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A B S T R A C T

The solution for the inverse problem of seawater intrusion at an aquifer scale has not been studied as extensively
as forward modeling, because of the conceptual and computational difficulties involved. A three-dimensional
variable-density conceptual phreatic model is developed by constraining with real-field data such as layering,
aquifer bottom topography and appropriate initial conditions. The initial aquifer parameters are layered hetero-
geneous and spatially homogeneous that are based on discrete field measurements. The developed conceptual
model shows poor correlation with observed state variables (hydraulic head and solute concentration), signifying
the importance of spatial heterogeneity in hydraulic conductivity and dispersivity of all the layers. The concep-
tual model is inverted to estimate the anisotropic spatially varying hydraulic conductivity and the longitudinal
dispersivity at the pilot points by minimizing the least square error of state variables across the observation wells.
The inverse calibrated model is validated for the hydraulic head at validation wells and the solute concentration
is validated with equivalent solute concentration derived from the electrical resistivity, which shows good results
against the field measurements. The verification of estimated anisotropic hydraulic conductivity with the electri-
cal resistivity tomography image shows good agreement. This investigation gives an insight about constraining
the highly parameterized inverse model with real-field data to estimate spatially varying aquifer parameters for
an effective simulation of the seawater intrusion in a layered coastal aquifer.

1. Introduction

Aquifer characterization is one of the important input in groundwa-
ter simulation models. The information about the aquifer characteristics
is usually determined by conducting field experiments such as pumping
test, electrical resistivity, borehole logging, etc. But, conducting field ex-
periments to determine the aquifer parameters for the entire study area
is not feasible.

An inverse approach is a standard tool used for the parameter es-
timation in the subsurface hydrology. There are mainly two methods
to estimate parameters, i.e., deterministic approach and geostatistical
approach. In a deterministic approach, the geological information in
terms of spatial variability/zonation can be incorporated in the model.
The main disadvantage of the deterministic models is its inability to
estimate the uncertainty, but are reliable for predicting SWI and have
much greater robustness for incorporating the concentrations data for

estimating the aquifer parameters (Pool et al., 2015). The geostatistical
approach considers the parameters such as random field and assumes
that the spatial variability is unknown. The stochastic approaches can
address uncertainties well and can give better results. But the stochastic
models perform poorly and underestimates uncertainty when the data
given is scanty (Pool et al., 2015). Hence, in the present investigation, a
deterministic inverse approach is used.

In the past, an inverse approach was extensively used to estimate
the groundwater flow parameters (e.g., Emsellem and De Marsily, 1971;
Frind and Pinder, 1973; Cooley, 1977; Kitanidis and Vomvoris, 1983;
Carrera 1988; McLaughlin and Townley, 1996; Franssen and
Gómez-Hernández, 2002; Franssen et al., 2009; Pool et al., 2015), while
the inverse approach to estimate/identify the solute transport para-
meters received little attention (e.g., Murty and Scott, 1977; Umari
et al., 1979; Giacobbo et al., 2002; Bray et al., 2007). From the late
1980′s, considerable research has been carried out to estimate both
flow and solute transport parameters. Strecker and Chu (1986) and
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Keidser and Rosbjerg (1991) estimated the groundwater flow and trans-
port parameters separately in two stages, but these approaches cannot
be used to solve the coupled inverse problem. Considerable research has
been carried out to estimate both groundwater flow and transport para-
meters simultaneously (e.g., Wagner and Gorelick, 1986; Wagner, 1992;
Xiang et al., 1992; Medina and Carrera, 1996; Mayer and Huang, 1999;
Sun et al., 2001; Franssen et al., 2003; Sanz and Voss, 2006; Bastani et
al., 2010). Most of the proposed methods were applied to hypothetical/
synthetic aquifers and limited work has been carried out on three-di-
mensional (3D), variable-density, inverse modeling at an aquifer scale
(e.g., Medina and Carrera, 1996; Mayer and Huang, 1999; Bastani et al.,
2010; Dausman et al., 2010; Ataie-Ashtiani et al., 2013). The real-field
coupled inverse problem may be ill-posed if they are solved considering
the state variables only and without any information on the parameters
to be estimated. The use of prior information in the optimization process
will improve the identification of heterogeneity (Alcolea et al., 2006),
remove the non-uniqueness and provide stability to the solutions.

The parameter estimation for the 3D real-field problems such as sea-
water intrusion (SWI) in a coastal aquifer is a complex and dynamic
problem. In the past, modelers have estimated the flow and solute trans-
port parameters for the SWI problems. Iribar et al. (1997), estimated the
transmissivity values by considering the piezometric head and the chlo-
ride concentration in a confined aquifer of Llobregat Delta. For the same
aquifer, Abarca et al. (2006) estimated zonal aquifer heterogeneity for
a 2D horizontal groundwater flow and solute transport model. In both
the studies, the density effects were neglected since the aquifer thick-
ness and the elevation gradients were small. The density effect was stud-
ied by Sanz and Voss (2006) to estimate the flow and transport parame-
ters but on a standard Henry problem. Bray et al. (2007) estimated the
flow and solute transport parameters in a 3D variable-density concep-
tual model but in two independent and successive phases. This method
is not a coupled flow and solute transport inversion. The inverse model-
ing of a 3D variable-density groundwater flow and solute transport sys-
tem was carried out by Dausman et al. (2010). They addressed the com-
putational complexities involved in the inverse modeling, but the plume
migration pathways were based on multiple hypotheses. Beaujean et al.
(2014) used the solute concentration values as a state variable which
were derived from the electrical resistivity tomography to estimate pa-
rameters in a 2D model.

A number of studies have been carried out on the inverse modeling
in a 3D coastal aquifer considering the density effect and field measure-
ments (e.g., Bastani et al., 2010; Ataie-Ashtiani et al., 2013; Lathashri
and Mahesha, 2015) but the aquifer parameters estimated were either
isotropic or homogeneous. The literature survey confirms that not many
studies have been carried out to the estimate anisotropic spatially vary-
ing aquifer parameters in a 3D conceptual model, because of the sig-
nificant computational resources and the time required. The computa-
tional and conceptual difficulties in the parameter estimation for a 3D
variable-density coupled groundwater flow and solute transport in the
coastal aquifers were reviewed by Carrera et al. (2010). They have re-
viewed in detail on these computational and conceptual issues. Ketabchi
and Ataie-Ashtiani (2015) have discussed the computational problems
involved in solving the simulation-optimization framework and how to
resolve them. Rajabi and Ketabchi (2017) have addressed the computa-
tional challenge in solving a simulation-optimization framework by em-
ploying Gaussian process emulation in Kish Island, Persian Gulf.

The present study focuses on considering the conceptual issues such
as layering, aquifer bottom topography, and appropriate initial field
conditions to estimate the parameters in a coastal aquifer. The objec-
tives of the paper are (1) estimating anisotropic hydraulic conductiv-
ity and longitudinal dispersivity; (2) developing a reliable validation
method to evaluate numerical model results with electrical resistivity

tomography (ERT); (3) verifying the estimated anisotropic hydraulic
conductivity with ERT images. The analysis gives an insight into the lay-
ering, anisotropic and heterogeneity constraint to simulate the ground-
water flow and SWI phenomenon at an aquifer scale and a comprehen-
sion about the geological formation of the region. Thus, this investi-
gation will be useful for the analysis of SWI inversion problem at an
aquifer scale.

2. Description of study area

The study area falls under the Surathkal and Mukka region of Dak-
shina Kannada District, Karnataka located along the west coast of India
(Fig. 1a). The aerial extent is about 8km2 and the area is surrounded
by the Arabian Sea on the west and the seasonal tidal River Pavanje
in the north and north-eastern part (Fig. 1b). The area is characterized
by relatively undulating terrain with altitudes ranging up to 37m above
Mean Sea Level (MSL). The coastal and the Pavanje River length in the
study area are around 3.1km and 5.5km, respectively. The terrain is rel-
atively flat near the coast causing SWI into the river for several kilome-
ters thus, contaminating the adjacent freshwater aquifer. Since Pavanje
is a non-perennial river, the water required for the agriculture and do-
mestic use is mainly met by groundwater during the non-monsoon pe-
riod. This region falls under a tropical humid climate with an annual
average rainfall of about 3797mm and approximately 87% of which is
experienced from June–September.

There are 14 observation wells considered in the area which are well
spread with one observation well for 1km2; except for the south-west-
ern part which is barren. The water level and quality in these wells were
monitored once in a month over a period of three years from 2005 to
2008 (Vyshali, 2008).

The IRD (Institut de Recherche pour le Développement, France)
and NITK (National Institute of Technology Karnataka, Surathkal) con-
ducted 2D electrical resistivity test, borehole logging (Fig. 1c) and
pumping tests to delineate the geological formation and to characterize
the aquifer in this region. The electrical resistivity test was carried out
using Wenner Alpha and Beta arrays together with an inter-electrode
spacing of 4m and data inversion was performed using Res2dInv soft-
ware (Geotomo Software). The robust inversion method adopted gave
good results with an absolute error of <5% (Hoareau, 2009). Hoareau
(2009) combined interpretation of inverted electrical resistivity mea-
surements and information derived from the borehole logging (such as
magnetic susceptibility, groundwater resistivity, rock apparent resistiv-
ity, etc.) to establish a relationship between the ranges of electrical resis-
tivity tomography (ERT) and geological formations (Table 1). The Ver-
tical Electrical Soundings (VES) carried out by Mahesha et al. (2012)
near the observation wells gives information on the geological forma-
tion (Table 1) and the layer thickness.

Based on the available borehole logging details (Fig. 2), ERT and
VES results, it can be inferred that the soil composition of the aquifer
layers is as follows:

Layers 1 and 2 (i.e., Ground Level (GL) to 20m thick layer of coastal
alluvium) consists of clayey soil, clayey sand, fine silt and lateritic clay.
The top surface of the soil is hard and red in color. The porosity of these
layers varies between 0.25 and 0.6 (Udayakumar, 2008). The hydraulic
conductivity for the clay and silt formation varies between 0.35 and
10m/d (Freeze and Cherry, 1979) and for the lateritic clay it is between
10 and 30m/d (Bhosale and Kumar, 2001).

Layers 3 and 4 (i.e., GL to 30m thick layer of the weathered zone
and weathered zone with clay formation). This layer is formed due to
weathering of crystalline or sedimentary rocks. The porosity and hy-
draulic conductivity vary between 0.2 and 0.3 and 25–70m/d (Bhosale
and Kumar, 2001), respectively.

A layer of fissured zones with sequences of highly fissured bedrock
can be seen in between the layers of the coastal alluvium and the
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Fig. 1. (a) The study area is located on the west coast of Karnataka, India, (b) study area with the location of boreholes, observations wells, pumping test wells, validation wells, resistivity
profile and vented dams, and (c) location of the boreholes.

weathered zone (Fig. 2). The porosity and hydraulic conductivity vary
between 0.05 and 0.3 and 5–30m/d (Freeze and Cherry, 1979), respec-
tively.

Layer 5: Deeper down, the fresh bedrock with relatively less fissures
is present.

3. Model development and inputs

3.1. Description of the numerical model

To simulate the transient variable-density groundwater flow and
solute transport, a finite element numerical code FEFLOW (Finite Ele-
ment Modeling of FLOW, mass and heat transport in porous and frac

3
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Table 1
Interpretation of resistivities from the electrical resistivity and VES test.

Resistivities
Interpretation of resistivity test
(Hoareau, 2009; Mahesha et al., 2012)

Hydraulic
conductivity
values

<30O-m Saturated sand/clay formation with
intruded seawater

0.35–5m/d

30–80O-m Clayey sand or fine silt 0.35–5m/d
80–400O-m Weathered zone 25–70m/d
400–800O-m Fissured zone 5–30m/d
800–10,00O-
m

Poorly fissured zone 5–30m/d

>10,00O-m No factures/bedrock –

Fig. 2. Fence diagram from borehole logging.

tured media) version 7.0.9x (WASY GmbH, Berlin, Germany, 2016) is
used. This numerical code was developed by Hans-Jörg G. Diersch in
late 1970′s and is one of the widely used code in modeling of SWI (e.g.,
Kopsiaftis et al., 2009; Sherif et al., 2012; Lu et al., 2013). The FEFLOW
code is validated on standard benchmark problems such as Henry, El-
der, and salt dome (Kolditz et al., 1998). The flow and solute transport
equation is given as (Diersch, 2014)

(1)

(2)

where, (Darcy equation); Ss =specific storage [L-1];
B=thickness of saturated phreatic aquifer [L]; Sy =specific yield; ε
= effective porosity; K=hydraulic conductivity tensor [LT-1]; fμ =
μ0/μ = viscosity relation function, h=z+(p/γ) = hydraulic head [L];
z=datum head [L]; p=fluid pressure [ML-1T-2]; γ = specific weight
of fluid [ML-1T-2]; Q=volumetric flow rate of source/sink term [T-1];
C=solute concentration; ; Dm =molecular diffusion co-
efficient [L2T-1]; δ = identity tensor; D=mechanical dispersion tensor
[L2T-1].

The Galerkin finite element numerical method with no up-winding
is used for the transient simulation. Here, 3D triangular meshes are

generated by using triangulation, Picard iteration method is used to
treat the nonlinearities, and the matrices are solved by the conjugate
gradient methods. The second order accurate explicit Adams–Bashforth
predictor and trapezoidal rule corrector method (AB/TR) is used for
time stepping. For further details on FEFLOW, the reader can refer to
Diersch (2014).

3.1.1. Aquifer topography and discretization
A 3D unconfined conceptual model is developed with its origin at

4,76,559.78 m Easting and 14,37,602.16 m Northing as per World Geo-
detic System (WGS) 84/Universal Transverse Mercator (UTM) zone 43N
in the horizontal plane. The vertical section of the 3D model is repre-
sented by 5 layers (Fig. 3a) and the thickness of each layer is shown
in Fig. 3b. The axis normal to the sea is x, an axis parallel to the sea
is y and along the depth, the axis is z. The polygonal area is proposed
with a total number of 249,140 elements (i.e., 49,828 elements in each
layer) and 159,492 nodes. The proposed mesh is refined at the analysis
wells and along the boundary of the region (Fig. 3c). The Shuttle Radar
Topography Mission (SRTM) of 1 arc-second data is interpolated to get
the top elevation at the nodal points. The surface elevation varies be-
tween 0 and 37m above MSL and the bottom topography of the aquifer
varies from −42m (below MSL) to about 6m (above MSL). Based on
the depth of the observation wells, borehole logging, and VES data, the
thickness of each layer is assigned and interpolated for the entire model.

3.2. Description of the inverse code

The output error criterion is used for the parameter estimation; here,
the difference between the observed and simulated state variables at the
observation points are minimized. The nonlinear PEST (model-indepen-
dent Parameter ESTimation) developed by John Doherty (1994), is used
as an inverse code. PEST runs the FEFLOW iteratively by adjusting the
values of parameters to be estimated until the errors between the ob-
served and simulated state variables reach the terminating criterion. The
Gauss–Levenberg–Marquardt algorithm (GLMA) is used for minimizing
the objective function, Eq. (3)

(3)

(3a)

where, i=1, 2, ….…....., m=number of observation wells; t=observed
time interval=1, 2,....., n; h* and C* are hydraulic head and solute con-
centration vectors, respectively, at the observation points; h and C are
computed hydraulic head and solute concentration vectors, respectively;
w is the associated weight; p is the parameter to be estimated; l and u are
lower and upper bounds of the parameters, respectively, which are ob-
tained from the geological information (Table 1) and j is a node. The ob-
servation weights are computed from the reciprocal of the standard de-
viation (σ) of measurements. The weights for the hydraulic head varies
between 0.67 and 1.25 and for solute concentration, weight varies be-
tween 0.01 and 0.1. The higher weight of 1 is assigned for the solute
concentration data of the wells 7 and 11 since these wells are used for
the model evaluation.

Tikhonov regularization and singular value decomposition are used
to prevent numerical instability and non-uniqueness while estimating a
large number of parameters. For further details on mathematical regu-
larization in PEST, the reader can refer to Doherty (2004). Anyone of
the following criterion can be used to terminate the iterative process.

4



UN
CO

RR
EC

TE
D

PR
OO

F

B.N. Priyanka et al. Journal of Hydrology xxx (2018) xxx-xxx

Fig. 3. Conceptual model (a) 3D model, (b) thickness of the layer in between the slices, and (c) aerial view with boundary conditions.

• If Φi ≤ 0.25, where Φi = the objective function value at the end of the
ith optimization iteration

• If the maximum number of optimization iterations are 30.
• If , where Φmin = the lowest objective function achieved

till time.
• If , relative change in parameter p between optimization

iterations i − 1 and i.

3.3. Model inputs

3.3.1. Boundary and initial conditions
Dirichlet boundary condition:

(4)

(5)

(6)

5
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Cauchy boundary condition:

(7)

(7a)

(8)

(8a)

where, h=hydraulic head [L]; C=solute concentration [ML-3]; t0 =ini-
tial time [T]; R1 =coastal boundary; hequi =equivalent freshwater head
[L]; CD =solute concentration along the coastal line [ML-3]; R2 =other
boundary; hD (t) = specified head [L]; R3 =river boundary; qh =bound-
ary flux [L2T-1]; Φh = transfer coefficient [T-1]; K=hydraulic conduc-
tivity of river bed material [LT-1]; d=river bed thickness; hC =ref-
erence hydraulic head from river stage [L]; qC =boundary mass flux
[ML-2T-1]; ΦC = mass transfer coefficient [LT-1].

The coastline (R1) is defined as a Dirichlet boundary condition as
shown in Fig. 3c. The hydraulic head is prescribed as an equivalent
freshwater head over full thickness, i.e., 41m (Motz and Sedighi, 2009).
The solute concentration of the seawater is normally estimated based on
the Total Dissolved Solids (TDS) (e.g., Cobaner et al., 2012; Sherif et al.,
2012; Ding et al., 2014). Therefore, the solute concentration of seawa-
ter along the coastal line is given a TDS value of 35kg/m3. The river
boundary (R3) is defined as a Cauchy boundary condition, which ac-
counts for the flow between the River Pavanje and groundwater system.
The data of the river stage, hydraulic conductivity of the river bed ma-
terial (K) and thickness of the river bed (d) are required to prescribe this
boundary condition. The monthly river stage is obtained from the Mi-
nor Irrigation Department and the Water Resources Information System
of India. The hydraulic conductivity of Pavanje River bed is 7.85m/d
(Sujay and Deka, 2016) and the thickness of the river bed is assumed as
0.8m, which are fixed for the entire length of the river. The solute con-
centration (referred to as TDS in the study) of the river varies due to the
mixing of freshwater and seawater. The solute concentration in the river
is considered only till second vented dam (Fig. 1b) which is 3.32km
along river length from the coastal line, beyond this point C=0mg/L.
For region R2, as there is no natural boundary condition, specified head
(from hydraulic head contour) and specified concentration (from solute
concentration contour) are used. The top boundary condition is defined
as a specified flux (recharge rate), which is phreatic in nature. The bot-
tom boundary is considered as a no-flow boundary condition. The initial
hydraulic head for the domain is assigned for the starting month (i.e.,
for February 2005) at discrete observation points and Kriging (e.g., Yao
et al., 2014; Xiao et al., 2016) is used to get the continuous hydraulic
head. The initial solute concentration/mass concentration is assigned
with steady-state simulation output integrated with the observation data
points.

3.3.2. Source and sinks
The main source and sink for groundwater in the study area are

recharge and groundwater draft, respectively. During the monsoon pe-
riod (June–September), the aquifer is replenished to the saturation level.
The rainfall is the main source for aquifer recharge but during the
non-monsoon period, the Pavanje River contributes. The recharge is
computed by multiplying the recharge coefficient with monthly rain-
fall data (IMD, 2004–2010 data). Udayakumar (2008) estimated the

appropriate recharge coefficient values, which is in the range of
8–26.5% but according to the Groundwater Estimation committee (GEC,
1997), for the west coast of India, recharge coefficient can be consid-
ered in the range of 8–12%. Therefore, in the present investigation, the
recharge coefficient is considered to be 10%. As the study area is small,
a uniform recharge rate is assumed throughout the layer 1. There are
374 pumping wells in the region, which contributes as the main sink
(Lathashri and Mahesha, 2015). The freshwater draft data for pre-mon-
soon, monsoon and post-monsoon from these 374 wells are taken from
Lathashri and Mahesha (2015). The subsurface discharge to the sea and
the river are the other sinks which are considered in boundary condi-
tions.

3.3.3. Initial aquifer parameters
The aquifer parameters, i.e., transmissivity and specific yield esti-

mated by Mahesha et al. (2012) using the pumping test at discrete
points are interpolated using Kriging in the present study to get the hy-
draulic conductivity and specific yield for the first layer as shown in
Fig. 4a and b, respectively. The arithmetic mean (μ) and standard devia-
tion (σ) of the spatially varying hydraulic conductivities are 11.882m/d
and 4.84m/d, respectively, and for a specific yield μ = 0.086 and σ =
0.065. Since most of the wells are shallow (3 to 11m), the pumping test
is restricted to the top layer of the developed conceptual model. Based
on the pumping test results (Mahesha et al., 2012), the hydraulic con-
ductivity value of layer 1 is found to be spatially varying (Fig. 4a) and
transversely isotropic i.e., Kxx =Kyy≠Kzz. The hydraulic conductivity of
the remaining layers is considered as layered heterogeneous based on
the soil type (Table 1). Based on the earlier investigations in the study
area such as borehole logging, VES and pumping test (Udayakumar
2008; Hoareau, 2009; Mahesha et al., 2012) and other studies (Freeze
and Cherry, 1979; GEC, 1997; Lathashri and Mahesha, 2015), layer-wise
input values for flow and solute transport parameters are as in Table 2.
The vertical hydraulic conductivity value is assumed to be 10% of hori-
zontal hydraulic conductivity in the x major axis from layer 3 onwards.

There are no field measurements of dispersivity values of the study
area. The longitudinal dispersivity (αL) values are determined by using
the regression formula derived previously to relate the field scale length
and dispersivity. In the present investigation, a statistical model using
the available data with varying reliabilities derived by Xu and Eckstein
(1995) is used to estimate the αL values. The equation is given by:

(9)

where L=field scale, m; αL = longitudinal dispersivity, m; low re-
liable data=weight 1; intermediate reliable data=weight 2 and high
reliable data=weight 3; and Eq. (9) is valid for field scale up to 1km.
But for the conceptual model developed, Eq. (9) is assumed to be valid
beyond 1km. The transverse dispersity (αT) is considered to be 1/10th
of longitudinal dispersivity (e.g., Cobaner et al., 2012; Lathashri and
Mahesha, 2015). The spatial distribution αL is same in all the layers (Fig.
5). The other parameters considered are uniform for all the layers (Table
3). The fluid density at the observation wells (ρ) is computed by:

(10)

where, m=number of observation wells; C=solute concentration (kg/
m3) and ρf = freshwater density (kg/m3).

3.3.4. State variables
The monthly water table level (w.r.t MSL) and TDS data for the

study area are obtained from 14 observation wells. The hydraulic head
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Fig. 4. Spatial distribution of (a) hydraulic conductivity (K) and (b) specific yield (Sy) at layer 1.

Table 2
Layerwise aquifer parameter values.

Layer Hydraulic conductivity (m/d) Specific Yield, Sy Porosity, ɛ (%)

Kxx Kyy Kzz

1 Refer Fig. 4a Kxx =Kyy 0.53Kxx Refer Fig. 4b 29–39
2 25 5.53 0.53Kxx 5–10% 35–60
3 25 25 0.1Kxx 2–4% 5–30
4 25 10 0.1Kxx 2–4% 5–50
5 25 10 0.1Kxx 2–4% 5–30

Fig. 5. Spatial distribution of the longitudinal dispersivity (αL).

for the wells is calculated with respect to the datum and correspond-
ing elevation above MSL. The wells 1, 4, 6, 7, 8, 11 and 12 which are
located≤500m from the water bodies show solute concentration val-
ues >0.25kg/m3, but in well 2, which is located≤250m from the water
body (Fig. 1b) the temporal concentration values<100mg/L. This in-
dicates that the solute concentration data in the locality is not consis

Table 3
Other input parameters for the numerical model.

Quantity Symbol Value Unit

Molecular diffusion coefficient Dm 0.0000864 m2/d
Freshwater density ρf 1000 kg/m3

Seawater density ρs 1025 kg/m3

Dynamic viscosity of fluid μ 280985.76 kg/m/yr

tent; this is because of other sources contaminating the well water.
The depth at which the water is sampled for TDS analysis is not avail-
able. According to the World Health Organization (WHO), the accept-
able TDS value for drinking water is below 0.5kg/m3, therefore TDS val-
ues>0.5kg/m3 are only considered.

3.4. Application of inverse modeling

The first step is to identify whether the given hydro-geological pa-
rameters of the developed conceptual model are accurate or not. This
can be done by the model evaluation (discussed in Section 3.4.1) with
respect to the observed state variables. As discussed in the previous sec-
tion, the TDS values<0.5kg/m3 (500mg/L) are not considered for the
study, therefore the model performance for solute concentration is eval-
uated for the wells 7 and 11 only, for a period of 3years. The next step
is to identify the important parameters for understanding the dynamics
between groundwater flow and SWI based on model evaluation and lit-
erature.

The significant parameters are estimated using the inverse model
without changing the other model inputs. For minimizing the solute
concentration term (C) in Eq. (3), TDS values for all the 14 observation

7
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wells over 3years are considered. The aquifer parameters to be esti-
mated are parameterized with pilot points (parameter adjustable/com-
putational points). The pilot points are randomly spaced with an equal
number of points in each layer and the spacing between these points are
based on Monte Carlo sampling with 5 iterations (Fig. 6). The parame-
ters estimated at the pilot points are interpolated using Kriging to get
the continuous function of the spatial variability. The measure of loca-
tion and variability of the estimated heterogeneous aquifer parameter
values in each layer is characterized by μ, σ, geometric mean (GM), me-
dian, maximum and minimum parameter value, skewness (a measure of
symmetry), and Kurtosis (a measure of peakedness). Box–and–Whisker
figure is plotted to graphically represent μ, σ, geometric mean (GM),
median, maximum and minimum parameter value. The histogram is an
effective graphical representation to indicate the skewness and Kurtosis
of the data set. For further details on skewness and Kurtosis, the readers
can refer to Das (2009).

The inverse calibrated model is validated over a period of two years
with the water level data, measured twice in a month, at four valida-
tion wells (Honnanagoudar, 2014). These validation wells are differ-
ent from the observation wells considered for the parameter estimation.
Since the adequate solute concentration data is not available at the vali-
dation wells, the validation is only for the hydraulic head. The electrical
resistivity measurements carried out by IRD and NITK during January/
February 2008 are used to validate the simulated TDS values. The in-
verted ERT results provide continuous subsurface characterization and
are used for validation. The numerical model results on solute concen-
tration are validated with equivalent solute concentration derived from
inverted ERT (Hoareau, 2009). The following Eq. (11) given by Comte
and Banton (2007) provide the relation between pore water conductiv-
ity (in µS/cm) and solute concentration (TDS) (in mg/L).

(11)

The pore water conductivity (σw) and bulk electrical conductivity (σ)
are expressed linearly (Archie, 1942; Comte and Banton, 2007) as:

Fig. 6. Randomly spaced pilot points based on Monte Carlo sampling.

(12)

where, n=total matrix porosity=0.45–0.5 for the present study,
a=coefficient of pore tortuosity=1, and m=cementation fac-
tor=1.3–2.0 (Archie, 1942). From the above relationships, the equiva-
lent TDS values are derived from the electrical resistivity data and are
used to validate the simulated TDS values.

3.4.1. Model evaluation
The performance of the model is evaluated by Root Mean Square Er-

ror (RMSE), bias error (b) and coefficient of determination (R2).

(13)

(13a)

(14)

(15)

where, e=error between simulated and observed values of state vari-
ables; s=simulated state variable; s* = observed state variable and
cov=covariance. The R2 >0.6 is considered to be a good fit in hydro-
logical modeling (Moriasi et al., 2007; Lathashri and Mahesha, 2015).

From the forward modeling results and the earlier studies (e.g., Sanz
and Voss, 2006; Abarca et al., 2007; Ataie-Ashtiani et al., 2013) hy-
draulic conductivity and dispersivity are the two significant parame-
ters to assess SWI. Therefore, inverse modeling is used to estimate ma-
jor axes anisotropic heterogeneous hydraulic conductivity and heteroge-
neous longitudinal dispersivity. In this study, hydraulic conductivity in
the z-direction is not as important as Kxx, Kyy and αL because the geologi-
cal formation below layer 2 is mostly laterite with/without the presence
of clay or fissured zone. In such a case, the harmonic mean of hydraulic
conductivity in a layer will be small; thus, Kzz is not evaluated.

4. Results and discussion

4.1. Developed conceptual model

The developed conceptual model is simulated for 3years (num-
ber of temporal observation=37) with a stress period of 1day. The
mean (temporal RMSE of the hydraulic head) and mean
temporal bh (b of the hydraulic head) of 14 observation wells over
3years are 2.56m and −2.182m, respectively, indicating that the sim-
ulated values are less than the observed. The mean temporal Rh

2 (R2 of
the hydraulic head) value over 14 observation wells is 0.505 (<0.6),
which indicates poor fit between the observed and simulated hydraulic
heads. Fig. 7 illustrates the (spatial RMSE for the hydraulic
head) for 37 temporal observations over 14 observation wells and the
value ranges between 3.55m (May 2005) and 5.5m (July 2007). The

=4.96m for the monsoon period and =4.21m
for the non-monsoon period. High and low Rh

2 indicates that
the misfit between the simulated and observed hydraulic heads are
high and poorly correlated. Even though layer 1 of the conceptual
model is considered spatially varying (Fig. 4), the performance of the
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Fig. 7. Spatial RMSEh of the developed conceptual model.

model is poor; this suggests that the hydraulic head is dependent on the
heterogeneity of the other layers. The storage term does not influence
the hydraulic head significantly over a simulation time of one day. Thus,
it can be concluded that the hydraulic conductivity is a deterministic
parameter in the modeling of the hydraulic head.

The (temporal RMSE of the solute concentration) at
wells 7 and 11 are 0.42kg/m3 and 0.721kg/m3, respectively, and tem-
poral bC (b of the solute concentration) at wells 7 and 11 are −0.368kg/
m3 and −0.717kg/m3, respectively. The temporal RC

2 (R2 of the solute
concentration) at well 7 and 11 are 0.193 and 0.482, respectively,
which indicates poor fit between the observed and simulated solute con-
centrations. Thus, it can be concluded that the errors in the solute con-
centration values are mainly due to the homogeneous solute transport
parameters. According to the literature, dispersivity is one of the impor-
tant parameters in assessing SWI (Sanz and Voss, 2006; Abarca et al.,
2007; Ataie-Ashtiani et al., 2013). From the model evaluation and the
literature, it can be concluded that the anisotropic spatially varying hy-
draulic conductivity and dispersivity are the two deterministic parame-
ters in the modeling of the SWI.

4.2. Inverse modeling

The optimal fit between the simulated and observed state variables
are estimated by finding a set of anisotropic hydraulic conductivity
and longitudinal dispersivity values. A total of 1134 data points are
used for the inverse modeling, i.e., 44 temporal observed values on
the hydraulic head and 37 temporal observed values on the TDS at
each observation well. There are 75 pilot points in a 5 layered-model,
and three parameters i.e., Kxx, Kyy, and αL are estimated at each pi-
lot point. A single iteration of the optimization requires approximately
160h to estimate 225 values (Kxx, Kyy, and αL) on the 64-bit pathway, a

3.07GHz processor and 12.0GB of RAM. From the 4th iteration, only
Kxx and Kyy parameters are considered, since the relative change in αL
values are≤0.1 and time taken is reduced to approximately 71h on the
same configuration machine. Hence, approximately 1620h are required
for the inverse model to terminate and the termination criterion is

. The estimated parameters from the inverse model are dis-
cussed in the following sections.

4.2.1. Hydraulic conductivity
The statistics of the estimated hydraulic conductivities in x and y ma-

jor axes are summarized in Fig. 8a and 8b, respectively. The layerwise
spatial variability of the hydraulic conductivity in x and y major axes
are shown in the Figs. 9 and 10, respectively, along with the histograms.

From Fig. 8a, it is observed that the overall hydraulic conductivity
values along the x major axis range from 0.374 to 63.221m/d. From Fig.
9, it can be noticed that the Kxx values along the coastal length (near the
sea) are <3.5m/d in layers 2 and 5, indicating the existence of a less
permeable geological formation. Based on Table 1, the following inter-
pretations of the soil composition have been made. Layer 1 has 30.94%
of coastal alluvium, 47.91% of lateritic clay and 21.15% of laterite soil.
Layer 2 has 60.75% of clayey sand or fine silt, 9.87% of laterite soil
and 29.38% of fissured rock/lateritic clay. Layer 3 has 52.08% of clay
and silt formation, 10.48% of weathered zone and 37.44% of fissured
rock/lateritic clay. Layer 4 has 46% of clay and silt formation, 50.81%
of fissured bedrock and remaining of weathered bedrock. Layer 5 has
35.58% of clay/silt zone, 20.4% of weathered bedrock and 44.02% of
the fissured rock.

From Fig. 10, the Kyy values range from 0.53 to 30m/d, which is
not similar to that of Kxx range because of the upper limit (pj

u) in Eq.
(3a) for Kyy was assigned a value of 30m/d. This difference is due to

Fig. 8. Box–and–Whisker plot to summarize the statistics of the hydraulic conductivities in each layer, (a) in x major axis and (b) in y major axis.
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Fig. 9. Layerwise spatial distribution of Kxx and the respective histogram (a) layer 1, (b)
layer 2, (c) layer 3, (d) layer 4 and (e) layer 5.

groundwater flow to the sea along the x-direction. From the histograms
of Kyy and Table 1, the soil type parallel to the coast can be interpreted
as in layer 1, 65.83% of elements are laterite soil out of which 47.9%
for elements have the Kyy value=30m/d, 28.16% of lateritic clay and
remaining is covered with coastal alluvium. Layer 2 is a homogeneous
layer since 98.62% is clay/silt formation. Layer 3 has 89.3% of clay and
silt formation, and remaining is fissured bedrock/lateritic clay. Layer
4 has 67.51% of clay and remaining is fissured bedrock. Layer 5, fis-
sured bedrock covers 68.38%, 29.76% of clay/silt zone and remain-
ing with a small amount of weathered bedrock. From this, it can be

Fig. 10. Layerwise spatial distribution of Kyy and the respective histogram (a) layer 1, (b)
layer 2, (c) layer 3, (d) layer 4 and (e) layer 5.

concluded that the layers parallel to the coast have no or thin layer of
weathered bedrock (also evident from Fig. 2).

4.2.2. Dispersivity
The spatial distribution and statistics of the estimated αL at layer 1

are shown in Fig. 11a and 11b, respectively. Fig. 11c is the histogram
of the estimated αL. From Fig. 11a, it is observed that the αL values vary
between 6.265 and 11.901m. At the wells 1, 2, 6 and 8 the αL < 7.5m,
at the wells 7, 9 and 10 the αL ranges between 7.5 and 9m and at re-
maining wells the αL > 9m. The spatial distribution of αL in other lay-
ers are same as shown in the Fig. 11a. The Fig. 11d shows the com-
parison between αL values estimated from the Xu & Eckstein formula
and the inverse model. The wells 5 and 14 are not considered because
L>1km from the source and the rate of increase of dispersivity be
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Fig. 11. (a) Spatial distribution, (b) Box–and–Whisker plot to summarize the statistics, (c) histogram of the estimated αL in layer 1 and (d) comparison of the inverse model with the Xu &
Eckstein formula.

yond 1km can be neglected (Xu and Eckstein, 1995). At the well 4, the
αL value from the inverse model exactly coincides with the αL value de-
rived by the regression formula. At wells 6, 8, 9, 12 and 13, the αL val-
ues of the inverse model and from the regression equation are approxi-
mately the same.

4.2.3. Inverse calibrated model performance
The temporal performance of the inverse calibrated model over time

is evaluated by using Rh
2, bh and RMSEh (Table 4). The negative sign

of b indicates that the inverse calibrated model underestimates the
state variables and vice versa. From Table 4, it is observed that the
mean temporal Rh

2 (R2 of the hydraulic head) of the inverse calibrated

Table 4
Comparison between the temporal performance of the developed conceptual and the in-
verse calibrated model.

Temporal performance measure for
the hydraulic head

Mean
Rh

2
Mean
bh (m)

Mean
RMSEh
(m)

Developed conceptual model 0.505 −2.182 2.563
Inverse calibrated model 0.828 −0.53 1.262
Temporal performance measure for
the solute concentration

RC
2 bC (kg/

m3)
RMSEC
(kg/m3)

Developed conceptual model at well
7

0.193 −0.368 0.42

Inverse calibrated model at well 7 0.093 −0.333 0.396
Developed conceptual model at well
11

0.482 −0.717 0.721

Inverse calibrated model at well 11 0.551 −0.655 0.657

model for the 14 observation wells over 3years has improved by 1.64
times than the developed conceptual model, which indicates better and
improved fit between the observed and the simulated hydraulic heads.
The mean temporal bh (b of the hydraulic head) and mean
(temporal RMSE of the hydraulic head) of the inverse calibrated model
for the 14 observation wells over 3years decreased by 75.7% and
50.8%, respectively from the developed conceptual model. Fig. 12, il-
lustrates the monthly (spatial RMSE for the hydraulic head)
over 14 observation wells. The has reduced by 64% for both
the monsoon and non-monsoon period when compared with the devel-
oped conceptual model.

From Table 4, it can be observed that the temporal RC
2 improves in

well 11 from 0.482 to 0.551, but the fit between the observed and sim-
ulated concentrations at well 7 is still poor. This discrepancy may be
because of the influence of the contaminated river on the adjacent ob-
servation well 7. The at wells 7 and 11 reduced by 5.7%
and 8.87%, respectively, and temporal bC at wells 7 and 11 reduced by
9.5%. The reduction in errors of solute concentration is not >10% indi-
cating the additional data requirement for the calibration.

4.3. Validation and verification

4.3.1. Validation of the inverse calibrated model for the hydraulic head
The model efficiency of the inverse calibrated model at each valida-

tion well is tabulated (Table 5). Since there are only 4 wells, the perfor-
mance of the inverse calibrated model is validated only at well points

11



UN
CO

RR
EC

TE
D

PR
OO

F

B.N. Priyanka et al. Journal of Hydrology xxx (2018) xxx-xxx

Fig. 12. Spatial RMSEh of the inverse calibrated model.

Table 5
Temporal performance of the inverse calibrated model at the validation wells.

Validation well
no.

Temporal
Rh

2
Temporal bh
(m)

Temporal RMSE h
(m)

V1 0.610 1.391 1.647
V2 0.643 2.293 2.451
V3 0.800 0.089 0.302
V4 0.903 0.202 0.329

and not spatially. The goodness of fit between the observed and simu-
lated hydraulic heads are>0.6, which indicates a good fit. Fig. 13 com-
pares the hydraulic head between the observed and simulated values.
The validation wells V3 and V4, which are located near the river (Fig.
1b) show good correlation, which indicates that the given boundary
condition for the river is accurate. From Fig. 13, it can be noticed that
at wells V1 and V2 there is a sudden increase in the observed hydraulic
head of>3m at the beginning of the monsoon, which indicates that the
requirement of the field investigation to understand this sudden change
in the hydraulic head.

4.3.2. Validation of the inverse calibrated model for the solute
concentration

Fig. 14a shows ERT at profile L1 (refer Fig. 1b); these resistivity val-
ues are converted into equivalent TDS values (Fig. 14b) using Eq. (11)
and Fig. 14c represents the results of solute transport by the inverse cal-
ibrated model. The results of the numerical model (Fig. 14c) are vali-
dated with the equivalent TDS values (Fig. 14b). It can be observed that,
in Fig. 14b and c, at −5m (below MSL), the TDS values are>1500mg/
L, indicating the maximum intrusion at the same depth. The resistiv-
ity values of the saturated clay and silt formation vary between 30 and
80O-m (refer to Table 1). It is known that Archie’s law is not valid in
the presence of clay formation; thus the clay formation cannot be con-
sidered as SWI at 170–270m (Fig. 14b).

To quantify the error in the simulated TDS values, the electrical re-
sistivity data points are matched with the simulated TDS data points
based on the Euclidean distance. The data points with a Euclidean dis-
tance >1m are not considered for the model evaluation (Fig. 15a).
From the Fig. 15a, the bias error between the equivalent and simulated
TDS values mostly lie between −0.2–0.2kg/m3. Fig. 15b illustrates the
goodness of fit between the equivalent and simulated TDS values. The
RMSE and b are 0.213kg/m3 and −0.078kg/m3, respectively, implying
the confidence in the inverse calibrated model results. The validation
method adapted here is novel and is used to quantify the error between
the measured and simulated results.

4.3.3. Verification of layering and geological formation
The estimated hydraulic conductivity in x and y directions are ver-

ified for layering and geological formation (Table 1), i.e., by compar-
ing the vertical 2D profile from the inverse calibrated model with ERT
image (Fig. 16). For this verification, the profiles T1 and L2 are consid-
ered, such that they are located >1km from the coastal line (Fig. 1b)
and these profiles are not subjected to SWI. In the profile T1 (Fig. 16a),
it is noticed that an average of 9m thick saturated clayey formation is in
between −1m and −8m and from the inverse calibrated model output,
7m thick saturated clayey formation on an average is found in between
2m and −6m. In the profile L2 (Fig. 16b), it is seen that the inverse
calibrated model can reproduce the clayey formation between 470 and
540m distance. The homogeneous pattern of the weathered zone can
be noticed in the 2D sections of ERT image and the inverse calibrated
model result (Fig. 16b). From this observation, it can be concluded that
the interpolated layer thickness and the estimated geological formation
is similar to the field measurements.

The parameter estimation approach at pilot points by using highly
parameterized inverse model offers guidance on estimating anisotropic
heterogeneous hydraulic conductivity and dispersivity in real-field lay-
ered unconfined aquifer involving SWI. The use of real-field data such
as appropriate initial aquifer parameters and constraining the inverse

Fig. 13. Comparison between the observed hydraulic head (dots) and simulated hydraulic head (asterisks with dash line) at each validation well.
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Fig. 14. Comparison validation of a simulated SWI profile; (a) ERT image, (b) calculated equivalent TDS profile, and (c) inverse calibrated model simulated TDS profile.

Fig. 15. Scatter plot between the equivalent and simulated TDS; (a) bias error with respect to Euclidean distance and (b) R2 fit.
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Fig. 16. Verification of the geological formation with ERT image; (a) profile T1 and (b) profile L2.

model with the upper and lower bounds of the parameters reduces the
number of iterations required to minimize the objective function, im-
prove the potential estimates and possible convergence. The inverted
electrical resistivity output used for validation significantly supports the
methodology adopted for the inverse modeling.

5. Summary and conclusions

In this study, a 3D variable-density, unconfined coastal aquifer
model is developed by constraining the model with aquifer topography
and appropriate initial field conditions. From the forward modeling re-
sults, it is observed that the anisotropic spatially varying hydraulic con-
ductivity and dispersivity are the deterministic parameters to assess the

14



UN
CO

RR
EC

TE
D

PR
OO

F

B.N. Priyanka et al. Journal of Hydrology xxx (2018) xxx-xxx

SWI in a coastal aquifer. The inverse code (PEST) is used to minimize
the least-square error for the state variables and to estimate these deter-
ministic parameters. A reliable validation method is adopted to evaluate
the inverse calibrated model results with the ERT profile. The aquifer
layering and the estimated geological formation are verified by com-
paring with ERT images. The study explains the necessity of consider-
ing layering and anisotropic heterogeneous aquifer parameters for effec-
tive simulation of SWI. The analysis gives knowledge about the geolog-
ical formation in the study area. The present study infers the following
points:

• The low performance of the developed conceptual model signifies the
importance of considering spatially varying aquifer flow and solute
transport parameters in all the layers. The high error in the hydraulic
head indicates that the hydraulic conductivity is one of the determin-
istic parameters since storage term does not influence the hydraulic
head significantly over a simulation time of one day.

• The inverse model used to estimate anisotropic spatially varying hy-
draulic conductivities and heterogeneous longitudinal dispersivity is
computationally demanding, but this effort is worthwhile to obtain
the spatially varying aquifer parameters.

• The inverse calibrated model results show substantial improvement;
error in the hydraulic head is reduced by >50% when compared with
the developed conceptual model. The error in the solute concentra-
tion is reduced by 10% (which suggests additional data requirement).

• Though the least square error of the state variables is minimized at
the observation wells, the validation of the inverse calibrated model
shows good results at the validation wells, which significantly support
the performance of the inverse calibrated model.

• The TDS values determined by the inverse calibrated model is evalu-
ated with equivalent TDS values computed from the electrical resis-
tivities. The inverse calibrated model results show better agreement
with the field data and a novel validation method adapted is more re-
liable than the commonly used comparison validation.

• The comparison verification of layering shows good agreement with
the electrical resistivities layers. The verification also shows that the
inverse calibrated model is able to reproduce the field data.

• The knowledge of geological formation, normal and parallel to the
coast has improved based on the estimated anisotropic heterogeneous
hydraulic conductivity, which can be used for the planning strategies
and management of the aquifer system.

Acknowledgments

The authors thank Johan Hoareau, Jean-Michel Vouillamoz (Univer-
sity Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, CS407000, 38058
Grenoble CEDEX 9, France) for sharing the geophysical data and Lau-
rent Ruiz, Indo-French Cell for Water Sciences, IISc, Bangalore. The au-
thors would like to thank the anonymous reviewers for their valuable
suggestions and constructive comments. This research did not receive
any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jhydrol.2018.08.031.

References

Abarca, E., Carrera, J., Sanchez-Vila, X., Dentz, M., 2007. Anisotropic dispersive Henry
problem. Adv. Water Resour. 30 (4), 913–926.

Abarca, E., Vázquez-Suñé, E., Carrera, J., Capino, B., Gámez, D., Batlle, F., 2006. Optimal
design of measures to correct seawater intrusion. Water Resour. Res. 42 (9), W09415.

Alcolea, A., Carrera, J., Medina, A., 2006. Pilot points method incorporating prior informa-
tion for solving the groundwater flow inverse problem. Adv. Water Resour. 29 (11),
1678–1689.

Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir
characteristics. Trans. AIME 146 (01), 54–62.

Ataie-Ashtiani, B., Rajabi, M.M., Ketabchi, H., 2013. Inverse modelling for freshwater lens
in small islands: Kish Island. Persian Gulf. Hydrol. Process. 27 (19), 2759–2773.

Bastani, M., Kholghi, M., Rakhshandehroo, G.R., 2010. Inverse modeling of variable-den-
sity groundwater flow in a semi-arid area in Iran using a genetic algorithm. Hydro-
geol. J. 18 (5), 1191–1203.

Beaujean, J., Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., 2014. Calibration of
seawater intrusion models: inverse parameter estimation using surface electrical resis-
tivity tomography and borehole data. Water Resour. Res. 50 (8), 6828–6849.

Bhosale, D.D., Kumar, C.P., 2001. Simulation of seawater intrusion in Ernakulam coast.
(http://www.angelfire.com/nh/cpkumar/publication/ernac.pdf Retrieved November
13, 2017).

Bray, B.S., Tsai, F.T.-C., Sim, Y., Yeh, W.W.G., 2007. Model development and calibration
of a saltwater intrusion model in southern California. JAWRA 43 (5), 1329–1343.

Carrera, J., 1988. State of the art of the inverse problem applied to the flow and solute
transport equations. In Groundwater flow and quality modelling. Springer, Dordrecht,
549–583.

Carrera, J., Hidalgo, J.J., Slooten, L.J., Vazquez-Sune, E., 2010. Computational and con-
ceptual issues in the calibration of seawater intrusion models. Hydrogeol. J. 18,
131–145.

Cobaner, M., Yurtal, R., Dogan, A., Motz, L.H., 2012. Three dimensional simulation of sea-
water intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. J. Hydrol.
464–465, 262–280.

Comte, J.C., Banton, O., 2007. Cross-validation of geo-electrical and hydrogeological mod-
els to evaluate seawater intrusion in coastal aquifers. Geophys. Res. Lett. 34 (10).

Cooley, R.L., 1977. A method of estimating parameters and assessing reliability for models
of steady state groundwater flow: 1. Theory and numerical properties. Water Resour.
Res. 13 (2), 318–324.

Das, N.G., 2009. Statistical methods. Tata. McGraw-Hill Publishing Company Limited,
224–244.

Dausman, A.M., Doherty, J., Langevin, C.D., 2010. Hypothesis testing of buoyant plume
migration using a highly parameterized variable-density groundwater model at a site
in Florida, USA. Hydrogeol. J. 18, 147–160.

Diersch, H.-J., G., 2014. FEFLOW: Finite element modeling of flow, mass and heat trans-
port in porous and fractured media. Springer Science & Business Media.

Ding, F., Yamashita, T., Lee, H.S., Pan, J., 2014. A modeling study of seawater intrusion in
the Liao Dong Bay coastal plain, China. J. Mar. Sci. Technol. 22 (2), 103–115.

Doherty, J., 2004. PEST Model-Independent Parameter Estimation, User Manual, 5th Edi-
tion Watermark Numerical Computing, Australia.

Emsellem, Y., De Marsily, G., 1971. An automatic solution for inverse problem. Water Re-
sour. Res. 7 (3), 1264–1283.

Franssen, H.H., Gómez-Hernández, J.J., 2002. 3D inverse modelling of groundwater flow
at a fractured site using a stochastic continuum model with multiple statistical popu-
lations. Stoch. Env. Res. Risk Assess. 16 (2), 155–174.

Franssen, H.J.H., Gómez-Hernández, J., Sahuquillo, A., 2003. Coupled inverse modelling
of groundwater flow and mass transport and the worth of concentration data. J. Hy-
drol. 281 (4), 281–295.

Franssen, H.H., Alcolea, A., Riva, M., Bakr, M., Van der Wiel, N., Stauffer, F., Guadagnini,
A., 2009. A comparison of seven methods for the inverse modelling of groundwater
flow. Application to the characterisation of well catchments. Adv. Water Resour. 32
(6), 851–872.

Freeze, R.A., Cherry, J.A., 1979. Groundwater, p. 604.
Frind, E.O., Pinder, G.F., 1973. Galerkin solution of the inverse problem for aquifer trans-

missivity. Water Resour. Res. 9 (5), 1397–1410.
GEC, 1997. Groundwater Resource Estimation Methodology. Report of the Groundwater

Resource Estimation Committee, Ministry of Water Resources, Government of India,
New Delhi.

Giacobbo, F., Marseguerra, M., Zio, E., 2002. Solving the inverse problem of parameter
estimation by genetic algorithms: the case of a groundwater contaminant transport
model. Ann. Nucl. Energy 29 (8), 967–981.

Hoareau, J., 2009. Utilisation d'une approche couplée hydrogéophysique pour l'étude des
aquiféres - Applications aux contextes de socle et côtier sableux. Ph.D. Thesis, Univer-
sité Joseph-Fourrier-Grenoble 1, Grenoble, France.

Honnanagoudar, 2014. Studies on aquifer characterization and seawater intrusion vulner-
ability assessment of coastal Dakshina Kannada District, Karnataka. Ph.D., thesis, De-
partment of Applied Mechanics and Hydraulics, National Institute of Technology, Kar-
nataka, Surathkal, India.

IMD – Monthly mean maximum & minimum temperature and total rainfall based on 2004
– 2010 data. India Meteorological Department. (www.imdpune.gov.in/ Retrieved
June 06, 2016.)

Iribar, V., Carrera, J., Custodio, E., Medina, A., 1997. Inverse modelling of seawater intru-
sion in the Llobregat delta deep aquifer. J. Hydrol. 198, 226–244.

Keidser, A., Rosbjerg, D., 1991. A comparison of four inverse approaches to groundwater
flow and transport parameter identification. Water Resour. Res. 27 (9), 2219–2232.

Ketabchi, H., Ataie-Ashtiani, B., 2015. Review: Coastal groundwater optimization - ad-
vances, challenges, and practical solutions. Hydrogeol. J. 23, 1129–1154.

Kitanidis, P.K., Vomvoris, E.G., 1983. A geostatistical approach to the inverse problem in
groundwater modeling (steady state) and one-dimensional simulations. Water Resour.
Res. 19 (3), 677–690.

Kolditz, O., Ratke, R., Diersch, H.J.G., Zielke, W., 1998. Coupled groundwater flow and
transport: 1. Verification of variable density flow and transport models. Adv. Water
Resour. 21 (1), 27–46.

Kopsiaftis, G., Mantoglou, A., Giannoulopoulos, P., 2009. Variable density coastal aquifer
models with application to an aquifer on Thira Island. Desalination 237, 65–80.

15



UN
CO

RR
EC

TE
D

PR
OO

F

B.N. Priyanka et al. Journal of Hydrology xxx (2018) xxx-xxx

Lathashri, U.A., Mahesha, A., 2015. Predictive simulation of seawater intrusion in a tropi-
cal coastal aquifer. J. Environ. Eng. ASCE, ISSN 0733-9372, D4015001.

Lu, W., Yang, Q., Martin, J.D., Juncosa, R., 2013. Numerical modelling of seawater intru-
sion in Shenzhen (China) using a 3D density-dependent model including tidal effects.
J. Earth Syst. Sci. 122 (2), 451–465.

Mahesha, A., Vyshali, Lathashri, U.A., Ramesh, H., 2012. Parameter estimation and vul-
nerability assessment of coastal unconfined aquifer to saltwater intrusion. J. Hydrol.
Eng. 17 (8), 933–943.

Mayer, A.S., Huang, C., 1999. Development and application of a coupled-process parame-
ter inversion model based on the maximum likelihood estimation method. Adv. Water
Resour. 22 (8), 841–853.

McLaughlin, D., Townley, L.R., 1996. A reassessment of the groundwater inverse problem.
Water Resour. Res. 32 (5), 1131–1161.

Medina, A., Carrera, J., 1996. Coupled estimation of flow and solute transport parameters.
Water Resour. Res. 32 (10), 3063–3076.

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007.
Model evaluation guidelines for systematic quantification of accuracy in watershed
simulations. Trans. ASABE 50 (3), 885–900.

Motz, L.H., Sedighi, A., 2009. Representing the coastal boundary condition in regional
groundwater flow models. J. Hydrol. Eng. 14 (8), 821–831.

Murty, V.V.N., Scott, V.H., 1977. Determination of transport model parameters in ground-
water aquifers. Water Resour. Res. 13 (6), 941–947.

Pool, M., Carrera, J., Alcolea, A., Bocanegra, E.M., 2015. A comparison of deterministic
and stochastic approaches for regional scale inverse modeling on the Mar del Plata
aquifer. J. Hydrol. 531, 214–229.

Rajabi, M.M., Ketabchi, H., 2017. Uncertainty-based simulation-optimization using Gauss-
ian process emulation: application to coastal groundwater management. J. Hydrol.
555, 518–534.

Sanz, E., Voss, C.I., 2006. Inverse modeling for seawater intrusion in coastal aquifers: in-
sights about parameter sensitivities, variances, correlations and estimation procedures
derived from the Henry problem. Adv. Water Resour. 29 (3), 439–457.

Sherif, M., Sefelnasr, A., Javadi, A., 2012. Incorporating the concept of equivalent fresh-
water head in successive horizontal simulations of seawater intrusion in the Nile Delta
aquifer, Egypt. J. Hydrol. 464–465, 186–198.

Strecker, E.W., Chu, W.-S., 1986. Parameter identification of a groundwater contaminant
transport model. Groundwater 24 (1), 56–62.

Sujay, R.N., Deka, P.C., 2016. Influence of series of vented dam intersections on the chan-
nel processes: a case study in the pavanje river basin. ISH - Hydro 2016 International,
p. 8.

Sun, N., Sun, N.Z., Elimelech, M., Ryan, J.N., 2001. Sensitivity analysis and parameter
identifiability for colloid transport in geochemically heterogeneous porous media. Wa-
ter Resour. Res. 37 (2), 209–222.

Udayakumar, G., 2008. Subsurface barrier for water conservation in lateritic formations.
Ph.D., thesis, Department of Applied Mechanics and Hydraulics, National Institute of
Technology, Karnataka, Surathkal, India.

Umari, A., Willis, R., Liu, P.L.F., 1979. Identification of aquifer dispersivities in two-di-
mensional transient groundwater contaminant transport: an optimization approach.
Water Resour. Res. 15 (4), 815–831.

Vyshali, 2008. Studies on saltwater intrusion in the coastal D.K district. Ph.D., thesis, De-
partment of Applied Mechanics and Hydraulics, National Institute of Technology, Kar-
nataka, Surathkal, India.

Wagner, B.J., Gorelick, S.M., 1986. A statistical methodology for estimating transport pa-
rameters: theory and applications to one-dimensional advective-dispersive systems.
Water Resour. Res. 22 (8), 1303–1315.

Wagner, B.J., 1992. Simultaneous parameter estimation and contaminant source charac-
terization for coupled groundwater flow and contaminant transport modelling. J. Hy-
drol. 135 (1–4), 275–303.

Xiang, Y., Sykes, J.F., Thomson, N.R., 1992. A composite L1 parameter estimator for model
fitting in groundwater flow and solute transport simulation. Water Resour. Res. 29
(6), 1661–1673.

Xiao, Y., Gu, X., Yin, S., Shao, J., Cui, Y., Zhang, Q., Niu, Y., 2016. Geostatistical inter-
polation model selection based on ArcGIS and spatio-temporal variability analysis of
groundwater level in piedmont plains, northwest China. SpringerPlus 5, 425.

Xu, M., Eckstein, Y., 1995. Use of weighted least-squares method in evaluation of the rela-
tionship between dispersivity and field scale. Groundwater 33 (6), 905–908.

Yao, L., Huo, Z., Feng, S., Mao, X., Kang, S., Chen, J., Xu, J., Steenhuis, T.S., 2014. Eval-
uation of spatial interpolation methods for groundwater level in an arid inland oasis,
northwest China. Environ. Earth Sci. 71 (4), 1911–1924.

16


	
	
	


