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ABSTRACT 

In this paper  inverse linear mul t is tep  methods  for the numerical  solution o f  second order differ- 
ential equat ions  are presented.  Local accuracy and stability of  the methods  are defined and dis- 
cussed. The  methods  are applicable to a class o f  special second order initial value problems, not  
explicitly involving the first derivative. The me thods  are not  convergent,  bu t  yield good numer- 
ical results if  applied to problems they  are designed for. Numerical  results are presented for bo th  
the linear and nonlinear initial value problems. 

1. INTRODUCTION 

Second order differential equations arise in a wide 
variety of important physical problems. Two special 
cases of the second order initial value problem 

F (t, y, y")  = 0, Y(t0) = Y0' Y'(t0) = Y0 (1.1) 
a r e  

y" = f(t, y), 

and 

y= g (t, y"), 

Y(t0)- Y0' Y'(t0) = Y0 (1.2) 

Y(t0) = Y0' Y'(t0) = Y0 (1.3) 

Sometimes (1.2) can be transformed into (1.3). For 
example in the case when 

f( t ,y)= ~y, ~ : / : 0  

the corresponding problem (1.3) is given by 

g (t, y" ) = n -1 f (t, y). 

On the other hand, the simple integration problem 
(1.2) det~med by 

f (t, y) = • (t) 

cannot be transformed into (1.3). 
To obtain the numerical solution of (1.2), we make 
use of linear multistep methods given by 

k h2 k 
= ~ /3j fn+j (1.4) j=0 aj Yn+j j=0 

When conventional methods of the form (1.4), with 
k > 2, are used to solve the initial value problem (1.2), 
the time increment must be limited to a value propor- 
tional to the reciprocal of the largest eigen value of 
the Jacobian of (1.2). Any attempt to use a larger 
increment results in the calculations becoming un- 

stable and producing erroneous results. The StiSrmer- 
CoweU linear multistep methods of order greater than 
two when used to solve (1.2) are found to be unstable 
for large step sizes (see Stief¢l and Bettis [4]). 
Recently, Alfeld [1] has developed a class of linear 
multistep methods known as inverse linear mukistep 
methods for solving a stiff system of first order differ- 
ential equations. In this paper, to obtain the numer- 
ical solution of (1.3), we consider linear multistep 
methods of the form 

h_2 k~ 1 k ^ 
j=0  aJ Yn+j=j~0fIJ fn+j  (1.5) 

where 

~k = i andYn+ j = g(tn+ j,  fn+j)" 

The methods (1.5) are referred to as inverse linear 
multistep methods (ILMMs). They are explicit when 
applied to initial value problems of the form (1.3). 

2. LOCAL ACCURACY 

With the ILMM (1.5), we associate the difference 
operator 

T[Z(tn),h]= k0 [h -2a jz ( tn+ j ) -~ jz" ( tn+ j )  ] (2.1) 
J 

with ~k = 0, where z(t) is an arbitrarily often differen- 
tiable test function. Proceeding similarly as for explicit 
linear multistep methods (see Lambert [3]), we expand 
T[Z(tn), hi, coUect terms and obtain 

T[Z(tn), h] = h-2[(~ 0 Z(tn) + C.lhz(1)(tn) 

+ C2 h2 z(2)(tn ) + "" "] (2.2) 
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where 
^ ^ 

CO = aO + °'I + ..... + a'k 

d l = a l  +2a2 + ... + k a  k 

Cq = ~.t (&l + 2 q g2 + . . . .  + kq C~k) 

1 (~1 + 2q-2 ~2 + .... + kq-2 ~k)" 
(q-2)! 

q= 2, 3,4 . . . .  

Definition 2.1 
The ILMM (1.5) is said to be of order p if in (2.2) 

CO = 61 . . . .  = Cp + 2 = O, Cp + 3 =/: 0 (2.3) 

Cp + 3 is known as the error constant of (1.5). The 

method (1.5) is consistent if it is of order p > 1. 
A necessary condition for p ~ 1 is k ;~ 4. 

3. STABILITY OF ILMMs 

Applying the method (1.5) to the test equation 

Y" = - X2y' Y(t0) = Y0' Y'(t0) = Y0 

we obtain 

where k-1 ; J 

k 
o(~)--j=Z 0 /~j ~J 

2 = X 2 h 2. 

(3.1) 

(3.2) 

We refer to the polynomials/~ (~) and 0 (~) as the first 
and the second characteristic polynomials and to 

(~, H) as the stability polynomial of (1.5). 

Definition 3.1 
The ILMM (1.5) is said to be absolutely stable for a 

given H 2 ~ C, ff for that ~2,  all the roots ~m of (3.2) 

satisfy I~ml < 1 for m= 1, 2 ... . .  k. The set 

R= (R  2 ~ C/absolutdy stable for R 2 ) is called the 
region of  absolute stability. 
The StSrmer-Cowell linear multistep methods, when 
applied to the test equation (3.1) possess absolute 

stability,intervaLs 0 < ~2 < R~. The values of R~ 

for k = 2, 3, 4 and 5 are given in tabh 1. 
In (3.2), the degree of ~ (~) < k - 1 < k whereas the 

degree o f~  (~) is k. So one of the roots of~ (~, H) = 0 
tends to infinity as R tends to zero. This shows that 
the ILMM (1.5) is always unstable for small values of 
H. Hence the method (1.5) is non-convergent as 
tends to zero. 
Since the zeros of the stability polynomial (3.2) tend 
to those of ~ (~) as H tends to infinity, we are led to 
seek ILMMs whose second characteristic polynomial 
possesses only zeros of modulus less than unity i.e., 
it is a Schur polynomial. 

Definition 3.2 
The ILMM (1.5) is said to be infinite-stable if 5(~) is 
a Schur polynomial. 

Definition 3.3 

The ILMM (1.5) is said to be strongly infinite-stable 
if ~ (~7 = ~k. 

A strongly infinite-stable ILMM has the form 

h-2 k i l  
f n + k =  j = 0  aJ Yn+j (3"37 

We note that the concept of infinite-stability is in a 
way dual to the concept of zero-stability. Zero-stabil- 
ity deals with the case that iq tends to zero whereas 
infinite-stability deals with the case when R tends to 
infinity. 
For a strongly infinite-stable ILMM we have k-par- 

ameters a0' al  . . . . .  ak -1 at our disposal and can 

thus expect to be able to attain an order k -  3. Also 
we can expect a consistent strongly infinite-stable 
ILMM to have a step number k > 4. 
The following theorem gives the maximum attainable 
order of infinite-stable or strongly infinite-stable 
ILMMs. 

Theorem 3. I 

(a) Let ~ (~) be a polynomial of degree k (with ~k = 17" 

Then there exists a unique polynomial of degree k - 1, 
such that the ILMM defined by ~ (~) and # (~) has 
order at least k -3. 

(b) The maximum order of an infinite-stable ILMM is 
k - 3. For each k ~ 4, there exists a strongly infinite- 
stable ILMM of order k -  3. 
We omit the proof of this theorem, as it follows closely 
the lines of Henrid's proof ([2], pp. 304-307) on the 
maximum order of zero-stable linear multistep methods, 
with necessary modifications being adopted as suggested 
in [1] for ILMMs of first order system of differential 
equations. 

4. SPECIFICATION OF ILMMs 

The following is a llst of inverse linear k-step methods 
of order k - 3  for k = 4, 5, 6 with free parameters that 
give complete control over the coefficients and thus 
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over the zeros of 5 (~). The error constants in terms 
of the free parameters and the maximum value of 
)2h2 = R2 . are given for which the methods are 

r m n  

strongly infinite-stable. 

k = 4  

fn+ 4 = -~3 fn+ 3 - ~2 fn+ 2 - ~ l f n +  1 -~0fn  

^ A 

+ [(3+ 2~ 3 +/32 -//0) Yn+3 + (-8 -5~ 3 -2~2 + ~1 

+ 4~0)Yn+2 + (7 + 4~ 3 + ~2 -2~1 -5~0) Yn + 1 

+ (-2 -~3  + ~1 + 2~0) Yn ]/h2 (4.1) 

Order o f  the method : 1 

Error constant :  C4 = ~ 2  (- 35 - 11~3 + ~2 + ~1-11~0 ) 

H 2 • = 20. 
r n l n  

k = 5  

fn+ 5 = -~4 fn + 4-~3 fn + 3-~2 fn + 2-~1 fn+ 1 -~0 fn 

+ [(71+ 35~ 4 + 11~ 3-~2 -~1 + 11~0) Yn+ 4 

+ (-236-104~4-20~3+ 16~2+ 4~1-56~0)Yn + 3 

+ (294+ 114~4 + 6~3-30~ 2 + 6~ 1 + 114~0) y n + 2 

+ (-164-56~4 + 4~3+ 16~2 -20~1-104~0) Yn + 1 

+ (35+ 11~4-~3-~2+ 11~1+ 35~0) Ynl/12 h 2 
(4.2) 

Order o f  the m e t h o !  : 2 

Order o f  the method : 3 

Error constant : 

C6= 1 ~ 0  (-812-137~5 + 13~4-2~3-2~2+13~1-137~0) 

R 2 _ 560 
min 3 

5. COMPARISON OF ELMMs AND ILMMs 

Minimum step number of con- ELMM ILMM 
sistent method : 2 2 

Minimum step number of zero- 
stable (in£mite-stable) consistent 
method: 2 4 

Max. order of zero-stable (or infinite- 
stable) k-step method : k k -3  

6. IMPLEMENTATION OF THE ILMMs 

The implementation of the ILMMs (1.5) to IVPs of 
the form (1.3) can be carried out as follows. Assume 
Y0' Yl . . . . .  Yk-1 are computed by some other method 
and thus ~ = f(tj, yj)¢j = 0 (1) k -1  are known. We 

compute fn+k from the ILMM (1.5) and then Yn+k 

is obtained from Yn + k = g(tn + k' fn + k)" 

A class of problems to which the ILMMs (1.5) can 
successfully be adopted is given by 

[z"  - ¢ ( t ,  y)]  
y = + z(t) (6.1) 

_)2 

where )` is large and z(t) is the exact solution. 

If ¢ (t, y) in (6.1) is nonlinear, then having computed 
fn+k (= Zn+ k) by the ILMM (1.5), we adopt the 

1 Plcard iteration Error cons tant :  C5 '~ 1-~" - (-540-110~4+ 12~3-12~" +120~0) - - i  - -  " " " technique given by 
. (i) 

R2 _ 200 (i+1) f n + k - ~ ( t n + k , Y n a . k  v + Z(tn+k ) 
min 3 Yn+k = (6.2) 

k = 6  

fn + 6=-~5 fn+ 5 -~4 fn + 4-~3 fn + 3-~2 fn + 2-~lfn  + l '~0fn 

+ [(116 +45~ 5 ± 10~4-~ 3 + ~1-10~0) Yn + 5 

+ (-461-154~5-15~4+ 16~3-~2- 6~ 1 + 61~0) y n + 4 

+ (744+ 214~5-4~4- 30~3+ 16~2+ 14~1 - 156~0)Yn+ 3 

+ (-614-156~5 + 14~4+ 16~3-30~2-4~1 + 214~0)Yn + 2 

+ (260+ 61~5-6~'4-~3 + 16~2-15~1-154~0) Yn+ 1: 

+ (-45 -10~ 5 + ~4-~2 + 10~1 + 45~0) Yn ]/12 h 2 
(4.3) 

_ ) ` 2  

to find Yn+k" We take the initial approximation - (0) Yn+k 
as Yn + k-1 which is the known calculated value at 
the previous step point. 

Rema~ 

We note that the implicit linear multi-step methods 
are iterative in character when applied to nonlinear 
IVPs. The iteration scheme (6.2) shows that the 
ILMMs (1.5) are not iterative in character. 

7. NUMERICAL RESULTS 

We solve the following linear and nonlinear IVPs by 
the method (4.1) with ~0 -- ~1 = ~2 = ~3 = 0. The 
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initial values Y0' Yl '  Y2' Y3 are taken f rom the exact 
solution. 

Example 1 
Consider the  l inear problem (see [1])  

y(t)  [y"  ( t ) +  c o s t ]  
- + C O S t  

_ X 2 

where  X 2 = 1 0 4  w i t h  the exact  so lut ion  

(7.1) 

y(t) = [y(0) - 1] cos 100 t + y ' ( 0 )  sin 100 t + cos t 

for t o = 0. The absolute errors at t = 100 for the fol- 

lowing initial conditions are tabulated in table 2. 

(i) y(0) = 1, y ' ( 0 )  = 0 (7.1a) 

(ii) y(0) = 1 + e, y ' ( 0 ) =  0, e =  0.001 (7.1b) 

We also observed that  the method is unstable for 

k 2 = 1 0 0  and h = 0.1 since in this case X2h 2= I < H  2 . . 
mm 

Example 2 

Consider the nonlinear problem 

2y 
Y = y "  - e log(1 +t) (7.2) 

_ X 2 

with initial conditions y(0) = 0, y '(0) = -1.  The exact 

solution o f  (7.2) is y(t) = - log  (1 +t) .  We have tested 

the method for X 2 = 100 with h = 0.5 and the absolute 
errors at t = 20, 40, 60, 80 and 100 are tabulated in 
table 3. We used the Picard iteration technique given 
by 

2Y(ni)+ k 
(i+l) fn+k -e ( 7 . 3 )  

Yn+k = _ X2 
_ log (1 + tn+  k) 

with , , ( 0 )  _ 
J n + k -  Yn+ k - l "  

The iteration is s topped when 

y ( i + l )  , ( i )  I n + k  - T n + k  I < 10-8" We observed that the 

desired accuracy is obtained within only two itera- 
tions. 

8. CONCLUSIONS 

The ILMMs can be directly applied to problems of  
the form (1.3). The methods are explicit when ap- 
plied to problems o f  the form (1.3) and thus avoid 
iteration techniques which are inherent in implicit 
linear multistep methods. The methods are in£mite- 
stable which makes them computationaUy superior 
to the classical StSrmer-Cowell methods, using large 
step sizes. 
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TABLE 1. Absolute stability intervals of,, StSrmer- 
0 < H 2 < H~ Cowell methods u 

k 2 3 4 5 

240 
Explicit StSrmer 4 3 2 199 

Implicit CoweU 6 6 6__00 6__00 
11 13 

TABLE 2. Approximate solution and absolute errors 
at t = 100 

(7.1a) (7.1b) 
h 

Yn lYn-Y(tn)l 

0.1 
0~5 

8.623(-01 
8 .623(-01 

2.219(-06) 
1.245(-05) 

Yn lYn-Y(tn)[ 

8.614(-01) 9.544(-04) 
8.614(-01) 9.646(-04)i 

TABLE 3. Approximate solution and absolute errors 
for the nonlinear problem (7.2) 

t Yn lYn - Y(tn)l  

20 - 3.044 4.507 (-05)  

40 - 3.714 1.189 (-05)  

60 - 4.111 5.381 (-06)  

80 - 4.394 3.031 (-06) 

100 - 4.615 1.968 (-06) 
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