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ARTICLE INFO ABSTRACT

Keywords: Researches in satellite remote sensing images mainly revolves around enhancement of contrast and removal of
Remote sensing noise in image, which affects the data comprehensibility and clarity. Hence, it is always a challenge to process
CO““’aSt' the satellite remote sensing images in order to obtain better quality images with enhanced visibility and
gii:ﬁ:;“’m minimum image artifacts for improving their application value. In this paper, an effective quality enhancement

framework is proposed, which mainly focuses on contrast enhancement of satellite remote sensing images.
Several satellite remote sensing images were tested to ratify the effectiveness of the proposed method over other
existing remote sensing enhancement methods and their quantitative results are borne out by NIQMC (No
Reference Image Quality Metric for Contrast distortion), BIQME (Blind Image Quality Measure of Enhanced
images), MICHELSON (Michelson Contrast), DE (Discrete Entropy), EME (Measure of enhancement) and
PIXDIST (Pixel distance) along with qualitative results comparison. Results depict that the visual enhancement
obtained using the proposed method is superior to other existing enhancement methods. Finally, the simulation

results unveil that proposed method is effective and efficient for satellite remotes sensing images.

1. Introduction

Satellite remote sensing images are popularly used in multifarious
disciplines like space and geoscience departments, agriculture for crop
identification, crop area determination and crop condition monitoring,
and other humanitarian applications (Cheng et al., 2015; Zhang et al.,
2015). But these images are often tarnished in terms of visual quality
owing to various factors like the environmental noises and other in-
termeddling factors during their acquisition. So, processing and ana-
lysis of these images are necessary to facilitate amelioration in the vi-
sual attributes of these images. Image contrast is one of the important
visual attributes which provide significant contribution to the image
quality. Since the sensitivities of human visual system are more towards
the image contrast as compared to absolute luminance, it is seen as the
difference in the color and brightness of the objects. Low-contrast re-
gions are darker and regions owing to high contrast are visible as ar-
tificially illuminated. Hence, both will lead to loss of significant in-
formation. So, the challenge is to optimally enhance the image contrast
so as to improve the visibility, and at the same time preserving the
information present in the input image. Hence, image enhancement is a
rudimentary step in all digital image processing and analysis
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applications, which improves the interpretability or information per-
ceived by humans.

Furthermore, a satellite sensor must capture a very wide range of
scenes from different location on the earth surfaces, from very low ra-
diance (i.e. oceans, low solar elevation angles, high latitudes) to very
high radiance (i.e. snow, sand, high solar elevation angles, and low
latitudes) (Schowengerdt, 1997; Lisani et al., 2016). As a result, the
quantization can be coarse, and any given satellite image will generally
occupy only a limited portion of the available dynamic range, therefore
having low contrast (Lisani et al., 2016). Moreover, the energy reaching
the satellite must pass through the entire depth of the Earth's atmo-
sphere. Atmospheric effects may also reduce the dynamic range of the
satellite image (Lisani et al., 2016). Hence, representation of these sa-
tellite images to human observers analytically requires the use of a
remote sensing contrast enhancement method.

The most basic image enhancement method is histogram equaliza-
tion as its implementation is very simple. But it always results in over
enhanced images or scarce detail preservation (Chen et al., 2016; Arici
et al., 2003; Sen and Pal, 2011; Wu, 2011; Celik and Tjahjadi, 2012; Xu
et al., 2014). The enhancements due to transform domain methods
mainly deal with contrast magnification or enhancement of high
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Fig. 1. Schematic of modified linking synaptic computation network.
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Fig. 2. Workflow diagram of proposed framework.

frequency sub-band coefficients (Starck et al., 2003; Tang et al., 2004;
Mukherjee and Mitra, 2008). But, sometimes the parameters of these
methods are incompetent for satellite images and hence lead to the
magnification of noise intensity. The tone mapping methods often re-
main under-enhanced and appear faded because of compression of lu-
minance values. The linking models (Zhan et al., 2017, 2016) often fail
in case of satellite images. This is because of excessive smoothing which
leads to the loss of certain image information. In the recent years, some

hancement of remote sensing images (Fu et al., 2015; Lisani et al.,
2016; Suresh and Lal, 2017; Li et al., 2017).
The main contributions of this manuscript are given as follows:

e The modified linking synaptic computation network is proposed by
remodeling thresholding condition in the linking synaptic compu-
tation network proposed by Zhan et al. (2017). This modification
helps in reducing computational complexity of the network.

e A robust image quality restoration framework is proposed for con-
trast enhancement of satellite remote sensing images.

The rest of the paper is organized as follows. In Section 2, the
proposed framework is detailed in four sections. The experimental re-
sults are presented in Section 3, which demonstrates the efficiency of
the proposed method with the state-of-the-art algorithms both quali-
tatively and quantitatively. Here, a detailed comparison on computa-
tional cost is also presented. Finally, Section 4 concludes the discussion
by emphasizing the merits and applications of the proposed method.

2. Proposed framework

This section presents detailed analysis of the proposed image quality
restoration framework. For an input color image, the enhancement is
carried out after converting the image into HSV color space. The color
space conversion is included because of its direct relationship with the
human visual perception (Vadivel et al., 2005). The proposed approach
is delineated in four steps: (1) Smoothing and Edge Enhancement Ef-
fect, (2) Modified Linking Synaptic Network using leaky integrator, (3)
Modified Contrast Enhancement Algorithm using Saliency Map (4) Ef-
ficient Color Restoration after converting the image back to the RGB
color space.

Table 1
Performance comparison of different enhancement techniques for image 1.
IMAGE ALGORITHM METRICES
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 4.9882 0.6019 0.3195 7.4099 69.5518 25.171
DWT-SVD 5.4135 0.5872 0.1489 7.5678 32.9736 27.9036
RHE-DCT 5.0853 0.6049 0.2872 7.3772 81.8576 23.9813
DRAGO 4.4057 0.4262 0.044 6.9558 27.8757 18.364
DURAND 2.5409 0.2532 0.0189 5.3578 21.5598 10.8651
FATTAL 4.8072 0.4907 0.0989 7.1809 24.3886 20.6296
LCC 4.6754 0.52 0.174 7.0638 59.6047 19.6953
IMG 1 MAI 5.3717 0.552 0.1598 7.3482 44.8579 27.4789
MSR 4.5923 0.511 0.11 7.2257 47.8007 22.8061
MSRACE 4.3406 0.4695 0.0678 7.0673 27.2983 20.0358
FLM 5.089 0.5252 0.35 7.4011 94.6098 26.8297
LSCN 5.1197 0.5432 0.3186 7.4286 92.8292 25.4777
JEI 5.5505 0.6385 0.2957 7.742 69.9834 31.1606
MDE 5.3371 0.562 0.1805 7.6255 35.4652 28.2798
PROPOSED 5.8507 0.6689 0.5168 7.9198 110.6407 38.7609
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Table 2
Performance comparison of different enhancement techniques for image 2.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 4.0447 0.4225 0.3513 6.6859 58.9631 18.698
DWT-SVD 5.4073 0.6738 0.1248 7.6669 15.6485 39.3355
RHE-DCT 5.3954 0.5921 0.2897 7.4791 84.564 30.9496
DRAGO 4.4605 0.4322 0.014 7.1843 9.5228 23.0223
DURAND 2.3765 0.2657 0.001 5.5031 4.8172 9.4618
FATTAL 4.5985 0.4618 0.0922 7.1168 21.2024 19.7041
LCC 5.0201 0.6006 0.2194 7.3642 49.5128 25.2852
IMG 2 MAI 5.5715 0.6203 0.1389 7.1918 29.2489 36.3566
MSR 5.1672 0.537 0.1436 7.4687 53.0646 25.2534
MSRACE 4.9827 0.5262 0.0717 7.5814 23.2005 27.9591
FLM 5.5063 0.6068 0.4061 7.7009 91.9706 33.0901
LSCN 5.2999 0.6151 0.3474 7.5532 81.3023 28.921
JEI 4.8859 0.5672 0.1381 7.4139 40.606 26.8568
MDE 5.3036 0.6111 0.1234 7.6137 18.312 29.7167
PROPOSED 5.793 0.6874 0.425 7.8967 99.7892 40.1772
Table 3
Performance comparison of different enhancement techniques for image 3.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 3.8236 0.4486 0.5026 6.861 67.5585 17.3993
DWT-SVD 3.6843 0.4195 0.0075 6.8107 11.491 15.6810
RHE-DCT 3.9025 0.5726 0.1919 6.8537 48.8679 16.2518
DRAGO 2.9794 0.3185 0.0007 6.4215 7.0793 12.5181
DURAND 2.9828 0.3267 0.0003 5.5760 5.9766 12.5713
FATTAL 4.0962 0.4629 0.0352 7.0140 20.8590 18.0277
LCC 3.7525 0.4652 0.0892 7.0239 40.7108 18.6426
IMG 3 MAI 4.8747 0.5634 0.1343 6.6856 32.9930 26.8252
MSR 4.3938 0.5041 0.0818 7.2548 39.4527 21.5022
MSRACE 3.8955 0.4380 0.0368 7.0492 22.4986 18.3555
FLM 4.7756 0.5729 0.3448 7.4280 80.8634 24.1947
LSCN 4.8038 0.5866 0.3738 7.4499 78.3596 24.5955
JEI 3.8086 0.5243 0.0993 6.8849 26.9086 16.3117
MDE 4.1667 0.4738 0.0181 7.2452 13.7051 21.7447
PROPOSED 5.5823 0.6881 0.6545 7.8388 125.6491 34.3611
Table 4
Performance comparison of different enhancement techniques for image 4.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 5.372 0.6339 0.3459 7.6574 71.1923 30.6415
DWT-SVD 5.6154 0.6355 0.1516 7.7463 38.5349 32.5218
RHE-DCT 5.5704 0.6576 0.3414 7.7353 95.5908 31.8051
DRAGO 4.7198 0.458 0.0389 7.1368 24.1236 20.1667
DURAND 2.485- 0.2915 0.0094 5.0959 14.8056 9.3552
FATTAL 4.8985 0.5022 0.0536 7.3266 24.5803 22.3571
LCC 4.9942 0.5333 0.1297 7.3130 47.1736 22.6195
IMG 4 MAI 5.445- 0.5556 0.1031 7.5200 35.4760 28.3791
MSR 4.5455 0.4779 0.0563 6.9925 36.2279 19.1907
MSRACE 4.2421 0.4252 0.0306 6.7404 19.9179 15.9037
FLM 5.2902 0.5753 0.3588 7.5704 82.4718 28.7169
LSCN 5.5586 0.6004 0.3742 7.7332 95.1383 30.7389
JEI 5.5792 0.6423 0.2530 7.7554 66.1776 31.2138
MDE 5.5586 0.6004 0.3742 7.7332 95.1383 30.7389
PROPOSED 5.9524 0.6959 0.6083 7.9467 116.4518 42.138
2.1. Smoothing and edge enhancement effect Ej=¢ (Gyj — Gyj) (1 — Gyy) (@))

The input image G;; after conversion to HSV color space is nor-
malized and passed through a guided smoothing filter (He et al., 2013).
The filter modifies the details in the image, which is given Eq. (1).
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Where parameter G;; is the normalized input image and its magnitude
value always less than 1 and the constant ¢ is mainly used for checking
the magnitude of the image details. The value of parameter ¢ is set as 8
to control the magnitude of the details within the image for all the test
images, since it gave better enhancement results (Mukherjee and Mitra,
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Table 5
Performance comparison of different enhancement techniques for image 5.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 5.6084 0.6735 0.1739 7.7896 53.2016 33.9439
DWT-SVD 5.0772 0.6136 0.0856 7.4767 18.6504 33.8011
RHE-DCT 5.4995 0.685 0.1586 7.7652 43.1434 35.4589
DRAGO 4.2793 0.4309 0.0161 7.1513 10.4708 21.5722
DURAND 2.7599 0.3013 0.0019 5.1885 6.8637 10.5106
FATTAL 4.5038 0.4663 0.0412 7.0782 18.5127 18.7003
LCC 5.0449 0.5597 0.1192 7.3810 47.2963 26.1644
IMG 5 MAI 5.5405 0.6109 0.0961 7.6540 28.3446 33.6412
MSR 5.1564 0.5042 0.0781 7.3028 42.0054 22.6509
MSRACE 4.7641 0.4641 0.0332 7.1997 19.5319 21.9618
FLM 5.2932 0.6142 0.3583 7.6426 93.0667 33.7422
LSCN 5.5804 0.6597 0.3217 7.7900 92.6832 34.8323
JEI 5.6771 0.6897 0.1689 7.8268 41.8604 40.0066
MDE 5.5897 0.6904 0.5371 7.7397 130.7856 37.5939
PROPOSED 5.7604 0.7067 0.4352 7.8412 99.8586 42.561
Table 6
Performance comparison of different enhancement techniques for image 6.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 5.6389 0.6407 0.2718 7.7843 63.8734 32.3593
DWT-SVD 5.3929 0.5716 0.0922 7.6833 19.5602 31.7046
RHE-DCT 5.7814 0.6676 0.4458 7.8215 120.1166 36.8432
DRAGO 5.3138 0.5348 0.1021 7.5185 17.975 29.2791
DURAND 4.737 0.4897 0.0705 5.6372 16.8364 23.6735
FATTAL 5.1536 0.5214 0.1767 7.4305 24.4038 24.0966
LCC 5.4104 0.5717 0.2606 7.5341 63.1146 26.5717
IMG 6 MAI 5.8007 0.6051 0.3039 7.7564 44.3164 36.8138
MSR 5.5706 0.574 0.2935 7.5961 53.8986 29.6528
MSRACE 5.5351 0.5643 0.2354 7.6725 36.1679 31.0479
FLM 5.5615 0.6000 0.4764 7.6769 100.0563 33.6338
LSCN 5.7001 0.6297 0.4613 7.8176 106.4801 34.772
JEI 5.8165 0.6563 0.3302 7.9292 47.5987 37.9855
MDE 5.5862 0.592 0.2858 7.7748 36.8521 33.3646
PROPOSED 5.9119 0.6851 0.5592 7.9438 110.4496 42.7876
Table 7
Performance comparison of different enhancement techniques for image 7.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 4.141 0.4692 0.3583 6.9711 97.7567 19.6191
DWT-SVD 4.7132 0.5112 0.0542 7.2208 13.7429 24.8612
RHE-DCT 4.3532 0.5846 0.1806 6.8233 30.6605 17.8199
DRAGO 3.7151 0.3932 0.0068 6.6713 8.7335 15.5625
DURAND 2.5326 0.308 0.0026 5.2097 5.6513 10.3452
FATTAL 4.4289 0.4575 0.0596 6.949 16.068 17.76
LCC 4.1738 0.5241 0.1366 6.798 45.3133 17.1564
IMG 7 MAI 5.25 0.5619 0.1431 6.8496 21.6947 27.2059
MSR 5.0956 0.5296 0.1488 7.1522 47.1204 21.2314
MSRACE 3.6272 0.3937 0.0075 6.5596 8.7118 14.1775
FLM 5.2049 0.5621 0.4165 7.4462 97.7275 28.0508
LSCN 4.9663 0.5606 0.3492 7.2667 77.2373 24.5662
JEI 4.9423 0.6131 0.2544 7.3319 40.2227 23.2063
MDE 5.4054 0.6924 0.4003 7.5717 88.0613 33.1407
PROPOSED 5.3747 0.6383 0.5297 7.5154 131.2475 29.0461
2008). Indices (i, j) denotes the pixels co-ordinates and the smoothed After these enhancing and smoothing effects, the satellite image is
image is indicated as G;;. processed under a modified linking synaptic network for better en-
The enhanced details are then added and the processed image is hancement effects.

represented as in Eq. (2).

D; Ji= 1+ Ei,j - mln(ElJ) 2)
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Table 8
Performance comparison of different enhancement techniques for image 8.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 4.7877 0.5721 0.0362 7.2379 17.4704 22.8409
DWT-SVD 5.3379 0.6179 0.0058 7.573 8.6556 36.4097
RHE-DCT 5.068 0.5932 0.0309 7.456 15.9983 27.2048
DRAGO 5.012 0.493 0.001 7.3878 5.4972 25.1908
DURAND 4.0682 0.4328 0.0013 5.4393 6.113 18.4982
FATTAL 4.8914 0.5021 0.01 7.3135 11.2301 22.1673
LCC 4.3106 0.5389 0.0161 6.9428 14.5156 18.0585
IMG 8 MAI 5.7268 0.606 0.0244 7.5571 13.9102 34.0477
MSR 5.319 0.5585 0.04 7.5753 22.3488 26.9719
MSRACE 5.1412 0.5239 0.0118 7.4997 10.75 25.3848
FLM 4.8002 0.5303 0.0684 7.2834 25.507 22.758
LSCN 5.166 0.6268 0.096 7.509 28.9555 28.768
JEI 5.55 0.6334 0.0231 7.777 13.2097 33.1123
MDE 5.1367 0.5185 0.0097 7.4207 8.5504 29.8314
PROPOSED 5.7751 0.6479 0.1049 7.8992 25.5165 37.2033
Table 9
Performance comparison of different enhancement techniques for image 9.
Image Algorithm Metrices
NIQMC BIQME MICHELSON DE EME PIXDIST
BPDFHE 5.2581 0.5617 0.0618 7.3055 21.7543 26.5299
DWT-SVD 5.3539 0.6161 0.0311 7.4381 13.7013 42.508
RHE-DCT 5.4141 0.5903 0.0729 7.4827 24.7008 29.7896
DRAGO 5.2304 0.5223 0.0079 7.4991 8.2202 29.3854
DURAND 2.5138 0.2897 0.0021 5.3427 4.4484 9.2974
FATTAL 5.2538 0.5309 0.0274 7.5017 12.7793 25.7331
LCC 5.2861 0.5723 0.0365 7.2827 24.7994 24.3869
IMG 9 MAI 5.7843 0.6089 0.0543 7.4361 18.8063 36.5379
MSR 5.5844 0.5399 0.0471 7.5434 21.8008 29.7301
MSRACE 5.5456 0.5567 0.0254 7.5997 13.5476 30.1091
FLM 5.3229 0.567 0.0951 7.5936 30.9848 30.036
LSCN 5.4821 0.5941 0.1763 7.492 48.6581 29.8053
JEI 5.6593 0.636 0.0542 7.7842 18.749 34.3397
MDE 5.6322 0.6255 0.0475 7.7024 13.741 37.4687
PROPOSED 5.7913 0.644 0.1463 7.885 36.098 37.2709

2.2. Modified Linking Synaptic Computation Network (MLSCN)

Leaky integrators consist of membrane potential, linking synapse
and the threshold, which are included as the building blocks of a linking
synaptic network (Eckhorn et al., 1990; Johnson and Ritter, 1993;
Johnson et al., 1999; Johnson and Padgett, 1990). The proposed en-
hancement method uses a modified and more adaptive version of LSCN.
The modified linking synapse is mathematically formulated as in Eq.

3.

SiJ(n) = lSiJ(n -+ Z }(ij,p,qu,q(n -1
p.q

3)

where indices (i,j) denotes each neuron and indices (p,q) indicates its
neighboring neuron, the linking constant is represented by I, Xj;,,
represents the synaptic weight that is needed to be applied and Z, , is
the postsynaptic action potential. The index ‘n’, denotes the discrete
time.

The feedback and feed forward components are fused together to
produce the membrane potential (Eckhorn et al., 1990; Abbott and
Regehr, 2004; Brosch and Neuman, 2014) and the modified membrane
potential is given in Eq. (4)

Wjn)=g Wj;(n—1) + G;;(1 + a S;j(n)) (@]

where g represents the membrane potential attenuation constant and it
is It is set a small value (i.e. 0.01) because the stable value should be
less than initialized threshold. G;; represents the normalized image as
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described earlier and « is the linking strength. The modified threshold is
deduced from the neuron analog (French and Stein, 1970). The
threshold of a neuron is depicted by a leaky integrator (Eckhorn et al.,
1990; French and Stein, 1970) and is given in Eq. (5)

Dij(n)=h Dj(n -1 +f Zj(n—-1) 5)

where h denotes threshold attenuation constant which provides the
required exponential delay between the successive spikes otherwise it
will lead to multiple spikes between each iteration and quality of the
resultant image will be hampered. Parameter ‘f’ denotes magnitude
constant and its value is set to 0.001 for recording the firing rate pre-
ciously.

At the starting of network iteration, the threshold decays from the
starting value D; ;(0) before the first spike occurs. The modified
threshold of linking synaptic computation network is mathematically
formulated in Eq. (6)

where 8 represents a small positive constant and it is set to ﬁ, S0 as to
ensure that the dynamic range of the image lies in [0, 255].

In the network iteration, after the threshold is exceeded by the
membrane potential, a spike is produced by the neuron which is in-
dicated in Eq. (7)

1, if W;(n) > Dyj(n)
0, otherwise

Zi i =
e { @)
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Fig. 3. Visual enhancement results of different algorithms for image 1. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEIL, (o) MDE, (p) PROPOSED.

The modified linking synaptic computation (MLSCN) is depicted in
Egs. (3), (4), (6) and (7). The schematic diagram of MLSCN is shown in
Fig. 1. The MLSCN has two differences from LSCN (Zhan et al., 2017),
the first is that the dynamic threshold which gives a better benchmark
for the stimulus, and the second is that the input image is converted to
mere stimulus for this network to work on.

2.3. Modified contrast enhancement algorithm using saliency map

The processed image from previous step is then enhanced using a
modified contrast enhancement algorithm which uses a contrast map to
improve its contrast. This modified technique mainly focuses on the
contrast enhancement of the Linking Synapse stimulus. The processed
stimulus may contain uneven low and dark regions. These regions are

109

further improved in the forthcoming steps, which are as follows:

2.3.1. Stimulus lightness

In saliency guided enhancement algorithm, the lightness constituent
of input RGB image is obtained and processed (Li et al., 2016).
Whereas, the proposed method acquire the lightness constituent from
the linking synapse obtained from Eq. (3) and is depicted in Eq. (8) (Li
et al., 2016).
Ly = max Sy ®)
where S;; denotes the output of the modified linking synapse and
subscripts (i, j) denotes pixel indices. This technique is mainly helpful in
transcending of the white balance.
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Fig. 4. Visual enhancement results of different algorithms for image 2. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAI, (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

2.3.2. Bright region enhancement

The output produced from previous section consists of both bright
and dark regions. Here, we perform the contrast enhancement of bright
region preserving the image details (Li et al., 2016). It is most probably
difficult to reacquire much needed information from saturated regions,
and most of the details which are remaining will be on the lower in-
tensity side (Li et al., 2016). This amplitude of those will then become
comparable to the noise level. Hence, it is essential for bright region
enhancement for natural improvement of local contrast preventing halo
artifacts without compromising the details (Li et al., 2016). The gain
factor at pixel (i,j) for preserving bright regions details is given as in Eq.
(9) [28].

kij=01x(dev;j)sxs

where (dev ;;)s s is the local standard deviation of a 5 x 5 neighbor
window centered at (i, j).

9
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The scene reflectance renders details following Eq. (10) (Li et al.,
2016).

I
L+c

Ne

10

where L is the illumination component same as the mean luminance
value of the synaptic output and c is small constant to avoid zero di-
vision.

The details of bright regions are given as in Eq. (11) (Li et al., 2016).
Bon = SCK a1

Here, the factor ‘K’, is the gain factor and it in defined in Eq. (9). It is
obvious that these details have dispensable halo artifacts and clipping
effects (Li et al., 2016). So, to remove them a tune mapping function is
proposed, as a result of which the contrast of bright regions can be
enhanced and it is indicated in Eq. (12) (Li et al., 2016).
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Fig. 5. Visual enhancement results of different algorithms for image 3. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEIL, (o) MDE, (p) PROPOSED.

Ibright en = IBen 12)
The preservation of details during the enhancement of contrast of
bright regions and mid-tune range is ensured by tune mapping factor.

2.3.3. Dark region enhancement

The dark regions are left unchanged during bright region contrast
enhancement procedure because of low lightness. A perceptual contrast
map (PC) based on the modified difference of Gaussian is used for the
extraction of edge contents (Li et al., 2016; Zang et al., 2013). The
amplitude of the PC indicates the information strength in the frequency.
The construction process of perceptual contrast map consists of central
component (in a k¢ + 1) X (2k¢ + 1) central mask) (K¢);; and sur-
rounding component (in a (2ks+ 1) X (2ks+ 1) surround mask)
(Ks); is given by,

x = i+kc 'y = j+kc

Kediy = Z Z (CGE ) x-iy—j Sy
x=i-kc y=j-kc 13)
x = it+ks y = j+ks
(Ks)j = z E (SGE ) x—iy-j Sxy
x = i—ks y = j—ks (14)
where S;; is the linking synaptic output, kc=1,

ks =0.01 X min (h, w); where (h, w) denotes the height and width
of the image; (CGE) ;; and (SGE) ;; are the two Gaussian functions
which are mathematically defined in Eq. (15) and Eq. (16) respectively.

a ﬂ 2 3__] 2
(COEY 1y = ch) B (kc”

_ S N EANNERS
05) =085 (55 o [ ) -()

(15)

(16)
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Fig. 6. Visual enhancement results of different algorithms for image 4. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

The synaptic output image is conditioned by the mathematical Eq.
a7

C iJ=I w|(PC) iJl’ (17)

where PC is defined as (PC) ; = %
ij

The conditioned image is normalized to C ,, using the maximum
and minimum values of C. The perceptual contrast improvement of
dark region is calculated and the modified image is represented as
Tpercepruaten(Li et al., 2016).

Then, the Lyight en @nd Iperceptuaten are blended under saliency guide to
produce more natural and contrast enhanced image and is given as

(Ien)id‘ = (Cnor)iJ Ibn‘ght en T (1 - (Cnor)iJ) Iperceptual en (18)

Thus, the final output of this modified contrast enhancement with
color correction method is given in Eq. (19).

I

T 19)

This color correction is applied to HSV model given in the input and
converted to the RGB form and is then applied to a modified natural
color restoration algorithm.

112

2.4. Efficient color restoration

The RGB image from the previous step is passed for an efficient
color restoration technique with non-uniform illumination enhance-
ment to overcome any problem for color violation (Jmal et al., 2017). It
employs an optimized search process based on an efficient search al-
gorithm for computing optimal parameters resulting the final enhanced
image (Jmal et al., 2017).

2.5. Implementation of proposed framework

The workflow diagram of proposed image quality restoration fra-
mework for contrast enhancement for satellite images is shown in
Fig. 2. The detailed implementation steps and procedures followed by
the proposed image quality restoration framework are as follows:

Step 1: Smoothing and Edge Enhancement effect: This can be
considered as the first step of image enhancement, which mainly fo-
cuses on improving the edges. It also includes the initialization of
variables to be used in the later steps. After the conversion of the RGB
input to HSV, it is converted into a double symmetric array. This is
followed by normalization and smoothening using guided filter and the
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Fig. 7. Visual enhancement results of different algorithms for image 5. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEIL, (o) MDE, (p) PROPOSED.

edge enhanced output is obtained as defined in Eq. (2).

Step 2: Modified Linking Synaptic Network using Leaky in-
tegrator: After the image has been edge enhanced it comes to this step.
This step is responsible for the conversion of the image into a better
enhanced stimulus. This step begins with the formation of a linking
synapse as depicted in Eq. (3). This is succeeded by a modified mem-
brane potential as in Eq. (4). All these steps occurring in the network
iteration, where total numbers of pixels mark the total number of
iterations are provided with a threshold (as given in Eq. (6)) which
when exceeded by the membrane potential generate a spike as ex-
plained in Eq. (7). This spike keeps on updating the linking synapse to
give a final synaptic output which is similar to the stimulus received by
the brain.

Step 3: Modified Contrast Enhancement Algorithm using
Saliency Map: The synaptic output is passed for contrast enhancement
where its lightness constituent is obtained as per Eq. (8). Here, in this
step, the dark and bright regions are enhanced separately as depicted in
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Egs. (12) and (17). For the bright region enhancement, a 5 X 5 window
is defined and the gain factor is calculated by taking the standard de-
viation of this window using the Eq. (9). The details of these bright
regions are formulated using Eq. (11), provided the scene reflectance is
obtained using the Eq. (10). The dark region enhancement mainly fo-
cuses on highlighting the perceptually important local edges and re-
ducing the larger frequency noises in smooth regions. This is done by
taking two components i.e. central component and surround compo-
nent and are operated taking their masks as depicted in Egs. (13) and
(14) respectively.

Step 4: Efficient Color Restoration: This step is the final step of
the enhancement framework as it gives the required balance between
the colors in the image so as to give a naturalistic view. This step
preserves a reasonable degree of color constancy as described in the
Section 2.
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Fig. 8. Visual enhancement results of different algorithms for image 6. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

3. Experimental results and discussion

Our method has been tested against a variety of algorithms over a
handful of satellite remote sensing images. The algorithms included for
comparison are Brightness Preserving Dynamic Fuzzy Histogram
Equalization (BPDHE) (Sheet et al., 2010), Satellite Image Contrast
Enhancement Using Discrete Wavelet Transform and Singular Value
Decomposition (DWT-SVD) (Demirel et al., 2010), Regularized Histo-
gram Equalization method and Discrete Cosine Transform (RHE-DCT)
(Fu et al., 2015),Tone Mapping Methods like DRAGO (Drago et al.,
2003; Lisani et al., 2016), DURAND (Durand and Dorsey, 2002; Lisani
et al., 2016), FATTAL (Fattal et al., 2002; Lisani et al., 2016), LCC
(Local Color Correction)( Moore et al., 1999; Lisani et al., 2016), MAI
(Mai et al., 2011; Lisani et al., 2016) MSR (Multi-Scale Retinex) (Petro
et al., 2014; Lisani et al., 2016), MSRKACE (Multi-Scale Retinex with
ACE Kernel) (Morel et al., 2014; Lisani et al., 2016), Neurocomputing
methods like FLM (Zhan et al., 2016, 2017; Li et al., 2017), LSCN (Zhan
et al., 2017; Suresh and Lal, 2017; Li et al., 2017), a method of JEI
(Jmal et al., 2017) and a Modified Differential Evolution (MDE) algo-
rithm (Suresh and Lal, 2017). The values of the parameters used in
these methods and algorithms are chosen from the respective literatures
and those used in the proposed technique are derived by their working
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form. We set 8 = sts’ for obtaining a better dynamic range. It is a small
constant and its value is set to Zi, so as to ensure that the dynamic
range of the image lies in [0, 255]. The final linking state S; ; is greater
for a single neuron having shorter firing cycle, so [ = 1 is put for car-
rying out better firing rate of neurons. The synaptic Weight Matrix has
its center element set to 1 and is given by,

0.04 1 0.04

0.04 0.04 0.04
X =
0.04 0.04 0.04

The linking term controls the degree of image smoothening so the
synaptic weights other than center are set to 0.04 The parameter ‘g’
which is the membrane potential attenuation constant is set a small
value 0.01 because the stable value should be less than initialized
threshold (Zhan et al., 2017). The parameters h, « (The membrane
potential has linking term which is a weak modulation term) and f (for
precious recording of the firing rate) are set to be 0.9811, 0.01 and
0.001 respectively for ensuring better performance of our proposed
method. The Parameter ‘@ ’ is the linking strength and it is assumed a
small value. This is because membrane potential contributes to stimulus
and for membrane potential, linking term is weak modulation term
(Eckhorn et al., 1990; Abbott and Regehr, 2004; Brosch and Neuman,
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Fig. 9. Visual enhancement results of different algorithms for image 7. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL, (h)
LCC, (i) MAL (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

2014; Zhan et al., 2017).. The parameter ‘h’ is the threshold attenuation
constant which provides the required exponential delay between the
successive spikes otherwise it will lead to multiple spikes between each
iteration and quality of the resultant image will be hampered. Para-
meter ‘f’ is magnitude constant and it's value is set to 0.001 (<2i55) for
recording the firing rate preciously The total number of neurons to be
fired for a selected image of size a X b, is a *b.

3.1. Satellite image datasets

For the simulation experiments, the different test satellite images
used were those procured from different sensors (i.e. SPOT, IKONOS,
MODIS and QUICKBIRD). The specifications and sources of various test
images used in this paper are Imagel: City of Space Toulouse, France
(1200 x 1200, MS (Multispectral), 50 cm resolution, SPOT data,
http://www.satpalda.com/gallery/pleiades-imagery/); Image2: Tripoli
Harbour, Libya, (900 x 792, MS, 50 cm resolution, SPOT data, http://
www.satpalda.com/gallery/pleiades-imagery/); Image3: Seine river,
Paris (512 X 512, MS, 50cm resolution, IKONOS data, http://
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Fig. 10. Visual enhancement results of different algorithms for image 8. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL,
(h) LCC, (i) MAI, (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

visibleearth.nasa.gov/); Image4: Addis Ababa, Ethiopia (900 x 702,
MS, 50 cm resolution, SPOT data, http://www.satimagingcorp.com/
gallery/); Image5: Lightning Fires in Central Idaho (1800 x 2400, MS,
50 cm resolution, MODIS data, http://earthobservatory.nasa.gov/) and
Image6: Pyramids, Egypt (900 x 607, MS, Quickbird data, http://
www.satpalda.com/gallery/pleiades-imagery/). Image 7: 793 X 624,
MS, http://www.satimagingcorp.com/gallery/; Image 8,
1312 x 2000,natural images, http://dragon.larc.nasa.gov/retinex/;
Image 9, 624 X 491, natural image, http://dragon.larc.nasa.gov/
retinex/.

3.2. Quantitative result analysis

The quantitative assessments are used to appraise and compare the
aforementioned remote sensing enhancement methods and algorithms
with the proposed method for satellite image enhancement. The
quantitative performance assessments are done using the help of six No
Reference (NR) performance metrics. It includes No Reference Image
Quality Metric for Contrast distortion (NIQMC) (Gu et al., 2017) based
on information maximization, Blind Image Quality Measure of En-
hanced images (BIQME) (Gu et al., 2018) based on a measure of visual
quality and learning with big data training samples, Michelson Contrast
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(MICHELSON)  (Michelson, 1995), Discrete Entropy (DE)
(Shannon,1948; Shin and Park, 2015), measure of enhancement (EME)
(Agaian et al., 2007) and Pixel distance (PIXDIST) (Chen et al., 2006a;
Chen et al., 2006b). Higher its value, better the image enhancement
method used. Tables 1-9 depicts the evaluated quality metric values for
all the image enhancement algorithms compared, for the six test images
included in the study. Comparison of performance metrics for Images
1-4 and 7 indicates the quality parameters of proposed method to take
a decent upper hand over other existing remote sensing enhancement
methods. Whereas for Images 5-6, 8 and 9 the evaluated metrics,
especially EME, shows slight discrepancy in their performance. Never-
theless, the overall qualitative analysis done on the set of test satellite
images, as given in Tables 1-9, indicates that the proposed method
outperforms the other 14 existing remote sensing enhancement
methods clearly.

3.3. Qualitative result analysis

We analyzed the proposed method against other existing enhance-
ment methods such BPDHE, DWT-SVD, RHE-DCT, DRAGO DURAND,
FATTAL, LCC, MAL MSR, MSRKACE, FLM, LSCN, JEI and MDE quali-
tatively on six satellite remote sensing images. The qualitative results of
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Fig. 11. Visual enhancement results of different algorithms for image 9. (a) given, (b) BPDFHE, (c) DWT-SVD, (d) RHE-DCT, (e) DRAGO, (f) DURAND, (g) FATTAL,
(h) LCC, (i) MAI, (j) MSR, (k) MSRKACE, (1) FLM (m) LSCN, (n) JEI, (o) MDE, (p) PROPOSED.

proposed method and other existing remote sensing enhancement
methods are given in Figs. 3-11. Visual enhanced result of BPDFHE
method introduced some unpleasant saturation effect. This leads to
unclear gradients which imply that the local details are not enhanced
enough. Whereas, DWT-SVD method resulted in good contrast but other
image details are not clear. There is also dearth of natural color in the
enhanced images because the DWT-SVD method only focuses on the
low-low sub band images and overlooks the high-frequency parts. The
enhanced image using RHE-DCT method resulted in quite under en-
hanced and unclear image details. The darker region remains dark and
the brighter regions are slightly enhanced. DRAGO method introduced

too much intensity boost as a result of excessive enhancement and
hence processed image become whiter. Similarly, DURAND method
also made the processed image even more whitish because of over sa-
turation effects. The FATTAL enhancement method introduced blurring
as well as over saturation ill effects. The LCC method made the images
appear slightly smoothed and also displayed some unnatural appear-
ance. But, it suffers from lesser over enhancement problems as com-
pared with the previous two. The visual enhanced result of MAI method
also resulted in an unnatural processed image. Whereas, MSR method
resulted in decolorized images and the processed images appeared
faded out, due to the fact that it focused on detailed enhancement at the
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Table 10

CPU runtime of different image enhancement algorithms (in second).
Image Algorithm

RHE-DCT FLM LSCN JEI MDE Proposed

Image 1 1.4931 4.8116 25.0595 2.4303 223.9377 6.7307
Image 2 0.5812 1.8636 7.008 0.8486 195.4553 2.4948
Image 3 0.4732 1.3856 5.0739 0.6797 169.4950 1.8060
Image 4 1.1175 3.5255 16.3456 1.6914 212.1176 4.9464
Image 5 1.0849 3.7415 13.5184 4.0012 203.5848 4.1987
Image 6 0.6105 1.6779 6.3337 0.7757 183.4013 2.3156
Image 7 1.8112 3.6784 14.4912 1.0422 844.2373 5.2891
Image 8 1.4022 1.8380 5.4941 0.7281 457.6354 3.2547
Image 9 1.1654 1.8016 7.7032 0.8583 449.7132 3.4694

expense of natural color. The enhancement result of MSRKACE method
also resulted in a similar decolorized and faded image output. FLM
method resulted in over smoothening of edges along with saturation ill
effects. The LSCN method provided lesser enhancement with loss of
details at the edges. It also resulted in slightly faded colors in the
processed image. The use of high pass filter in LSCN method also re-
sulted in the magnification of noisy pixels introducing small ringing
effect. The visual enhanced result of JEI method provided better display
of the details and colors except in low lighted regions. Whereas, the
most recent MDE algorithm for satellite image enhancement, provided
a decent output, but resulted in over smoothening of fine edges and
features in the processed image. Finally, on comparison with the other
14 state-of-the art algorithms, the proposed method provided high
global contrast preserving local details and edges. The local details were
well emphasized and the corresponding gradients as well as textures
were relatively clearer. Hence, the proposed method ensured a decent
trade-off between the contrast enhancement, luminance acclimation
and preservation of details and natural color.

3.4. Comparison of Computational Cost

The runtime for various algorithms is depicted in Table 10. The
proposed method requires slightly longer time than, RHE-DCT, FLM
and JEL. The RHE-DCT method takes least time than other methods
because it is a histogram based technique and its implementation is
simple. The evolutionary algorithm based MDE method is slowest
compared to the other methods. Our method is implemented in MA-
TLAB R2015a running on an Intel Core i5 — 4210U Laptop with 1.7-
GHz CPU, 8-GB RAM, and 64-bit operating system. It can be further
proliferated faster using faster programming languages and computing
devices such as GPU.

4. Conclusion

In this paper, a robust framework for contrast enhancement of sa-
tellite images was proposed. The enhancement process was designed
based on a modified linking synaptic network blended with saliency
map for better visibility of the dark details. Secondly, the naturalness of
the image is preserved with halo artifacts suppression using the image
restoration technique. To measure the robustness of the proposed en-
hancement method, the performance evaluation was conducted on a
wide range of remote sensing databases in terms of NIQMC, BIQME,
MICHELSON, DE, EME and PIXDIST. The results were also compared
with state-of-the-art contrast enhancement algorithms. Visual compar-
ison of the experimental results proved that the proposed enhancement
method to be a clear winner among others in enhancing the contrast
without compromising the naturalness of the images. Quantitative
evaluation provided ample evidences to judge the proposed method to
be the most efficacious among the set of compared enhancement al-
gorithms. Comparison of execution time also revealed the proposed
method to be computationally efficient in the process of satellite image
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enhancement. The advantages of proposed method are (1) Robustness
and (2) less computational complexity as compared to recent existing
remote sensing contrast enhancement methods. The main dis-
advantages of proposed method is litter more processing as compared to
some existing remote sensing enhancement methods. It also leaves an
opportunity for its future usability in the pre-processing stages of var-
ious image applications.
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