ON EXCEPTIONAL VALUES OF ENTIRE AND MEROMORPHIC FUNCTIONS

K. A. NARAYANAN

[Department of Mathematics, Karnataka Regional Engineering College, P.O. Srinivasanagar 574157 (S.K.), Karnataka State, India]

Received February 20, 1974

(Communicated by Prof. B. S. Madhava Rao, F.A.sc.)

ABSTRACT

Let f(z) be meromorphic function of finite nonzero order ρ . Assuming certain growth estimates on f by comparing it with $r^{\rho} L(r)$ where L(r) is a slowly changing function we have obtained the bounds for the zeros of f(z) - g(z) where g(z) is a meromorphic function satisfying $T(r, g) = o\{T(r, f)\}$ as $r \to \infty$. These bounds are satisfied but for some exceptional functions. Examples are given to show that such exceptional functions exist.

1. Let f(z) be a meromorphic function of order ρ ($0 < \rho < \infty$). If f(z) is an entire function let $M(r, f) = \max |f(z)|$ on |z| = r. Let T(r, f) be the Nevanlinna's characteristic function for f(z) and $g_1(z)$, $g_2(z)$, ... be any set of functions satisfying

$$T(r, g_i(z)) = o(T(r, f))$$
 as $r \to \infty (i = 1, 2, \ldots)$. (1.1)

Let n(r, x), $\bar{n}(r, x)$ be the number of zeros and the number of distinct zeros respectively of f(z) - x and $\bar{n}(r, f - g)$ the number of distinct zeros of f(z) - g(z) in $|z| \le r$. Define

$$\bar{N}\left(r,\frac{1}{f-g}\right) = \int_{0}^{r} \frac{\bar{n}\left(t,f-g\right)}{t} dt.$$

If g is an infinite constant let $\bar{n}(r, f - g) = \bar{n}(r, f)$ the number of distinct poles of f(z) in $|z| \le r$.

In this paper we study the exceptional values of the function f(z) by making use of the comparison function r^{ρ} L(r) where L(r) is a slowly increasing function satisfying

 $L(Ct) \sim L(t)$ as $t \to \infty$ for every fixed positive C. Let k denote any constant ≥ 1 and

$$h(\rho) = \{\rho + (1 + \rho^2)^{\frac{1}{2}}\} \left\{ \frac{1 + (1 + \rho^2)^{\frac{1}{2}}}{\rho} \right\}^{\rho} (\rho > 0). \tag{1.2}$$

Let A be a constant not necessarily the same at each occurrence.

Theorem 1.—If f (z) is an entire function of order ρ ($o < \rho < \infty$) satisfying

$$\lim_{r \to \infty} \sup_{r \to \infty} \frac{\log M(kr, f)}{r^{\rho} L(r)} = a \qquad (0 \le a \le \infty)$$
 (1.3)

then

$$\lim_{r \to \infty} \sup_{r \to \infty} \frac{\tilde{n}(r, f - g)}{r^{\rho} L(r)} \ge \frac{a\rho}{2k^{\rho} h(\rho)}$$
 (1.4)

and

$$\limsup_{r \to \infty} \frac{\bar{N}\left(r, \frac{1}{f - g}\right)}{r^{\rho} L(r)} \ge \frac{a}{2k^{\rho} h(\rho)}$$
(1.5)

for every entire function g(z) (including a polynomial or a finite constant) satisfying (1.1) with one possible exception.

Remark.—The exceptional function may actually exist. Consider for example

$$f(z) = \prod_{n=2}^{\infty} \left(1 + \frac{z}{n (\log n)^2} \right).$$

Here

$$\bar{n}(r, 0) \sim \{r/(\log r)^2\}; \log M(r, f) \sim (r/\log r).$$

Set

$$r^{\rho}L(r)=r^{\rho}(r)$$

where

$$\rho\left(r\right) = 1 - \frac{\log\log r}{\log r}$$

Then $\rho(r)$ is a proximate order relative to $\log M(r, f)$ and $r^{\rho(r)-\rho}$ is a slowly increasing function [see Levin³ (p. 32)]. Also

$$\lim_{r\to\infty} \frac{\log M(r,f)}{r^{\rho(r)}} = 1,$$

but

$$\frac{\tilde{n}(r,0)}{r^{\rho(r)}} \to 0$$
 as $r \to \infty$.

Proof.—First take $0 < a < \infty$. Set

$$B = \frac{a\rho}{2} \frac{\lambda - 1}{\lambda + 1} (\lambda k)^{-\rho} (\lambda > 1). \tag{1.6}$$

Let us suppose, if possible, that there are two functions $g_1(z)$ and $g_2(z)$ for which

$$\limsup_{r \to \infty} \frac{\hat{n}(r, f - g)}{r^{\rho} L(r)} \leq C < B.$$

Let $C < C_1 < B$, then

$$\frac{\bar{n}(r, f - g_1)}{r^p L(r)} < C_1$$
, for all $r \ge r_0$

and

$$\bar{N}\left(r, \frac{1}{f - g_1}\right) = A + \int_{r_0}^{r} \frac{\bar{n}(t, f - g_1)}{t} dt$$

$$< A + C_1 \int_{r_0}^{r} t^{\rho - 1} L(t) dt$$

We have by [1, Lemma 5]

$$\int_{r_0}^r t^{\rho-1} L(t) dt \sim \frac{L(r)}{\rho} r^{\rho}.$$

Hence

$$\bar{N}\left(r, \frac{1}{f-g_1}\right) < \frac{C_1}{\rho} r^{\rho} L(r) \left(1 + o(1)\right).$$

Similarly for

$$\tilde{N}\left(r, \frac{1}{f-g_2}\right)$$
.

Further by a result of Nevanlinna² (p. 47)

$$\{1 + o(1)\} T(r, f) < \bar{N}\left(r, \frac{1}{f - g_1}\right) + \bar{N}\left(r, \frac{1}{f - g_2}\right) + O(\log r)$$

Hence

$$T(r,f) < \frac{2C_1}{\rho} r^{\rho} L(r) \{1 + o(1)\} \text{ for all } r \ge r_0.$$

Also

$$\log M(r,f) > (a - \epsilon) \frac{r^{\rho}}{k^{\rho}} L\binom{r}{k}$$

for arbitrarily large r and from [2, p. 18] for all large r

$$\log M(r,f) < \frac{\lambda+1}{\lambda-1} T(\lambda r,f) \qquad (\lambda > 1).$$

Thus

$$(a-\epsilon)\frac{r^{\rho}}{k^{\rho}}L\left(\frac{r}{k}\right)<\frac{\lambda+1}{\lambda-1}\frac{2C_{1}}{\rho}(\lambda r)^{\rho}L(\lambda r)\left\{1+o\left(1\right)\right\}$$

for arbitrarily large r.

Since $L(Ct) \sim L(t)$ for every fixed positive C we have

$$C_1 \geq \frac{a\rho}{2} \frac{\lambda - 1}{\lambda + 1} (\lambda k)^{-\rho} = B.$$

This gives a contradiction. Hence

$$\lim_{r\to\infty}\sup \frac{\bar{n}\,(r,\,f-g)}{r^\rho\,L(r)}\geq B$$

except possibly for one g(z).

The best choice of λ in (1.6) can be easily seen to be

$$\lambda = \frac{\left(1 + (1 + \rho^2)^{\frac{1}{2}}\right)}{\rho}$$

and we get (1.3) for $0 < a < \infty$. The argument for $a = \infty$ is similar. We need take an arbitrary large number in place of a. The case a = 0 is obvious.

The proof of (1.5) is similar. We need take

$$B = \frac{a}{2} \frac{\lambda - 1}{\lambda + 1} (\lambda k)^{-\rho} (\lambda > 1).$$

COROLLARY 1.—If f(z) is an entire function of order ρ (0 < ρ < ∞) satisfying

$$\lim_{r \to \infty} \sup \frac{\log M(r, f)}{r^{\rho} L(r)} = a \qquad (0 \le a \le \infty)$$

then

$$\lim_{r \to \infty} \sup \frac{n(r, x)}{r^{\rho} L(r)} \ge \frac{a\rho}{2h(\rho)}$$
 (1.7)

except possibly for one value of x.

This is got by putting k = 1 and g(z) = x in (1.4) and observing $n \ge \bar{n}$. This result is due to S. K. Singh⁶, (Thm. 1).

COROLLARY 2.--If f (z) is an entire function of order ρ (0 < ρ < ∞) then

$$\lim_{r \to \infty} \inf \frac{\log M(kr, f)}{\bar{n}(r, f - g)} \le \frac{2k^{\rho}h(\rho)}{\rho}$$
(1.8)

and

$$\lim_{r \to \infty} \inf \frac{\log M(kr, f)}{\bar{N}\left(r, \frac{1}{f - g}\right)} \le 2k^{\rho} h(\rho) \tag{1.9}$$

for every entire function g(z) with one possible exception. We can choose a comparison function L(r) in (1.3) such that $o < a < \infty$, for example, if $L(r) = r^{\rho(r)-\rho}$ where $\rho(r)$ is the proximate order relative to $\log M(r, f)$ then

$$\lim \sup_{r \to \infty} \frac{\log M(r, f)}{r^{\rho(r)}}$$

is different from zero and infinity see B. Ja. Levin³ (p. 32). Then (1.8) immediately follows from the relation

$$\liminf_{r \to \infty} \frac{f(r)}{g(r)} \le \frac{\limsup_{r \to \infty} f(r)}{\limsup_{r \to \infty} g(r)}$$

by taking

$$f(r) = \frac{\log M(kr, f)}{r^{\rho} L(r)}$$

and

$$g(r) = \frac{\bar{n}(r, f - g)}{r^{p} L(r)}.$$

Proof of (1.9) is similar.

For an alternate proof of Corollary 2 see S. M. Shah⁵, (Thm. 3).

Theorem 2.—If f (z) is a meromorphic function of order ρ (0 < ρ < ∞) satisfying

$$\lim_{r\to\infty} \sup_{r\to\infty} \frac{T(kr,f)}{r^{\rho} L(r)} = a \qquad (0 \le a \le \infty)$$
 (2.1)

then

$$\limsup_{r\to\infty} \frac{\bar{n}(r, f-g)}{r^{\rho} L(r)} \ge \frac{\rho a}{3k^{\rho}}$$
 (2.2)

and

$$\limsup_{r \to \infty} \frac{\bar{N}\left(r, \frac{1}{f - g}\right)}{r^{\rho} L\left(r\right)} \ge \frac{a}{3k^{\rho}}$$
 (2.3)

except possibly for two meromorphic functions g(z) (including a constant, finite or infinite) satisfying (1.1)

COROLLARY 3.—Under the same conditions of the above theorem

$$\lim_{r \to \infty} \inf \frac{T(kr, f)}{\bar{n}(r, f - g)} \le \frac{3k^{\rho}}{\rho}$$
 (2.4)

and

$$\lim_{r \to \infty} \inf \frac{T(kr, f)}{\bar{N}\left(r, \frac{1}{f - g}\right)} \le 3k^{p} \tag{2.5}$$

Proof.—Let $0 < a < \infty$. Let us suppose that there are three functions $g_i(z)$ (i = 1, 2, 3) for which

$$\lim_{r\to\infty}\sup_{r\to\infty}\frac{\bar{n}(r, f-g)}{r^{\rho}L(r)}=C_{i}$$

where

$$C_{f i}<rac{
ho a}{3k^{
ho}}$$
 . Let $C=\max{(C_1,\,C_2,\,C_3)}$ and $C< D<rac{
ho a}{3k^{
ho}}$.

Hence

$$\bar{n}(r, f - g_i) < Dr^{\rho} L(r)$$
 for all $r \ge r_0$

and

$$\bar{N}\left(r, \frac{1}{f - g_{i}}\right) = A + D \int_{r_{0}}^{r} \frac{\bar{n}\left(t, f - g_{i}\right)}{t} dt \, (i = 1, 2, 3)$$

$$< A + D \int_{r_{0}}^{r} t^{\rho - 1} L\left(t\right) dt$$

$$\sim A + D \frac{r^{\rho} L\left(r\right)}{\rho}.$$

Also from Nevanlinna², (p. 47) we have

$$\{1 + o(1)\}\ T(r,f) < \sum_{i=1}^{s} \bar{N}\left(r, \frac{1}{f-g_i}\right) + O(\log r).$$

Hence

$$\{1 + o(1)\} T(r, f) < \frac{3D}{\rho} r^{\rho} L(r) \{1 + o(1)\}$$

Also from (2.1) for arbitrarily large values of r we have

$$T(r,f) > (a-\epsilon)(r/k)^{\rho} L(r/k)$$

and hence

$$(a-\epsilon)\binom{r}{\bar{k}}^{\rho}L\binom{r}{\bar{k}} < \frac{3D}{\rho}r^{\rho}L(r)\left\{1+o\left(1\right)\right\}$$

for a sequence of $r \to \infty$. Since $L(r/k) \sim L(r)$ we have

$$D \geq \frac{\rho a}{3k^{\rho}}$$
.

This gives a contradiction and the result is proved for $0 < a < \infty$. The case $a = \infty$ is similar if we take arbitrarily large number in place of a. If a = 0 the result is obvious.

Proof of (2.3) is similar. Corollary 3 follows as in Theorem 1 if we take the comparison function $r^{\rho} L(r)$ such that

$$\limsup_{r\to\infty} \frac{T(kr, f)}{r^{\rho} L(r)}$$

is finite and non-zero which is always possible.

For an alternate proof of Corollary 3 with k = 1 and g(z) = x see [5]. In the general case $k \ge 1$ see [6].

THEOREM 3.—Let f (z) be a meromorphic function of order ρ (0 < ρ < ∞). Let

$$\lim_{r \to \infty} \frac{T(kr, f)}{r^{\rho} L(r)} = a \qquad (0 < a < \infty)$$
(3.1)

and

$$\lim_{r \to \infty} \frac{\bar{n}(r, f - g_i)}{r^{\rho} L(r)} = 0 \qquad (i = 1, 2)$$
 (3.2)

for any two different meromorphic functions $g_i(z) (g_i(z) \neq \infty)$ (i = 1, 2) and satisfying (1.1), then for all meromorphic functions g(z) satisfying (1.1) including an infinite constant

$$\lim_{r \to \infty} \frac{\bar{n}(r, f - g)}{r^{\rho} L(r)} = \frac{a\rho}{k^{\rho}}$$
(3.3)

and

$$T(r,f') \sim 2T(r,f) \tag{3.4}$$

where T(r, f') is the characteristic function for f'(z). We need the following lemma [7, p. 30].

LEMMA.—If $\int_{r_0}^{r} \phi(t) dt \sim Ar^{\rho} L(r)$, where $\phi(t)$ is a non-decreasing function, then $\phi(r) \sim A \rho r^{\rho} L(r)$.

Proof of Theorem 3.—We have from (3.2)

$$\bar{n}(r, f - g_i) = o\{r^{\rho} L(r)\}$$
 as $r \to \infty$ and

hence

$$\bar{N}\left(r, \frac{1}{f-g_i}\right) = o\left\{r^{\rho} L\left(r\right)\right\} \quad \text{as} \quad r \to \infty.$$

Also from [2, p. 47]

$$\{1 + o(1)\} T(r, f) < \sum_{i=1}^{2} \bar{N}\left(r, \frac{1}{f - g_{i}}\right) + \bar{N}\left(r, \frac{1}{f - g}\right) + O(\log r).$$

Using (3.1) we get for all $r \ge r_0$

$$(a-\epsilon)\binom{r}{\bar{k}}^{\rho}L\binom{r}{\bar{k}} < o\left\{r^{\rho}L(r)\right\} + \bar{N}\left(r,\frac{1}{f-g}\right) + O(\log r).$$

Hence

$$\lim_{r \to \infty} \inf \frac{\bar{N}\left(r, \frac{1}{f - g}\right)}{r^{\rho} L(r)} \ge \frac{a}{k^{\rho}}.$$
 (3.5)

Also, since g(z) satisfies (1.1)

$$\bar{N}\left(r, \frac{1}{f-g}\right) < \{1 + o(1)\} T(r, f)$$

$$< \{1 + o(1)\} (a + \epsilon) (r/k)^{\rho} L(r/k).$$

Hence

$$\lim_{r \to \infty} \sup \frac{\bar{N}\left(r, \frac{1}{f - g}\right)}{r^{\rho} L\left(r\right)} \le \frac{a}{\bar{k}^{\rho}}. \tag{3.6}$$

From (3.5) and (3.6) we get

$$\lim_{r \to \infty} \frac{\bar{N}\left(r, \frac{1}{f - g}\right)}{r^{\rho} L\left(r\right)} = \frac{a}{k^{\rho}}$$
(3.7)

(3.3) follows from (3.7) immediately by the lemma when $\phi(t) = \bar{n}(t, f - g)$. To prove (3.4) we take $g(z) \equiv \infty$ in (3.7). We have then on using (3.1)

$$\frac{T(r, f')}{T(r, f)} \ge \frac{N(r, f) + \bar{N}(r, f)}{T(r, f)} \ge \frac{2\bar{N}(r, f)}{T(r, f)}$$

$$\geq 2\left(\frac{a-\epsilon}{a+\epsilon}\right)\frac{L(r)}{L(r/k)}$$
 for all $r \geq r_0$
 $\sim 2\left(\frac{a-\epsilon}{a+\epsilon}\right)$.

Hence

$$\lim_{r \to \infty} \inf \frac{T(r, f')}{T(r, f)} \ge 2. \tag{3.8}$$

Also from Nevanlinna4 (p. 104), we have

$$\lim_{r \to \infty} \sup \frac{T(r, f')}{T(r, f)} \le 2 \tag{3.9}$$

(3.4) follows from (3.8) and (3.9).

This completes the proof of Theorem 3.

REFERENCES

1.	Hardy, G. H. and Rogosinski, W. W.		"Notes on Fourier Series. III. Asymptotic formulae for certain trigonometrical series," Quarterly Journal of Mathematics, Oxford Series, 1945, 16, 49-58.
2.	Hayman, W. K.		Meromorphic Functions, Oxford, 1964.
3.	Levin, B. Ja.		Distribution of Zeros of Entire Functions, 1964, Vol. 5, (A.M.S.),
4.	Nevanlinna, R.	••	Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Paris, 1929.
5.	Shah, S. M.		"Exceptional values of entire and mercmorphic functions," Journal Ind. Math. Soc., 1956, 20, 315-17.
6.		••	"Meromorphic functions of finite order," Proc. Am. Math. Soc., 1959, 10, 810-21.
7.	Singh, S. K.	••	"Exceptional values of entire functions," Duke Math. Journal, 1956, 24, 527-32.