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Abstract

A digraph D with e edges is labeled by assigning a distinct integer
value 6(v) from {0,1,...,e} to each vertex v. The vertex values, in
turn, induce a value 6(u,v) on each edge (u,v) where 6(u,v) = 6(v) —
f(u)mod(e + 1) . If the edge values are all distinct and nonzero, then the
labeling is called a graceful labeling of a digraph.

In 1985, Bloom and Hsu conjectured that “ All unicyclic wheels are
graceful ”. In this paper we prove the conjecture.
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1. Introduction.

Several practical problems in real life situations have motivated the study
of labelings of a graph G = (V| E), which are required to obey a variety
of conditions. There is an enormous literature built up on several kinds of
labelings of graphs over the past four decades or so. An interested reader
can refer to Gallian [2].

‘Graph labelings, where the vertices and/or edges are assigned values
subject to certain conditions, have often been motivated by practical prob-
lems, but they are also of interest in their own right.

The labeling discussed in this paper has three ingredients:
(i) a set of number S from which the labels are chosen;
(ii) a rule that assigns a value to each edge;

(iii) a condition that these values must satisfy;

An undirected graph with e edges is gracefully numbered if each vertex v
is assigned distinct value 0(v) from the set {0,1,...,e} in such a way that
the set of edge numbers equals {1,2,...,e} , where edge uv is numbered by
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O(uv) = |0(u)—0(v)|. A graph is said to be a graceful (undirected) graph
if it can be gracefully numbered.

This concept was extended to a digraph by Bloom and Hsu [1] as follows:
A digraph D with e edges is labeled by assigning a distinct integer value
f(v) from {0,1,...,e} to each vertex v. The vertex values, in turn, induce
a value 6(u,v) on each edge (u,v) where 6(u,v) = O(v) —8(u)mod(e+1).
If the edge values are all distinct and nonzero, then the labeling is called a
graceful labeling of a digraph .

An undirected graph consisting of a vertex (the “hub”) joined to each

vertex of the cycle (the rim) is termed a wheel and is denoted by I7V_T: y
consisting of (n + 1) vertices and 2n edges.

A directed wheel is termed outspoken , if all spokes point out from the
hub to the rim. Similarly, a wheel is inspoken , if all spokes point form
the rim to the hub. If the rim of a directed wheel is unidirectional then the
wheel is called unicyclic.

Proposition 1 [1]: An outspoken unicyclic wheel W—; is graceful if and

only if the inspoken wheel —Wq is graceful.

Proposition 2 [1]: Let p be an odd prime number and o be a prim-
itive element of Z,. If (a? — 1) = 2k + 1(mod p) for some k, then the

outspoken and the inspoken unicyclic wheels W; and —-T/I_/; respectively
are graceful for ¢ = (p — 1)/2.

Proposition 3 [1]: Let p be an odd prime number, let ¢ = (p — 1)/2
and let o be a primitive element of Z,. If (a2 — 1) = 2k + 1(mod p) for

some k, and if p = 3(mod4) , then the inspoken and outspoken wheels Wq

and —W—/; respectively are graceful.

Bloom and Hsu [1] mentioned that “for n < 11, all unicyclic wheels

VI—/}: are known to be graceful except for n =6 and n = 10. Can graceful
numberings for these be found? And more generally, will the results for
unicyclic wheels be as straight forward as for undirected wheels, i.e., is the
following conjecture true?”.



Conjecture: All unicyclic wheels are graceful.

Alison Marr [3] has given some results on the number of non equivalent

——
graceful labeling for W,, , n < 11.

— —
Figure-1 gives a graceful labeling for Wg and Wig.
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Figure-1
2. Graceful labeling of unicyclic wheels.

In this section we prove the above conjecture.

Theorem 1.1. If an outspoken unicyclic wheel Wn is graceful then by +
ba+...+b, = 0(mod 2n+1) , where by, by, ..., b, are the labels of the spokes.

Proof. Let VT/Z be graceful with ap as the label of the central vertex and
ai,as,...,a, as the labels of the vertices of the cycle. Let the edge values
be by,bo,...,bs, . Then by the definition of graceful labeling, we get 2n
linear equations with (n + 1) unknowns as follows,
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—ap+a;1 =b
—ag +ay = by

—ag +a3 = b3

—ag + ap = bn
az — a1 = bp41

az — 8 = by o

An — AQp—1 = b2n——1
From the above system of equations, we get
bn+1 —I—bn+2 +...4 by, = (0»2 —al) + (a3 -—0,2) + ...+ (an = an_l) -+ (al —an) :
Therefore bniq1 +bpyo + ... + by = 0. oo (1)
Also we know that, by + by + ... + by, = 2n(2n + 1)/2 = 0(mod 2n + 1) .

From (i), we have b1 +bpy0+ ... + by, =0.
Therefore, by + by + + b,, = O(mod 2n +1). O

Theorem 1.2. The outspoken unicyclic wheel I/?n) s graceful.

Proof. Case (i): When n = 0(mod 4) .
Define a function [ as follows:

(i if i=1,3,..,(n/2) — 1.

nbled if $=94 .0

W)= n+1+1 if t=(n/2)+1,(n/2)+3,..,n— 1.
2n+1)—1 if i=(n/2)+2,(n/2) +4,..,n.

0 if =0

Suppose I(v;) = I(v;), i # j.
Here we have 3 different cases.



i) i, 7 < n/2,
Suppose ¢ and j are even then I(v;) = l(vy) if and only if v; = v, .
Similarly, if ¢ and j are odd then (v;) = l(v;) if and only if v; = v; .

Let 7 be even and j be odd.
Then n+1—i=3.
le, i+j=n+1 a contradiction since i, j < n/2.

If 7 is odd and j is even we get a similar contradiction.

i) If i<n/2 and j >n/2.

Then I(v;) < n for any i and I(v;) > n for any j. Therefore,
d(ug) 2 dlwm).

This is a contradiction to the hypothesis.

ili) 4,7 > n/2, where i is even and j is odd.

Then 2n+2—i=n+1+7.

le, t+3=n+1.

But if ¢,5 > n/2, then i+ j > n + 3, a contradiction.
Therefore, I(v;) # I(v;) for i # 5.

Now we shall prove all edge labels are distinct.

We know that l(vo) = 0 .. I(v;) — l(vo) = I(v;) which are all distinct
for i ,1<i1<mn.
l.e., the labels on the spokes are distinct.

Now we have to prove that I(v;;1)—I(v;) are distinct from all ! (vk) ,where
L k< R

We consider the following cases,

Case (a): Let 1 € {1,2,...,n/2}.
Let 7 be odd .
Then l{vip1) =l (vi))=n4+1—i—1—i=n—9;.

Suppose, n — 2i = l(vy), where k € {1,3,...,(n/2) — 1} .
Then n—2i=k.

ie,n=k—2¢.

Since k is odd, which is a contradiction because n is even.
Therefore, n — 27 # i(vx) for any k € {1,3,...,(n/2) — 1} .

Suppose n — 2i = I(vx) , where k € {2,4,...,(n/2)}.
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Then n— 2t =n+1—k.
ie.,2+1=k,whichisa contradiction since k is even and 2i+1 is odd.
Therefore, n — 2i # l(vg) for any ke {2,4,....,(n/2)}.

Suppose n — 2i = l(vk) , where k € {(n/2)+1,(n/2) +3,...,n — 1F.
Then n—2i=n+1+k.

je, —1-2i=k.

e, 2n+1—-1—-2i= k , which is a contradiction since k is odd.
Therefore, n — 2i # l(vi) for any k € {(n/2)+1,(n/2) +3,..,7 = 1}.

Suppose n—2i = l{vk) = on+2—k where k € {(n/2)+2, (n/2)+4,..,n}.
Then —2i=n+2—k.

ie., k=n+2+2i.

ie., ke{n+4,n+8, sy 20} s

So n+4 < k < 2n whichis a contradiction since the maximum of kK is .
Therefore, n — 2i # I(vx) for any k € {(n/2) +2,(n/2) + 4, ey}

Let ¢ be even.
Then l(vi“)—l(vi):i+1—n—1+i=—n+2z’.
=—n+2i+2n+1:n+271+1.

Suppose, n+2i+ 1= I(vy) ,where k€ {1,3,..., (n/2) — 1} .

Then, n+2i+1=k.

e, ke{n+5n+09,,2n+ 1}.

So k=0 or k>n+5, whichisa contradiction since k € {1,3,...,(n/2)—
1},

Therefore, n + 2i + 1 # l(vg) for any = T ) 1}

Suppose n+2i + 1= I(vg) ,where k € {2,4,.., (n/2)} .

Then n+2i+1=n+1-—F.

ie., k= (2n+1)—2i, whichis a contradiction since k is even.
Therefore, n+2i+1# I(vy) for any k € {285 vy (n/2)}.

Suppose n 421+ 1= I(vg) ,where k € {(n/2)+1,(n/2) +3,...,n = 1}
Then n+2i+1=n+1+k.

Tt k=28 8 contradiction, since k is odd.

Therefore, n+ 2i+ 1 # l(vk) , for any ke {(n/2)+1,(n/2)+3,...,n— 1}

Suppose 1+ 2t + 1 = l(vk) ,where k € {(n/2) + 2, (n/2) +4,...,n}.
Then n+2i+1=2n+2-K.

Yies m+2-—-n—2i—1=k.

e, A1 —20=Fs

ie, n=k—1+27.



Since k is even k — 1 becomes odd, therefore n = k — 1+ 2¢ is odd, a
contradiction.
Therefore, n + 2i + 1 # l(vg) for any k € {(n/2) +2,(n/2) +4, s L} 3

Case (b): Let i € {(n/2)+1,(n/2)+2,...,n}.
Let 7 be odd.

Then l(vi41) —l(vi)=2n+2—-i—-1—-n—-1—1.
=n-—2.

Suppose n — 2i = l(vg) , where k € {1,3,...,,(n/2) - 1}.

Then n—2i=k.

i.e., n=k+ 2i, which is a contradiction since k is odd and n is even.
Therefore, n — 2i # I(vx) for any k € {1,3,...,(n/2) — 1}.

Suppose n — 2i = I(vg) , where k € {2,4,...,(n/2)}.

Then n—2i=n+1—-k.

i.e., k= 2i+1, which is a contradiction since k is even and 27+ 1 is odd.
Therefore, n — 2i # l(vg) for any k € {2,4,...,(n/2)}.

Suppose n — 2i = l(vg) , where k € {(n/2) +1,(n/2) +3, ..., (n—1)}.
Then n—2i=n+1+k.

ie, k=—-1—-21.

ie., k=2n+1—1—-2i=2n—2i, whichisa contradiction since k is odd.
Therefore, n — 2i # l(vg) for any k € {(n/2) +1,(n/2) +3,...,(n — 1)} .

Suppose n — 2i = l(vg) , where k € {(n/2) +2,(n/2) + 4, oy P s

Then n—2i=2n+2—-k.

ie, k=n+2+2i,

ie., ke {2n+4,2n+8,...,3n} implies k € {3,7, ...,n—1} under modular
arithmetic.

This is a contradiction since k is even.

Therefore, n — 2 # l(vg) for any k € {(n/2) +2,(n/2) +4,..,n}.

Note that I(vy) — l(vs) = n(mod 2n + 1) and it is not equal to any of
the vertex labels. ... (i)

Let 7 be even.

consider l(vig1) —l(v)=n+1+i+1-2n—2+7.
=-n-+22.

=2n+1—n+2t.

Suppose n+ 1+ 2i = I(vk) , where k € {L; 3y (n/2)— 1}
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Then n+1+2i=k.

ie,ke{2n+52n+9,..,3n+1} implies k € {4,8,...,n} under modular
arithmetic.

This is a contradiction since k is odd.

Therefore, n + 1 + 2¢ # l(vg) for any k € {1,3,...,(n/2) — 1}.

Suppose .+ 1+ 2¢ = I(vg) , where k € {2,4,...,(n/2)}.

Then n+1+2i=n+1—-k%.

i.e., k= —2i = (2n+ 1) — 27, which is a contradiction since k is even.
Therefore, n + 1 + 27 # l{vg) for any k € {2,4,...,(n/2)}.

Suppose 1+ 14 2i = I(vx) , where k € {(n/2)+1,(n/2)+3,...,(n—1)}.
Then n+1+2i=n+1+k%.

i.e., k = 27, which is a contradiction since k is odd.

Therefore, n+1+2¢ # l(vk) , for any k € {(n/2)+1,(n/2)+3,...,(n—1)}.

Suppose n+ 1+ 2¢ = l(vk) , where &k € {(n/2) +2,(n/2) +4,...,n}.
Then n+14+2i=2n+2—-k.

e, n+1—-2i=k.

i.e., n =k+ 2¢ — 1, which is a contradiction since k& + 2¢ — 1 is odd and

n is even.
Therefore, n + 1+ 2i # l(vi), for any k € {(n/2) + 2,(n/2) +4,...,n}.

Note that I(vn/241) — l(vn/2) = n + 1 and it is not equal to any of the
vertex labels. ... (ii)

Thus we have proved that (v;41) — I(v;) # l(vk), for any 1 < £k < n
and 0< 1< n.

Now we have to prove that [(v;4+1) — {(v;) are distinct for all 7.
Suppose l(vi+1) = Z(Uz) = l(’l)j+1) — l(’UJ) 2

Case (a): Let 4,5 < n/2.
Suppose ¢ is odd and j is odd.
Then n4+1—é+1—-t=n+4+1-353+1—3.
ie., —2i=-273.
ife.; =9

Suppose % is odd and j is even.
Then n+1—i+1—¢=5j4+1—-n—-1+7.
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ie, —2¢—25=—-2n—2.
ie.,, ¢+ 7 =n+ 1, a contradiction.

Suppose t is even and j is odd.

Then t1+1—n—14+it=n+1—75—7.

ie., 20 4+2j=2n+1.

i.e., 14+ 7 = 0, a contradiction to the hypothesis.

Suppose ? is even and j is even.

Then :1+1—n—14+<i=73+1—n—1+73.
i8y 20 = 29

8 =0

Case (b): Let 1 <n/2,7 >n/2.

Suppose 7 is odd and 7 is odd.

Then n+1—i—1—-4=2n+2—353—-1—-n—1—3.
ie., —2i=—2j5.

1.8 3= 7%

Suppose 7 is odd and j is even.

Then n4+1—-¢i—1—i=n+j3j+2-2n—24+7.
ie, 2n =21+ 27.

l.e., n =147, a contradiction.

Suppose 7 is even and j is even.

Then i +1—n—1+4+i=n+14+5ij+1—-2n—2+37.
ie, 2t —n=-n+275.

je., i=7.

Suppose ¢ is even and j is odd.

Then i+1—n—14+4i=2n+2—353—-—1—n—-1—37.
ie., 2i—n=n—2j5.

i.e., 14+ 7 =n, a contradiction.

Case (c): Let ¢t > n/2,5 >n/2.

Suppose i is odd and j is odd.

Then 2n4+2—-¢—-1—-n—-1—¢=2n+2—j—-1—-—n—1—37.
le., t=7.

Suppose ¢ is odd and j is even.

Then 2n+2—-¢—-1—-n—1—Zi=n+1+4+57+1-2n—-2+7.
ey, n—21 = —n+27.

ie, 20+2j=2n.



i.e., i + 7 = n, a contradiction.

Suppose 7 is even and j is even.
Then n+1+i+1—-2n—2+i=n+1+j7j+1-2n—-2+7.

le., t=7.
Suppose 7 is even and j is odd.
Then n+1+i+1—-2n—-2+4+i=2n+2—-j—1—-n—-1-7.

e, —n+2t=n—27.
i.e., 1+ 7 = n, a contradiction.

Also from equation (i) and (ii) we observe that [{vi11) — I(vi) # (vj+1) —
[(v;) for any % and j.
Thus, one can see that [ is a graceful labeling of the outspoken wheel W

/@C%;a
R
é(\é}}@“

—
Figure 1: Graceful labeling of Wjs



Case (ii): When n = 2(mod4) .
Define a function [ as follows:

i i =108 il 2)

n+1—1 if i=2,4,..,(n/2)—1.

I(v;) = i 2(n+1)—: if i=(n/2)+1,(n/2)+3,..,n
n+1l+1 if i=(M®n/2)+2,(n/2)+4,..,n—1.

0 if* £=10.

\
As proved in the case (i), we can prove that [ is a graceful labeling of

outspoken wheel V?n when n = 2(mod4). Thus, the outspoken wheel is
graceful for n even.

Case (iii): Let n = 1(mod4) .

Define a function ! as follows:

( 3n—1 + ; -3

Sal. 4f D= 1,8, i,

n+i i i=24,.., 870
oy = { B =R e,

2n—i—1 . (n+1 n+5)
% if Z——zl, ) ,...,TL—]..

0 if i=0.

\

Suppose l{v;) =1l(v;), ¢ # F
Here we have 3 different cases.

) 4,j < (n—-1)/2.
Suppose i and j are even then [(v;) = I(v;) if and only if v; = v;
Similarly, if ¢ and j are odd then I(v;) = l(v;) if and only if v; = 'vJ

Let 7 be even and j be odd.
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Then n+14/2 = (3n—j)/2.
i.e., i+ j = m, which is a contradiction since the maximum of 7 + j is
n—2.

If ¢ is odd and j is even we get a similar contradiction.

iii) Suppose i € {1,2,...,(n — 1)/2} and j € {(n + 1)/2,(n +
3)/2,...,n} . Then,

a) If ¢ is odd and j is even.

Then 3n—13)/2=(n+j—1)/2.

ie, t+j5j=2n+1.

i.e.,, 1+ j = 0(mod 2n + 1), a contradiction.

b) If ¢ is even and j is even.

Thenn+1:¢/2=(n+j—1)/2.

j8y g =Wt 1

Since i < j, the maximum value of j—14 is n—3, which is a contradiction.

c) If ¢ is odd and j is odd.

Then (3n —12)/2=(2n—35 —1)/2.

ie, j—i=-n—-1=n(mod2n+1).

Since 7 < 7, the maximum value of j—¢ is n—1, which is a contradiction.

d) If ¢ is even and j is odd.

Then n+i¢/2=(2n—35—1)/2.

ie, 1+ j = 2n(mod 2n + 1) which is a contradiction, since i + j <
Bn—-1)/2 < 2n.

iii) 4,5 > (n+1)/2.

Let i be odd and ;7 be even.

Then i+ j = n, a contradiction since 1+ 37 >n+ 2.

If 7 is even and j is odd we get a similar contradiction.
Therefore, I(v;) # l(v;) for i # 5.

Now we shall prove all edge labels are distinct.

We know that I(vg) = 0 ... I{(v;) — l(vg) = l(v;) which are all distinct
for4 15 25,
i.e., the labels on the spokes are distinct.

Now we have to prove that [(v;y1) — I(v;) are distinct from all I(vg),

where 1<k <n.
We consider following cases.
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Case (a): Let i € {1,2,...,(n —1)/2}.
Let 7 be even.
Then l(vig1) —l(v;) = (Bn—i—1)/2 — (n+1i/2) =(n—2i—1)/2.

Suppose (n — 2i —1)/2 = l(v;) , where k € {1,3, ..., (n — 3)/2} .
Then n—2i—1=3n—k.

Le:. k=28,

Since k is odd, this is a contradiction because 2i is even.
Therefore, (n —2i —1)/2 # l(vx) for any k € {1,3,..., (n — 3)/2} .

Suppose (n — 2i —1)/2 = l(vg), where k € {2,4,...,(n —1)/2}.

Then, k=-n—2i - 1.

i.e.,, k=n—2i(mod 2n + 1), which is a contradiction since k is even and
n — 27 is odd.

Therefore, (n —2i—1)/2 % I(v) for any k € {2,4,...,(n — 1)/2}.

Suppose (n—2i—1)/2 = l(vx) , where k € {(n+3)/2,(n+7)/2,...,n—1}.
Then k= —21.

e, k= (2n + 1) — 27, which is a contradiction because 2(n—4)+1 is
odd and k is even.

Therefore, (n—2i—1)/2 # l(vy) forany k € {(n+3)/2,(n+7)/2,...,n—1}.

Suppose (n —2i —1)/2 = l(vx), where k € {(n 4 1)/2,(n + 5)/2, s5s M
Then k =n+ 2.

ie,ke{n+4,n+8,..,2n—1}.

So n+4 < k < 2n—1 which is a contradiction as the maximum of & is

n.
Therefore, (n—2i—1)/2 # l(vx) for any k € {(n+1)/2,(n+5)/2,...,n}.

Let 7 be odd.
Then l(vit1) —l(v)) =n+ (i +1)/2—- Bn—14)/2=Bn+3+ 21)/2

Suppose (3n + 3 + 2i)/2 = l(vx) , where k € {2,4, ..., (n — LYy/2} .

Then (3n+3+2i)/2=(n+k/2).

ie, k=n+3+2i.

ie, ke {n+5n+9,..,2n}.

So n4+ 5 < k < 2n, which is a contradiction as the maximum of k is
(n—1)/2.

Therefore, (3n + 3+ 2i)/2 # l(vg) for any k € {2,4,...,(n — 1)/2} .

Suppose (3n + 3+ 24)/2 = l(vy) , where k € {1,3,...,(n — 3)/2} .
Then (3n+ 34 2i)/2=(3n—k)/2.
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ie., k=—3—2i=2(n—1i—1)(mod 2n+ 1) which is a contradiction since
k is odd.
Therefore, (3n + 3 + 2i)/2 # l(vx) for any k € {1,3,...,(n —3)/2}.

Suppose (3n+3+42i)/2 = l(vk) , where k € {(n+3)/2,(n+7)/2,...,n—1}.
Then (3n+3+2:)/2=(n+k—1)/2.

i.e., k =34 2i, which is a contradiction as k is even.

Therefore, (3n+3+2i)/2 # l(vy) for any k € {(n+3)/2,n+7)/2,...,n—1}.

Suppose (3n + 3 + 2i)/2 = l(vy) , where k € {(n+1)/2,(n+5)/2,...,n}.
Then (3n+3+2i)/2=(02n—-k—1)/2.

ie., k=n+4+ 2.

ie, ke {n+6,n+10,...,2n+1}.

So n+6 < k < 2n+ 1 which is a contradiction as the maximum of k is

n.
Therefore, (3n+3+24)/2 # l(vg) forany k € {(n+1)/2,(n+5)/2,...,n}.

Case (b): Let ¢ € {(n+1)/2,(n+3)/2,...,n}.
Let ¢ be odd.
Then l(vip1) —l(v) = (n+i+1-1)/2—(2n—i—1)/2 = (—n+2i+1)/2.

Suppose (—n + 2i + 1)/2 = l(vg), where k € {1,3,...,(n — 3)/2}.
Then (~n+2i+1)/2=(3n—k)/2.

ie., k=4n—1—2{ =2n — 2¢{ — 2 and it is even.

Since k is odd, this is a contradiction.

Therefore, (—n + 2i 4+ 1)/2 # l(v) for any k € {1,3,...,(n —3)/2}.

Suppose (—n + 2i 4+ 1)/2 = l(vi), where k € {2,4,...,(n — 1)/2}.
Then k= —3n+1+2i = —n+2i + 2(mod 2n + 1) .

ie., ke {3,7,...,n+ 2}, a contradiction.

Therefore, (—n + 2i + 1)/2 # l(vx) for any k € {2,4,...,(n —1)/2}.

Suppose (—n+2i+1)/2 = I(vk) , where k € {(n+3)/2,(n+7)/2,...,n—1}.
Then k= —2n+2¢+ 2.

i.e., k= 2¢+ 3, a contradiction.

Therefore, (—n+2i+1)/2 # l(v) for any k € {(n+3)/2,(n+7)/2,...,n—

1}.

Suppose (—n + 2i +1)/2 = l(vx), where k € {(n+1)/2,(n+5)/2,...,n}.
Then k = 3n — 2i — 2 =n — 2i — 3(mod 2n + 1), a contradiction as k is
odd.

Therefore, (—n+2i+1)/2 # l(vg) forany k € {(n+1)/2,(n+5)/2,...,n}.
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Let 7 be even.
Then l(vi41) —l(w;)=2n—1—-1-1)/2—(n+i—1)/2=(n—2i—1)/2.

Suppose (n —2i —1)/2 = l(vg), where k € {1,3,...,(n—3)/2}.
Then (n—-2:—1)/2=(3n—k)/2.

ie., k=2n+2i+ 1 = 2¢, a contradiction.

Therefore, (n —2i —1)/2 # l{(vg) for any k € {1,3,...,(n —3)/2}.

Suppose (n —2i —1)/2 = I(vx), where k € {2,4,...,(n —1)/2}.

Then k = —n — 2¢{ — 1 = n — 27, which is a contradiction because n — 2z
is odd and k£ is even.

Therefore, (n —2i —1)/2 # l(vx) for any k € {2,4,...,(n —1)/2}.

Suppose (n—2i—1)/2 = Il(vx), where k € {(n+3)/2,(n+7)/2,...,n—1}.
Then k= 2.

ie., k= (2n+ 1) — 2¢, a contradiction.

Therefore, (n—2i—1)/2 # l(vg) forany k € {(n+3)/2,(n+7)/2,...,n—1}.

Suppose (n —2i —1)/2 = l(vg), where k€ {(n+1)/2,(n+5)/2,...,n}.
Then k=n+2¢. ie., k€ {2n+3,2n+7,...,3n — 2}.

ie., k€ {2,6,...,n — 3} under modular arithmetic, a contradiction, since
k is odd.

Therefore, (n—2t—1)/2 # I(vg) for any k € {(n+1)/2,(n+5)/2,...,n}.

Note that {(v;) — l(v,) = n(mod 2rn + 1) and it is not equal to any of
the vertex labels. ...(i)

Also I(v(n+t1y/2) — H{v(n-1)/2) = 3n+1)/2(mod 2n+ 1) and it is not equal
to any of the vertex labels. ...(ii)

Now we have to prove that I(v;4+1) — I(v;) are distinct for all ¢.
Suppose (vi+1) — {(vi) = Wvj41) — I(vy) .

Case (a): Let 7,5 < (n—1)/2.

Suppose ¢ is odd and j is odd.

Then (3n+3+4+2¢)/2=(3n+3+25)/2.

i.€:, T= 9%

Suppose ¢ is odd and j is even.

Then (3n+3+24)/2=(n—2j—1)/2.

ie,i+j=—n—-2=2n+1—-—n—2=n—1, a contradiction.

Suppose ¢ is even and j is odd.
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Then (n—2i—1)/2= (3n+3+25)/2.
ie.,, 1+j=-—n—2=2n+1—n — 2 =n — 1,a contradiction.

Suppose ¢ is even and j is even.
Then ¢ =7.

Case (b): Let : < (n—1)/2 and j > (n+1)/2
Suppose ¢ is odd and j is odd.

Then (3n +3+2¢)/2=(3n+3+25)/2.

i6.,. B3,

Suppose ¢ is odd and j is even.

Then B3n+3+2¢)/2=(n—25—-1)/2.

e, idtj=—n—2.

ie, i+7=(2n+1)—n—2=n—1 , a contradiction.

Suppose ¢ is even and j is even.
Then (n—2¢—1)/2=(n—27 —-1)/2.
ie,2= 7.

Suppose % is even and j is odd.

Then (n—2¢—1)/2=(38n+3+25)/2.

8, B T ey 2,

ie, i+7=02n+1)—n—2=mn—1 , a contradiction.

Case (c): Let ¢ > (n+1)/2, 7> (n+1)/2.
Suppose 7 is odd and 7 is odd.
Then ¢ = 7.

Suppose ¢ is odd and j is even.

Then (3n+3 +22)/2 = (n—27 —1)/2.

e, i+j=—-n—2.

ie, i+j=2n+1)—n—2=n—1 , a contradiction.

Suppose ¢ is even and j is even.

Then 1 =37.

Suppose ? is even and j is odd.

Then (n —2¢—1)/2=3n+3+2j)/2.

ie, t+j=—mn—2.

e, i+j=2n+1)—n—2=n—1 , a contradiction.

Also from equation (i) and (ii), we observe that [(v;41) —I(v;) # l(vj41) —
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l(v;) for any ¢ and j.

Thus one can see that [ is a graceful labeling of the outspoken wheel

when n = 1(mod 4) .
1
/@T 4
"
. 2
:
5
10

Figure 2: Graceful labeling of VV—;

e

Case (iv): Let n = 3(mod 4) .
Define a function ! as follows:

(3=t f §=1,3,.., 070

n+i i i=24,.,838

)= 4 2HEL O E= (otl) (45) . n—1.
izl g 5= (248 A0
0 if i=0.

As proved in the case(iii}, we can prove that [ is a graceful labeling of

outspoken wheel V[_/':l when n = 3(mod 4) .Thus, the outspoken wheel Wn
is graceful for n odd.
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Figure 3: Graceful labeling of W—,

Thus, the outspoken unicyclic wheel IjV—,: is graceful.
O

Remark. By proposition 8.2 of Bloom and Hsu [1], it follows that the
inspoken wheel is also graceful. Thus, all unicyclic wheels are graceful.
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