On Graceful Trees [∗]

Suresh Manjanath Hegde† , Sudhakar Shetty‡

Received 30 October 2001

Abstract

A (p, q) -graph $G = (V, E)$ is said to be (k, d) -graceful, where k and d are positive integers, if its p vertices admits an assignment of a labeling of numbers $0, 1, 2, \ldots, k + (q - 1)d$ such that the values on the edges defined as the absolute difference of the labels of their end vertices form the set $\{k, k + d, ..., k + (q-1)d\}$. In this paper we prove that a class of trees called T_P -trees and subdivision of T_P trees are (k, d) -graceful for all positive integers k and d.

1 INTRODUCTION

For all terminology and notation in graph theory we follow Harary [5].

Graphs labeling, where the vertices are assigned values subject to certain conditions, have often been motivated by practical problems. Labeled graphs serves as useful mathematical models for a broad range of applications such as Coding theory, including the design of good radar type codes, synch-set codes, missile guidance codes and convolution codes with optimal autocorrelation properties. They facilitate the optimal nonstandard encoding of integers. A systematic presentation of diverse applications of graph labelings is presented in [3].

Given a graph $G = (V, E)$, the set N of non-negative integers and a commutative binary operation $* : N \times N \to N$, every vertex function $f : V(G) \to N$ induces an edge function $g_f : E(G) \to N$ such that $g_f(uv) = f(u) * f(v)$ for all $uv \in E(G)$.

A function f is called a graceful labeling of a (p, q) -graph $G = (V, E)$ if f is an injection from the vertices of G to the set $\{0, 1, 2, ..., q\}$ such that, when each edge uv is assigned the label $|f(u) - f(v)|$, the resulting edge labels are distinct. Rosa [6] introduced this concept in 1967 and also defined a balanced labeling of a graph G is a graceful labeling f of G such that for each edge uv of G either $f(u) \leq c < f(v)$ or $f(v) \leq c < f(u)$ for some integer c, called characteristic of f. The Ringel-Kotzig conjecture that all trees are graceful has been the focus of many papers [4].

Acharya and Hegde $[2]$ generalized *graceful labeling* to (k, d) -graceful labeling by permitting the vertex labels to belong to $\{0, 1, 2, ..., k + (q-1)d\}$ and requiring the set of edge labels induced by the absolute difference of labels of adjacent vertices to be

[∗]Mathematics Subject Classifications: 05C78

[†]Department of Mathematical and Computational Sciences, Karnataka Regional Engineering College, Surathkal, Srinivasanagar, 574157, Karnataka, India

[‡]Department of Mathematics, N. M. A. M. Institute Of Technology, Nitte 574110, Karnataka, India

 ${k, k + d, ..., k + (q - 1)d}$, where k and d are positive integers. They also introduce an analog of balanced labeling, a (k, d) -balanced labeling of a graph G is a (k, d) graceful labeling f of G such that for each edge uv of G either $f(u) \leq c < f(v)$ or $f(v) \leq c < f(u)$ for some integer c. One can note that $(1, 1)$ -graceful labeling and graceful labeling are identical.

In this paper we prove that a class of trees called T_P -trees (transformed trees) and subdivision $S(T)$ of a T_P -tree T, obtained by subdividing every edge of T exactly once are (k, d) -graceful for all positive integers k and d.

2 TRANSFORMED TREES $(T_P$ -TREES)

Let T be a tree and u_o and v_o be two adjacent vertices in T. Let there be two pendant vertices u and v in T such that the length of $u_o - u$ path is equal to the length of $v_o - v$ path. If the edge u_0v_0 is deleted from T and u, v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge u_0v_0 is called a *transformable edge* (Acharya [1]).

If by a sequence of *ept*'s T can be reduced to a path then T is called a T_P -tree(transformed tree) and any such sequence regarded as a composition of mappings (ept's) denoted by P , is called a *parallel transformation of* T . The path, the image of T under P is denoted as $P(T)$.

A T_P -tree and a sequence of two ept's reducing it to a path are illustrated in $Fig-1$.

Fig-1: A T_P-tree and a sequence of two *ept*'s reducing it to a path.

THEOREM 1. Every T_P -tree is (k, d) -graceful for all positive integers k and d.

PROOF. Let T be a T_P-tree with $n+1$ vertices. By the definition of a T_P-tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ and (ii) $E(P(T)) = (E(T) - E_d) \cup E_P$, where E_d is the set of edges deleted from T and E_P is the set of edges newly added through the sequence P $=(P_1, P_2, ..., P_k)$ of the epts P used to arrive at the path $P(T)$. Clearly E_d and E_P have the same number of edges.

Now denote the vertices of $P(T)$ successively as $v_1, v_2, v_3, ..., v_{n+1}$ starting from one pendant vertex of $P(T)$ right up to other. The labeling f defined by

$$
f(v_i) = \begin{cases} k + (q - 1)d - [(i - 1)/2]d & \text{for odd } i, 1 \le i \le n + 1 \\ [(i/2) - 1]d & \text{for even } i, 2 \le i \le n + 1 \end{cases}
$$

where k and d are positive integers and q is the number of edges of T, is a (k, d) -graceful labeling of the path $P(T)$.

Let $v_i v_j$ be an edge in T for some indices i and j, $1 \leq i < j \leq n+1$ and let P_1 be the *ept* that deletes this edge and adds the edge $v_{i+t}v_{i-t}$ where t is the distance of v_i from v_{i+t} as also the distance of v_i from v_{i-t} . Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$ it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. Therefore i and j are of opposite parity, i.e., i is odd and j is even or vice-versa.

The value of the edge $v_i v_j$ is given by,

$$
g_f(v_i v_j) = g_f(v_i v_{i+2t+1}) = |f(v_i) - f(v_{i+2t+1})|.
$$
 (1)

If i is odd and $1 \leq i \leq n$, then

$$
f(v_i) - f(v_{i+2t+1}) = k + (q-1)d - [(i-1)/2]d - [(i+2t+1)/2) - 1]d
$$

= $k + (q-1)d - (i+t-1)d$. (2)

If i is even and $2 \leq i \leq n$, then

$$
f(v_i) - f(v_{i+2t+1}) = [(i/2) - 1]d - [k + (q - 1)d] + [(i + 2t + 1 - 1)/2]d
$$

= $(i + t - 1)d - [k + (q - 1)d].$ (3)

Therefore from (1) , (2) and (3) ,

$$
g_f(v_i v_j) = |k + (q - 1)d - (i + t - 1)d|, \ 1 \le i \le n.
$$
 (4)

Now

$$
g_f(v_{i+t}v_{j-t}) = g_f(v_{i+t}v_{i+t+1}) = |f(v_{i+t}) - f(v_{i+t+1})|
$$

= $|k + (q-1)d - (i+t-1)d|, 1 \le i \le n.$ (5)

Therefore from (4) and (5)

$$
g_f(v_i v_j) = g_f(v_{i+t}v_{j-t}).
$$

Hence f is a (k, d) -graceful labeling of T_P -tree T. The proof is complete.

For example, a $(1, 1)$ -graceful labeling of a T_P -tree T using Theorem 1, is shown in $Fig-2.$

Fig-2: A graceful labeling of a T_P -tree using theorem 1.

REMARK. We shall show further that f is indeed a (k, d) -balanced labeling of T. Since i and j are of opposite parity, without loss of generality, we may assume that i is odd and j is even.

Case 1: n is even (i.e. q is even) Since $i \leq n+1$, we get

$$
f(v_i) = k + (q - 1)d - ((i - 1)/2)d
$$

\n
$$
\geq k + (q - 1)d - ((q + 1 - 1)/2)d
$$

\n
$$
= k + ((q/2) - 1)d
$$

\n
$$
> ((q/2) - 1)d
$$

\n
$$
= [(q - 1)/2]d
$$

where $\lceil . \rceil$ denote the greatest integer functions. The second last inequality holds since $k \geq 1$ and the last equality holds since q is even. Also,

$$
f(v_j) = ((j/2) - 1)d \le ((q/2) - 1)d = \lceil (q-1)/2 \rceil d.
$$

Thus we get

$$
f(v_j) \le \lceil (q-1)/2 \rceil d < f(v_i).
$$

Case 2: \boldsymbol{n} is odd

By means of aruguments similar to those in Case 1,

$$
f(v_j) \le \lceil (q-1)/2 \rceil d < f(v_i).
$$

As i and j are arbitrarily chosen so that $v_i v_j$ is an edge in T, it follows that f is also a (k, d) -balanced labeling of T with characteristic $\lceil (q-1)/2 \rceil d$.

THEOREM 2. If T is a T_P -tree with q edges then the subdivision tree $S(T)$ is (k, d) -graceful for all positive integers k and d.

PROOF. Let T be a T_P-tree with n vertices and q edges. By the definition of a T_P -tree there exists a parallel transformation P of T so that we get $P(T)$. Denote the vertices of $P(T)$ successively as $v_1, v_2, ..., v_n$ starting from one pendant vertex of $P(T)$ right up to other and preserve the same for T.

Construct the subdivision tree $S(T)$ of T by introducing exactly one vertex between every edge $v_i v_j$ with $i < j$ of T and denote the vertex as $v_{i,j}$. Let $v_{m^x} v_{h^x}$, $x = 1, 2, ..., z$ be the z transformable edges of T with $m^x < m^x + 1$ for all x. Let t_x be the path length from the vertex v_{m} to the corresponding pendant vertex decided by the transformable edge $v_{m^x}v_{h^x}$ of T.

Define a labeling $f: V(S(T)) \to \{0, 1, 2, ..., k + (2q - 1)d\}$ by $f(v_i) = k + (2q - 1)$ $1)d - (i-1)d$ for $i = 1, 2, ..., n$ and

$$
f(v_{i,j}) = (i-1)d, \quad j \neq i+1
$$

\n
$$
f(v_{i,j}) = id, \qquad j = i+1; i = m^c, m^c + 1, ..., m^c + t_c - 1; c = 1, 2, ..., z,
$$

\n
$$
f(v_{i,j}) = (i-1)d, \quad j = i+1; i \neq m^c, m^c + 1, ..., m^c + t_c - 1; c = 1, 2, ..., z,
$$

where k and d are positive integers and 2q is the number of edges of $S(T)$.

Let

$$
A = \{v : v \in V(S(T)) \text{ with } v = v_i, i = 1, 2, ..., n\}
$$

and

$$
B = \{v : v \in V(S(T)) \text{ with } v = v_{i,j}, i = 1, 2, ..., n-1; j = 2, 3, ..., n\}.
$$

Then by the definition of f above, the least value $k + (q-1)d$ on the set $f(A)$ is greater than the greatest value $(q-1)d$ on the set $f(B)$. Clearly f is injective from A to $f(A)$. Also f assigns values to the members $v_{i,j}$ of B with $j = i + 1, i = 1, 2, ..., n - 1$, in strictly increasing order and the increasing order gets uniformity due to values on the members $v_{i,j}$ of B with $j \neq i + 1$. Therefore f is injective.

Now by the definition of induced edge function g_f for graceful labeling f, we get, the greatest and least values on the edges as follows:

$$
g_f(v_1v_{1,2}) = |f(v_1) - f(v_{1,2})| = k + (2q - 1)d
$$

and

$$
g_f(v_{n-1,n}v_n) = g_f(v_{q,q+1}v_{q+1})
$$

= $|f(v_{q,q+1}) - f(v_{q+1})|$
= $|(q-1)d - k - (q-1)d| = k.$

As we have uniform increasing order of values on the vertices due to f and there are 2q edges in $S(T)$, clearly g_f is injective with edge values forms the set $\{k, k+d, ..., k+\}$ $(2q-1)d$. Hence f is a (k, d) -graceful labeling of $S(T)$. The proof is complete.

For example, a $(1, 1)$ -graceful labeling of subdivision of a T_P -tree using theorem 2, is shown in Fig-3.

Fig-3: A graceful labeling of subdivision of a T_P -tree using theorem 2.

References

- [1] B. D. Acharya, Personal communication.
- [2] B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3)(1990), 275—299.
- [3] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, Proceedings of the IEE, 165(4)(1977), 562—570.
- [4] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of combinatorics, $5(1)(1998)$, Dynamic Survey 6, 43 pp.
- [5] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
- [6] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (Internat. Symp, Rome, July 1966), Gordan and Breach, N.Y and Paris, 1967, 349—355.