
648 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 5, MAY 1999

On Low Complexity Stack Decoding of Convolutional Codes
J. D’Souza and S. L. Maskara

Abstract—This letter presents techniques for improving the
distribution of the number of stack entries, for stack sequential
decoding over hard quantized channel, with emphasis on high
rate codes. It is shown that, for a class of high ratebbb/(bbb+++1) codes,
a table-based true high rate approach can be easily implemented
for obtaining decoding advantage over the punctured approach.
Modified algorithms, which significantly improve the distribution
of the number of stack entries and decoding time, are proposed
for rate 1=N codes and high rateb=(b+ 1) codes.

Index Terms—Convolutional codes, sequential decoding, stack
algorithm.

I. INTRODUCTION

FOR a stack sequential decoder [1], efforts have been made
to improve the distribution of the number of stack entries

[2]–[4]. This is to reduce the probability of losing the true path
node from the stack [2]. Further, since stack reorganization is a
time consuming operation, an improvement in decoding speed
can also be expected from improvement in the distribution of
the number of stack entries [2]. In this letter, we have shown
that, for a class of high rate codes, a table-based
true high rate (THR) approach can be easily implemented for
hard quantized channel, to obtain decoding advantage over the
punctured approach [5], [6]. For this channel, we have also
proposed modified algorithms that use tags to give improved
distribution of the number of stack entries and decoding time.
Our modifications are based on the observation that a node
with a smaller metric can get extended only after a node with
a better metric reaches the stack top, and consequently it would
suffice if the former is introduced into the stack just when the
latter reaches the stack top.

II. TABLE-BASED APPROACH FORHIGH RATE CODES

In the context of saving memory, a table-based decoding
approach was suggested by Jelinek [2], wherein all the forward
branches of the top node are not introduced simultaneously;
rather, the next best sibling of the top node is introduced into
the stack, and the top node is replaced by its best forward
branch (BFB). The complexity of this approach then depends
on the ease with which these two operations can be performed.

Paper approved by S. B. Wicker, the Editor for Coding Theory and
Techniques of the IEEE Communications Society. Manuscript received April
1, 1996; revised February 27, 1998 and September 15, 1998.

J. D.’Souza was with the Department of Electronics and Electrical Com-
munication Engineering, Indian Institute of Technology, Kharagpur 721302,
India. He is now with the Department of Electronics and Communication
Engineering, Karnataka Regional Engineering College Surathkal, Mangalore
574157, India.

S. L. Maskara is with the Electronics and Electrical Communication
Engineering Department, Indian Institute of Technology, Kharagpur 721302,
India.

Publisher Item Identifier S 0090-6778(99)03913-6.

In this section we show that, for a class of rate
THR codes, these two operations are rather simple. Such a
table-based decoder will be called Jelinek THR decoder.

A. Best Forward Branch

For the rate long THR codes listed in the literature,
the zeroth-order generator [1] has the form
where is a matrix, and is a matrix for which
all the elements below the diagonal are zero and the diagonal
elements are all one. This structure ofimplies that, if the
message word produces the code
word then does not depend on

for For a systematic code, since only
the diagonal elements of are nonzero, the BFB is selected
as per the first bits of the received word, and then the parity
bit is generated. Therefore, the error word of the BFB is either

or As for nonsystematic
codes, assume and generate If where

is the first bit of the received word, then setting
will make This procedure is successively followed
for and then is generated.

B. Next Best Sibling

Let the message word produce the code word when
the encoder state is zero, Let set consist
of all these code words. The following properties of these
code words are well known. : The code word corresponding
to the message word is being the
bitwise modulo-2 operator. : : If the
encoder state is arbitrary, the code wordcorresponding to
the message word is given by being the
code word corresponding to all zero message word applied to
the encoder [7].

At the decoder, let be the message word that produces
the code word which is at a minimum distance to the
received word Therefore, Using

(1)

The error words of the forward branches are given by
Using (1) for and for

gives Because of the error words
list is therefore given by In the
following, we assume that are in the increasing
order of (Hamming) weight.

Consider the case of The error words
in the increasing order of weight are
Therefore, the code words, in the order of distance, are

Using (1), By

0090–6778/99$10.00 1999 IEEE

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 09,2021 at 04:41:51 UTC from IEEE Xplore. Restrictions apply.

D’SOUZA AND MASKARA: LOW-COMPLEXITY STACK DECODING 649

is the code word corresponding to the message
word when the encoder state is zero. Therefore,
by for these message words produce
code words in the order of increasing distance. Now consider

The -tuples
may not be in the increasing order of weight. Therefore, we
introduce new, unique -tuples
such that are in the increasing order of
weight. Consequently, the code words in the increasing order
of distance are Proceeding as
we did in the case of the th code word
corresponds to the message word is the message
word corresponding to the code word

Consider If the metrics corresponding
to the weights of are stored in a table

the metric of any sibling can be obtained by a table
look-up operation. The message word of theth branch is

Similarly, for the th branch
Or where

Thus if the -tuples are stored in a table
then can be obtained from through a table look-up

operation. Similarly, for also, if the metrics
corresponding to the weights of
are stored in a table and

are stored in a table the next best
sibling can be generated by table look-up procedure.

III. COMPARISON BETWEEN THR AND

PUNCTURED DECODING APPROACHES

The class of THR codes considered in the previous section
can be easily transformed to punctured codes, and for rate

the converse is also true [8]. In the following, we
therefore make a comparison of the new table-based THR
approach and the classical punctured approach for a given
code. But such a comparison is somewhat difficult since their
computations are not of the same complexity. Traditionally, a
computation consists of all operations performed in extending
a path by one branch; the main constituent operations are those
of accessing the generators and stack reorganization. Since a
segment of branches ending in a two-symbol (TS) node on
a punctured code tree, corresponds to a single branch of the
THR code tree, for the purpose of comparing, it is convenient
to imagine the THR decoder moving on the low rate tree of
the equivalent punctured code,branches per decoding step.

In the punctured approach, if the top node is a TS node,
it will be extended up to the next TS node, insucces-
sive steps (or a -branch computation) of the decoder. The
same work will be done in one step by the THR decoder.
Although the same number of generators are accessed by both
the decoders, the punctured decoder has to perform
additional stack reorganizations. On the other hand, a THR
computation involves accessing tables and maintaining the
requisite tag. But these operations are simpler than those of a
stack reorganization. Thus the difference in the complexity of
a THR computation and a-branch computation of a punctured
decoder is accounted for by the difference mainly in the
number of stack reorganizations and the tag-related operations.

Suppose that a noisy received sequence requires full explo-
ration of the code tree. Now consider a subtree of height
branches, ending in TS nodes. For the THR decoder, only one
computation is required to find the BFB of the subtree. All the
other THR branches of the subtree are explored by
table look-up procedure. These siblings are introduced one per
decoding step, as a part of a computation that extends a top
node. On the other hand, the punctured decoder has to perform,
effectively -branch computations to explore the full
subtree. But our simulation results on average computation
(Section V) show that even at the computational
ratio of the two approaches is close to 1 : 1, whereis the
code rate and is the computational cutoff rate [1]. This
ratio corresponds to that of the noiseless condition. However,
since the THR approach is helpful over the noisy segments of
received sequence, a slight improvement with channel noise
and code rate is also observed. With respect to distribution of
computation, as in [6], we have observed a slight superiority
of the THR decoder over the punctured decoder. As for
stack entries, for a fully explored subtree, both the decoders
introduce nodes. But our simulation results (Section
V) show that even at the ratio of the average
number of stack entries is 1 :, which corresponds to that of
noiseless condition. Further, the ratio of average decoding time
of the two approaches seem to be roughly : , for
both noisy and relatively quiet channel conditions. Thus the
advantage of THR approach increases with the code rate.

IV. M ODIFIED ALGORITHMS

We prove the correctness of the proposed modified algo-
rithms only for the case of punctured codes. But for other
codes also, the correctness can be proved using the same
philosophy. In the following, the terms father node, sibling of
father node, sibling of grandfather node, and depth modulo
will be denoted by -node, -sibling, -sibling, and depth-
respectively.

A. Rate Codes

Let each stack node carry three tags: thetag to indicate
its weight, the flag to indicate whether sibling of the node
is present in the stack, and the tag to determine whether

-sibling of the node is present in the stack. The steps of the
modified algorithm are as follows.

1) Get the top node from the stack. Let its tag value
be

2) If sibling is not already present in the stack, then
Introduce sibling of weight into the stack.

Else if -sibling is not already present in the stack,
Introduce -sibling with weight into the stack.

3) Keep extending the prior top node (of step 1) along the
BFB at each step, until the BFB has nonzero weight
Siblings are not introduced during these extensions.

4) Set the tag to and put the node to the stack. Go
to step 1.

As for the tag, for the initial node in the stack, the tag is
set to zero. Whenever a sibling/-sibling is generated, the
value of the top node is transferred to thetag of the newly

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 09,2021 at 04:41:51 UTC from IEEE Xplore. Restrictions apply.

650 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 5, MAY 1999

created sibling/-sibling, and the tag of the top node is set
equal to its depth value. By this technique, thetag of a node
keeps track of the depth value at which the last sibling was
generated along the path to the node. If thevalue of a node
is less than the depth value of its-sibling, then the latter is
not present in the stack. It should be noted that, for punctured
and THR approaches, the details of transferringtag values
between nodes are slightly different from above, but the basic
idea is the same.

B. Rate Punctured Codes

As in the case of rate codes, let each stack node
contain three tags. We assume that the first column of the
perforation pattern has two ones. When this is not true, the
various cases of depth- in the modified algorithm should
be labeled accordingly. The steps of the modified algorithm
are as follows.

1) Get the top node from the stack.
2) Case 1, depth- :

If sibling is not present, introduce sibling of weight
1 into the stack.
Else if -sibling is not present, introduce-sibling of
weight 1 into the stack.

Case 2, depth- :

a) If not present, introduce-sibling of weight 2 into
the stack.

b) If not present, introduce-sibling of weight 1 into
the stack.

Case 3, depth- :
If not present, introduce -sibling of weight 1
into the stack.

3) Keep extending the prior top node along the BFB at each
step, until the BFB has nonzero weight Siblings are
not introduced during these extensions.

4) Set the tag to and put the node to the stack. Go
to step 1.

(Note: Since for depth- has values of 0 and 1 only,
in step 2, case 2 corresponds to depth- and case 3 is
not applicable.)

Correctness:1) Step 4 puts a node to stack only if, in step
3, the BFB has a nonzero weight. It is obvious that otherwise
a stack reorganization is not required since at step 1 we started
with the best node in the stack. At nodes where the emanating
branches have only one symbol, the decoder can always find
a branch with weight zero. Consequently, at step 4, the node
always will have 2 symbols and the weight will be equal to
1. Therefore, in step 2, when depth- a sibling of
weight 1 is put into the stack if not already present there. In
this case, the worse sibling has better metric than-sibling.
Therefore, -sibling is introduced into the stack only if the
top node happens to be the last of the two siblings to reach
the stack top.

2) In the case of depth- if -sibling is to be
introduced, it will have a weight of 2 (if it had a weight of
1, it would have been introduced at depth- when the

-node reached the stack top). Therefore,-sibling (if it is
not present in the stack) which has a weight of 1, will have

Fig. 1. Distribution of the number of stack entries per decoded bit for
punctured and THR decoders.R = 3=4:

a better metric than -sibling. Since the commonly used data
structures do not permit us to check if-sibling is present
when -sibling reaches stack top, we introduce both of them
(if they are not present).

3) For depth- the -node will have only one
symbol and, therefore, the-sibling will have a weight of 1.

C. THR Codes

Each stack node is assumed to carry 2 tags: thetag as
index to the requisite tables (Section II), and thetag. When
the BFB has weight zero, let be the weight of its next best
sibling. The steps of the modified algorithm are as follows.

1) Take the top node from the stack.
2) If the top node happens to be the last of the siblings

which have a weight and if -sibling is not
present in the stack, then introduce-sibling with weight

3) If the next best sibling is available, introduce it into the
stack.

4) Keep extending the prior top node (of step 1) along the
BFB at each step, until the BFB has nonzero weight.
Siblings are not introduced during these extensions.

5) Set the tag, and place the node in the stack. Go to
step 1.

V. RESULTS AND DISCUSSIONS

Simulations have been conducted over hard quantized
Gaussian channel, at rates 1/2, 2/3, 3/4, 7/8 for 3 channel
error rates where is the channel error
rate corresponding to Fig. 1 shows the distribution
of the number of stack entries per decoded bit for the different
decoders studied, at For the THR approach, the
Vinck decoder has a distribution superior to that of the
Jelinek decoder. The modified decoder offers improvement
over the Vinck decoder for quiet frames, but this difference
reduces as the channel becomes noisy. The THR decoders
have a far “better” distribution than the classical punctured
decoder. The tag-decoder refers to a simplistic modification

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 09,2021 at 04:41:51 UTC from IEEE Xplore. Restrictions apply.

D’SOUZA AND MASKARA: LOW-COMPLEXITY STACK DECODING 651

TABLE I
NORMALIZED AVERAGES FORNUMBER OF COMPUTATIONS PERDECODED BRANCH (CAV); NUMBER OF STACK

ENTRIES PERDECODED BIT (SAV); AND DECODING TIME PER FRAME (TAV); �: INDICATES PUNCTURED

of classical punctured decoder, wherein with the help of a
tag, the introduction of worse sibling is delayed until the
better metric sibling reaches the stack top [2]. It is seen to
give only a slight improvement. But the modified punctured
decoder gives at least as much improvement as the Jelinek
THR decoder. The average values for computations, stack
entries, and decoding time for different decoders are given in
Table I, normalized with respect to those of classical punctured
decoder. The following observations can be made. First, with
respect to computation, the THR decoders have only a slight
edge over the punctured approach; but with respect to stack
entries and decoding time, their performance is superior.
Second, the proposed modifications give improvement with
respect to both stack entries and decoding time. Third, the first
two improvements increase with the code rate. Fourth, while
the decoding speeds of modified THR and Vinck decoders
are comparable, the former is slightly better with respect to
computation and stack entries. But our Vinck decoder was
implemented using tables and tags, since with respect to

decoding speed, such an implementation is more efficient than
that in [4]. We may also note that the modified THR decoder
has the desirable feature that, irrespective of the code rate,
a decoding step introduces only one sibling into the stack.
Simulation results thus indicate that the proposed techniques
enable low complexity stack decoding.

ACKNOWLEDGMENT

The authors are grateful to the reviewers and the editor for
the review of this communication.

REFERENCES

[1] S. Lin and D. J. Costello, Jr.,Error Control Coding. Englewood Cliffs,
NJ: Prentice-Hall, 1983.

[2] F. Jelinek, “A fast sequential decoding algorithm using a stack,”IBM
J. Res. Develop., vol. 13, pp. 675–685, Nov. 1969.

[3] A. J. Vinck, A. J. P. Paepe, and A. P. M. Schalkwijk, “A class of
binary rate one-half convolutional codes that allows an improved stack
decoder,”IEEE Trans. Inform. Theory, vol. IT-26, pp. 389–392, July
1980.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 09,2021 at 04:41:51 UTC from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 5, MAY 1999

[4] A. J. Vinck, “A low complexity stack decoder for a class of binary rate
(n� 1)=n convolutional codes,”IEEE Trans. Commun., vol. COM-32,
pp. 476–479, Apr. 1984.

[5] J. B. Cain, G. C. Clark, and J. Geist, “Punctured convolutional codes
of rate(n�1)=n and simplified maximum likelihood decoding,”IEEE
Trans. Inform. Theory, vol. IT-25, pp. 97–100, Jan. 1979.

[6] G. Bégin and D. Haccoun, “Performance of sequential decoding of
high-rate punctured convolutional codes,”IEEE Trans. Commun., vol.

COM-42, pp. 966–978, Feb./Mar./Apr. 1994.
[7] W. H. Ng, “Study on decoding recovery behavior for convolutional

codes,” IEEE Trans. Inform. Theory, vol. IT-16, pp. 795–797, Nov.
1970.

[8] J. D’Souza and S. L. Maskara, “Simple method for constructing equiv-
alent punctured codes for given true high rate codes,”Electron. Lett.,
vol. 30, pp. 24–26, Jan. 1994.

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY SURATHKAL. Downloaded on March 09,2021 at 04:41:51 UTC from IEEE Xplore. Restrictions apply.

