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Enhancing the Error‑correcting Capability of 
Imai‑Kamiyanagi Codes for Data Storage Systems 

by Adopting Iterative Decoding using a Parity 
Check Tree

H. Prashantha Kumar, U. Sripati, K. Rajesh Shetty and B. Shankarananda1

Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, 1 Department of Electronics and 
Communication, Gopalan College of Engineering and Management, Bangalore, Karnataka, India

ABSTRACT

A novel low‑complexity, soft decision technique which allows the decoding of distance–5 double error‑correcting 
Imai‑Kamiyanagi codes by using a parity check tree associated with the Tanner graph is proposed. These codes 
have been applied to memory subsystems and digital storage devices in order to achieve efficient and reliable 
data processing and storage. For the AWGN channel, gains in excess of 1.5 dB at reasonable bit error rates with 
respect to conventional hard decision decoding are demonstrated for the (46, 32), (81, 64), and (148, 128) shortened 
Imai‑Kamiyanagi codes.
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1.	 INTRODUCTION

Channel coding is commonly used to achieve reliable 
transmission of information. Error control codes 
enable a decoder to recover from errors produced by 
noise in a communication channel/storage device. 
Codes ensure higher noise tolerance at the receiver by 
adding redundancy into the user data to achieve better 
separation of data sequences. Error control coding 
(ECC) algorithms have contributed enormously to the 
communication revolution. It is the development of 
ECC algorithms and techniques have made the internet 
and digital recording ubiquitous facilities which can 
be enjoyed by all people. In addition, they have also 
contributed significantly to deep space exploration and 
the explosion in human knowledge about the various 
planets and satellites in the solar system. The last fifteen 
years have been characterized by research work which 
has enabled exceptional increase in data transmission 
rates and storage capabilities. Increased use of cellular 
wireless communication in an environment plagued by 
spectrum shortage has resulted in the development of 
several innovative and novel ideas to secure information 
integrity and enhance channel capacity. There has also 
been rapid development in microelectronics. Both of 
these developments often going hand in hand has 
provided us with both a need for and the possibility 
of implementing sophisticated algorithms for error 
control [1].

The advent of the internet age has produced enormous 
demand for increases in storage capacity and storage 
density. Physical/Media improvements along with 
sophisticated signal processing and coding techniques 
have played a critical role in the constant augmentation 
of storage/communication channel capacities. Every 
computer memory and data storage systems have 
adopted some types of error‑detecting or error‑correcting 
codes in order to enhance system reliability. The 
reliability levels that are required by storage devices 
are extremely high since unlike communication systems 
generally no retransmission is possible. We expect 
to save our data and be able to retrieve it perfectly 
at any future time. It is the art of error control and 
correction that makes this possible  [2]. Permanent 
and temporal faults are the major sources of errors in 
modern digital storage systems. Power supply break 
down, defective open or short circuits, bridging or open 
lines, electron‑migration, etc., cause permanent faults. 
Permanent fault leads to hard errors; they therefore affect 
the system functions for a long period of time. Temporal 
faults can be transient or intermittent. Transient faults 
occur randomly and externally because of external 
noise, namely electromagnetic waves and also particles 
such as  ‑particles and neutrons. Intermittent faults 
occur randomly but internally because of unstable 
or marginally stable hardware, varying hardware or 
software state as a function of load, or signal coupling 
(i.e., crosstalk) between adjacent signal lines. Some 
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intermittent faults may be due to glitches which 
are unpredictable spike noise pulses occurring and 
propagated, especially in large combinational digital 
circuits. Temporal fault leads to soft errors. Soft errors 
have a limited duration, meaning they interrupt system 
functions for a very short time period. Therefore, soft 
errors are also called transient errors. Some reports 
show that more than 60% of all failures in computer 
systems are caused by transient or intermittent faults. For 
example, in dynamic random access memory (DRAM) 
chips, transient errors result mainly from  ‑particles 
emitted by the decay of radioactive particles. As they 
pass through the chip,  ‑particles create sufficient 
electron‑hole pairs to add charge to the DRAM capacitor 
cells. These particles have low energy level, and thus 
have very low probability of causing more than one 
memory cell to flip when the memory cells are not 
packed in extreme density. In today’s ultra high‑density 
RAMs, not only DRAMs but also static RAMs, it has been 
recognized that multiple cosmic ray‑induced transient 
errors are a serious problem [3‑6].

Error detection is an essential part of a storage 
system design. Ideally, error detection will block the 
propagation of an error during online operations, before 
it reaches the system interface and causes a system 
failure. The error is best be detected immediately as 
it occurs so that its effect can be minimized. Thus, the 
use of error control algorithms can protect the integrity 
of user information against errors caused by aging, 
wear out due to repeated read and write operations, 
electromagnetic waves, and manufacturing defects. 
Many different error control codes have been studied 
and developed to correct and/or detect the types of 
errors mentioned above. The coding approach involves 
some redundancy, for example, additional check bits, 
additional hardware in the form of encoding/decoding 
logic circuits, and additional decoding time delay. 
Nevertheless, the coding performance is superior to 
those competitive techniques, especially in quickly 
masking of temporal faults [7,8].

2.	 CONSTRUCTION OF IMAI‑KAMIYANAGI 
CODES

According to the manner in which redundancy is added 
to messages, error‑correcting codes can be divided 
into two classes: Block and Convolutional. Block 
codes implement a one‑to‑one mapping of a set of K  
information symbols on to a set of N  code symbols. 
We call this code is an ( , )N K  linear block code. The 
R N K= −  symbols in a codeword are a function of 
the information symbols, and provide redundancy 
that can be used for error correction and/or detection 
purposes. The minimum distance dmin  of a block code 
C  is the smallest Hamming distance between any two 

codewords in the code. Imai and Kamiyanagi added an 
extended structure to the double error‑correcting (DEC) 
BCH codes. The Imai‑Kamiyanagi code has dmin = 5 . 
Hence, the hard decision decoding (HDD) of these codes 
correct any two bit random errors in a block of size N . 
Although the Imai‑Kamiyanagi code has slightly larger 
check‑bit length, the parity check matrix of the code 
is very sparse (i.e., a small portion of the entries being 
one, all others being zero). This is why the decoding 
hardware has less complexity and decoding can be 
made faster than DEC‑BCH code [8]. BCH codes have 
a minimum or smaller number of check bits, but have 
complex decoding hardware and a longer decoding time. 
Today’s high‑speed computer systems have adopted the 
information‑bit lengths K = 32, 64, or 128 bits. In Table 1, 
we have given a comparison of pertinent parameters of 
shortened BCH and Imai‑Kamiyanagi codes for data 
blocks of size 32, 64, and 128 bits.

The parity check matrix H of general Imai‑Kamiyanagi 
code is given by [8],

 H
H
H
H

=
′
′
′


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where, ′H1 , ′H2  and ′H3  are defined as
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Here, symbol ⊗  depicts the Kronecker product. The 
meaning of other notations is defined here:
1n : all‑1 n ‑tuple row vector, and n m= −2 1 , m ≥ 2
1

0n : all ‑1 n0 ‑tuple row vector,
0n : all‑0 n ‑tuple row vector,
Ir1

: r r1 1×  identity matrix,
0m r× 1

: m r× 1  zero matrix,
A:  r n0 0×  matrix defined over Galois Field F2 . The 
rightmost r0  column vectors are linearly independent.
B : r n1 0×  matrix over F2 . This has r1  linearly independent 
column vectors.

Table 1: Comparison of shortened BCH and Imai-
Kamiyanagi code parameters
Codes Code 

length, N
Data 

length, K
Check 

bits, N - K
dmin

BCH
(Shortened)

44
78
144

32
64
128

12
14
16

5

Imai -Kamiyanagi
(Shortened)

46
81
148

32
64
128

14
17
20

5



Kumar HP, et al.: Iterative Decoding of Imai-Kamiyanagi Codes

274 IETE JOURNAL OF RESEARCH  |  Vol 58  |  ISSUE 4  |  JUL-AUG 2012

H1
2 11=  

−  ..... n ,
H3

3 6 3 11=  
−  ..... .( )n  Here,   be a primitive 

element in F m2
.

N n n r= +0 1 ,
K n n m r= − +0 0 1( ) ,
R N K m r r= − = + +( )0 11 .

Example 1: Design of (47, 33) Imai‑Kamiyanagi Code

Let m = 4,  n m= − =2 1 15, n0 3= ,  r0 2= ,  r1 2= ,  
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So, code length N n n r= + =0 1 47  and information bit 
length K n n m r= − + =0 0 1 33( ) . Hence (47, 33), linear 
Imai‑Kamiyanagi DEC code is obtained.

The parity check matrix of the above code with dmin ,= 5  
and R = 14  is calculated as

In this parity check matrix, total number of ones is 250 
and number of zeros is 408. Thus, the H matrix may 

be classified as being sparse. In the same way, we can 
derive parity check matrix for (95, 78) and (191, 171) 
Imai‑Kamiyanagi codes defined over F

25
 and F

26
, 

respectively. All parity check matrices obtained have full 
rank (the rows are linearly independent). Once a parity 
check matrix H is constructed, Gaussian elimination and 
re‑ordering of columns transform the original H into a 
matrix in systematic form, from which the generator 
matrix can be easily constructed. Deleting suitable rows 
and columns of generator matrix G yields shortened (46, 
32), (81, 64), and (148, 128) Imai‑Kamiyanagi codes.

In data storage systems, data are processed in parallel 
streams. In encoding, the message bits enter the encoder 
circuit in parallel, and the parity check bits are formed 
simultaneously  [9]. In decoding, the received bits 
enter the decoder circuit in parallel, the syndrome bits 
are formed simultaneously, and the received bits are 
corrected in parallel. This is called HDD or algebraic 
decoding.

3.	 ITERATIVE DECODING USING A PARITY 
CHECK TREE

We have observed that Imai‑Kamiyanagi code has 
a very sparse parity check matrix. A  matrix is said 
to be sparse if fewer than half of the elements are 
nonzero [10]. Such codes possess a low‑density parity 
check matrix. Associated with a parity check matrix 
H is a graph called the Tanner graph containing two 
set of nodes. The first set consists of N  nodes which 
represent the N  bits of a codeword; nodes in this set 
are called bit nodes. The second set consists of M  
nodes, called check nodes, representing the parity 
constraints. The graph has an edge between jth  bit 
node and the ith  check node if and only if jth  bit is 
involved in the ith  check, that is, if Hij = 1. Thus, the 
Tanner graph is a graphical depiction of the parity 
check matrix [11]. Figure 1 illustrates the graph for (47, 
33) Imai‑Kamiyanagi code.
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The leitmotiv here is soft decoding of Imai‑Kamiyanagi 
codes described through graphical structures. A graph 
such as this, consisting of two distinct sets of nodes and 
having edges only between the nodes in different sets, 
is called a bipartite graph or Tanner graph. The Tanner 
graph is used to develop insight into the decoding 
algorithm. The iterative soft decoding algorithm to 
decode Imai‑Kamiyanagi codes using a parity check tree 
associated with the Tanner graph is explained below.

For each code bit cn , compute the checks for those checks 
that are influenced by cn . To do this, we propagate 
probabilities through the Tanner graph, thereby 
accumulating the evidence that the checks provide about 
the bits. Suppose that cn  is in error and that other bits 
influencing its checks are also in error. Let arrange the 
Tanner graph with cn  as a root shown in Figure 2. This 
rearrangement of Tanner graph is called a parity check 
tree. The situation is particularly simple if the graph is a 
tree, i.e., it is connected, but if any one edge is removed, 
the graph is no longer connected, in particular a tree has 
no circuits (A closed path containing at least one edge is 
called a circuit). Thus, for each edge, we can talk about 
the sub graph on either side of it. Assume the bits in the 
star mark are in error. The bits that connect to the checks 
connected to the root node are said to be in level 1. The 
bits that connect to the checks from the first level are said 
to be in level 2. We can establish many such levels. Then, 
decode by proceeding from the leaves of the tree (right 
most part of the figure). By the time decoding on cn  is 
reached, other erroneous bits may have been corrected. 
Thus, bits and checks which are not directly connected 
to cn  still influence cn  [12].

4.	 MATHEMATICAL DESCRIPTION OF DECODING 
ALGORITHM

In this section, mathematical description of iterative 
decoding algorithm for DEC Imai‑Kamiyanagi codes 

by traversing through parity check tree is presented. 
The following notation is convenient in describing the 
algorithm [13‑16]. Let hi j,  denote the entry of H in the 
ith  row and jth  column. Then,

 L m l hm l( ) { : },= = 1 � (4)

denote the set of code positions that participate in the 
mth  parity check equation, and let

 M l m hm l( ) { : },= = 1 � (5)

denote the set of check positions in which code position 
l  participates. The algorithm iteratively computes two 
types of conditional probabilities:

qm l
x

, , the probability that the lth  bit of codeword c  has 
the value x , given the information obtained via the check 
nodes other than check node m .

rm l
x

, , the probability that a check node m  is satisfied 
when bit l  is fixed to a value x  and the other bits are 
independent with probabilities qml

x
' , l L m' ( )∈ \ l .

In the following, BPSK transmission over AWGN channel 
is assumed. Modulated symbols m c Ei

c
s

i( ) ( )= −1  are 
transmitted over an AWGN channel and received 
as r m c wi i i= +( ) , where wi  is a Gaussian distributed 
random variable with zero mean and variance N0 2 ,  
1 i N≤ ≤ .

Initializaion:

For l N∈{ , , , ........., }1 2 3 , initialize the apriori probabilities 
of the code nodes

 p
r
N

l

l

1

0

1

1 4=
+ exp( )

� (6)
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Figure 1: Tanner graph of a (47, 33) Imai‑Kamiyanagi code.
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Figure  2: Two‑level parity check tree associated with the 
Tanner graph.
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Figure  3: Performance for the (46, 32) Imai‑Kamiyanagi 
code over AWGN with HDD and SDD.

Figure 5: Performance for the (148, 128) Imai‑Kamiyanagi 
code over AWGN with HDD and SDD.

Figure  4: Performance for the (81, 64) Imai‑Kamiyanagi 
code over AWGN with HDD and SDD.

Figure  6: DRAM cell architecture with Imai‑Kamiyanagi 
coder‑decoder.

and p pl l
0 11= − . For every ( , )l m  such that hm l, = 1 ,

 q pm l l, ;0 0=  q pm l l,
1 1= .� (7)

Horizontal Step: Updating rml
x

For each l , m  compute

r q qm l m l
l L m l

m l, , '
' ( )\

, '( ),= ∏ −
∈

0 1 � (8)

and

r rm l m l, ,( )/ ;0 1 2= +  r rm l m l, ,( )/1 1 2= − � (9)

Vertical Step: Updating qml
x

For each l,  m  compute

q p r q p rm l l m l
m M l m

m l l m l
m M l m

, ',
' ( )\

, ',
' ( )\

;0 0 0 1 1 1= ∏ = ∏
∈ ∈

� (10)

and normalize, with  =
+

1
0 1( , , )

,
qm l qm l

q qm l m l, , ;
0 0=   q qm l m l, , .

1 1=  � (11)

For each l, compute the a posteriori probabilities

q p rl l m l
m M l

0 0 0= ∏
∈

,
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;  q p rl l m l
m M l

1 1 1= ∏
∈

,
( )

, � (12)

and normalize, with  =
+

1
0 1( )

,
ql ql

 q ql l
0 0=  ;  q ql l

1 1=  . � (13)

Final Step:

Make a tentative decision: Set cn$ = 1 , if ql
0 0 5> . ,  else set 

cn$ = 0 . If Hc$ = 0, .Stop

The majority of the errors in the byte‑organized 
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semiconductor memory systems are independent 
random bit errors, which may be caused by  ‑particles, 
cell failures, or external noises, which is equivalent to the 
AWGN channel model. We have simulated (46, 32), (81, 
64), and (148, 128)‑shortened Imai‑Kamiyanagi codes 
under AWGN channel conditions. Soft iterative decoding 
using a parity check tree is compared with contemporary 
HDD. Results [Figures 3-5] show almost 1.5 to 2.0 dB 
improvement at a bit error rate of 10-6. Code exhibits 3 dB 
gain in lower SNR region. This gain is very significant 
and tells that although the error correcting capability of 
the code is 2 bit, the code was able to decode beyond the 
minimum distance and correct more than two bit errors.

The latest semiconductor DRAM chips have a multi‑bank 
architecture. Each bank is constructed with highly 
independent subdivided memory arrays called memory 
subarrays [17]. The entire output of DRAM chip is called 
a block and block size may be 32, 64, or 128 bits. Figure 6 
shows the architecture of DRAM chip with proposed soft 
iterative Imai‑Kamiyanagi coder‑decoder.

5.	 CONCLUSION

A moderately simple and efficient soft decision‑decoding 
scheme for Imai‑Kamiyanagi code which employs 
parity check tree representation has been proposed. It is 
noteworthy that soft iterative decoder always detect the 
occurrence of decoding errors. The decoding complexity 
seems to be on the higher side. As technology progresses, 
power consumption of a decoder can be made very low. 
However, it is well known that the use of soft decision 
decoding on channels perturbed by Gaussian noise 
improves the performance by 1.5 to 3 dB over the use of 
HDD. Thus, a typical application for the soft iterative 
decoding algorithm of Imai‑Kamiyanagi codes could 
be in mass memories, computer sub memory systems, 
and data entry systems. Multiple hard and soft error 
problems can be solved by employing this decoding 
method. In wireless applications, 3 dB coding gain over 
un‑coded transmission means that data throughput can 
be increased by a factor of 2 for a fixed SNR. Equivalently, 
transmitter power can be reduced by a factor of 2 if 
increase in throughput is not desired. This translates 
into smaller transmit antennas or, alternatively, smaller 

receive antennas for the same transmission power. 
Therefore, collectively we can say that coding gain 
increases the system performance or reduces cost or both.
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