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Abstract

A class of two-step implicit methods involving higher-order derivatives of y for initial value problems of the form
y" =f(t,y,y')is developed. The methods involve arbitrary parameters p and g, which are determined so that the methods
become absolutely stable when applied to the test equation y” + Ay’ + uy = 0. Numerical results for Bessel’s and general
second-order differential equations are presented to illustrate that the methods are absolutely stable and are of order
O(h*), O(h®) and O(h®).
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1. Introduction

When practical problems in science and technology permits mathematical formulation, the
chances are rather good that it leads to one or more differential equations. This is true certainly of
the vast category of problems associated with force and motion, propagation of waves, flow of heat,
diffusion, static or dynamic electricity, etc.

The analytical methods of solving differential equation are applicable only to a limited class of
equations. Quite often differential equations appearing in physical problems do not belong to any
of the familiar types and one is obliged to resort to numerical methods. The numerical methods
have become more popular and important with the fast growing computing facilities of memory
size and speed in calculations using recent computers.
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We consider the general second-order differential equations of the form

y' =f(ty,y") with y(to) = yo, ¥'(to) = ¥yo (1.1)
Here, we have developed a class of two-step implicit methods involving higher-order derivatives
for the initial value problems (1.1). The use of higher-order methods to approximate the theoretical
solution restricts the choices of step size to small values. The idea of adapting higher-order methods
has been proposed by several authors. The methods contain two arbitrary parameters p, g, which
are the new additional values of the coefficients of y’ and y in the given differential equation. They
have been chosen so that, they are the roots of the characteristic equation m* + pm + g =0
satisfying the conditions 0 < p < 2\/:1. This condition gives complex conjugate roots and the
methods become absolutely stable when applied to the test equation

y'+ Ay +puy =0, (1.2)
where A and u are real numbers.
It is observed that the numerical solution of the special second-order differential equation
y'=fty),  ylto)=yo, Y(t)=ro (1.3)

by the Numerov method of O(h*) with interval of periodicity (0, 6):

h2
Vi1 = 2Vn + Yu-1 =ﬁ(y£{+1 + 10y, + yn-1) (1.4)

becomes unstable for large step sizes. Ananthakrishnaiah [2] had developed two-step E-stable
methods of higher orders.

Definition. The numerical method
Ynt1 = 2Vn+ Yn-1= Z hilog oy 1 + 200 1 90 4 o 2y (L.5)
i=1

is said to be an E-stable method if the characteristic equation possesses real and equal roots of

modulus less than unity
The following method is of O(h*) and E-stable:

Vi1 —2Vn+ Yn-1=HM(Ynr1— Yu-1) _%hz( ne1 20 + Va-1)- (1.6)

The purpose of the article is to derive additional parameter methods for (1.1) which are
absolutely stable and involve higher-order derivatives. Our derived methods are useful to solve any
linear or nonlinear general second-order initial value problems. The truncation error entirely
depends on the choice of g such that ¢ > (2nn/h)*, n = 1,2,3,4, ... The truncation error tends to
zero as n is very large and p near to zero.

2. Derivation of the methods

We write (1.1) in the form
y'+py +qy =2y y), (2.1)
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where

O(t,y,y')Y=f(t,y, ¥y )+ py +qy “(22)

with 0 < p < 2\/ g,p and q being real numbers to be determined.
Eq. (2.1) can be approximated as

y'+py +qy=g(), (2.3)

where ¢g(¢) is an approximation to &(t,y, y’).
Obviously, the general solution of (2.3) is

y(t) = Ae”'' + Be®!

+

J (2079 — en D) g(z)dz, (2.4)

_O'l

where 6y = u +iv, 0, =u —iv, u = — p/2, v = \/(4q — p*)/2 and A, B are arbitrary constants.
Differentiating (2.4) with respect to ¢, we have
y'(t) = 0, A’ + 0, Be”
1
0, — 04

+

t
f (0,728 — ge7""D)g(z)dz. (2.5)
t'l

Eliminating A and B by substituting ¢ = t,,,, and t,_, in (2.4) and (2.5) we obtain the relations
y(tn-+- 1) - (emh + e”"))’(tn) + e_th(tn— 1)

1 fint1
T o,—o (€72re179 —en1tn179)(g(z) + e~ P*g(2t, — 2))dz, (2.6)
27— Ut Jt,
Yltar ) — (€ + 7"y (t,) + e Py (t,- 1)
1 TR
D (0,e720+ 172 g e®1 1= (g(z) 4 e~ PRg(2t, — 2))dz. (2.7)
27 Uy Jta

2.1. Implicit multistep methods

Let us take a natural number k and replace g() with the Newton backward difference interpola-

tion polynomial at the points ¢, 1,,,ty—1, --- ,In—i+1 and replacing Vig,, by V/®, . ; we get (see
Eq. (2.3))
- n ) ( - tn [ — tn)
(t)*¢n+1 +( h ! V¢n+1+ ;,l}zg V2¢n+1
— 1, _
4 +(t Lig )6 — 1) - (t — ti_g42) Ve, .,

k!h*

(t _ tn+1)(t - tn) (t —1
k + 1)!

n—k+1) ¢(k+1)(é), by <& <tyiq. (2.8)
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Analogously, if in formula (2.6) we replace the expression g(t) by the Newton polynomial (2.8) and
neglect the error term, we get

Ye1 — €+ €M)y, + e y,_1

b [Memaeon _gnamny v el (TS 4 (5 e | vmgads 29)
- [e —¢ ]m=o m m € n+108 .

g, — 01 Jo

where (t — t,)/h =s.
Proceeding as above and taking into account also the second term (2.7) in (2.8) we obtain the
formula

Vor1 — € + ey, +e Py,

_ h 1[ G2(1 —s)h al(l—s)h] i( l)m -8 + S e~ ph de) ds
T o;—01 )0 72¢ 71 m=0 m m e

(2.10)
Alternatively, the above equations, (2.9) and (2.10), may be written as
k
Yn+t — (ea1h + e”"))’n + e_phyn—l = hz Z VYm Vm¢n+1a (211&)
m=0
k
Veer =@+ ey te Py =h Y yaV"urr, (2.11b)
m=0
where
__(=p L ea-9h _ aou(l—9h —s —ph (5
y’”_(azh—alh) 0(e e ) m +e m ds
(=™ 1 _ _ —s _ (s
* o2(1—s)h __ o1{l—s)h ph d .
vk Gah—oih) Jo (o2 he o1he ) m +e m) 198
This relation for k = 2 takes form of Egs. (2.11a) and (2.11b) as follows:
Yn+1 — € + €M)y, +e Py, 1 = B2 (Br0n+1 + Br1¢n + B120n-1), (2.12a)
Vue1 — € "+ ey, +e Py = BBl o1 + Br1dn + B120n-1), (2.12b)

where @, = py,, + qVu + f (tn; Yn, V-
The coefficients in (2.12) can be determined by expanding both sides of (2.12) into the Taylor
series about the point ¢ = t,, and equating the like powers of h. From the system of linear equations

thus obtained, we get the coefficients in Egs. (2.12a) and (2.12b) as follows:

1 _
Br.o = g3 [20® = 24 = pah)F — 2pah(l = ¢™) +2¢%¥°], (213)
2
Bus = = 53 (@20 =20 — PWF = 2pgh(1 —e™™) + WL +e™M], (213D

1
Bi,2 = P [(2p? — 2q — pgh)F — 2pgh(1 — e~ P*) + 2g*h%e~P"] (2.13¢)
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and
1 _
Bio = 70 [(gh — 2p)F + 2qh(1 —e™"")], (2.14a)
, 2 —ph
By = 270 [2pF —2qh(1 —e™™)], (2.14b)
1
Pi2=— Y [(gh + 2p)F — 2qh(1 —e™#*)], (2.14¢)

where F = [1 — (e°" + €°2*) + ¢~ 7")].

3. Two-step Obrechkoff methods

We have constructed two-step Obrechkoff methods of O(h*), O(h®) and O(h®) for k = 2,3,4 in
the following formula:

Ynr1— €+ e My, +e Py,
= é W[ B o %1 + i 10 ™2 + Bi 208 17], (3.1a)
Yner — € + M)y, + e Py,
= i R B o T? + Bi 1% ™2 + B2 171, (3.1b)
i=1

where @272 =y + pyF Y 4 gy, i =1,2,3,4.

The method is of the form (3.1) which involves higher-order derivatives of the solution y(t) and
may be called as Obrechkoff method. The method (3.1) is called explicit if ;o = fi o =0 for
i = 1(1)k; otherwise implicit. The coefficients 8 o, 81,1, 81,2, 81,0, 1,1, and Bi , are given in (2.13)
and (2.14).

3.1. Two-step Obrechkoff method of O (h*)
When k = 2, Egs. (3.1a) and (3.1b) may be written as two-step method of order four as follows:
Yuer = (€7 + €M)y, + ey,
=h*(B10@n+1 + Br.1bn + Br.20n-1) + B (B2,000+1 + P2.19n + B2204-1), (3.22)
Yurr — " + ey, + e Py,

=h(B10Pn+1 + B, 100+ B120n-1) + B (B2 0bn+1 + B2,107 + B2 201-1), (3.2b)
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where

1 -
r.o = gays 4kl +¢77) = 2(1 = e™™)(2p — gh

+ B1.0(12p%h + 24p — 6pgh® — 3¢°h° — 24qh)
+ Br.2(12p°h — 24p — 6pgh® + ¢*h*)],

2 _ _
B2.1 =m[4p(1 —e ™) —gh(l +¢77)

— B1.0(12p*h + 24p — q*h> — 12qh)
— B1,2(12p*h — 24p — ¢*h* — 12qh)],

1
a2 = 5oz [ah(1 +e77) = 2(1 — ™2 + gh

+ B1.0(12p%h + 24p + 6pgh* + q*h?)

+ B1,2(12p%h — 24p + 6pgh* — 3q*h® — 24qh)]
and
1
244°%h3
+ B1,0(12p*h + 24p — 6pgh® — 3¢*h> — 24qh)
+ B1.2(12p*h — 24p — 6pgh® + q*h*)],

P20 = [4gh(l —e™ ") — 6(1 + €™ *)(2p — gh)

2
2.1 = 2T [12p(1 + e~ P") — 4gh(1 —e™Ph)
+ ,3’1,0(12p2h + 24p — q*h* — 12gh)
— P1,2(12p°h — 24p — ¢*h* — 12h)],
1 _
Br2 =3y Agh(l —e7%") — 6(1 +7")(2p + gh)
+ ﬁ’l,o(l?,pzh + 24p + 6pgh® + ¢*h>)
+ B1.2(12p*h — 24p + 6pqh® — 3q*h® — 24qh)].
3.2. Two-step Obrechkoff method of O (h®)
In (3.1a) and (3.1b) when k = 3 the sixth-order method is written as

Yar1 — €+ y, + e Py, =h*(B10Pne1 + Br.1Gn + Br2GPn—1)
+ h*(Bao@n1 + Ba,1Pn + Ba2Pn—1) + (3,001 + B3, 108 + B3 2950y),

(3.33)

(3.3b)

(3.3c)

(3.4a)

(3.4b)

(3.4¢c)

(3.5a)
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Vier — (€ + ey, +e Py, =h(B1l0Pns1 + 1100+ b1 2dn-1)
+ W3 (Barotn+r + Bradn + Bra2dn-1) + B3 (B30 + B3,10% + B3,2081),

where

Br.o = =g [ah(1 + ™) = 3(1 — e~ #)(2p — gh)
720q°h
+ B1.0(30p?h + 120p — 15pgh® — 4q*h® — 90qh)
+ B1..(30p%h — 120p — 15pgh?* + 2q*h> + 30qh)
+ B2.0(360p%h + 720p — 180pgh* — 90g*h* — 720qh)
+ B2.2(360p*h — 720p — 180pgh* + 30¢*h%)],

B = 23007 6901 — <) = (1 +¢7)

— B1.0(30p%h + 120p — g*h* — 30gh)

— B1.,(30p*h — 120p — g*h® — 30gh)

— By o(360p%h + T20p — 30¢%h® — 360gh)
— By 2(360p%h — 720p — 30¢%h° — 360gh)1,

1 - -
Br.2 = gz LAh(1 + €7 = 3(1 = e™™)(20 + gh

+ By o(30p2h + 120p + 15pgh® + 2¢*h* + 30gh)

+ B1.2(30p*h — 120p + 15pgh® — 4g2h® — 90gh)

+ B, 0(360p%h + 720p + 180pgh® + 30g2h?)

+ B 2(360p%h — T20p + 180pgh? — 90g2h® — 720gh)],

and

1
B3.0 = 7,3 [6ah(1 — &™) = 15(1 +€7)(2p — gb

+ B1.0(30p%h + 120p — 15pgh* — 4q*h* — 90gh)

+ B1,2(30p*h — 120p — 15pgh® + 2q°h> + 30gh)

+ B5.0(360p*h + 720p — 180pgh? — 90g*h> — 720gh)
+ B, 2(360p2h — 720p — 180pgh? + 30¢°h%)],

(3.5b)

(3.6a)

(3.6b)

(3.6¢)

(3.72)
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2
B34 = 73047 [30p(1 + e~ 7*) — 6gh(l — e~ P")
— B1.0(30p*h + 120p — g*h® — 30qh)
— B »(30p*h — 120p — g2k — 30gh)
— B4.0(360p%h + 720p — 30q2h® — 360qh)
— B 2(360p*h — 720p — 30g%h* — 360gh)],
1
B2 = e [Oah(L = ¢#) — 15(1 + &~ ™)2p + gh

+ B1.0(30p*h + 120p + 15pgh® + 2q°h3 + 30qh)

+ B1.2(30p*h — 120p + 15pgh® — 4q*h® — 90qh)

+ B5,0(360p*h + 720p + 180pgh?* + 30g%h>)

+ B5.,(360p%h — 720p + 180pgh® — 90g>h® — 720gh)].

3.3. Two-step Obrechkoff method of O(h®)

(3.7b)

(3.7¢)

In the identical way as before, when k =4 in (3.1a) and (3.1b), we obtain the following

eighth-order method as

Ynr1— €+ ey, +e Py, =R (Br00ni1 + B, 10+ Br20n-1)
+ h*(Ba0@n+1 + Bo 101 + Ba2dn-1
+ hO(B3. 00001 + B3, 108 + B3.202y)
+ K (Baodnty + a1 B8 + Ba,294D,),

Ynr1— €+ ey, +e Py, 1 = h(BLoPns1 + B110n + B12Gu—1)
+ B3 (Boo@n+1 + Bo by + Bradn-y
+ h (500001 + B5108 + B320Y,)
+ h7(Baodnis + Ba bt + Bi2olDy),

where

1
Ba,o = 7,3 Lah(d +e™™) —4(1 — e ™)(2p — gh)

40320q
+ B1,0(56p%h + 336p — 28pgh? — 5¢%h3 — 224qh)
+ B1,2(56p*h — 336p — 28pgh® + 3¢°h> + 112h)

(3.8a)

(3.8b)



and

B\ = 2
*17 403204%H°

1
Ba.2 _W[

Pa.0 = 2532047

+ B,.0(1680ph + 6720p — 840pgh* — 224¢*h> — 5040qh)

+ B2.,(1680p%h — 6720p — 840pgh® + 1124*h* + 1680gh)

+ B3.0(20160p>h + 40320p — 10080pgh® — 50409%h> — 40 320gh)
+ B3.,(20160p%h — 40320p — 10080pgh® + 16809%h>)],

[8p(1 —e™P") — gh(1 + &P

— B1.0(56ph + 336p — q*h® — 56qh)

— B1.2(56p*h — 336p — g*h> — 564h)

— B5.0(1680p*h + 6720p — 56¢*h* — 1680gh)

— B,.,(1680p*h — 6720p — 56¢*h> — 1680gh)

— B3.0(20 160p2h + 40 320p — 1680g2h> — 20 160gh)
— Bs,2(20160p>h — 40 320p — 16804%h> — 20 160gh)],

gh(l +e ?") —4(1 — e ")(2p + gh)

+ B1.0(56p%h + 336p + 28pgh* + 3¢*h> + 112qh)

+ B1.2(56p*h — 336p + 28pgh® — 5¢*h> — 2244h)

+ B3.0(1680p*h + 6720p + 840pgh® + 1129*h> + 1680gh)

+ By, (1680p*h — 6720p + 840pgh® — 224¢%h® — 5040gh)

+ Ba.0(20 160ph + 40320p + 10080pgh® + 1680¢2h%)

1 Ba.»(20160p*h — 40320p + 10080pgh® — 5040q°h> — 40 3204h)]

L 5 [8gh(l — e~ 7*) — 28(1 + e~ P*)(2p — gh)

+ B1.0(56p*h + 336p — 28pgh® — 5q%h* — 224qh)

+ B1,2(56p*h — 336p — 28pgh® + 3¢7h* + 1124h)

+ B4 o(1680p2h + 6720p — 840pgh? — 224¢>h> — 5040qh)

+ B (1680p2h — 6720p — 840pgh® + 112¢%h* + 1680gh)

+ B5.0(20 160p>h + 40320p — 10080pgh® — 5040g%h> — 40 320gh)
+ B5.2(20 160p>h — 40 320p — 10080pgh? + 1680g%h%)],
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(3.92)

(3.9b)

(3.9¢)

(3.10a)
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2 - —
Ba= 4032070 [56p(1 + e~ #") — 8gh(1 + e~ 7"
— B1.0(56p*h + 336p — g*h® — 564h)
— B1.2(56p*h — 336p — ¢*h* — 564h)
— B5.0(1680p*h + 6720p — 564%h> — 1680gh)
— B5.,(1680p*h — 6720p — 564%h> — 1680gh)
— B4%,0(20160p*h + 40320p — 1680g%h* — 20 160gh)
— B5,2(20 160p%h — 40 320p — 1680¢%h> — 20 160gh)], (3.10b)
1 - —
B4,2 = 2032080 [8gh(1 — e™#*) — 28(1 + e~ "")(2p + qh)

+ B1,0(56p%h + 336p + 28pgh? + 3q*h® + 112gh)

+ B1.2(56p*h — 336p + 28pgh® — 5¢*h® — 224qh)

+ B5.0(1680p%h + 6720p + 840pgh® + 112¢%h* + 1680gh)

+ B5.2(1680p%h — 6720p + 840pgh® — 224¢*h — 5040qh)

+ f5,0(20 160p*h + 40320p + 10080pgh? + 1680¢2h3)

+ B4.2(20160p*h — 40320p + 10080pgh® — 5040¢%h> — 40 320gh)]. (3.10c)

To find the coefficients in the methods (3.2),(3.5) and (3.8), we expand the methods using Taylor’s
series at the point ¢ = 1, and equating the like powers of h on both the sides. From the system of
linear equations thus obtained, we get the coefficients in the above methods.

4. Truncation error and order of the methods

The order of the method (3.1) is m, if the truncation errors of the associated linear difference
operator L and L’ are defined as

LLy(tn), h] = Cps 1 A" 1 y™* V(1) + O(R™*2)
and
L'[y(ta),h] = Crus 1 A"y D(t,) + O(h™ 1)

where C,,+1,C,,+, are constants independent of h.
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Expand the method (3.2) using the Taylor’s series and we can find the truncation errors are as
follows:

hS
TE; == [(1 —e ™) — [5ph(Bi1,0 + B1,2) + (gh® + 20)(B1,0 — B1.2)]

— [60ph(B2.0 + B2,2) + (20gh* + 120)(B2,0 — B2.2)115" + O(1°), (4.1a)
hS
hTEy =5 [5(1 +e ) — [5ph(B1,0 + B1.2) + (gh® + 20)(Bi.0 — B1,2)]

— [60ph(B3,0 + B5.2) + (20gh* + 120)(B2,0 — B2,2)11y2” + O(h°). (4.1b)

which is of O(h*).
Similarly, we get the truncation errors in the method (3.5) as follows:
7

h
TE =—[(1—e PRy — [Tph(B1.0 + P1,2) + (gh? + 42)(B1,0 — B1,2)]

— [210ph(B,.0 + B2,2) + (42gh* + 840)(B2,0 — P2,2)]
— [2520ph(B3,0 + B3.2) + (840gh* + 5040)(B3,.0 — f3.2)11y0™ + O(h®), (4.2a)

]7
hTE; = % [7(1 +e™ %) — [Tph(Bi,0 + B1.2) + (gh* + 42)(Bi.0 — B1.2)]
— [210ph(B5,0 + B5.2) + (42gh> + 840)(B2,0 — B3,2)]
— [2520ph(B3,0 + B5,2) + (840gh® + 5040)(B5,0 — B3,2)11yi™ + O(h®),  (4.2b)

which is of O(h®).
In the identical way as before, we obtain the truncation errors in the method (3.8) are as follows
9

h
TE; = 91 [(1 —e ™) — [9ph(B1,0 + B1.2) + (gh* + 72)(B1,0 — 1.2)]

— [504ph(B2.0 + B2.2) + (72qh* + 3024)(B2.0 — B2.2)]
— [15120ph(B3,0 + B3.2) + (3024qh2 + 60480)(B3,0 — B3,2)]

— [181440ph(Ba,0 + Pa.2) + (60480gh* + 362880)(B4.0 — Ps.2) 11y + O(R'?),
(4.3a)

no

hTE3 = — [9(1 +e7 ") — [9ph(B1,0 + B1,2) + (gh® + T2)(B1,0 — B1,2)]
— [504ph(B5,0 + B3,2) + (72gh* + 3024)(B3.0 — B5,2)]
— [15120ph(B3.0 + B3,2) + (3024gh* + 60480)(B3,0 — B3.2)]

— [181440ph(B.0 + Bi,2) + (60480gh> + 362880)(B4,0 — Ba.2)11yw + O(h'°).
(4.3b)
which is of O(h®).
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Note: In particular, when p = 0 and q = (2rn/h)?, n = 1,2,3, ..., the truncation errors in the
methods (3.2),(3.5) and (3.8) are as follows:

um .

TE, = 5ot hy(1) + O(), 44)
~ 17649, "

TEs = — 355631385600 " 7 () + O(hT), (43)
5764801 ot "

TBs = 14048 22362521655 " 7 (tn) + O(), (4.6)

which are of O(h*),O(h®) and O(h®), respectively.

5. Stability

Applying the above derived methods (3.2),(3.5) and (3.8) to the test equation (1.2), we obtain
Yn+1 — {€xp(1h) + exp(o2h)} yn + €Xp(—ph)y,—1 = 0, (5.1)
where 4 and yu are chosen to be equal to p and g, respectively.

Definition. The linear multistep method is said to be absolutely stable if the roots of the character-
istic equation are in moduli less than one for all values of the step length h.

The characteristic equation of the recurrence equation (5.1) is
£* — {exp(a1h) + exp(a,h)} ¢ + exp(—ph) = 0 (52)

so its roots are exp(o,h) and exp(c, h). Hence, their moduli are equal to exp( — ph/2). Therefore, our
method is absolutely stable for all p > 0.
If p = 0, the methods reduce to P-stable for periodic initial value problems of the form (1.3) (see

8.

6. Numerical results

Numerical results are presented for the following initial value problems of Bessel’s and general
second-order nonlinear differential equations to illustrate the order, accuracy and implementa-
tional aspects of the methods (3.2),(3.5) and (3.8).

Problem 1. Consider the Bessel’s differential equation

£2y" + 1y’ + (¢ — 0.25)y = 0 (6.1)

with y(1) = 0.6714, y'(1) = 0.0954.
It is well known that y(f) = J,,;(t) = \/(2/nt)sint is the exact solution of (6.1).
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Problem 2. We consider the linear second-order differential equation
A+0y"+2y =1 +0y=0, yO =1 y'©0)=0 (6.2)

with exact solution y(t) = e~ /(1 + ¢).

Problem 3. We consider the nonlinear second-order differential equation

Y2y —(1—yy=0 y0)=3y0=3 (6.3)
with exact solution y(t) = 1/(1 +¢7").

The above problems are solved using the methods (3.2),(3.5) and (3.8), which are of O(h*), O(h®)
and O(h®), respectively. We take different arbitrary parameters of p and g (see Tables 1-3). The
numerical solutions are compared with exact solutions and the absolute error values
e = |y, — y(t,)| are found for ¢t = 1 to 10 and the values e at t = 8 are presented in Tables 1-3. One
can see from the tables that they are absolutely stable and these errors are of O(h*), O(h®), O(h®),
respectively.

The problem (6.3) is also solved by method (3.2) of O(h*) with three different pairs of the values of
p and g. The absolute errors of the numerical solutions at t = 8 are presented in Table 4. From
Table 4, we can clearly see that, as ¢ becomes very large and p tends to zero we get more accurate
results, since the truncation error decreases.

Table 1
Numerical results using the method (3.2)
h Errors at ¢t = 8.0, when p = 0.1 and q = (20%/h)?
Problem (6.1) Problem (6.2) Problem (6.3)
Oo(n*) O(h*) Oo(n*)
271 0.66695915( —06) 0.46404758( —05)  0.46393722( —08)
272 0.44310303(—07)  0.36343158(—06)  0.25105829( —09)
273 0.27795443(—08)  0.25523150(—07)  0.14697021( —10)
Table 2
Numerical results using the method (3.5)
h Errors at ¢ = 8.0, when p=0.1 and ¢ = (20m/h)?
“Problem 6.1) Problem (6.2) Problem (6.3)
O(h%) O(h) O(h®)
27! 0.25526375(—09)  0.16996989(—06)  0.32985614( —09)
272 0.38778980( —11)  0.53095164(—08)  0.43316462(—11)
273 0.58175686( —13)  0.17769253( —09) 0.64170891( —13)
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Table 3
Numerical results using the method (3.8)
h Errors at t = 8.0, when p = 0.1 and g = (10n/h)?
Problem (6.1) Problem (6.2) Problem (6.3)
O(h®) O(h®) O(h®)
271 0.20435875(—10)  0.16778472( —08) 0.30300873( —10)
272 0.76605389( —13) 0.82991392(—11) 0.10957901( —12)
273 0.33306691( —15) 0.56843419( —13) 0.44408921( —15)

Table 4
Numerical results using the method (3.2) for different values of p and ¢
h Errors at t = 8.0 for the problem (6.3)
p=0.1and p=0.1 and p=20.1 and
g = (10m/h)? q = (100m/h)? q = (1000m/h)?
O(h*) O(h*) o(h*)
271 0.41243749(—07)  0.41233861(—09)  0.41228132(—11)
272 0.21014416(—08)  0.21678548(—10)  0.21638247(—12)
273 0.11713330( —09) 0.12501111(—11) 0.12545520( —13)

Note: A number listed in Table 1-4 as a( —b) means a- 1072

In solving the problems, the initial approximations yi,ol L and y,¥, are obtained from the exact
solution. These values are used in finding the approximate value to y, + , from the specified methods
(ie. (3.2),(3.5),(3.8)) and they are used to find the next iterates to y,,;. The successive Picard’s
iteration process is carried out with an error tolerance e = 1 x 10~ 1° to find the numerical solution
at each step.

We can also apply the methods to the special second-order initial value problem (1.3) by
assuming the coefficient of y’ is zero (ie., p = 0).

Problem 4. Consider the nonlinear equation (see [2])
y'=350y% y(1) =%, y' (1) = —3%. (6.4)
Its exact solution is y(t) = 1/(1 + 5¢).
The problem is solved using the method (3.2) of O(h*) by taking p = 0 and q = (100n/h)?. The
absolute errors of the numerical solutions at ¢ = 10 with & = 0.5 are presented in Table 5.

We have also compared the results obtained by the method (3.2) to the Numerov method (1.4)
and the P-stable method of O(h*):

Vat1 = 2Vn+ Va1 =120 (yne1 + 10yy + yi—y) — aa h* (v — 2y + yiv | (6.5)
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Table 5
Absolute and relative errors for the problem (6.4) at t = 10
Methods Absolute error Relative error
h=05 h=0.5
Method (3.2) 5.17(—14) 2.62(—12)
E-stable (1.6) 3.21(—04) 1.63(—02)
Hairer (6.5) 3.47(-02) 1.77( +00)
Numerov (1.4) 7.80( —02) 3.98( +00)

proposed by Hairer [6] with minimum truncation error are also presented in Table 5 for
comparison.

The truncation error entirely depends on g, We can decrease the truncation error by increasing
the value of n. This is a new approach in the truncation error.

7. Conclusions

The numerical results presented for linear and nonlinear problems show that the methods
are absolutely stable when the parameters p and q are selected in such a way that 0 < p < 2\/ q.
From Table 4, it is observed that, as g becomes very large the truncation error becomes smaller
and we get more accurate results. From Table 5, one can see that, the fourth-order Obrechkoff
method gives better results than the other fourth-order Numerov, P-stable Hairer and E-stable
methods.

Acknowledgements

We are grateful to the referees for their critical remarks and fruitful suggestions.

References

[1] U. Ananthakrishnaiah, Adaptive methods for periodic initial value problems of second order differential equations,
J. Comput. Appl. Math. 8 (1982) 101-104.

[2] U. Ananthakrishnaiah, E-stable methods for exponentially decreasing solutions of second order initial value
problems, BIT 25 (1985) 498-506.

[3] U. Ananthakrishnaiah, A class of two-step P-stable methods for the accurate integration of second order periodic
initial value problems, J. Comput. Appl. Math. 14 (1986) 455-459.

[4] U. Ananthakrishnaiah, P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems.
Math. Comput. 49 (1987) 553-559.

[5] M.M. Chawla, Superstable two-step methods for the numerical integration of general second order initial value
problems, J. Comput. Appl. Math. 12 (1985) 217-220.

[6] E. Hairer, Unconditionally stable methods for second order differentially equations, Numer. Math. 32 (1979)
373-379.



182 A. Sesappa Rai, U. Ananthakrishnaiah/Journal of Computational and Applied Mathematics 79 (1997) 167182

[7] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962).
[8] M.K. Jain, R.K. Jain and U. Ananthakrishnaiah, P-stable methods for periodic initial value problems for second
order differential equations, BIT 19 (1979) 347-355.
[9] M.K.Jain, R.K. Jain and U. Ananthakrishnaiah, Obrechkoff methods for periodic initial value problems for second
order differential equations, J. Math. Phys. Sci. 14 (1981) 239-250.
[10] A.Sesappa Rai and U. Ananthakrishnaiah, Adaptive methods for the direct numerical integration of y” = f(z, y, y'),
Utilitas Math. 47 (1995} 129-135.
[11] A. Sesappa Rai and U. Ananthakrishnaiah, Additive parameters methods for the numerical integration of
y' =f{t,y,y'), J. Comput. Appl. Math. 67 (1996), 271-276.



