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ABSTRACT

Let f(z) be meromorphic function of finite nonzero order p. Assuming
certain growth estimates on f by comparing it with r? L (r) where L (r) is a
slowly changing function we have obtained the bounds for the zeros of £ (z)
— g (2) where g (2) is a meromorphic function satisfying 7T (r, g)
=0{T(r,f)} as r —oco. These bounds are satisfied but for some excep-
tional functions. Examples are given tc show that such exceptional func-
tions exist.

1. Let f(z) be a meromorphic function of order p(0 < p< o0). If
f(2) is an entire function let M (r,f)=max|f(z)| on |z]|=r. Let
T(r,f) be the Nevanlinna’s characteristic function for f(z) and g (z),
g:(2), - .- be any set of functions satisfying

T(r, i (@) =0(T(.f)) as r—oco(i=12,...). 1.1)

Let n(r, x), A (r, x) be the number of zeros and the number of distinct zeros
respectively of f(z) — x and 7 (r, f— g) the number of distinct zeros of
f()—g(z) in |z | Zr. Define

(i) = f =8y,

f—g

If g is an infinite constant let 7 (r, f— g) =# (r, f) the number of distinct
poles of f(z) in |[z]|=r

In this paper we study the exceptional values of the function f(z) by
making use of the comparison function # L (r) where L(r) is a slowly
increasing function satisfying
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L(Ct) ~L(t) as t— oo for every fixed{positive C. Let k denote any
constant =1 and

B =+ 0+ {LT TR ) (1.2)

Let 4 be a constant not necessarily the same at each occurrence,

THEOREM 1.—If f(2) is an entire function of order p (0 < p<< o0) satis-
fying
log M (kr, f) _

lilzl_,iup TRLO) a 0=a = ) (1.3)
then
i A(f—8) - ap
m s THLe) = went) 49
and
_ 1
N{r —
. T N
lim s —77 G = % h(p) (1.5

for every entire function g (z) (including a polynomial or a finite constant)
satisfying (1.1) with one possible exception.

Remark.—The exceptional function may actually exist. Consider for
example

flz)= 1 (1 1 n(T:g—Fz)z)

n=2

Here

n(r,0) ~{ri/(logr)%; log M(r,f) ~ (r/logr).
Set

rPL(r) =ret)
where

p() =1 — log log »

log r
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Then p (r) is a proximate order relative to log M (r, /) and P ™~*is a slowly
increasing function [see Levin? (p. 32)]. Also

. log M(r,
fim e =

but
ii(r, 0)

rp"(,.)——>0 as r—» oo,

Proof —First take 0< a< oo. Set

B—(lzpi+l(hk)*P(A >1). (1.6)

Let us suppose, if possible, that there are two functions g, (z) and g, (z) for
which

lim sup n(’p{( )g) =C< B.

b e 2oel
Let C< C; < B, then

7 (r, f — &)

AL < C;, forall r=r,

and

W plg) e f 147 R

<A+ C [ erL@)d

We have by [I, Lemma 5]

T

f VL (£) dt ~

o

l;(';) rP,
P

Hence

o 1 c
N(r, f:é]) <Z2rLO+oW)
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Similarly for

= 1

N (r y ft—g-'z ) .
Further by a result of Nevanlinna? (p. 47)

{+om}Te, < §(r, — )+ ,v(,, _ gz) + 0(logn)

Hence

T f)< CerL(r){l—}—o(l)} forall r=r,

Also

logM(r,f) >(a— e);—(;L(fI;)

for arbitrarily large r and from [2, p. 18] for all large r

log M(r, /)< T4 TORS) (A >1).

Thus
@—apt(R) < 2oLt +oay

for arbitrarily large r.

Since L (Ct) ~ L (¢) for every fixed positive C we have

C.z% ) ke =B

This gives a contradiction. Hence

1‘ n (r’ f g) >
2 “iie 2%

except possibly for one g(z).
The best choice of A in (1.6) can be easily seen to be

y= (L + %)
f)
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and we get (1.3)for0< a< oo. The argument for a = co is similar,
We need take an arbitrary large number in place of a. The case a =0 is
obvious.

The proof of (1.5) is similar. We need take
ar—1
2A+1

CoOROLLARY 1.—If f(z) is an entire function of orderp(Q< p< o0)
satisfying

B= ()2 (A > 1).

lim sup l—%%r’)l) —a (0=£a< )

r-»o0
then
. n(r, x) ap
lm WP 35720 = 3k (p) (1.7)

except possibly for one value of x.
This is got by putting k = 1 and g(z) = x in (1.4) and observing n = 7.

This result is due to S. K. Singh®, (Thm. 1).
COROLLARY 2.--If f(z) is an entire function of order p (0 < p < co) then
log M (kr,f) _ 2k?h (p)

hTml’nf R -2 = p (1.8)
and
lim inf P& MELT) 2 o) (1.9)
r=»CoO N I', ¥L)
f—g

for every entire function g (z) with one possible exception. We can choose
a comparison function L (r) in (1.3) such that o < a< oo, for example, if
L (r) = rP™-? where p (r) is the proximate order relative to log M (r, f) then

log M (r, f)

rP r)

lim sup
00
is different from zero and infinity see B. Ja. Levin® (p. 32). Then
(1.8) immediately follows from the relation
limsup f(»)

3 1 f(r) r>o00
h?},ol.nf g(r) = lim_’sup g(r)
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by taking
log M (kr, f)
T =70

and

_ﬁ(r,f—g)
g(")-——;rf(r—)‘ .

Proof of (1.9)is similar.
For an alternate proof of Corollary 2 see S. M. Shah®, (Thm. 3).

THeOREM 2.—If f(z) is a meromorphic function of order p(0 < p< oo)
satisfying

. T(kr,f) _

lml_)so\:p AL = a O0=a= o) (2.1)
then

. il f—8 <

lim s> TLTG) = fe @2
and

= 1
; =
mswp — G 2 3

300

2.3)

except possibly for two meromorphic functions g(z) (including a constant,
finite or infinite) satisfying (1.1)

COROLLARY 3.—Under the same conditions of the above theorem

.. T(kr, f) 3kr
and
lim inf —T_(’ﬁ-f-)- < 3k 2.5)

neN (” = g)

Proof—Let 0 < a< oo, Let us suppose that there are three functions
gi(2) (i=1,2,3) for which

lim sup (rP Ij: Q) #-c

o
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where
Ci < ka Let C =max(C;, Cg, C3) and
€< D< f5-
Hence
alr, f—g)< Dre L(r) forall r=r,
and

N ~»——]—— = r’M ; —
N(r, = gi) A+ D f T8 dri=1,2,3
<A+thP-1L(t)dt

~A+D’i£~_(’)'
p

Also from Nevanlinna2?, (p. 47) we have

g+omyrinn< D) F(n A

Hence

{l +o(}T(r. /)< 3—,?r"L(r) {1 +o0Q)

Also from (2.1) for arbitrarily large values of r we have
T(r.f) >(a— e (r/k)y L(rk)
and hence
—e)(k) (k)<—rPL(r){1+0(l)}
for a sequence of r— oo, Since L (r/k) ~ L(r) we have

pa
Dgg,;,.

81
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This gives a contradiction and the result is proved for 0 < a< oo. The
case a = oo is similar if we take arbitrarily large number in place of a. If
a =0 the result is obvious.

Proof of (2.3) is similar. Corollary 3 follows as in Theorem 1 if we take
the comparison function r? L(r) such that

lim sup Trf,kLi(Ff))

rco

is finite and non-zero which is always possible.

For an alternate proof of Corollary 3 with £ = 1 and g (z) = x see [5].
In the general case k =1 see [6].

THEOREM 3.—Let f(z) be a meromorphic function of order p (0 < p < o0).
Let

l-lfi %’Z’({))za 0< a< o) 3.1

and

lim "L(%%E)J)=o (i=1,2) (3-2)

for any two different meromorphic functions g;(2) (gi (@D#E o) ((i=1,2)
and satisfying (1.1), then for all meromorphic functions g (z) satisfying (1.1)
including an infinite constant

: ﬁ(r’ f_ g) _4a

im e G-3)
and

T(r,f") ~2T(r.f) 349

where T'(r, f') is the characteristic function for 1’ (z). We need the following
lemma {7, p. 30].

LEMMA.—If f & (1) dt ~ Are L(r), where ¢ (f) is a non-decreasing func-
tion, then & (r) ~ A pre L(r).

Proof of Theorem 3.—We have from (3.2)
A(r,f—g) =o0{rrL(r)} as r ->oo and
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hence

IV(r, ftL—m) =o{rL(r)} as r-—»oo.

Also from [2, p. 47]

{l +o(MYT(. 1)< Z N(” ﬁgi) + N(r’ Fl-—g)
+ O (log r).

Using (3.1) we get for all r = r,

(@a— ¢ (;—C)P L(L];)< of{re L(r)} + N(r, f_l_ g) + O (logn).

Hence

2

N’

v
Xia

1
lim inf ——-z-r-(r’ f—¢
r-)eon rﬁL

Also, since g(z) satisfies (1.1)
& (r, f_._l})< {1+o(M}TC,f)
< {1 +o()}(a+ ¢ (r/k)r L(rik).

3.5

Hence

o (3.6)

P TELH
From (3.5 and (3.6) we get
= 1
fim N(r’f—g):‘i 3.7
ro0 rpLir; kP 3.7

(3.3) follows from (3.7) immediately by the lemma when ¢ (f) = 7 (¢, f — g).
To prove (3.4) we take g(z) = oo in (3.7). We have then on using (3.1)

T(r, f) - N )+ N(rf) S 2N (nf)
I, f) — T(r.f) - T(rf)




84 K. A. NARAYANAN
= 2(2—3_{ Lé(r(% forall r=r,
a— €
~2 ?i?:e)
Hence
S (R
R .8
im0 76,7y =2 G5

Also from Nevanlinnat (p. 104), we have

lim sup

r-»00

T, f)
T 1) <2 3.9

(3.4) follows from (3.8) and (3.9).

This completes the proof of Theorem 3.
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