K5�fdtg þ ½K6�f/g � ½K g
tw�½K g

ww��1fF g
p:mg ¼ fF g

thg

½K5�fdtg þ ½K6�½½K3�fdtg � ½K2��1fF/ solg� � ½K g
tw�½K g

ww��1fF g
p:mg ¼ fF g

thg

½½K5� þ ½K6�½K3��fdtg � ½K6�½K2��1fF g
p:eg þ ½½K6�½K4�

� ½½K g
tw�½K g

ww��1��fF g
p:mg ¼ fF g

thg

½K7�fdtg ¼ ½K6�½K2��1fF g
p:eg þ ½½K g

tw�½K g
ww��1 � ½K6�½K4��fF g

p:mg þ fF g
thg

½K7�fdtg ¼ ½K8�fF g
p:eg þ ½K9�fF g

p:mg þ fF g
thg

½Keq�fdtg ¼ fFeqg ðB:3Þ
The various stiffness matrices and force vectors appearing in

Eq. (15) are given by

½K1� ¼ ½K g
/t � � ½K g

w/�½K g
ww��1½K g

wt�; ½K2� ¼ ½K g
//� � ½K g

w/�½K g
ww��1½K g

/w�; ½K3�
¼ ½K2��1½K1�

½K4� ¼ ½K2��1½K g
w/�½K g

ww�; ½K5� ¼ ½K g
tt� þ ½K g

tw�½K g
ww��1½K g

wt �½K6�
¼ ½K g

t/� � ½K g
tw�½K g

ww��1½K g
/w�;

½K7� ¼ ½K5� þ ½K6�½K3�; ½K8� ¼ ½K6�½K2��1
; ½K9�

¼ ½K g
tw�½K g

ww��1 � ½K6�½K4�; ½Keq� ¼ ½K7�;

½K1 w� ¼ ½K g
wt � � ½K g

w/�½K3�; ½K2 w� ¼ ½K g
ww��1½K g

w/�½K2��1
;

½K3 w� ¼ ½K g
ww��1½K g

w/�½K2��1½K g
w/�T ½K g

ww��1 þ ½K g
ww��1

; fFeqg
¼ ½K9�fF g

p:mg þ ½K8�fF g
p:eg þ fF g

thg;

fF/ solg ¼ fF g
p:eg � ½K g

w/�T ½K g
ww��1fF g

p:mg ðB:4Þ
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